
Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University in Prague

TEXT SEARCHING ALGORITHMS

CASE STUDIES

Bořivoj Melichar, Miroslav Balík, Jan Holub, Jan Lahoda,
Michal Voráček and Jan Žďárek

December 2005
(version December 2, 2005)



2



Contents

1 Definitions 3
1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Finite automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Text searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Implementation of Suffix Automaton
Miroslav Balík 9
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Suffix automaton properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Construction of suffix automaton . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Topological ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Matching algorithm over the implementation . . . . . . . . . . . . . . . . . . 18
2.8 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 String Matching in a Compressed Text
Jan Lahoda 27
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Static Huffman code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Pattern matching in Huffman coded text . . . . . . . . . . . . . . . . . . . . . 27
3.4 Optimized pattern matching algorithm . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Case analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Generalized and Weighted Strings: Repetitions and Pattern Matching
Michal Voráček 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Generalized Factor Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Pattern Matching in Generalized Strings . . . . . . . . . . . . . . . . . . . . . 51
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Two-dimensional Pattern Matching Using the Finite Automata
Jan Žďárek 60
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Selected notions of two-dimensional pattern matching . . . . . . . . . . . . . 60
5.3 Trivial algorithm for two-dimensional exact matching . . . . . . . . . . . . . . 63
5.4 General models of two-dimensional pattern matching using finite automata . 63
5.5 Two-dimensional exact pattern matching . . . . . . . . . . . . . . . . . . . . 64
5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1



2



1 Definitions

This chapter provides the essential definitions needed for understanding this text. These
definitions were selected from Athens’ Tutorial and they were incorporated here for reader’s
more comfortable reading.

1.1 Basics

Definition 1.1 (Alphabet)
An alphabet A is a finite non-empty set of symbols.

Definition 1.2 (Complement of symbol)
A complement of symbol a over A, where a ∈ A, is a set A \ {a} and is denoted a.

Definition 1.3 (String)
A string over A is any sequence of symbols from A.

Definition 1.4 (Set of all strings)
The set of all strings over A is denoted A∗.

Definition 1.5 (Set of all non-empty strings)
The set of all non-empty strings over A is denoted A+.

Definition 1.6 (Length of string)
The length of string x is the number of symbols in string x ∈ A∗ and is denoted |x|.

Definition 1.7 (Empty string)
An empty string is a string of length 0 and is denoted ε.

Remark 1.8
It holds A∗ = A+ ∪ {ε}.

Notation 1.9
Exponents for string with repetitions will be used: a0 = ε, a1 = a, a2 = aa, a3 = aaa, . . .,
for a ∈ A and x0 = ε, x1 = x, x2 = xx, x3 = xxx, . . . , for x ∈ A∗.

Definition 1.10 (Concatenation)
The operation concatenation is defined over the set of strings A∗ as follows: if x and y are
strings over the alphabet A, then by appending the string y to the string x we obtain the
string xy.

1.2 Finite automata

Definition 1.11 (Deterministic finite automaton)
A deterministic finite automaton (DFA) is a quintuple M = (Q,A, δ, q0, F ), where
Q is a finite set of states,
A is a finite input alphabet,
δ is a mapping from Q×A to Q, (Q×A 7→ Q)
q0 ∈ Q is an initial state,
F ⊂ Q is the set of final states.

3



Definition 1.12 (Configuration of FA)
LetM = (Q,A, δ, q0, F ) be a finite automaton. A pair (q, w) ∈ Q×A∗ is a configuration of the
finite automaton M. A configuration (q0, w) is called an initial configuration, a configuration
(q, ε), where q ∈ F , is called a final (accepting) configuration of the finite automaton M .

Definition 1.13 (Transition in DFA)
Let M = (Q,A, δ, q0, F ) be a deterministic finite automaton. A relation `M∈ (Q × A∗) ×
(Q×A∗) is called a transition in the automaton M . If δ(q, a) = p, then (q, aw) `M (p,w) for
each w ∈ A∗. The k-power of the relation `M will be denoted by `

k
M . The symbols `

+
M and

`∗M denote a transitive and a transitive reflexive closure of the relation `M , respectively.

Definition 1.14 (Language accepted by DFA)
We will say that an input string w ∈ A∗ is accepted by a finite deterministic automaton
M = (Q,A, δ, q0, F ) if (q0, w) `∗M (q, ε) for some q ∈ F .
The language L(M) = {w : w ∈ T ∗, (q0, w) `∗ (q, ε), q ∈ F} is the language accepted by
a finite automaton M . A string w ∈ L(M) if it consists only of symbols from the input
alphabet and there is a sequence of transitions such that it leads from the initial configuration
(q0, w) to the final configuration (q, ε), q ∈ F .

Definition 1.15 (Complete DFA)
A finite deterministic automaton M = (Q,A, δ, q0, F ) is said to be complete if the mapping
δ(q, a) is defined for each pair of states q ∈ Q and input symbols a ∈ A.

Definition 1.16 (Nondeterministic finite automaton)
A nondeterministic finite automaton (NFA) is a quintuple M = (Q,A, δ, q0, F ), where
Q is a finite set of states,
A is a finite input alphabet,
δ is a mapping from Q×A into the set of subsets of Q,
q0 ∈ Q is an initial state,
F ⊂ Q is the set of final states.

Definition 1.17 (Transition in NFA)
Let M = (Q,A, δ, q0, F ) be a nondeterministic finite automaton. A relation
`M⊂ (Q×A∗)× (Q×A∗) will be called a transition in the automaton M if p ∈ δ(q,a) then
(q, aw) `M (p,w), for each w ∈ A∗.

Definition 1.18 (Language accepted by NFA)
A string w ∈ A∗ is said to be accepted by a nondeterministic finite automaton
M = (Q,A, δ, q0, F ), if there exists a sequence of transitions (q0, w) `∗ (q, ε) for some q ∈ F .
The language L(M) = {w : w ∈ A∗, (q0, w) `∗ (q, ε) for some q ∈ F} is then the language
accepted by a nondeterministic finite automaton M.

Definition 1.19 (NFA with ε-transitions)
A nondeterministic finite automaton with ε-transitions is a quintuple M = (Q,A, δ, q0, F ),
where
Q is a finite set of states,
A is a finite input alphabet,
δ is a mapping from Q× (A ∪ {ε}) into the set of subsets of Q,
q0 ∈ Q is an initial state,
F ⊂ Q is the set of final states.

4



Definition 1.20 (Transition in NFA with ε-transitions)
LetM = (Q,A, δ, q0, F ) be a nondeterministic finite automaton with ε-transitions. A relation
`M⊂ (Q × A∗) × (Q × A∗) will be called a transition in the automaton M if p ∈ δ(q,a),
a ∈ A ∪ {ε}, then (q, aw) `M (p,w), for each w ∈ A∗.

Definition 1.21 (ε-CLOSURE)
Function ε-CLOSURE for finite automaton M = (Q,A, δ, q0, F ) is defined as:

ε-CLOSURE(q) = {p : (q, ε) `∗ (p, ε), p ∈ Q}.

Definition 1.22 (NFA with set of initial states)
A nondeterministic finite automaton M with set of initial states I is a quintuple
M = (Q,A, δ, I, F ), where:
Q is a finite set of states,
A is a finite input alphabet,
δ is a mapping from Q×A into the set of subsets of Q,
I ⊂ Q is the non-empty set of initial states,
F ⊂ Q is the set of final states.

Definition 1.23 (Accessible state)
Let M = (Q,A, δ, q0, F ) be a finite automaton. A state q ∈ Q is called accessible if there
exists a string w ∈ A∗ such that there exists a sequence of transitions from the initial state
q0 into the state q:

(q0, w) `M (q, ε)

A state which is not accessible is called inaccessible.

Definition 1.24 (Useful state)
Let M = (Q,A, δ, q0, F ) be a finite automaton. A state q ∈ Q is called useful if there exists
a string w ∈ A∗ such that there exists a sequence of transitions from the state q into some
final state:

(q, w) `M (p, ε), p ∈ F .

A state which is not useful is called useless.

Definition 1.25 (Finite automaton)
Finite automaton (FA) is DFA or NFA.

Definition 1.26 (Equivalence of finite automata)
Finite automata M1 and M2 are said to be equivalent if they accept the same language, it
means L(M1) = L(M2).

Definition 1.27 (Sets of states)
Let M = (Q,A, δ, q0, F ) be a finite automaton. Let us define for arbitrary a ∈ A the set
Q(a) ⊂ Q as follows:

Q(a) = {q : q ∈ δ(p, a), a ∈ A, p, q ∈ Q}.

Definition 1.28 (Homogenous automaton)
LetM = (Q,A, δ, q0, F ) be a finite automaton and Q(a) be sets of states for all symbols a ∈ T .
If for all pairs of symbols a, b ∈ A, a 6= b, it holds Q(a) ∩Q(b) = ∅, then the automaton M
is called homogenous. The collection of sets {Q(a) : a ∈ A} is for the homogenous finite
automaton the decomposition on classes having one of these two forms:

5



1. Q =
⋃

a∈A

Q(a) ∪ {q0}
in case that q0 6∈ δ(q, a) for all q ∈ Q and all
a ∈ A,

2. Q =
⋃

a∈A

Q(a)
in case that q0 ∈ δ(q, a) for some q ∈ Q, a ∈ A.
In this case q0 ∈ Q(a).

1.3 Text searching

Definition 1.29 (Replace)
Edit operation replace is an operation which converts string wav to string wbv, where
w, v ∈ A∗, a, b ∈ A (one symbol is replaced by another).

Definition 1.30 (Insert)
Edit operation insert is an operation which converts string wv to string wav, where
w, v ∈ A∗, a ∈ A (a symbol is inserted into a string).

Definition 1.31 (Delete)
Edit operation delete is an operation which converts string wav to string wv, where
w, v ∈ A∗, a ∈ A (a symbol is removed from a string).

Definition 1.32 (Transpose)
Edit operation transpose is an operation which converts string wabv to string wbav, where
w, v ∈ A∗, a, b ∈ A (two adjacent symbols are exchanged).

Definition 1.33 (Distances of strings)
Three variants of distances between two strings u and v, where u, v ∈ A∗, are defined as
minimal number of editing operations:

1. replace (Hamming distance, R-distance),

2. delete, insert and replace (Levenshtein distance, DIR-distance),

3. delete, insert, replace and transpose (generalized Levenshtein distance,
DIRT -distance),

needed to convert string u into string v.

Definition 1.34 (“Don’t care” symbol)
“Don’t care” symbol is a special universal symbol ◦ that matches any other symbol including
itself.

Definition 1.35 (Set of all prefixes)
The set Pref(x), x ∈ A∗, is a set of all prefixes of string x:
Pref(x) = {y : x = yu, x, y, u ∈ A∗}.

Definition 1.36 (Set of all suffixes)
The set Suff(x), x ∈ A∗, is a set of all suffixes of string x:
Suff(x) = {y : x = uy, x, y, u ∈ A∗}.

6



Definition 1.37 (Set of all factors)
The set Fact(x), x ∈ A∗, is a set of all factors of the string x:

Fact(x) = {y : x = uyv, x, y, u, v ∈ A∗}.

Definition 1.38 (Set of all subsequences)
The set Sub(x), x ∈ A∗, is a set of all subsequences of the string x:

Sub(x) = { a1a2 . . . am : x = y0a1y1a2 . . . amym,
yi ∈ A∗, i = 0, 1, 2, . . . ,m, aj ∈ A,
j = 1, 2, . . . ,m, m ≥ 0}

Definition 1.39 (Set of approximate prefixes)
The set of approximate prefixes APref of the string x is a set:

APref(x) = {u : v ∈ Pref(x), D(u, v) ≤ k}.

Definition 1.40 (Set of approximate suffixes)
The set of approximate suffixes ASuff of the string x is a set:

ASuff(x) = {u : v ∈ Suff(x), D(u, v) ≤ k}.

Definition 1.41 (Set of approximate factors)
The set of approximate factors AFact of the string x is a set:

AFact(x) = {u : v ∈ Fact(x), D(u, v) ≤ k}.

Definition 1.42 (Set of approximate subsequences)
The set of approximate subsequences ASub of the string x is a set:

ASub(x) = {u : v ∈ Sub(x), D(u, v) ≤ k}.

Definition 1.43 (Prefix automaton)
The prefix automaton for string u is a finite automaton accepting the language Pref(u).

Definition 1.44 (Suffix automaton)
The suffix automaton for string u is a finite automaton accepting the language Suff(u).

Definition 1.45 (Factor automaton)
The factor automaton for string u is a finite automaton accepting the language Fact(u).

Definition 1.46 (Subsequence automaton)
The subsequence automaton for string u is a finite automaton accepting the language Sub(u).

Definition 1.47 (Approximate prefix automaton)
The approximate prefix automaton for string u is a finite automaton accepting the language
APref(u).

Definition 1.48 (Approximate suffix automaton)
The approximate suffix automaton for string u is a finite automaton accepting the language
ASuff(u).

Definition 1.49 (Approximate factor automaton)
The approximate factor automaton for string u is a finite automaton accepting the language
AFact(u).

Definition 1.50 (Approximate subsequence automaton)
The approximate subsequence automaton for string u is a finite automaton accepting the
language ASub(u).

Definition 1.51 (Basic pattern matching problems)
Given a text string T = t1t2 · · · tn and a pattern P = p1p2 · · · pm. Then we may define:

7



1. String matching: verify whether string P is a substring of text T .

2. Sequence matching: verify whether sequence P is a subsequence of text T .

3. Subpattern matching: verify whether a subpattern of P (substring or subsequence)
occurs in text T .

4. Approximate pattern matching: verify whether pattern X occurs in text T so that the
distance D(P,X) ≤ k for given k < m.

5. Pattern matching with “don’t care” symbols: verify whether pattern P containing
“don’t care” symbols occurs in text T .

Definition 1.52 (Matching a sequence of patterns)
Given a text string T = t1t2 · · · tn and a sequence of patterns (strings or sequences) P1, P2, . . .,
Ps. Matching of sequence of patterns P1, P2, . . . , Ps is a verification whether an occurrence of
pattern Pi in text T is followed by an occurrence of Pi+1, 1 ≤ i < s.

8



2 Implementation of Suffix Automaton
Miroslav Balík

2.1 Motivation

This Section shows an effective implementation of suffix automaton. Suffix automaton for text
T is a minimal automaton that accepts all suffixes of the text T and represents a complete
index of this input text T . While all usual implementations of suffix automaton need about
30 times larger storage space than the size of the input text, here we show an implementation
that decreases this requirement down to four times the size of the input text. This is a better
result than any known implementation of suffix trees, structures used for the same kind of
tasks.

The method uses data compression of suffix automaton elements, i.e. states, transitions
and labels. The construction time of this implementation is linear with respect to the size of
the input text. This implementation does not increase the time to search for a pattern, which
is proportional to the length of the pattern.

2.2 Introduction

String matching is one of the most frequently used tasks in text processing. With the increased
volume of processed data, which usually consists of unstructured texts, the importance of
data qualification technologies is increasing. This is the reason why indexing structures are
constructed for static texts that support pattern matching in a linear time with respect to
the length of the pattern.

Although some indexing structures have a linear size with respect to the length of the text,
this size is high enough to prevent practical implementation and usage. This size depends
on implementation details, on the type of the text and on the type of the automaton used.
For the suffix tree the size is rarely smaller than 10n bytes, where n is the length of the
text. Other structures are suffix automaton called Directed Acyclic Word Graph (DAWG)
automaton (size about 30n bytes) and its compact version CDAWG (size about 10n bytes).
Stefan Kurtz in [1] shows a number of known implementations of these automata together
with experimental evaluations and a number of references.

Other types of indexing structures are usually smaller, suffix arrays [2] (size 5n bytes),
level compressed tries [3] (size about 11n bytes), suffix cactuses - a combination of suffix trees
and suffix arrays [4] (size 9n bytes), and suffix binary search trees[5] (size about 10n bytes).

An automaton is usually stored as a graph, with vertices represent states of the automaton
and edges represent transitions. A state is then represented by an index into a transition table
or as a memory position referenced by edges. Edges are stored as a part of the vertex they
start from. Thus it is possible to locate an edge with a specific label in a constant time with
respect to the number of vertices and edges. Each edge contains information about the vertex
it leads to, and its label, which is one symbol in the case of suffix automaton (DAWG), or a
sequence of symbols in the case of CDAWG and suffix trees. Every sequence used as a label
is a substring of a text, so it can be represented by a starting and ending positions of this
substring.

An implementation presented in this paper uses a compression of elements of the graph
representing the automaton to decrease space requirements. The ”compression” is not a
compression of the whole data structure, which would mean performing decompression to

9



be able to work with it, but it is a compression of individual elements, so it is necessary to
decompress only those elements that are necessary during a specific search. This method is
applicable for all homogenous automata1 and it can be generalized to all automata accepting
a finite set of strings and to all structures, which can be drawn as an acyclic graph.
The whole graph is a sequence of bits in a memory that can be referenced by pointers.

A vertex is a position in the bit stream where a sequence of edges originating from the
vertex begins. These edges are pointers into a bit stream, they point to places where the
corresponding terminal vertices are located. Vertices are stored in a topological ordering2,
which ensures that a search for a pattern is a one-way pass through the implementation of
the graph structure.
Each vertex contains an information about labels of all edges leading to it and the number

of edges that start from it. Since it is possible to construct a statistical distribution of all
symbols in the text, we can store edge labels using a Huffman code [6]. We can use it also
to encode the number of edges starting from a vertex and, because the most frequent case is
when only one edge starts from a vertex, it is dealt with as a special case.
The approach presented here creates a suffix automaton structure in three phases. The

first phase is the construction of the usual suffix automaton (Page 10), the second phase is the
topological ordering (or re-ordering) of vertices (Subsection Topological Ordering, page 12),
which ensures that no edge has a negative ”length”, where length is measured as a difference of
vertex numbers. The final phase is the encoding and storing the resulting structure. Encoding
of each element is described on page 13.
We have used a set of 31 files in the experiments. 17 files are taken from the Calgary

Corpus and 14 files from the Canterbury Corpus [7]. The Canterbury Corpus consists of
18 files, but the file pic is identical to the file ptt5 of the Calgary Corpus. Both Corpora
are widely used to compare lossless data compression programs. We use these files to test
performance for matching our results with Kurz’s results [1].

2.3 Suffix automaton properties

SA(T) is a minimal automaton that accepts all suffixes of a text T .
The major advantages of suffix automaton are:

• it has a linear size limited by the number of states, which is less than 2|n| − 2; the
number of transitions is less than 3|n| − 4, where n > 1 is the length of the text [8],

• it can be constructed in O(n) time [8],

• it allows to check whether a pattern occurs in a text in O(m) time, where m is the
length of the pattern. Pattern matching algorithm is shown in Fig. 2.1.

2.4 Construction of suffix automaton

There are many ways of constructing suffix automaton from text, more details can be found
for example in [8]. The method used here is the on-line construction algorithm. An example
of suffix automaton constructed using this algorithm for an input text T = acagac is shown
in Fig. 2.8.

1Homogenous automata have all transitions to a specific state labeled with the same symbol.
2A topological ordering of a graph is a numbering of vertices that ensures that each edge starts from a

vertex with a lower number and ends at a vertex with a higher number.

10



Input: SA(T ), pattern P = p1p2 . . . pm.
Output: YES, if P occurs in T , NO otherwise.

1. State q := q0; i := 1;

2. while((i < m + 1) and (q 6= NULL))

3. do q := Successor(q, P [i]); i := i + 1; end

4. if(i < m + 1) then NO // Pattern does not occur in Text
else YES // Pattern occurs in Text

Figure 2.1: Matching algorithm

When drawing the state graph corresponding to a finite automaton, we adopt the following
conventions:

• All states are drawn as circles (vertices).

• Transition are drawn as labeled (with alphabet symbol x ∈ A) directed edges between
states.

• Start states have an in-transition with no source.

• Final states are drawn as two concentric circles.

Index i points to the processed symbol of the pattern, function Successor(q, P [i]) evaluates
the successor of state q using the edge labeled by symbol P [i]. If there is no edge from state
q labeled by this symbol, the function holds the NULL value.

The whole algorithm consists of the main loop. The number of iterations is m in the
worst case. In each iteration the appropriate edge is searched. This search depends only on
the size of the input alphabet, it is independent on the number of edges in the whole graph.
The resulting time complexity of the algorithm is O(m).

During the construction phase a statistical distribution of symbols in the text is created.
A statistical distribution of the number of edges at respective vertices is also created.

Table 2.1 shows general properties of the suffix automaton for testing files. The first
column shows the name of the testing file, the second column shows its source, CL – Calgary
Corpus, CN – Canterbury Corpus. The third column shows the size of the text, the next one
shows the size of the input alphabet. The ratio between the size of the text and the size of
the corresponding suffix automaton is shown in sixth column, and the last column describes
the average number of transitions that start from one state.

The size of an automaton is the number of its states. It is obvious that the number of
states together with the number of transitions directly influence the size of the implementation
of the automaton.

The average number of transitions that start from one state can be calculated as the ratio
of the number of states and the number of transitions. If this ratio is low, we can transfer
transition labels to the states the transitions lead to. This will also influence the behaviour
of the matching algorithm.

11



File Source Length |A| States/symbol Trans./state
book1 CL 768771 81 1.51 1.47
book2 CL 610856 96 1.54 1.37
paper1 CL 53161 95 1.55 1.37
paper2 CL 82199 91 1.52 1.41
paper3 CL 46526 84 1.51 1.43
paper4 CL 13286 80 1.52 1.44
paper5 CL 11954 91 1.52 1.43
paper6 CL 38105 93 1.57 1.37
alice29 CN 152089 74 1.54 1.41
lcet10 CN 426754 84 1.54 1.37
plrabn12 CN 481861 81 1.50 1.46
bible CN 4047392 63 1.56 1.31
world192 CN 2473400 94 1.53 1.23
bib CL 111261 81 1.52 1.30
news CL 377109 98 1.52 1.38
progc CL 39611 92 1.55 1.36
progl CL 71646 87 1.64 1.23
progp CL 49379 89 1.66 1.23
trans CL 93695 99 1.71 1.18
fields CN 11150 90 1.61 1.27
cp CN 24603 86 1.53 1.32
grammar CN 3721 76 1.60 1.30
xargs CN 4227 74 1.54 1.40
asyoulik CN 125179 68 1.50 1.45
geo CL 102400 256 1.30 1.57
obj1 CL 21504 256 1.35 1.45
obj2 CL 246814 256 1.46 1.30
ptt5 CN 513216 159 1.53 1.23
kennedy CN 1029744 256 1.05 1.52
sum CN 38240 255 1.44 1.37
ecoli CN 4638690 4 1.64 1.54

Table 2.1: General properties of the suffix automata

2.5 Topological ordering

The suffix automaton structure is a directed acyclic graph. This means that its vertices can
be ordered according to their interconnection by edges. Such an implementation that keeps
all the information about edges starting from a vertex only in the vertex concerned while
storing the vertices in a given order guarantees that every pattern matching event will result
in a single one-way pass through this structure.

The problem of such topological ordering can be solved in linear time. At first, for each
vertex its input degree (the number of edges ending at the vertex) is computed, next a list
of vertices having an input degree equal to zero (the list of roots) is constructed. At first,
this list will contain only the initial vertex. One vertex is chosen from the list. This vertex
gets the next number in the ordering and for all vertices accessible by an edge starting at this
vertex their input degree is decreased by one. Then vertices that have a zero input degree are
inserted into the list. This goes on until the list is empty. The order of the vertices, which
determines the quality of the final implementation, obtained this way depends on the strategy

12



of choosing a vertex from the list. Several strategies were tested and the best results were
obtained using the LIFO (last in - first out) strategy, because using this strategy for vertices
with only one outgoing edge gets its successor next number (if this successor has been inserted
into the roots list). Cases where the vertices have only one edge, and this edge points to the
successor in topological ordering, are dealt as a special case (see Subection on Encoding on
page 13).

2.6 Encoding

The graph of suffix automaton is encoded element by element (elements are described later in
this Subsection). It starts with the last vertex according to the topological order (as described
above) and progresses in the reverse order, ending with the first vertex of the order. This
ensures that a vertex position can be defined by the first bit of its representation and that
all edges starting at the current vertex can be stored because all ending vertices have already
been processed and their addresses are known.

Figure 2.2: Implementation - Data Structures

The highest building block is a graph. It is further divided into single elements. Each
element consists of two parts: a vertex and an edge. A vertex carries information on a label
of all edges ending at it. A Huffman code is used for coding symbols of the alphabet. An
edge is further split into a header and an address order . A header carries information on the
number of addresses - edges belonging to a respective vertex. A distribution of edge counts
for all vertices can be obtained during the construction of suffix automaton. This makes it
possible to use a Huffman code for header encoding, but Fibonacci encoding([9]) is sufficient
as well, though one must expect a substantial amount of small numbers. An address is the
address of the first bit of the element being pointed to by an appropriate edge. It is further
split into two parts, one describing the length of the other part, which is a binary encoded
address.

2.6.1 Symbol encoding

A code of an element (vertex and corresponding edges) starts with a code of the symbol for
which it is possible to enter the vertex. The best code is the Huffman code. The Huffman code
for DNA sequence is the code of constant length, two bits. This is the most space efficient
code for storing four different values with the same probability, stored without context.
Fig. 2.3 shows an algorithm of Huffman tree construction. This algorithm uses Huffman

nodes. Each Huffman node consists of symbol labeling, number of occurrences, left and right

13



Input: Symbols xi ∈ A, i ∈ {1, 2, . . . k} and their number of occurrences ni in text.
Output: Huffman tree.

1. Foreach x ∈ A do

2. begin

3. newl :=(xi, ni, NULL, NULL);

4. Insert(L, newl); //Put this node into sorted list L

5. end

6. j := k;

7. while (j > 2) do

8. begin

9. l1 := Pop(L), l2 := Pop(L); //Pop first two records from the list

10. newl :=(—,nl1 + nl2 , l1, l2); //Create new node and put it in L

11. Insert(L, newl);

12. end

Figure 2.3: Huffman tree construction

sons. Leaves are initialized with symbols, their number of occurrences and two NULL pointers.
New nodes have both sons defined and their symbols undefined. The edge to the left son is
labeled by symbol 0, the right edge by symbol 1. The algorithm uses sorted list structure. The
order of the record in the list depends on the value of the number of occurrences. The record
with the lower number of occurrences precedes records with higher number of occurrences.
The function Insert(L, newl) inserts new record newl into the sorted list L at its appropriate
place.

Code words are obtained from Huffman tree. The code word for a symbol xi is string on
the path from the root to the leaf initialized by symbol xi. The Huffman tree is also used for
bit stream decoding.

Table 2.2 shows experimental results. The second column shows the size of text. The
third column shows the size of alphabet and the fourth column shows the resulting average
length of Huffman code. This average size as is calculated using this formula:

as =
Σk

i=1ni ∗ li

Σk
i=1ni

,

where symbol ni denotes the number of i− th symbol in the text. Symbol li denotes the
number of bits necessary to store one i − th symbol. Index i varies between 1 and k, where
k is the size of the input alphabet.

The last column on Table 2.2 shows the average length of Huffman code for storing the
number of edges going out from the vertex. This field will be discussed in the subsection
Encoding of Number of Edges on page 15.

It can be observed that we obtain better results for text in natural languages than for text
with constant probability for each symbol. Text files contain a lot of redundancy. This is sim-
ilar to the case of files with an alphabet containing fewer symbols than 256. A special case are
texts storing DNA sequences. DNA sequences contains only four symbols (usually a, c, g, t),
but eight bits are used for each symbol, because the textual form is used. Huffman encoding

14



File Source Length |A| Bits/Symbol Bits/# of Edges
book1 CL 768771 81 4.56 1.48
book2 CL 610856 96 4.82 1.39
paper1 CL 53161 95 5.01 1.40
paper2 CL 82199 91 4.63 1.43
paper3 CL 46526 84 4.69 1.46
paper4 CL 13286 80 4.73 1.43
paper5 CL 11954 91 4.97 1.46
paper6 CL 38105 93 5.04 1.39
alice29 CN 152089 74 4.61 1.43
lcet10 CN 426754 84 4.70 1.38
plrabn12 CN 481861 81 4.57 1.47
bible CN 4047392 63 4.39 1.32
world192 CN 2473400 94 5.04 1.24
bib CL 111261 81 5.23 1.31
news CL 377109 98 5.23 1.37
progc CL 39611 92 5.23 1.37
progl CL 71646 87 4.80 1.26
progp CL 49379 89 4.89 1.25
trans CL 93695 99 5.57 1.19
fields CN 11150 90 5.04 1.29
cp CN 24603 86 4.84 1.47
geo CL 102400 256 5.67 1.34
obj1 CL 21504 256 5.97 1.42
obj2 CL 246814 256 6.29 1.28
ptt5 CN 513216 159 1.66 1.22
kennedy CN 1029744 256 3.59 1.08
sum CN 38240 255 5.37 1.31
ecoli CN 4638690 4 2.00 1.57

Table 2.2: Encoding of symbols and number of edges from a vertex

produces a code two bits long3, six bits are saved for each stored symbol.

2.6.2 Encoding of number of edges

The code of the number of edges is another item. This value can also be obtained prior to
encoding. A typical example of a distribution of the number of edges for three input text files
is shown in Fig. 2.4. Text from the file ecoli represents text over the DNA alphabet. The
number of symbols is very small and the probability of all symbols are similar. The second
text is bible, a natural language text. This text contains a lot of redundancy, the probabilities
of symbols are various and depend on the neighbour symbols in the text. For example the
probability that the bible contains string qqq is much smaller than the probability for string
the. The last text is file kennedy over the alphabet with 256 symbols.

For an input alphabet of size k, are k + 1 possible values for the number of successors,
because we have added a special case for only one outgoing edge pointed to the successor.

3The length of Huffman code depends on the size of alphabet and number of occurrences of each symbol.

DNA sequences have the similar number of occurrences of each symbol. Huffman code of constant length is

produced for this type of text.

15



That is why ecoli has defined values for only five numbers. The other two texts have values
defined for k + 1 symbols. Values of number of states for number of transition greater than
6 are not shown on the figure, because these values are very small.

0 1 2 3 4 5 6
Number of Transitions from a State

0

20

40

60

80

100

N
um

be
r 

of
 S

ta
te

s 
(p

er
ce

nt
)

ecoli
bible
kennedy

Figure 2.4: Number of outgoing edges distribution

In Fig. 2.4 vertices with just one edge leading from them were further divided into two
groups: the first group is formed by vertices having just one edge leading to the next vertex
according to given vertex ordering (included in the group Edge count = 0), and the second
group is formed by vertices having just one edge leading anywhere else (Edge count = 1).
The first group can be easily encoded by the value of Edge count.

The figure also shows that more than 97% of all vertices belong to the first group for
natural text, 84% for the files over large alphabet and 62% for ecoli. This means that the
codeword describing this fact should be very short. It will be only one bit long using Huffman
coding. Other values of edge counts are represented by more bits according to the structure
of the input text.
The smallest element of suffix automaton represents a vertex with just one edge ending

at the next vertex. For ecoli it is 3 (2 per symbol + 1 bit per edges) bits on average. The
fact that suffix automaton consists mainly of such elements was used in the construction of
the Compact DAWG structure (CDAWG) derived from the general suffix automaton, more
details can be found in [10].

2.6.3 Edge encoding

The last part of the graph element contains references to vertices that can be accessed from
the current vertex. These references are realized as relative addresses with respect to the
beginning of the next element. The valid values are non-negative numbers. To evaluate them
it is necessary to know the ending positions of corresponding edges. This is why the code
file is created by analysing DAWG from the last vertex towards the root in an order that
excludes negative edges. If we wanted to work with these edges, we would have to reserve an
address space to be filled in later when the position of the ending vertex is known.

The address space for a given edge depends on the number of bits representing the elements
(vertices) lying between the starting and ending vertices. As the size of these elements is not
fixed (the size of the dynamic part depends mainly on element addresses), it is impossible

16



to obtain an exact statistical distribution of values of these addresses, which we obtained for
symbols and edges. A poor implementation of these addresses will result in the situation
where elements will be more distant and the value range broader.

Yet it is possible to make an estimation based on the distribution of edge lengths (measured
by the number of vertices between the starting and ending vertices). In this case the real
address value might be only q − times higher on average, where q is an average length of
one suffix automaton element. The first estimation of optimal address encoding is based on
the fact that the number of addresses covered by k bits is the same for k = 1, 2, ..., t, where
t is the number of bits of the maximum address. We will use an address consisting of two
parts: the first part will determine the number of bits of the second part, the second part will
determine the distance of the ending vertex in bits. The simplest case is when the addresses
are of a fixed length, then the length of an average address field is r = s + t, where s = 0,
which means that r = t. Another significant case is a situation when the number of categories
is t, then s = dlog2 te.
When s is chosen from an interval s ∈ 〈0, dlog2 te〉, the number of categories is 2s, the

number of address bits of the i− th category is t∗i
2s . An average address field length is then

r = s +
2s
∑

i=1

t ∗ i

2s
.

When we rearrange this formula, we obtain

r = s + t
2s + 1

2s+1
.

When the address length is fixed and the number of categories varies, this function has a
local minimum for

2s =
t ln 2

2
.

If we know t, we can calculate s as

s = log2(t ln 2)− 1

Tab. 2.6.3 shows optimal values of t for given values of s as well as address limits when
it does not matter if we use a code for s or s + 1 categories. The estimation of the input file
length assumes that the code file is three times greater than is the length of the input text,
and that the code file contains the longest possible edge, which connects the initial and the
last vertices. This observation is based on experimental evaluation.
It can be seen that the value s = 3 is sufficient for a wide range of input text file lengths,

which guarantees a simple implementation, yet it leaves some space for doubts about the
quality of the approach used or the edge lengths are not spread uniformly in the whole range
of possible edge lengths (1 to the maximum length). The answer to these doubts can be found
in Fig. 2.5.

Fig. 2.5 does not contain edges ending at the next vertex (with respect to the actual vertex)
as they are dealt with in a different way. It can clearly be observed that the assumption of
uniformity of the distribution is not quite fulfilled. Nevertheless categories can be constructed
in a way that supports the requirement of the minimal average code word length. Fig. 2.6
depicts the real distribution of address lengths for one way of encoding.

17



s t Optimal |X|
1 6 3B

1 and 2 8 11B

2 12 171B

2 and 3 16 2.7kB

3 23 350kB

3 and 4 32 180MB

4 46 2.9TB

4 and 5 64 8 · 1017B

5 92 2 · 1026B

Table 2.3: Address encoding

0 20
Edge length (bits)

0

20

40

60

N
um

be
r 

of
 e

dg
es

 (
pe

rc
en

t)

0 20
0

20

40

60

ecoli
bible
kennedy

Figure 2.5: Edge Length Distribution

This encoding regularly divides address codes into eight categories by four bits. The
longest address is 32 bits long. It corresponds to the maximal size of the text of about 100
MB long. The relevancy with respect to the statistical distribution of edges is obvious, the
peaks being shifted by three or four bits to the right.

Edge decoding depends on the number of categories used for encoding. When eight
categories are used, three bits are used for symbol length code (s = 3). We read these
three bits as an integer n. Then we calculate the number of bits that represent an edge
address as t = (n + 1) ∗ 3. Finally, we read n bits from CodeF ile as an integer, and this
number is the address.

2.7 Matching algorithm over the implementation

The matching algorithm over the implementation is shown in Fig.2.7. Each element (symbol
labeling, number of edges encoding, edge encoding) is decoded at the moment of its use.

Variable Ptr points to the implementation and each bit of the implementation is ad-
dressable using Ptr. The beginning of the implementation has the value Ptr = 0. Function

18



0 10 20 30
Address Length (bits)

0

20

40

60

N
um

be
r 

of
 A

dd
re

ss
es

 (
pe

rc
en

t)

ecoli
bible
kennedy

Figure 2.6: Address length distribution

DecodeNum(Ptr) decodes number of edges. The decoding process starts from the root of the
Huffman tree, the input bit stream is taken from the position Ptr. The number of used bits
is stored for the function Update(Ptr). The executing process in function DecodeLabel(Ptr)
is analogical, but for decoding we use a Huffman tree constructed for edge labeling instead of
a Huffman tree constructed for the number of edges.

If the appropriate edge from the currently processed vertex is searched then all possible
vertices are visited. Each symbol stored by the visited vertex is compared with the labeling
of the appropriate edge. The maximal number of visited vertices equals the maximal number
of edges from a vertex, the size of the input alphabet. The time complexity of execution of
this function is O(m), where m is the length of the pattern.

2.8 Example

An example of suffix automaton is shown in Fig. 2.8. This automaton is build for the text
T = acagac over the alphabet for DNA sequences, i.e. {a, c, g, t}. The pattern P1 = aga is
a substring of text T , the pattern P2 = cga does not occur in text T , pattern P2 is not a
substring of text T .

String matching over an automaton is shown in Fig.2.1. String matching for the pattern
P1 = aga begins in the initial state number 0. The first symbol of the pattern (a) is matched
with the transition labeled by the same symbol, while the actual state is set to the number
1. Then the second symbol from the pattern is processed and actual state is set to state 4.
If no transition from the actual state has the same labeling, the matching process terminates
and the pattern does not occur in the text. In our case the last symbol is matched with the
transition labeled by the same symbol, and the state number 5 is accessed. This state is not
the final state, so pattern P1 = aga is not a suffix of text T = acagac, but this pattern is a
substring of the text.

19



Input: Implementation of SA(T ), pattern P = p1p2 . . . pm.
Output: YES if P occurs in T , NO otherwise.

1. Build decoding trees from the implementation;

2. Ptr := 0; //Ptr . . .pointer into the implementation

3. i := 1;

4. initialize Stack;

5. while((i < m + 1) and (Ptr 6= NULL)) do

6. begin num := DecodeNum(Ptr);Update(Ptr);

7. if(num = ”Only one edge to the next vertex”) then Push(Stack, 0);

8. else while(num > 0) do

9. begin Push(Stack,DecodeEdgeLength(Ptr));

10. Update(Ptr);

11. num := num− 1;

12. end; //end while

13. found := FALSE ;

14. while((Empty(Stack) 6= TRUE ) and (found 6= TRUE )) do

15. begin Ptr := Ptr + Pop(Stack);

16. if(DecodeLabel(Ptr) = P [i]) then

17. begin Update(Ptr);

18. i := i + 1;

19. found := TRUE ;

20. initialize Stack;

21. end; //end if

22. end; //end while

23. if(found = FALSE )then Ptr := NULL;

24. end; //end while

25. if(i < m + 1) then NO // Pattern does not occur in Text
26. else YES // Pattern occurs in Text

Figure 2.7: Matching algorithm over the implementation

2.8.1 Implementation structure

Suffix automaton is created for text T = acagac (see Fig. 2.8). The structure of implementa-
tion is shown in Fig. 2.9. The first element (state) corresponds to vertex number 0, i.e. the
initial state. This state has no incoming edge, so the corresponding element consists only of
part storing edges. This part starts with the code for the number of outgoing edges (here
number 3). Three addresses follow. Each address refers to the end vertex of one outgoing
edge. These vertices are pointed as the number of bits necessary to shift for pointing to end
vertex. The first address points to the element number 1. It corresponds to the transition
labeled by symbol a. The length of this address is 0, because element number 1 follows stored
element. The lengths of the next transitions depend on the size of elements leading between
stored and referred elements. That is why we store elements from the last element to the first
one in numbering of topological ordering.

The second element (number 1) consist of two parts, vertex and edges. The vertex carries
information about the labeling of incoming edge, here symbol a. Edges starts with the number

20



ca

g

ca

c
g

a g
21 3 5 60 4

Figure 2.8: An automaton SA(acagac)

3 trans. ’a’2 trans. ’c’1 trans. ’a’1 trans. ’g’1 trans. ’a’1 trans. ’c’0 trans.

Vertex 4Vertex 3Vertex 2Vertex 1Vertex 0 Vertex 5 Vertex 6

Figure 2.9: Implementation of SA(acagac)

of outgoing edges, here two edges. The first points to the third element (number 2) the second
points to the fifth element (number 4). The third element starts with symbol labeling (c).
The element contains only one edge and this edge points to the next element. The special
category is added for this case in the part of number of edges. Therefore the part of addresses
is not present because all needed information is saved in previous code.
The meaning of individual parts of next elements are similar. The last element has no

outgoing edge, so we create a new category for the number of outgoing edges; this value is 0.
In order to save the space for implementation of large texts it is better to save this element
in another way. The element for vertices without any outgoing edge consists of a label of
the incoming edge, and the number of edges is set to 1. This vertex contains only one edge,
and this edge does not point the next vertex (this situation is encoded in another way). The
address is set to 0. This is an inadmissible value for an address that points to the non next
vertex, so this combination does not occur in another place in the stream. This detail is for
decreasing the storage requirement, and is not used in the example.

Addresses are saved relatively. Three addresses are saved for element number 0, the first
points to the element 1, the second points to the element 2 and the last one to the element
4. All addresses in our example are in bits from the end position of element 0, but in a real
implementation the first address points from element 0 to element 1, the second from 1 to 2
and the last one from 2 to 4.

2.8.2 Huffman trees

An algorithm for constructing a Huffman tree is shown in Fig. 2.3. Huffman code is used
for storing symbol labellings and the number of edges outgoing from a state. The statistical
distribution is prepared during the construction phase.
Table in the Fig. 2.10 shows the statistical distribution (the second column) for each

symbol (the first column) and the resulting Huffman code (the last column). The Huffman
code for the number of edges is shown in the Fig. 2.11. In the example we do not use the
special coding for storing final state, so we have six categories for the number of outgoing
edges. The category of four successors and one successor to the not next vertex are not
present; they have no code. The table and Huffman tree is in Fig. 2.11 and have the same
meaning as in Fig. 2.10.
The decoding of an input stream begins at the root of the coding tree and follows a left

21



1 2 3

4

5

c a

1 2 3

3

6

0

0

1

1

g

a

c

g

t

2
3

1
0

1
01
00
−

Symbol f code

Figure 2.10: Example: Huffman code for symbols

edge when a ’0’ is read or a right edge when a ’1’ is read. When a leaf is reached, the
corresponding symbol is output. For example, we read the stream on the position, where it
is the following sequence of bits: 01001 . . .. We want to decode one Huffman code for the
symbol of input alphabet. We want to get this symbol and the new position in the stream
(the length of read Huffman code). We use the Huffman tree (see Fig. 2.10). We read the
first bit from the stream - 0 and we follow from the root - vertex number 5 to the vertex 4.
We read the next bit 1 and follow to the vertex 2. This is a leaf, the corresponding symbol c
is decoded. Two bits were read, and the pointer in the stream is updated.

Table 2.2 shows experimental results for a set of texts. The fifth column shows average size
(in bits) used for storing one symbol. This average size as for text T = acagac is calculated
using formula:

as =
Σk

i=1ni ∗ li

Σk
i=1ni

=
(3 ∗ 1)a + (2 ∗ 2)c + (1 ∗ 2)g + (0 ∗ 0)t

3 + 2 + 1
= 1.5

This number means that 1.5 bits are used for storing one input symbol in the average.

1 2
1

0 1

3

6

1

0

1

3 1

4

5

0 7

4

2

7

0 2 3 1

1

1
0

01

−

f code# of edges

4

3

2

1

0

1

0
1

1
4

−

001

1
000

Figure 2.11: Example: Huffman code for symbols

2.8.3 Addresses

The last part of the vertex contains references to vertices that can be accessed from the current
vertex. These references are realized as the relative addresses with respect to the beginning of
the next element. The valid values are non-negative numbers. The longest address can point
to the last vertex from the first one. We assume that the space requirements for storing text
is three times greater than the original text. The longest edge for text T = acagac connects
the first and the last state. Appropriate address points to the last vertex from the end of the
first vertex. That means that this address shifts over four vertices. We suppose that each

22



vertex is saved using three bytes. The resulting address is 4 ∗ 3 ∗ 3 = 36 bits long in the worst
case. Six bits are used for storing this address.

Table 2.6.3 shows that one category for addresses is the best for text T of the length of
6 symbols. We use two categories, because we want to demonstrate the use of categories.
The first category (encoded by 0) determines the address three bits long, the second category
(encoded by 1) determines address six bits long.

2.8.4 Construction of the implementation

3 
bi

ts
/a

dd
rr

es

0 
tra

ns
.

15 571012

a12 0 5 0 ac g c3 
bi

ts
/a

dd
rr

es

3 
bi

ts
/a

dd
rr

es

2 
tra

ns
iti

on
s

6 
bi

ts
/a

dd
rr

es

1 001100 0000 00101010000 01 11 001 11 01000
1

1

a

27

1
47

010001

6 
bi

ts
/a

dd
rr

es

3 
tra

ns
.

17

101

Figure 2.12: Implementation of SA(acagac)

The resulting implementation for our example is shown in Fig. 2.12. The creation of
this bit stream starts with the terminal state of the suffix automaton. Therefore the bit bit
stream is indexed from the last bit of the implementation (number 1) to the first bit (number
47 in our case). The special importance have indexes pointing to the beginnings of individual
vertices. These values are used for evaluating lengths of addresses.

The whole information in each step about one state is saved and the corresponding part
of bit stream is denoted as a vertex. The last state is processed in the first step. This state
has no outgoing transition, so 000 is saved. This code corresponds to the Huffman tree for
the number of edges. In front of this bits are saved 01, the Huffman code for symbol ′c′. The
last vertex is created, so the starting position of this is saved for computing the destination
position of some edge, here 5. The next vertex (vertex number 5) consists of two parts, the
symbol code (here 1 for symbol a) and the number of edges (only one edge and this edge
points to the next vertex – 1). This is the smallest vertex in the implementation, consisting
only of two bits. Its starting position is 7 bits from the end.

Vertices 4, 3 and 2 are created in the same way, the corresponding positions are 10, 12
and 15. Two transitions go out from the state 1. Therefore vertex 1 contains two addresses,
one points to vertex 2 and the second address points to vertex 4. The length of the address
is the difference between the bit leading behind vertex actually saved and the position of the
starting bit of the accessed vertex. The first address points from the vertex 1. Its starting
position is 15. It corresponds to the beginning of the next vertex. The destination of the first
address is vertex 2, its position is 15. The difference is 0, so the value of the first address
is 0. This value is less than 7 (710 = 1112), the category is the first, the code is 0. The
whole address is encoded as 0 000. The second address is obtained in the same way and the
resulting value is 15 − 10 = 5 and code 0 101. Vertex number 0 is saved in the same way.
The resulting code is 47 bits long. It is less than one byte per input symbol. The lengths
of storage space for Huffman trees must be added. This space does not increase the ratio
between implementation and the text for larger text.

23



2.8.5 Complexity

Suffix automaton can be created using the on-line construction algorithm in O(n) time [8].
Vertex re-ordering can be also done in O(n) time, encoding of suffix automaton elements as
described above can also be done in O(n) time. Moreover, vertex re-ordering can be done
during the first or third phase. This means that the described suffix automaton construction
can be performed in O(n) time.

The time complexity of searching in such an encoded suffix automaton is O(m), see [11].

2.9 Results

File Source Length |A| DAWG—SA CDAWG Suff. tree SA.1 SA.2
book1 CL 768771 81 30.35 15.75 9.83 3.75 3.66
book2 CL 610856 96 29.78 12.71 9.67 3.25 3.17
paper1 CL 53161 95 30.02 12.72 9.82 3.09 2.98
paper2 CL 82199 91 29.85 13.68 9.82 3.19 3.06
paper3 CL 46526 84 30.00 14.40 9.80 3.24 3.12
paper4 CL 13286 80 30.34 14.76 9.91 3.21 3.04
paper5 CL 11954 91 30.00 14.04 9.80 3.14 2.97
paper6 CL 38105 93 30.29 12.80 9.89 3.08 2.96
alice29 CN 152089 74 30.27 14.14 9.84 3.34 3.20
lcet10 CN 426754 84 29.75 12.70 9.66 3.21 3.12
plrabn12 CN 481861 81 29.98 15.13 9.74 3.60 3.52
bible CN 4047392 63 29.28 10.87 7.27 3.01 2.94
world192 CN 2473400 94 27.98 7.87 9.22 2.58 2.53
bib CL 111261 81 28.53 9.94 9.46 2.76 2.68
news CL 377109 98 29.48 12.10 9.54 3.25 3.15
progc CL 39611 92 29.73 11.87 9.59 2.98 2.87
progl CL 71646 87 29.96 8.71 10.22 2.48 2.40
progp CL 49379 89 30.21 8.28 10.31 2.44 2.35
trans CL 93695 99 30.47 6.69 10.49 2.41 2.35
fields CN 11150 90 29.86 9.40 9.78 2.54 2.43
cp CN 24603 86 29.04 10.44 9.34 2.75 2.64
grammar CN 3721 76 29.96 10.60 10.14 2.48 2.36
xargs CN 4227 74 30.02 13.10 9.63 2.90 2.75
asyoulik CN 125179 68 29.97 14.93 9.77 3.49 3.34
geo CL 102400 256 26.97 13.10 7.49 3.27 3.18
obj1 CL 21504 256 27.51 13.20 7.69 3.12 2.98
obj2 CL 246814 256 27.22 8.66 9.30 2.75 2.67
ptt5 CN 513216 159 27.86 8.08 8.94 1.70 1.63
kennedy CN 1029744 256 21.18 7.29 4.64 1.65 1.57
sum CN 38240 255 27.79 10.26 8.92 2.62 2.53
ecoli CN 4638690 4 34.01 23.55 12.56 4.59 4.46

Table 2.4: Relative space requirements (in bytes per input symbol) of suffix automaton and
suffix tree

The table 2.4 shows the results for the set of test files. The first four columns have the
same meaning as on previous tables. The fifth, sixth and seventh columns (DAWG—suffix
automaton, CDAWG and Suff. Tree) cite the results of implementation published by Kurtz

24



in [1] and show the relative space requirement (in bytes per input symbol). Standard methods
are used for storing this structures for string matching. These are suffix automaton (DAWG),
CompactDAWG (CDAWG for short) and the suffix tree. The best method from [1] is cited
for storing the suffix tree. CDAWG and suffix tree use the original text for string matching,
but the length of the text is not increased to the shown ratio.

The last two columns show the results of the implementation presented in this paper.
These values do not include the space requirements for storing Huffman trees. The space
requirement of the Huffman tree depends on the size of the input alphabet and statistical
distribution of input symbols. The simplest way to store a Huffman tree is to store the
number of occurrences (for each symbol). It is necessary to build a Huffman tree for each
match in this case. Brodnik and Carlson in [12] show how to implement a Huffman tree.
Their method permits sublinear decoding and the size of the extra storage except for the
storage of the symbols of input alphabet is O(l log A) bits, where l is the longest Huffman
code and A is the number of symbols in the alphabet. The size of the resulting structure is
very small with respect to the size of the text even for small texts. This size does not depend
on the size of the text.That is why this size is not added to the implementation.

The first values (SA.1) correspond to the storing addresses using eight categories (three
bits per category code). These categories regularly divide possible lengths from the length 0
bits to the maximal size, 32 bits. The first category corresponds to addresses 4 bits long, the
second corresponds to addresses 8 bits long, etc. This way of address encoding is sufficient for
texts less than approximately 100 MB. Some categories are not used if the suffix automaton
created for a small text.

The second set of values is obtained for a code with three categories, where the first
category denotes the address of length zero, i.e no address is stored and the referred element
leads next to processed element. The next categories regularly divide possible lengths from
the length 4 bits to the maximal size. The maximal size of address depends on the size of
text, if we assume that the space requirements for storing text is five times greater than the
original text, the suffix automaton corresponding to this text can contain a long edge from
first element to the last one. This method is useful for all texts, but four categories are better
for texts over 180 MB, see Table 2.6.3.

2.10 Conclusion

A new method of suffix automaton implementation is presented. The results show that the
ratio of code file size to the input file size is about 3:1. This number changes very little as the
input file size increases with small detriment of the code file. If the ratio rose as high as 4:1,
a CD-ROM with the capacity of 600MB could contain one code file for a text of the maximal
size up to 150MB, which is a more than seven-times better than the result obtained by the
classical approach.

The time to match a pattern using our implementation of suffix automaton depends on
the size of the pattern and does not depend on the size of text.

The principle of our implementation can be used for all homogenous automata, i.e. au-
tomata having all edges to one state labeled by the same symbol. It is possible to transfer
edge labeling from the destination state to the source state. This will increase the space
requirement, because labeling of each edge is stored in a unique place. In our implementation
labeling of all edges incoming to one state is stored in this place. Using this transformation it
is possible to extend the principle of our implementation to all automata, that accept finite

25



language, i.e. all acyclic graphs. Storage space does not increase rapidly. Table 2.1 shows
that the number of outgoing transition of a state is about 1.5 in the average, and the storage
of edge labeling increases 1.5 times, i.e larger by 50 percent. The number of bits necessary
to store one label is about 5 bits (see Table 2.2). The labels are stored by each state, and
the number of states versus the number of symbols is about 1.6 (see Table 2.1). The number
of bits necessary to encode edge labeling in our implementation is 1.6 ∗ 5 = 8 bits per input
symbol and 1.6 ∗ 5 ∗ 1.5 bits per input symbol after transferring labels from states. The ratio
between the size of the implementation and the size of the text is 0.5 byte larger. The transfer
of edge labeling from incoming state to the outgoing states accelerate the matching process,
because the appropriate edge can be determined in actually processed state, without visiting
all following states.

References

[1] Kurtz S. Reducing the Space Requirement of Suffix Trees. Software–Practice and Expe-
rience, 29(13), 1999; 1149-1171.

[2] Gonnet G.H, Baeza-Yates R. Handbook of Algorithms and Data Structures - In Pascal
and C. Addison - Wesley, Wokingham, UK, 1991.

[3] Anderson A, Nilson S. Efficient implementation of suffix trees. Software-Practice and
Experience, 25(1995); 129–141.

[4] Kärkkäinen J. Suffix cactus: A cross between suffix tree and suffix array. in Proc. 6th
Symposium on combinatorial Pattern Matching, CPM95, 1995; 191-204.

[5] Irving R.W. Suffix binary search trees. Technical report TR-1995-7, Computing science
Department, University of Glasgow, Apr.95.

[6] Huffman, D.A. A method for construction of minimum redundancy codes. Proceedings
of IRE, Vol.40, No.9, Sept.1952; 1098-1101.

[7] http://corpus.canterbury.ac.nz/.

[8] Crochemore M, Rytter W. Text Algorithms. Oxford University Press, New York, 1994.

[9] Melichar B. Fulltext Systems. Publishing House of CTU, Prague, 1996, in Czech.

[10] Crochemore M, Vérin R. Direct Construction Of Compact Directed Acyclic Word Graphs.
CPM97, A. Apostolico and J. Hein, eds., LNCS 1264, Springer–Verlag, 1997; 116-129.

[11] Balík M. String Matching in a Text. Diploma Thesis, CTU, Dept. of Computer Science
& Engineering, Prague, 1998.

[12] Brodnik A, Carlsson S. Sub–linear Decoding of Huffman Codes Almost In–Place. 1998.

26



3 String Matching in a Compressed Text
Jan Lahoda

3.1 Motivation

Lets imagine that we are given a text TU (for example TU = aacabaab) and a pattern P (for
example P = ab). Using one of the algorithms described in Chapter 2, it is quite trivial task
to find all occurrences of P in TU . The problem arises if we are not given the plain text (TU ),
but the same text compressed using some compression method (this text is denoted TC and
in our example it is TC = 00110100010). If the task is to find all occurrences of P in TU using
only P and TC , the solution is not so trivial.
To solve such a problem, two approaches can be used. The first is to decompress the text

and than do the pattern matching (search for the occurrences). The second is to develop a
brand new algorithm for pattern matching in text compressed by a particular compression
method.
In this chapter, the mentioned problem will be solved using the second approach. We will

use finite automata to solve pattern matching in compressed text, in particular in text coded
by Huffman coding.

3.2 Static Huffman code

Huffman coding is a statistical compression method. It achieves compression by assigning
shorter codes to more probable symbols and longer codes to less probable symbols. The
resulting code is over alphabet {0, 1}. The static Huffman code assigns always the same code
to the same symbol. The probability of the symbol may be given as probability distribution
p(aI) for all aI ∈ AI .
The Huffman tree t is one possibility of computing the codes for each symbol using the

probability distribution. It is a binary tree and has one leaf for each symbol aI ∈ AI . Each
node of the tree holds a probability. Leaves hold probability of the respective input symbols
and each of the inner nodes holds the sum of probabilities of both its children. The tree is
constructed in the bottom-up manner starting from leaves, and each time a new inner node
is created, two existing nodes holding the two smallest probabilities are used as its children.
The process of course ends when the root of the tree is created. After that we assign a value
of {0, 1} to each edge, the left child of the particular node gets value 0 and the right child
gets value 1. The Huffman code is composed from the values of edges from the root node
into the node corresponding to the symbol being coded.
The example of Huffman tree for AI = {a, b, c}, p(a) = 0.5, p(b) = 0.25, p(c) = 0.25 is in

Figure 3.2.

3.3 Pattern matching in Huffman coded text

In this section we will demonstrate the algorithm of pattern matching in the Huffman coded
text. An algorithm for finding all occurrences of a pattern P in the uncompressed text TU

using only compressed text TC will be shown.
The pattern matching in the compressed text will be based on an automaton MC =

(QC , {0, 1}, δC , qC0, FC). This automaton will be constructed using the Huffman tree t (the
Huffman tree used to compress the text) and the pattern matching automaton M solving the
particular pattern matching problem P for set of patterns P .

27



Definition 3.1
The deterministic finite automaton MH = (QH , {0, 1}, δH , qH0, FH) is an automaton whose
transition diagram is the tree t, starting state qH0 is the root of t and the final states FH are
the leaves of t. 2

Theorem 3.2
The state and space complexity of the automaton MH is O(|AI |) and it can be constructed
in O(|AI |) time.

Proof
The number of nodes in Huffman tree is O(|AI |). That means state complexity is also O(|AI |)
and size complexity is O(|AI | · |{0, 1}|), that is O(|AI |).
The transition table is of size O(|AI |). For each state qH ∈ QH and symbol b ∈ {0, 1}

we can compute the target state q′H of the transition in O(1) time, and therefore we need
only O(|AI |) steps to fill this table, and as the transition table is the biggest structure in the
automaton MH we need O(|AI |) time to construct the automaton. 2

To create an automaton which performs pattern matching in compressed text, the au-
tomata M and MH are combined and the result is denoted M ′

C = (Q′
C , {0, 1}, δ′C , q′C0, F

′
C).

The combining method is as follows: first each state from automaton M is replaced by the
whole automaton MH . After that each transition from M is replaced by an ε-transition,
starting in the state that corresponds to the symbol of the original transition, and ending in
the root of the tree that corresponds to the original target state.

The automaton M ′
C is not deterministic because it contains ε-transitions. The deter-

ministic version of this automaton could be created using Algorithm 3.4 by removing the
ε-transitions. This automaton is denoted MC = (QC , {0, 1}, δC , qC0, FC).

Theorem 3.3
Each state q ∈ Q′

C that is a source state of an ε-transition is the target state of exactly one
transition, and this transition is not an ε-transition. Each state is source state of at most one
ε-transition.

Proof
Both these facts lead from the way of constructing automaton M ′

C .

Each node that is the starting state of an ε-transition is a leaf node of the original tree t.
Each leaf of a tree has exactly one edge, and therefore state q is the target state of only one
transition. This transition is not an ε-transition.

As the automaton M is deterministic, for each state q ∈ Q and each symbol a ∈ AI holds
that at most one transition leads from state q for symbol a. Exactly one state qH ∈ QH

corresponds to each symbol a ∈ AI . Therefore there is only one transition beginning in qH ,
and it is an ε-transition. 2

Algorithm 3.4
Construction of automaton MC .
Input: Automaton M ′

C .
Output: Automaton MC .
Method:

28



Figure 3.1: A figure for Theorem 3.5

1. For each state q ∈ Q′
C such that exist q1, q2 ∈ Q′

C and a ∈ {0, 1} such that δ′C(q1, a) = q
and δ′C(q, ε) = q2 do:

(a) create transition δ′C(q1, a) = q2

(b) remove state q from set Q′
C (including all transitions starting from or leading to

this state).

Theorem 3.5
For each automaton M ′

C constructed as described above a deterministic automaton MC can
be constructed using Algorithm 3.4 so that L(M ′

C) = L(MC) and |Q| ≤ |Q′|.

Proof
The automaton M ′

C is deterministic, except the ε-transitions. (Proof: the automaton MH

is deterministic and M ′
C is based on this automaton. The only added transitions are ε-

transitions.) Therefore, we need to eliminate these transitions in a way that will not introduce
any new cause of nondeterminism.
According to the assumptions and Theorem 3.3, a transformation depicted in Figure 3.1.

As the ε-transition is the only transition beginning in state q1, the new transition is also the
only transition beginning in state q2, and therefore no new nondeterminism is introduced.
If we perform this elimination for all q ∈ Q′, we clearly remove all ε-transitions and

introduce no new nondeterminism. Therefore, if the automaton M ′
C was deterministic except

ε-transitions, it is deterministic after these eliminations.
As we do not create any new states, it is clear that |Q| ≤ |Q′|. 2

It is even possible to construct directly the automaton MC using automata M and MH

without constructing automaton M ′
C .

Algorithm 3.6
Direct construction of automaton MC .
Input: Automata M and MH .
Output: Deterministic automaton MC

Method:

1. Construct QC = Q × (QH\FH ). The states from QC will therefore be pairs (q, qH),
q ∈ Q, qH ∈ (QH\FH).

2.

δC((q, qH), b) =

{

(q, δ(qH , b)) if δH(qH , b) /∈ FH

(δ(q, a), qH0) otherwise

a ∈ AI is the symbol corresponding to the state δH(qH , b) (the state δH(qH , b) is an
image of a node in the Huffman tree t, a is the symbol corresponding to this node).

29



3. Set qC0 = (q0, qH0).

4. FC = {(q, qH0) : q ∈ F}.

Theorem 3.7
The pattern matching automaton MC has at most O(|Q| · |AI |) states, its space complexity
is O(|Q| · |AI |) and it is constructed in O(|Q| · |AI |) time.

Proof
The set of states of MC is constructed as a Carthesian product of two sets: the state set
of the automaton M and the set of nodes of the Huffman tree (we can omit subtraction of
FH for worst case complexity). The resulting state complexity is a simple product of sizes of
these two sets, that is O(|Q| · |AI |).
The space complexity of automaton MC is O(|QC | · |{0, 1}|), that is O(|Q| · |AI |).
Steps 1 and 4 takes at most O(|Q| · |AI |) time. Each sub-step of Step 2 takes O(1) time

and they are repeated at most O(|Q| · |AI |) times. Step 3 takes O(1). Therefore Algorithm 3.6
takes O(|Q| · |AI |) time. 2

Using automaton MC the compressed pattern matching is quite simple and is very similar
to pattern matching in uncompressed text. The only problem that needs to be solved is that
one symbol in the compressed text does not correspond to one symbol in the uncompressed
text. Therefore the position in the uncompressed text cannot be computed from position in
the compressed text. In order to solve this problem it is necessary to count how many times
the execution passes through a state corresponding to the root of the Huffman tree. This
number is precisely the position in the uncompressed text. The complete compressed pattern
matching algorithm is given as Algorithm 3.8.

Algorithm 3.8
Pattern matching in the Huffman coded text.
Input: Pattern matching problem P, set of patterns P , compressed text TC = b1b2 . . . bnc .
Output: Position(s) of occurrence(s) of a pattern from P in the uncompressed text TU .
Method:

1. Construct automaton MH using tree t.

2. Construct a pattern matching automaton M for problem P and set of patterns P .

3. Using automata MH and M construct automaton MC (algorithm 3.6).

4. qc = (q0, qH0).

5. If qc ∈ FC , mark occurrence of a pattern from P on position i.

6. Read a new input symbol b. If end of the input text, then finish.

7. If qc = (q, qH0) for any q ∈ Q, then i = i + 1.

8. qc = δC(qc, b).

9. Repeat from 5.

Theorem 3.9
Let E be time of constructing pattern matching automaton M for pattern matching problem
P and set of patterns P . Then Algorithm 3.8 runs in O(nC + |Q| · |AI |+ E) worst case time

30



using O(|Q| · |AI |) extra space.

Proof
Step 3 supersedes Step 1 and it takes at most O(|Q|·|AI |) time (see Theorem 3.7). Step 2 takes
by assumption of this theorem O(E). Steps 4—8 take O(1) time and are repeated nC times.
The worst time complexity of the whole algorithm therefore is O(|AI |+ E + |Q| · |AI |+ nC)
and that is O(nC + |Q| · |AI |+ E).
The biggest created structure is automatonMC and therefore the extra space is equivalent

to the size of this automaton. The space complexity of automaton MC is, according to
Theorem 3.7, O(|Q| · |AI |). 2

3.4 Optimized pattern matching algorithm

An important problem of Algorithm 3.8 is that the input alphabet is binary {0, 1}. Usually,
the work with bits is not very efficient. The program reading data by bytes, has to “divide”
the byte into bits, and to perform one transition for each bit. Although the reading is quite
efficient, dividing byte into bits and transitions for bits are quite inefficient. Therefore we
would rather like to use whole bytes instead of bits.
The solution is so-called alphabet extension. Two or more transitions are collapsed into

one transition, effectively extending alphabet. Using this approach, one transition per byte
can be performed at cost of bigger automaton (the size of alphabet increases, so does the
automaton). The number of transitions collapsed into one is denoted d ∈ N (N is the set
of natural numbers), the extended alphabet is denoted AO (|AO| = |{0, 1}|

d = 2d) and the
compressed text over the extended alphabet is denoted T ′

C .
A pattern matching automaton MO = (QO, AO, δO, qO0, ∅) is created. This automaton is

constructed from MC using alphabet extension as shown above.
In case the alphabet extension is used in the pattern matching in compressed text, there

is one more problem: reading of one symbol aO ∈ AO from the text T ′
C may produce more

than one symbol after decompressing the text4. Similarly more than one symbol from the
text T ′

C may produce only one symbol after they are decompressed (and therefore some input
symbols may produce no output symbols).
The solution of these problems is to define two auxiliary functions (represented as tables)

output function N : QO × AO → N
∗ (N ∗ is in fact a string of numbers from N ) and index

function I : QO ×AO → N . The pattern matching using MO, N and I is quite simple — we
read one symbol from the text T ′

C , look into the N table using current state of the automaton
MO and the read symbol. The record in this table defines the occurrences of patterns from
P in the uncompressed text TU . After that we use the function I to move imaginary pointer
in the uncompressed text, and perform a transition in the automaton MO. This is shown in
Algorithm 3.12.

Algorithm 3.10
Construction of the new automaton MO, output function N and index function I.
Input: Pattern matching automaton MC for pattern P .
Output: New pattern matching automaton MO, output function N and index function I
both represented as tables.
Method:

4Using example from Section 3.2, eight symbols “a” are encoded as “000000002”, that is one byte “0016”.

31



1. QO = QC , qO0 = qC0.

2. For each state qO ∈ QO and each symbol s of the output alphabet AO do

(a) qt = qO, i = 0, N [q, s] = ∅.

(b) For each symbol b ∈ {0, 1} from s do

i. If qt = (q, qH0) then i = i + 1.
ii. If qt ∈ FC then N [q, s] = N [q, s] ∪ {i}.
iii. qt = δC(qt, b).

(c) δO(q, s) = qt

(d) I[q, s] = i.

Theorem 3.11
The number of states of the new automaton MO is the same as the number of states of the
automaton MC (that means O(|Q| · |AI |)). The space complexity of the new automaton MO

is O(|Q| · |AI | · |AO |). The worst case time complexity of Algorithm 3.10 is O(|Q| · |AI | · |AO| ·
dlog |AO|e+ E).

Proof
According to the step 1, the set of states of automaton MO equals to the set of states of
automaton MC and therefore these sets have equal size.

The space complexity is therefore O(|Q| · |AI | · |AO|).
The innermost loop contains three steps (2.b.i-2.b.iii). Each of these steps takes O(1)

time. Step 2 requires repeating O(|Q| · |AI | · |AO|) times. Step 2.b requires repeating d times,
that is dlog |AO|e.
Therefore Algorithm 3.10 runs in O(|Q| · |AI | · |AO| · dlog |AO|e) time. 2

Algorithm 3.12
Pattern matching in the Huffman coded text.
Input: Input text TC = s1s2 . . . sc (si ∈ AO), pattern matching problem P, set of patterns
P , compressed text T ′

C = s1s2 . . . sn′

c
(si ∈ AO).

Output: Position(s) of occurrence(s) of a pattern from P in the uncompressed text TU .
Method:

1. Using tree t, construct automaton MH .

2. Construct pattern matching automaton M for problem P and set of patterns P .

3. Using automata MH and M construct automaton MC .

4. Using Algorithm 3.10 construct automaton MO, output function N and index function
I.

5. qO = qO0.

6. Read a new input symbol s ∈ AO. If end of the input finish.

7. i = i + I(qc, s).

8. For each record r ∈ N(qc, s) report occurrence of a pattern from P in text TU on offset
i− r.

32



Figure 3.2: Example of Huffman tree t

9. qO = δO(qc, s).

10. Repeat from step 6.

Theorem 3.13
Let E be time of constructing pattern matching automaton M for pattern matching problem
P and set of patterns P . Let r be the number of occurrences of P in TU . Then Algorithm
3.12 runs in O(n′

C +r+ |Q| · |AI | · |AO| ·dlog |AO|e+E) worst case time using O(|Q| · |AI | · |AO|)
extra space.

Proof
Step 3 supersedes Step 1, and it take at most O(|Q| · |AI |) time (see Theorem 3.7). Step 2
takes by the assumptions of this theorem O(E) time. Steps 5,6,7,9 take O(1) time and are
repeated n′

C times. Step 8 takes O(r) time for the whole text. The worst time complexity of
the whole algorithm therefore is O(n′

C + r + |Q| · |AI | · |AO| · dlog |AO|e+ E).

The biggest structure created during the algorithm is automaton MO. The space com-
plexity of this algorithm is therefore the same as space complexity of this automaton, and it
is O(|Q| · |AI | · |AO|). 2

3.5 Case analysis

A new algorithm for pattern matching in the Huffman coded text has been shown in Sections
3.3 and 3.4. Particular pattern matching problems are analysed in this section.

Algorithms 3.6, 3.8, 3.10 and 3.12 are quite general. If a pattern matching problem P is
being solved, the automaton M is created for this task and appropriate set of patterns P and
Algorithms 3.8 and 3.12 are solving pattern matching problem P in the Huffman coded text.
If we make use of Theorems 3.7, 3.9, 3.11 and 3.13, it is only necessary to compute the time
E of constructing automaton M and its state size (|Q|) and the time complexity of solving
the particular matching problem can be determined.

All the examples in this section are based on alphabet AI = {a, b, c} and probability
distribution p(a) = 0.5, p(b) = 0.25, p(c) = 0.25. The appropriate Huffman tree is shown in
Figure 3.2 and the corresponding automaton MH is shown in Figure 3.3.

3.5.1 Exact pattern matching of one pattern

33



Figure 3.3: Automaton MH corresponding to tree in Figure 3.2

Figure 3.4: Pattern matching automaton M for pattern “ab” over alphabet {a, b, c}

Figure 3.5: Nondeterministic automaton M ′
C for one pattern matching in the Huffman coded

text

Figure 3.6: Deterministic automaton MC for one pattern matching in the Huffman coded
text

34



Figure 3.7: Optimized automaton MO for one pattern matching in the Huffman coded text

The basic pattern matching problem is exact one pattern matching problem. A pattern
P = a1a2 . . . am of length m is given, and all occurrences of this pattern in the uncompressed
text TU should be found. The number of states of a pattern matching automaton for exact
pattern matching of pattern of length m is m +1 and it can be constructed in O(m) time, as
described in [2].
Let P be exact pattern matching problem of one pattern. Then the set of patterns contains

only one pattern of length m, for example: P =“ab”. The pattern matching automaton
M = (Q,AI , δ, q0, F ) constructed for this problem and pattern P is depicted in Figure 3.4.
The automata M ′

C and MC are depicted in Figures 3.5 and 3.6, respectively. The au-
tomaton MO constructed for d = 2, AO = {u, v, x, y} (00 = u, 01 = v, 10 = x, 11 = y) is
depicted in Figure 3.7.
According to Theorem 3.8 the exact pattern matching of one pattern in the Huffman

coded text runs in O(nC + |m| · |AI |) worst case time using O(|m| · |AI |) extra space.
According to Theorem 3.12, the “optimized” exact pattern matching of one pattern in

the Huffman coded text runs in O(n′
C + r + m · |AI | · |AO| · dlog |AO|e) worst case time using

O(m · |AI | · |AO|) extra space.

3.5.2 Approximate pattern matching

Another important pattern matching problems is approximate pattern matching with k
mismatches. A pattern P = a1a2 . . . am of length m is given and all occurrences of the
pattern P in the uncompressed text TU with at most k mismatches should be found. There
are three metrics to measure the distance: Hamming distance, Levenshtein distance and
generalised Levenshtein distance. According to Polcar [8], for all three distance metrics hold
that the number of states of a particular pattern matching automaton is O(|AI |

k ·mk+1) and
therefore the space complexity of this automaton is O(|AI |

k+1 ·mk+1) and the time complexity
of constructing such automata (approximately) O(|AI |

k+1 ·mk+1).
Let P be approximate pattern matching with k mismatches. Than the set of patterns

contains only one pattern and a natural number k ≤ m is specified, for example: P =“ab”,
k = 1. The pattern matching automaton M = (Q,AI , δ, q0, F ) constructed for this problem,
pattern and distance is depicted in Figure 3.8.
The automaton MC is depicted in Figure 3.9.

35



Figure 3.8: Pattern matching automaton M for approximate pattern matching of pattern
“ab” over alphabet {a, b, c}

Figure 3.9: Deterministic automaton MC for approximate pattern matching in the text com-
pressed by the Huffman coding

36



Figure 3.10: Pattern matching automaton M for regular expression pattern matching of
regular expression “a(b)*c” over alphabet {a, b, c}

Figure 3.11: Deterministic automatonMC for regular expression pattern matching in the text
compressed by the Huffman coding

According to Theorem 3.9 the approximate pattern matching in the Huffman coded text
runs in O(nC + |AI |

k+2 ·mk+1) worst case time using O(|AI |
k+2 ·mk+1) extra space.

According to Theorem 3.13, the “optimized” approximate pattern matching in the Huff-
man coded text runs in O(n′

C + r + |AI |
k+2 ·mk+1 · |AO| · dlog |AO|e) worst case time using

O(|AI |
k+2 ·mk+1 · |AO|) extra space.

3.5.3 Regular expression pattern matching

We consider P to contain a regular expression of the length m. In this case the automaton
M has at most O(2m) states and can be constructed in (approximately) O(2m · |AI |) time.
Let P be regular expression pattern matching. Than the set of patterns contains only

one regular expression, for example: P =“a(b)*c”. The pattern matching automaton M =
(Q,AI , δ, q0, F ) constructed for this problem, pattern and distance is depicted in Figure 3.10.

The automaton MC is depicted in Figure 3.11.

According to Theorem 3.9 the regular expression pattern matching in the Huffman coded
text runs in O(nC + 2m · |AI |

2) worst case time using O(2m · |AI |) extra space.
According to Theorem 3.13, the “optimised” regular expression pattern matching in the

Huffman coded text runs in O(n′
C + r + 2m · |AI |

2 · |AO| · dlog |AO|e) worst case time using
O(2m · |AI | · |AO|) extra space.

References

[1] A. Amir and G. Benson. Efficient two dimensional compressed matching. In Proceedings
of the 5th ACM-SIAM Annual Symposium on Discrete Algorithms, pages 279–288, IEEE

37



Computer Society Press, 1992.

[2] J. Holub. Simulation of Nondeterministic Finite Automata in Pattern Matching. PhD
thesis, Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Re-
public, 2000. http://cs.felk.cvut.cz/psc.

[3] S. T. Klein and D. Shapira. Pattern matching in Huffman encoded texts. In Proceedings
of the Data Compression Conference 2001, pages 449–458, 2001.

[4] J. Lahoda and B. Melichar. Pattern matching in Huffman coded text. In Proceedings of
the Theoretical Computer Science Conference 2003, pages 274–280, 2003.

[5] B. Melichar and J. Holub. 6D classification of pattern matching problems. In J. Holub,
editor, Proceedings of the Prague Stringology Club Workshop ’97, pages 24–32, Czech
Technical University, Prague, Czech Republic, 1997. http://cs.felk.cvut.cz/psc.

[6] E. S. de Moura, G. Navarro, N. Ziviani, and R. A. Baeza-Yates. Fast searching on
compressed text allowing errors. In Research and Development in Information Retrieval,
pages 298–306, 1998.

[7] E. S. de Moura, G. Navarro, N. Ziviani, and R. A. Baeza-Yates. Fast and flexible
word searching on compressed text. ACM Transactions on Information Systems (TOIS),
18(2):113–139, 2000.

[8] T. Polcar. On the state complexity of the approximate string matching. To be published.

[9] M. Takeda, Y. Shibata, T. Matsumoto, T. Kida, A. Shinohara, S. Fukamachi, T. Shino-
hara, and S. Arikawa. Speeding up string pattern matching by text compression: The
dawn of a new era. IPSJ Journal, 42(3):370–384, 2001.

38



4 Generalized and Weighted Strings: Repetitions and Pattern
Matching
Michal Voráček

4.1 Introduction

In this chapter we present a finite state automata approach for searching repetitions and for
pattern matching in generalized and weighted strings. Generalized and weighted strings are
special strings used mainly in molecular biology to express the variability of DNA at a given
position and to express uncertainity of appearance of a given base at a given position in DNA.

A sequencing process as a consequence of technology limits produces sequences which have
a set of symbols instead of one symbol in a single position, and each symbol of the set has an
assigned probability of occurrence. The sum of the probabilities of the symbols in each set is
equal to 1. Such sequences are called weighted sequences.
Another type of sequences is used for expressing the variability of DNA in the population.

Let us consider two or more corresponding DNA sequences of one type from the same species
(e.g. coding sequences of some specific gene taken from the genomes of different people).
These DNA sequences are nearly identical, differing only in a small number of positions.
Therefore it is not necessary to store the single sequences separately, but we can store only
one instance of such a sequence with lists of occurring symbols for the positions where the
sequences differ. Such a sequence can thus serve as a representative of the whole population.
Possible combinations of symbols of the DNA alphabet can be represented by special symbols.
Two examples of such alphabets with special symbols are an alphabet with a “don’t care”
symbol and the IUB (Degenerate Bases) Code. A “don’t care” symbol is a special universal
symbol ◦ that matches any other symbol including itself, see Tab. 4.1. The IUB Code defines
special symbols for all possible combinations of symbols from the basic nucleotide alphabet,
see Tab. 4.1.

The abovementioned types of sequences have many common features. Therefore we pro-
pose a solution for a given problem only for one type of string and show how to use this
solution for obtaining a solution for the second type of string.

This paper is organised as follows. In the next section we present some basic definitions
for strings, generalized strings and weighted strings. In Section 3 we present the Generalized
Factor Automaton, an algorithm for its construction and an application for searching sub-
strings and repetitions in generalized strings. In Section 4 we show a method for transforming
finite automata for pattern matching problems in strings to automata for pattern matching
problems in generalized strings.

4.2 Preliminaries

4.2.1 Generalized Strings

Definition 4.1 (Generalized String)
A generalized string v = v1v2 . . . vn over alphabet A is a finite sequence of positions where
each position vi is a subset of A, vi ∈ P(A). Element vi is called the i-th symbol set. The

empty generalized string λ is an empty sequence of symbol sets. The set of all generalized
strings over alphabet A (including empty string λ) is denoted P∗(A). We define the operation
concatenation on the set of generalized strings in the following way: if v and w are generalized

39



strings over A, then the concatenation of these generalized strings is vw. The length |v| of
string v is the number of symbol sets of v. It holds that |v| ≥ 0, |λ| = 0. The symbol set of
string v occurring at position i is denoted vi or v[i] and its cardinality |vi| or |v[i]|.

Definition 4.2 (Diameter of a Generalized String)
Let v = v1v2 . . . vn be a generalized string over alphabetA. TheMinimum diameter, maximum
diameter of v denoted diammin(v), diammax(v) is defined as diammin(v) = min1≤j≤n(|vj |),
diammax(v) = max1≤j≤n(|vj |), respectively. We will use only diameter and denote diam(v)
if diammin(v) = diammax(v) = diam(v).

Remark : The string is a special case of the generalized string having a diameter equal to 1.

Definition 4.3 (Set of Elements of a Generalized String)

The set Elems(v), v ∈ P∗(A), where A is an alphabet, is a set of all elements of the
generalized string v:

Elems(v) = { x | xj ⊆ vj , 1 ≤ j ≤ n, x ∈ P
∗(A) }.

The set Elemsk(v), where 0 ≤ k ≤ |A| is defined as:

Elemsk(v) = { x | x ∈ Elems(v) & diam(x) = k, x ∈ P
∗(A) }.

The set Elems1(v) is also called the set of simple elements of v.

Remark : In fact, the set Elems1(v) is a language represented by v.

Definition 4.4 (Set of Factors of a Generalized String)
The set Fact(v), v ∈ P∗(A), where A is an alphabet, is a set of all factors of the generalized
string v:

Fact(v) = { y | v = xyz, x, y, z ∈ P
∗(A) }.

Definition 4.5 (Set of Partial Factors of a Generalized String)
The set PartFact(v), v ∈ P∗(A), where A is an alphabet, is a set of all partial factors of the
generalized string v:

PartFact(v) = { x | ∀ x, y : (x ∈ Elems(y) & y ∈ Fact(v)), x, y ∈ P
∗(A) }.

The set PartFactk(v), where 0 ≤ k ≤ |A| is defined as:

PartFactk(v) = { x | x ∈ PartFact(v) & diam(x) = k, x ∈ P
∗(A) }.

The set PartFact1(v) is also called the set of simple partial factors of v.

Note : The sets Pref , PartPref , PartPref k and Suff , PartSuff , PartSuff k are defined by
analogy and their definitions will be omitted here. We denote by v[i, j] = vivi+1 . . . vj−1vj for

i ≤ i ≤ j ≤ |v| a factor of v starting at position i and ending at position j.

Remark : For any v ∈ P∗(A) and any 0 ≤ k ≤ |A| it holds:

1. Fact(v) ⊆ PartFact(v),

40



2. PartFactk(v) ⊆ PartFact(v).

Example 4.6
Examples of generalized strings are depicted in Fig. 4.1-a, 4.1-e. We can omit the brackets if
the cardinality of symbol set is 1. Moreover we can visualize the symbol sets as columns, see
Fig. 4.1-b, 4.1-f.

4.2.2 Representing and Processing Generalized Strings

For the following examples, let us consider we have a generalized string v = v1v2 . . . vn over
alphabet A = {s1, s2, . . . , sm}, where vi = {v1

i , v2
i , . . . , v

pi

i }. Our aim is to process v from left
to right, in stepwise manner, symbol set by symbol set, similarly as strings are processed.
There are two basic approaches to representation and processing of vi:

1. Single symbols vj
i ∈ vi are stored and processed separately.

In this case, each symbol set can be represented as a list of symbols (Fig.4.1-a, 4.1-e)
or as a column in a 2D bit array (Fig.4.1-c, 4.1-g). Examples of mechanisms convenient
for separate parallel processing of symbol sets are the multi-tape finite automaton [2]
or parallel finite automata [4].

2. Symbol set vi is taken as atomic.
We represent symbol sets by single symbols from a new alphabet (Fig.4.1-d, 4.1-h). The
new alphabet has cardinality at most 2|A| = 2m, which is the number of all subsets of
A. The mapping which assigns single symbols to symbol sets is called a subset code. In
this case, processing a generalized string is in fact classical string processing, and it can
be done advantageously by a finite automaton.

Definition 4.7 (Subset Code)
Let A and E be alphabets such that A ⊆ E. A subset code is a partial mapping C : P∗(A) 7−→
E with the properties:

1. C is a bijection,

2. C({a}) = a, for all a ∈ A.

Alphabet A is called basic and alphabet E is called extended.
For generalized strings we define the mapping C∗ : P∗(A) 7−→ E∗ as follows:

1. C∗(λ) = ε,

2. C∗(s) = C(s), for all s ∈ D(C),

3. C∗(vs) = C∗(v)C(s), for all v ∈ D(C)∗, s ∈ D(C),

where D denotes domain.

Note : For simplicity, we will use C instead of C∗ in all cases where the meaning is obvious
from the context.

41



a) e)

v = [t][a, c][c][a, c, t][t] y = [t][a, c, g, t][c][a, c, g, t][t]

b) f)

v = t

[

a
c

]

c







a
c
t






t y = t











a
c
g
t











c











a
c
g
t











t

c) g)

0 1 0 1 0 a
0 1 1 1 0 c
0 0 0 0 0 g
1 0 0 1 1 t

0 1 0 1 0 a
0 1 1 1 0 c
0 1 0 1 0 g
1 1 0 1 1 t

d) h)

C2(v) = tmcht C1(y) = t ◦ c ◦ t

Figure 4.1: Generalized strings v, y over A = {a, c, g, t} represented by lists (linear and column
form), tapes and in subset code C2, C1, defined in Example 4.2.2, 4.2.2, respectively.

42



Simply said, a subset code defines how to denote the subsets of an alphabet by single
symbols. Moreover this mapping must ensure that one-symbol sets will be coded by the
symbols in the sets.

Example 4.8
A = {a, c, g, t}, D(C1) = {{a}, {c}, {g}, {t}, {a, c, g, t}},
E1 = {a, c, g, t, ◦}.
Mapping C1 is defined in Tab. 4.1. Strings over alphabet E1 are strings with “don’t cares”.
As we see, strings with “don’t cares” are only a special case of generalized strings.

Example 4.9
A = {a, c, g, t},
D(C2) = {{a}, {c}, {g}, {t}, {a, c}, {a, g}, {a, t}, {c, g}, {c, t}, {g, t}, {a, c, g}, {a, c, t}, {a, g, t},
{c, g, t}, {a, c, g, t}},
E2 = {a, c, g, t,m, r, w, s, y, k, v, h, d, b, n}.
Mapping C2 is defined in Tab. 4.1. This mapping is known as the IUB (Degenerate Bases)
Code as defined by the International Union of Pure and Applied Chemistry [11].

Table 4.1: Definitions of the mappings C2 (IUB Degenerate Bases Code) and C1 (alphabet

with a “don’t care” symbol)

D(C2) E2

{a} a

{c} c

{g} g

{t} t

{a, c} m

{a, g} e

{a, t} w

{c, g} s

{c, t} y

{g, t} k

{a, c, g} v

{a, c, t} h

{a, g, t} d

{c, g, t} b

{a, c, g, t} n

D(C1) E1

{a} a

{c} c

{g} g

{t} t

{a, c, g, t} ◦

4.2.3 Weighted Strings

43



Definition 4.10 (Weighted String)
A weighted string w = w1w2 . . . wn over alphabet A is a finite sequence of positions where
each position wi consists of a set of pairs. Each pair is of the form (a, πi(a)), where a ∈ A and
πi(a) is the probability of symbol a appearing at position i. For every position wi, 1 ≤ i ≤ n,

∑

a∈A

πi(a) = 1.

Example 4.11
An example of a weighted string is depicted in Fig. 4.2.

Definition 4.12 (Basic String of Weighted String)
The basic string of a weighted string w = w1w2 . . . wn is a generalized string v = v1v2 . . . vn

such that vi consists of all symbols a ∈ A for which it holds πi(a) > 0, where (a, πi(a)) ∈ wi,
1 ≤ i ≤ n.

Definition 4.13 (Multiplicative Probability)
Let p = p1p2 . . . pm be a string over A, and w = w1w2 . . . wn be a weighted string over A.
The multiplicative probability of the appearance of p ending at position i inside w, denoted
µ(p, i), is the product of the probabilities of the symbols pj at positions i − m + j, where
1 ≤ j ≤ m, m ≤ i ≤ n, of the weighted string w. That is

µ(p, i) =
m
∏

j=1

πi−m+j(pj).

Definition 4.14 (Average Additive Probability)
Let p = p1p2 . . . pm be a string over A, and w = w1w2 . . . wn be a weighted string over A. The
average additive probability of the appearance of p ending at position i inside w, denoted
α(p, i), is the average of the probabilities of the symbols pj at positions i − m + j, where
1 ≤ j ≤ m, m ≤ i ≤ n, of the weighted string w. That is

α(p, i) =
(

m
∑

j=1

πi−m+j(pj)
)

/m.

String v from Fig. 4.1. is the basic string of weighted string w from Fig. 4.2.

A weighted string can be seen as an extension of a generalized string by attribute repre-
senting probability. Similarly, a generalized string can be seen as a special case of a weighted
string when the symbols having zero probability are not considered and the non-zero proba-
bilities of the remaining symbols are equal.

4.2.4 Processing Weighted Strings

The solutions of some problems on weighted strings can be divided into two phases: solution
of the problem for a generalized string, followed by probability condition verification.

44



w =











(a, 0.00)
(c, 0.00)
(g, 0.00)
(t, 1.00)





















(a, 0.50)
(c, 0.50)
(g, 0.00)
(t, 0.00)





















(a, 0.00)
(c, 1.00)
(g, 0.00)
(t, 0.00)





















(a, 0.50)
(c, 0.25)
(g, 0.00)
(t, 0.25)





















(a, 0.00)
(c, 0.00)
(g, 0.00)
(t, 1.00)











Figure 4.2: Weighted string w over A = {a, c, g, t}

Algorithm 4.2.4
Decomposition of pattern matching problems on weighted strings.
Input: Weighted string w, pattern matching problem P, probability condition K, other
objects depending on P.
Output: List of results R′.
Method:

1. Extract the basic generalized string b from weighted string w .

2. Solve problem P without considering probability condition K for generalized string b
and thus obtain the list of results R.

3. Create new list of results R′ from R by removing all elements not satisfying probability
condition K.

4.3 Generalized Factor Automaton

In this Section we present a novel index structure called a generalized factor automaton
which is an extension of the factor automaton [5] for generalized strings. A generalized
factor automaton can be used for fast substring searching and for computing regularities in
generalized strings.

Definition 4.15 (Generalized Factor Automaton)
The generalized factor automaton (GFA) for generalized string v is a finite automaton ac-
cepting the language PartFact1(v).

4.3.1 Construction of a Generalized Factor Automaton

The construction of a generalized factor automaton is based on the construction of a factor
automaton [9], see Fig. 4.3, 4.4. We take the model of a nondeterministic factor automaton
(NFA) and for each pair of states qi−1, qi, 1 ≤ i ≤ n, between which NFA has a transition for
the symbol in position i in the string we simply add transitions for all symbols of the symbol
set in position i in the generalized string.

Algorithm 4.3.1
Construction of the generalized factor automaton.
Input: Generalized string
v = [a11, a12, . . . , a1r1

], [a21, a22, . . . , a2r2
], . . . , [an1, an2, . . . , anrn ].

Output: Deterministic generalized factor automaton M = (Q,A, δ, q0, F ) accepting the set
PartFact1(v).

45



t tc

ε
ε

ε
ε

c a
41 2 30 5

Figure 4.3: Transition diagram of the nondeterministic factor automaton for x = tccat

t tcc a

c a
23

a

c

42 30 515

Figure 4.4: Transition diagram of the deterministic factor automaton for x = tccat

1. Construct a finite automaton M1 = (Q1, A, δ1, q0, F1) accepting the set PartPref1(v):
Q1 = {q0, q1, q2, . . . , qn},
A is the basic alphabet of v,
δ1(qi−1, aij) = qi, j = 1, 2, . . . , ri, and i = 1, 2, . . . , n,
F1 = {q0, q1, q2, . . . , n}.

2. Construct finite automaton M2 from automaton M1 by inserting ε–transitions:
δ(q0, ε) = {q1, q2, . . . , qn−1}.

3. Replace all ε–transitions by non–ε–transitions. The resulting automaton is M3.

4. Construct the deterministic finite automaton M equivalent to automaton M3.

Example 4.16
Construct a generalized factor automaton for generalized string v = t[a, c]c[a, c, t]t.

1. We create an automaton M1 = (Q1, A, δ, q0, F1) accepting PartPref1(v). Since |v| = 5
we create the set of states Q1 = {0, 1, 2, . . . , 5}.
A = {a, c, t},
q0 = 0,
F1 = {0, 1, . . . , 5},

δ(0, t) = 1,
δ(1, a) = 2, δ(1, c) = 2,
δ(2, c) = 3,
δ(3, a) = 4, δ(3, c) = 4, δ(3, t) = 4,
δ(4, t) = 5.

2. We create a nondeterministic generalized factor automaton from M1 by inserting ε-
transitions:

46



δ(0, ε) = {0, 1, 2, 3, 4}.
The resulting automaton M2 is depicted in Fig. 4.5.

3. We replace all ε–transitions in M2 by non–ε–transitions. The resulting automaton is
M3.

We remove δ(0, ε) = {0, 1, 2, 3, 4} and we add
δ(0, a) = 2, δ(0, c) = 2,
δ(0, c) = 3,
δ(0, a) = 4, δ(0, c) = 4, δ(0, t) = 4,
δ(0, t) = 5.

4. Finally, we create the deterministic automaton M equivalent to M3.
The resulting automaton M is depicted in Fig. 4.6.

t

t

t

a

cc

ε
ε

ε
ε

c

a

41 2 30 5

Figure 4.5: Transition diagram of nondeterministic generalized factor automaton M2 with
ε-transitions for v = t[a, c]c[a, c, t]t

t

t

t

a

c

a

c

c

c t
t

t

a a
c

a c
t

t

c
2 3 4 50 145

4534234

24

Figure 4.6: Transition diagram of deterministic generalized factor automaton M for v =
t[a, c]c[a, c, t]t

4.3.2 Properties of the Generalized Factor Automaton

4.3.3 Size of the Generalized Factor Automaton.

AutomatonM depicted in Fig. 4.5 accepts the same language as the tree-like automatonMT

47



depicted in Fig. 4.7. The branches of automaton MT are formed by nondeterministic factor
automata MB

1 ,MB
2 , . . . ,MB

L , where L = 6. The deterministic factor automaton has 2n − 2
states [5]. The size of the deterministic equivalent M ′

T of the tree-like automaton MT is in
direct proportion with the sum of the sizes of the automata on its branches [9]. Therefore the
number of states of M ′

T is O(Ln). The number of branches of MT is given by the number of
all strings represented by the generalized string, in other words, by the number of all directed
paths from the state q0 to state qn (without considering ε–transitions). This number is given
by the product of the sizes of the symbol sets in all positions. Hence, in the worst case, it
holds L = |A|n and the total size is O(|A|n n), where n is the length of the string. But thanks
to the fact that all the states qi, 1 ≤ i ≤ L in MT correspond to only one state q in M , all
states of the form {qi1

1 qi2
2 . . . q

ip
p } in deterministic MT will merge into one state {q1q2 . . . qp}

in deterministic M and thus the number of states of M will rapidly decrease with respect to
the size of deterministic MT . At this moment, no precise estimations of the upper bound of
the number of states of GFA are available, so it remains O(2n), which is given by the subset
construction of deterministic automaton.

ε

ε

ε

ε

ε

ε

a

c

t

a

t

c

t

t

t

t

t

t

MB1

MB2

MB4

MB5

MB6

ε

ε

ε

ε

ε

ε

ε

ε

εε

ε

ε

ε

ε

ε

ε

ε

ε
0

5−14−11−1 2−1 3−1

5−24−21−2 2−2 3−2

5−34−31−3 2−3 3−3

5−44−41−4 2−4 3−4

5−64−61−6 2−6 3−6

5−54−51−5 2−5 3−5

c

c

c

c

c

c

a

a

a

c

c

c

t

t

t

t

t

t

MB3

Figure 4.7: Nondeterministic tree-like automaton MT for v = t[a, c]c[a, c, t]t

4.3.4 Experiments.

We performed a series of experiments to investigate the behaviour of the size of the generalized
factor automaton with respect to the size of the nondeterministic generalized factor automaton
in practice. The results of the experiments for various alphabets and string sizes show that
the size of GFA tends not to grow exponentially even in the worst case. Both the maximum
and the average size of GFA seem to be bounded from the top by the quadratic function, and
from the bottom by the linear function with respect to the size of the input string, see Fig.
4.11.

4.3.5 Applications

We will show how to use the generalized factor automaton for searching substrings and for

48



computing exact repetitions. In both cases, we adapted algorithms developed for the factor
automaton. The basic algorithms process generalized strings, but we can also use them for
processing weighted strings by adding preprocessing and postprocessing phases, as described
above. GFA is an index structure, and therefore the construction is not part of the searching
algorithms. Once GFA has been built, it is stored and, during the searching phases, it alone
is being used. To construct the generalized factor automaton we use Alg. 4.3.1. During this
construction, we memorise the subsets of the states of the nondeterministic generalized factor
automaton corresponding to each state of the deterministic generalized factor automaton.
Let us denote these subsets as d-subsets (deterministic subsets). We use these subsets in the
algorithms that we present in the following. We will illustrate algorithms for the weighted
string w, the generalized string v and GFA M , depicted in Fig. 4.1, 4.2 and 4.6, respectively.
(Note that v is the basic string of w).

4.3.6 Searching substrings

Problem 4.17
Given a string (pattern) y. Find the end positions il of all its occurrences in the generalized
string v, using the generalized factor automaton.

Solution 4.18
We start in the initial state. We perform a sequence of moves for symbols of searched pattern
y. Elements of the d-subset of the state that we reach represent the end positions of pattern
y in the text.

Example 4.19
Given a pattern y = cc. We use generalized factor automaton M from Example 4.3.1 (Fig.
4.6). We start in state 0 and we finish in state 34, which means that y ∈ v[2..3] and y ∈ v[3..4],
in other words, y occurs in v at positions 3 and 4.

Problem 4.20
Given a string (pattern) y, probability function fp (µ or α) and acceptability threshold d.
Find the end positions il of all its occurrences, such that fp(y, il) ≥ 1/d, 1 ≤ l ≤ r, for some
r, in weighted string w using the generalized factor automaton.

Solution 4.21
The first phase of the solution is identical to Sol. 4.3.6. In the second phase, we check whether
all found occurrences in positions il satisfy fp(y, il) ≥ 1/d.

Example 4.22
Given a pattern y = cc, probability function fp = µ (multiplicative probability) and accept-
ability threshold 1/d = 0.3. The first phase of the solution is given in Example 4.3.6. For
the first occurrence ending at position i1 = 3, it holds fp(y, 3) = 0.5 hence the occurrence is
accepted. For the second occurrence ending at position i2 = 4, it holds fp(y, 4) = 0.25, hence
the occurrence is not accepted.

49



4.3.7 Searching exact repetitions

Problem 4.23
Find all maximum repeating factors of the generalized string v using the generalized factor
automaton.

Solution 4.24
The repetitions that we are looking for are obtained by analysing d-subsets of GFA having
cardinality greater than one. The d-subset of the state at depth h (length of the longest path
from the initial state to the state) represents the occurrences (end positions) of maximum re-
peating factors having length h. The factors for a given state q are obtained by concatenating
labels of transitions lying on the longest paths from the initial state to state q. In general, a
state of GFA unlike FA can correspond to more than one longest factor.

Example 4.25
For instance, by analysing the state with label 45 which is at depth 3 we observe that the
factor of length 3 (cct) is repeated at positions 4, 5 of v. Since 5 − 4 < 3 the repetition is
with overlapping. The remaining repetitions are summarized in a repetition table, see Tab.
4.2. (The symbols O,G, S used in the table have the following meaning: O - repetition with
overlapping, S - square repetition, G - repetition with gap.)

Table 4.2: Repetition table from Example 4.3.7
d-subset Factor First occurrence Repetitions

1, 4, 5 t 1 (4, G), (5, G)

2, 3, 4 c 2 (3, S), (4, S)

2, 4 a 2 (4, G)

3, 4 cc 3 (4, O)

4, 5 cct 4 (5, O)

Problem 4.26
Given a probability function fp (µ or α) and an acceptability threshold d. Find all repeating
factors yj ending at positions il, such that fp(yj , il) ≥ 1/d, 1 ≤ j ≤ l ≤ r, for some r, in
weighted string w using the generalized factor automaton.

Solution 4.27
The first step of the solution is identical to Sol. 4.3.7. Next, we split lines with more than
one factor into more than one line, so that the new lines will contain only a single factor.
The reason is that, in general, each factor has a different probability of appearance. In the
third step, we compute fp for the found repeating factors, see Tab. 4.3 (the value of fp is the
second element in parentheses).

In the next step, we remove all factors yj for which fp(yj , il) < 1/d from the repetition
table. This step can cause, firstly, that some rows may contain no occurrence or single
occurrence, secondly, the types of repetitions can change and, thirdly, the first occurrence of

50



a factor can change. Therefore, finally, we have to remove all rows with only one occurrence
from the repetition table, we have to change the type of repetition where needed, and we have
to determine the new first occurrence where needed.

Example 4.28
Given a probability function fp = µ (multiplicative probability) and acceptability threshold
1/d = 0.3. The first step is identical to Example 4.3.7. In the second step, we compute values
fp for all factors in the repetition table Tab. 4.2, and by doing so we obtain Tab. 4.3. Next,
we remove all occurrences of factors yj at positions il with fp(yj , il) < 0.3 (marked by ∗), and
finally we remove rows with no occurrences or single occurrences from the repetition table
(marked by ×). The resulting repetition table is Tab. 4.4. We do not have to change either
any type of repetition or any first occurrence.

Table 4.3: Auxiliary repetition table from Example 4.3.7
d-subset Factor First occurrence Repetitions
1, 4, 5 t (1, 1) (4, 0.25, G) ∗, (5, 1, G)
2, 3, 4 c (2, 0.5) (3, 1, S), (4, 0.25, S) ∗
2, 4 a (2, 0.5) (4, 0.5, G)
3, 4 cc (3, 0.5) (4, 0.25, O) ∗ ×
4, 5 cct (4, 0.125) ∗ (5, 0.25, O) ∗ ×

Table 4.4: Repetition table from Example 4.3.7
d-subset Factor First occurrence Repetitions

1, 4, 5 t (1, 1) (5, 1, G)

2, 3, 4 c (2, 0.5) (3, 1, S)

2, 4 a (2, 0.5) (4, 0.5, G)

4.4 Pattern Matching in Generalized Strings

In this Section, we introduce a general method for constructing finite automata for on-line
pattern matching in a generalized string.

Problem 4.29
Solve a given pattern matching problem P for a given string x (pattern) and a given generalized
string v (text), both over alphabet A.

Problem 4.30
Solve a given pattern matching problem P for a given string x (pattern) and a given weighted
string w (text), both over alphabet A, and a given probability function fp (µ or α) and
acceptability threshold d.

4.4.1 Method

51



ca a

A

2 30 1

h,m,n,v
a,d,r,w

h,m,n,v
a,d,r,w

h,m,n,v
b,c,s,y

g,t,k
b,c,s,y,
h,m,n,v,
a,d,r,w,

2 30 1

Figure 4.8: Comparison of nondeterministic finite automata M11 and M12 for exact pattern
matching in strings over the basic alphabet A and the extended alphabet E2 (from Example
4.2.2), respectively, for pattern x = aca

Solutions are known for pattern matching problems if the text is also a string. A nonde-
terministic finite automaton exists for each of the pattern matching problems solving it [9].
Our method transforms algorithm A for construction of automaton M for a given pattern
matching problem P on strings, to algorithm A

′ for the construction of automaton M
′ for P

on generalized strings. Generalized strings need to be in subset code for this application. The
main idea is very simple and clear. Let L(M) ⊆ A∗ be a language accepted by M, then M

′

will accept the language

L(M′) = {x | ∃ u : (u ∈ L(M)) & (u ∈ PartFact1(x)), u ∈ A∗, x ∈ P(A)∗},

Simply said, M
′ will accept all generalized strings containing strings defined by P as their

simple elements.
Before we present the algorithm we must define the mapping which assigns to a symbol of

the basic alphabet a set of symbols of the extended alphabet representing that symbol. Such
a mapping is derived from a given subset code.

Definition 4.31 (Representation)
Let A and E be alphabets such that A ⊆ E and C is a subset code C : P(A) 7−→ E.
A representation for C is a total mapping R : A 7−→ P(E) such that:

R(a) = {e | e ∈ E & a ∈ C−1(e) }, a ∈ A

We say that the members of R(a) are representatives of a.
We extend the definition of R for sets in the following way:

R(S) =
⋃

a∈S

R(a),

where S ⊆ A.

Table 4.5 represents the mapping R for subset code C2 from Tab. 4.1.

Algorithm 4.4.1
Transformation of the algorithm for constructing the pattern matching automaton.
Input: Algorithm A for constructing M = (Q,A, δ, q0, F ) solving P on A∗, mapping R.

52



Table 4.5: Mapping R for subset code C2 from Tab. 4.1

A R(A)

a a,m, r, w, v, h, d, n

c c,m, s, y, v, h, b, n

g g, r, s, k, v, d, b, b

t t, w, y, k, h, d, b, n

Output: Algorithm A
′ for constructing M

′ = (Q,R(A), δ′, q0, F ) solving P on P(A)∗.
Method:

1. Modify the instruction setting the input alphabet of M to set R(A) instead of A.

2. Substitute all instructions in the following way:

δ(qi, x) = qj , ∀x ∈ S =⇒ δ′(qi, x) = qj, ∀x ∈ R(S)

δ(qi, x) = qj, ∀x ∈ S =⇒ δ′(qi, x) = qj, ∀x ∈ ( R(A) \ R(S) )

After transforming the algorithm, we create a nondeterministic finite automaton. We can
create the deterministic equivalent to this automaton and use it for pattern matching, or
we can skip determinization and directly simulate the nondeterministic automaton [8]. The
latter approach is more suitable when we expect the deterministic automaton to have a large
number of states.

If a given pattern matching problem can be decomposed into a pattern matching problem
in a generalized string followed by a verification phase, we can use automaton M

′ also for
pattern matching in weighted strings.
The preprocessings (extraction of the basic string) and postprocessings (verification) that

we must add are meant to be performed on-line as the first and last steps of the searching
procedures, in this case.

4.4.2 Applications

We will demonstrate our method in the solution of the exact pattern matching problem.

Problem 4.32
Transform the algorithm for exact pattern matching in strings [9] into an algorithm for exact
pattern matching in generalized strings, for pattern x = x1x2 . . . xm, x ∈ A∗. For transfor-
mation we use Alg. 4.4.1.

Solution 4.33
An automaton for exact pattern matching in strings can be built by the following algorithm.

A :

53



M = (Q,A, δ, q0, F )
Q = {q0, q1, q2, . . . , qn},
δ(qj−1, xj) = qj, j = 1, 2, . . . , n,
δ(q0, y) = q0, y ∈ A,
F = {qn}.

We transform algorithm A into an algorithm for exact pattern matching in generalized strings
using Alg. 4.4.1. In this way we obtain the following algorithm.

A
′ :

M = (Q,R(A), δ′, q0, F )
Q = {q0, q1, q2, . . . , qn},
δ′(qj−1,R(xj)) = qj, j = 1, 2, . . . , n,
δ′(q0, y) = q0, y ∈ R(A),
F = {qn}.

Table 4.6: Transition tables of nondeterministic finite automaton M12 (the upper part) and

deterministic finite automaton M13 (the lower part)

a c g t m r w s y k v h d r n

→ 0 01 0 0 0 01 01 01 0 0 0 01 01 01 0 01

1 2 2 2 2 2 2 2 2

2 3 3 3 3 3 3 3 3

3

→ 0 01 0 0 0 01 01 01 0 0 0 01 01 01 0 01

01 01 02 0 0 012 01 01 02 02 0 012 012 01 02 012

02 013 0 0 0 013 013 013 0 0 0 013 013 013 0 013

012 013 02 0 0 0123 013 013 02 02 0 0123 0123 013 02 0123

← 013 01 02 0 0 012 01 01 02 02 0 012 012 01 02 012

← 0123 013 02 0 0 0123 013 013 02 02 0 0123 0123 013 02 0123

Example 4.34
Let us have the pattern x = aca and text u depicted in Fig. 4.9. The task is to find all exact
occurrences of x in u.

First, we build a nondeterministic finite automaton using Alg. A
′ for pattern x and the

mapping R from Table 4.5. In this way we observe automaton M12 depicted in Fig. 4.8
and its transition table is Tab. 4.6. Next, we create deterministic finite automaton M13 by
determinizing M12. Automaton M13 is depicted in Fig. 4.10 and its transition table is Tab.
4.6. Finally, we perform matching using automaton M13. The process of matching is shown
in Tab. 4.7. We see that the pattern x = aca was found in u at positions (end positions) 4,
6, 8 and 10.

Example 4.35
Let us consider the weighted string w from Fig. 4.9 as the text. The first step of the solution

54



is to extract its basic generalized string. The basic generalized string of w is u from Fig.
4.9. This is the same string as was used as the text in Example 4.4.2. Therefore we find
the same occurrences. However, in this case we must check in addition a given probability
condition and remove insufficient occurrences. Let us consider the probability function fp = µ
(multiplicative probability) and the acceptability threshold 1/d = 0.1. For the occurrences
listed above we get the probabilities: 0.125, 0.06, 0.0625 and 0.03125. Therefore only the
occurrence in position 4 with probability 0.125 is accepted.

Table 4.7: Exact pattern matching using automaton M13

1 2 3 4 5 6 7 8 9 10 position

[

g
]

[

a
t

][

c
g

]







a
c
t







[

c
t

][

a
g

][

c
t

]











a
c
g
t

















a
c
g







[

a
c

]

text

g w s h y r y n v m text in E2

0 0 01 02 013 02 013 02 013 012 0123 states of M3

0.125 0.06 0.0625 0.03125 probabilities of occurrences

55



w =









(a, 0.00)
(c, 0.00)
(g, 1.00)
(t, 0.00)

















(a, 0.50)
(c, 0.00)
(g, 0.00)
(t, 0.50)

















(a, 0.00)
(c, 0.50)
(g, 0.50)
(t, 0.00)

















(a, 0.20)
(c, 0.30)
(g, 0.00)
(t, 0.50)

















(a, 0.00)
(c, 0.60)
(g, 0.00)
(t, 0.40)

















(a, 0.50)
(c, 0.00)
(g, 0.50)
(t, 0.00)









·

·









(a, 0.00)
(c, 0.50)
(g, 0.00)
(t, 0.50)

















(a, 0.25)
(c, 0.25)
(g, 0.25)
(t, 0.25)

















(a, 0.50)
(c, 0.25)
(g, 0.25)
(t, 0.00)

















(a, 0.50)
(c, 0.50)
(g, 0.00)
(t, 0.00)









u =
[

g
]

[

a
t

] [

c
g

]





a
c
t





[

c
t

] [

a
g

] [

c
t

]









a
c
c
t













a
c
g





[

a
c

]

C2(u) = gwshyrynvm

Figure 4.9: Weighted string w, generalized string u in lists and in subset code representations;
u is the basic string of w

g,k,t

b
,c

,s
,y

a,d,r,w

g,k,t

g,k,t

g,k,t

h,m,n,v

h,m,n,v

a,
d

,r
,w

a,d,r,w

0 01

02

012

013

0123

h,m,n,v
a,d,r,w

a,d,r,w

b,c,s,y,g,k,t

b,c,s,y

a,d,r,w,h,m,n,v

b,c,s,y

h,m,n,v

b,c,s,y

h,m,n,v

b,c,s,y
g,k,t

Figure 4.10: Deterministic finite automaton M13 for exact pattern matching in strings over
extended alphabet E2, for x = aca

56



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70 80 90

F
A

 (
#s

ta
te

s)

NFA (#states)

avg

|A|=2
|A|=3
|A|=4

x^2
x

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2  3  4  5  6  7

F
A

 (
#s

ta
te

s)

NFA (#states)

max

|A|=2
|A|=3
|A|=4

x^2
x

Figure 4.11: Average and maximum sizes of generalized factor automata for a generalized
string - comparison with x, x2, |A| ∈ 2..4

57



4.5 Conclusion

We have shown how to apply finite state automata in processing generalized strings and, as
a consequence also weighted strings.
We have presented the algorithm for constructing the Generalized Factor Automaton,

which is an automaton accepting all strings represented by a generalized string, and we have
shown how to use it for searching repetitions and substrings in generalized and weighted
strings.
Finally we have shown the method how for transforming the algorithm for constructing

the finite automaton for pattern matching in strings into the algorithm for constructing a
finite automaton solving the same pattern matching problem in generalized strings.
Our future work will be devoted to the development of algorithms solving other pat-

tern matching problems in generalized strings and other problems concerning regularities in
generalized strings, such as borders, covers, seeds, etc. based on GFA. The open problem
is the space complexity of the Generalized Factor Automaton in relation to the size of the
represented generalized string and the cardinality of the used alphabet.

References

[1] K. Abrahamson: Generalized string matching, SIAM Journal on Computing, 16(6),
1039-1051, 1987.

[2] A.L. Rosenberg: On multi-head finite automata, IBM J. Res. and Develop., 10, 388–
394, 1966.

[3] R. Cole, R. Hariharan: Tree Pattern Matching and Subset Matching in Ran-
domized O(n log3 m) Time, Proceedings of the 29th ACM Symposium on the Theory
of Computing,El Paso, TX, 66–75, 1997.

[4] J. Holub, C. S. Iliopoulos, B. Melichar, L. Mouchard: Distributed string matching us-
ing finite automata, Proceedings of the 10th Australasian Workshop On Combinatorial
Algorithms, 114-128, 1999.

[5] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M. T. Chen, J. Seiferas: The small-
est automaton recognizing the subwords of a text. Theor. Comput. Sci., 40(1),
1985, 31–55.

[6] C. S. Iliopoulos, M. Mohamed, L. Mouchard, K. Perdikuri, W. F. Smyth, A. Tsakalidis:
String Regularities with Don’t Cares. Proceedings of the 2002 Prague Stringology
Conference, Prague 2002, 65–74.

[7] C. S. Iliopoulos, L. Mouchard, K. Perdikuri, A. K. Tsakalidis: Computing the Repeti-
tions in a Weighted Sequence. Proceedings of the 2003 Prague Stringology Conference,
Prague 2003, 91–98.

58



[8] J. Holub: Simulation of NFA in Approximate String and Sequence Matching.
Proceedings of the Prague Stringology Club Workshop ’97, Prague 1997, 39–46.

[9] B. Melichar, J. Holub, T. Polcar: Text searching algorithms, Tutorial for Athens
course, Manuscript, 2004.

[10] Prague Stringology Conference: http://cs.felk.cvut.cz/psc/

[11] http://www.chem.qmul.ac.uk/iupac/

59



5 Two-dimensional Pattern Matching Using the Finite Au-
tomata
Jan Žďárek

5.1 Motivation

This chapter presents one of possible approaches to two-dimensional pattern matching, namely
the finite automata approach.
The two-dimensional exact matching is a generalization of one-dimensional (string) match-

ing. Suppose we have a rectangular digitized picture TA, where each point is given a number
indicating, say, its color and brightness. We are also given a smaller rectangular picture
PA, which also is digitized, and we want to find all occurrences (possibly overlapping) of the
smaller picture in the larger one. We assume that the bottom edges of the two rectangles are
parallel to each other. This is a two-dimensional generalization of the exact string matching
problem that has been described in detail in the Athens’ Tutorial [Ath–2004].
Motivation for finding a solution working in linear time (with respect to the size of the

greater picture) is the fact, that trivial algorithm of two-dimensional exact pattern matching
has O(|P ||T |) asymptotic time complexity. Further discussion of this algorithm can be found
in Section 5.3.

Organisation of this text is rather simple: at first, we shortly introduce elementary notions
from the area of two-dimensional pattern matching. This work is closely bound to the Athens’
Tutorial, therefore we do not recall notions from one-dimensional string matching here. It is
recommended to a reader not familiar with them to have the Athens’ Tutorial at hand.
At second, we show basic models of use of one-dimensional finite automata in two-

-dimensional pattern matching. Then we thoroughly describe one method of two-dimensional
exact pattern matching based on one-dimensional pattern matching automata.

5.2 Selected notions of two-dimensional pattern matching

In the Athens’ Tutorial [Ath–2004] reader has encountered numerous necessary definitions
of the one-dimensional pattern matching area. In this text we will try to extend some of
them into two-dimensional space. Moreover, whenever some newly defined notion has its
one-dimensional equivalent, we are trying to formulate it as analogously as possible. From
the one-dimensional case we also keep basic (though not formally defined) terms such are a
text as a searched data and a pattern as a data, which we search for.

Definition 5.1 (Shape)
A shape is a geometrical formation in n-dimensional space, n ∈N.

Unless otherwise stated, we limit our interest to matching in two-dimensional space and
therefore in following text we consider the rectangular shapes. Even in special cases, where
we can encounter general geometrical shapes, we are able to determine some rectangular
bounding shape of pattern and text array, respectively.

Remark : Despite of the fact that detailed discussion of such refinement of the presented
problem is beyond scope of this text, reader should notice that 2D pattern matching methods
presented below are after slight modification able to work even over irregular shapes of text
and pattern array, respectively.

60



A pattern array (PA) and text array (TA) are in fact two-dimensional strings. In two-
-dimensional space we call them pictures. [GR–1997]

Definition 5.2 (Element of a picture)
An element of a picture or of a two-dimensional string P , denoted by P [i, j], is a symbol over
alphabet A, P [i, j] ∈ A.

Definition 5.3 (Picture (two-dimensional string))
A picture (two-dimensional string) over A is a rectangular array P of size (n×n ′) of symbols
taken from a finite alphabet A. Formally, ∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ n′; P [i, j] ∈ A.

Definition 5.4 (Picture size)
The size of a picture is a size of its rectangular shape.

Definition 5.5 (Picture origin)
The origin of a picture is an element at position (1, 1).
The size of the figured picture is (n×n′). Geometrical axes have their source at the upper

left corner of the picture, in the same way as in certain applications of Computer Graphics
(see Figure 5.1).
~x−axis therefore points from left to right,
~y−axis points from top to bottom of the array.

(1,1)

x

y

(n,n’)

Figure 5.1: Orientation of coordinate system of two-dimensional pattern matching

Definition 5.6 (Empty picture)
The empty picture is a picture denoted by λ and its size is |λ| = (0 × 0). Pictures of size
(0× n) or (n× 0), where n > 0, are not defined.

Definition 5.7 (Set of all pictures)
The set of all pictures over alphabet A is denoted by A∗∗. (A two-dimensional language over
A is thus a subset of A∗∗.)
The set of all pictures of size (n× n′) over A, where n, n′ > 0, is denoted by An×n′

.

Definition 5.8 (Subpicture)
Let P ∈ An×n′

be a picture of size (n × n′) and R ∈ Am×m′

be a picture of size (m ×m′).
A picture R is a subpicture (a block, a sub-array) of picture P if and only if

m ≤ n, m′ ≤ n′ and ∃k, l; k ≤ n−m, l ≤ n′ −m′

such that
R[i, j] = P [i + k, j + l]; ∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ m′.

It means that the picture R is included in P (every element of R belongs also to P ).

61



Remark : Although term picture was extensively used in previous definitions, it is equiva-
lent with term rectangular array. (Except in context where it is substantial, the adjective
“rectangular” will be omitted.)
In places, where it is important to distinguish between text and pattern, we usually prefer

to use the term “array” instead of “picture”. The reason is that it sounds better to say
pattern or text array than pattern picture or text picture.

Definition 5.9 (Two-dimensional pattern matching problem)
A two-dimensional pattern matching problem is to locate an (m×m′) pattern array PA (not
necessarily a picture) inside an (n× n′) (text) array TA (Figure 5.2).

Definition 5.10 (Two-dimensional occurrence)
A two-dimensional occurrence of pattern array PA in text array TA is

• exact, when PA is included in TA as a sub-array,

• approximate (with k errors), when PA or its bounding picture is included in TA as a
sub-array with k not-matching positions (errors).

The position of a two-dimensional occurrence of PA in TA is a pair (i, j), such that
PA = TA[i, . . . , i + m− 1; j, . . . , j + m′ − 1], as in Figure 5.2. Note that PA[1, 1] = TA[i, j]
and therefore the lower right corner of PA in Figure 5.2 is at position (i+m−1, j +m ′−1) in
TA. When there is not risk of ambiguity, we will refer to two-dimensional occurrence simply
as an occurrence.

m

m’

TA

j

i+m−1

i

n

PA

j+m’−1

n’

Figure 5.2: Pattern array PA occurs at position (i, j) in text array TA

62



5.3 Trivial algorithm for two-dimensional exact matching

At the beginning of this chapter we mentioned so called trivial algorithm for the exact pat-
tern matching in two dimensions. Motivation for finding two-dimensional pattern matching
algorithms working in linear time (linear with respect to the size of the text array) is the fact
that the trivial algorithm has O(|TA||PA|) = O(nn′ ·mm′) asymptotic time complexity.
The trivial algorithm for the two-dimensional exact pattern matching is analogical to the

one in one-dimensional case: we are given above-mentioned 2D arrays PA and TA. Assume
their sizes are (m×m′) and (n×n′), respectively. Without loss of generality let hold m ≥ m′

and n ≥ n′.
The trivial algorithm repeatedly verifies for each element of the text array whether there

begins an occurrence of the pattern array or not. Asymptotical time complexity of this
single check is O(|PA|) = O(m2) and it is done O(|TA|) = O(n2) times. Therefore overall
asymptotical time complexity of such algorithm is

O(|TA||PA|) = O(n2 ·m2) .

We clearly see that there cannot be an occurrence of PA in elements of TA such that TA[i, j],
i > n −m + 1, and j > n′ −m′ + 1, but asymptotically it does not matter if we make such
an enhancement and do not check an occurrence there or not. Because in this algorithm we
are interested in the exact occurrences, we also see that checking for an occurrence will end
in the moment the first non-matching element is found, thus usually it will end prematurely.
However, consider following situation: let PA consists of all zeros (0) and in the bottom

right element is single one (1). Let TA consists of all zeros (0). At this moment, we can end
our deliberation stating that this is the worst case, where every element of the pattern array
PA inevitably must be compared with appropriate elements of the text array TA, and even
in case we are interested in the first occurrence of PA in TA only, we have to check elements
of whole text array.
Attentive reader has noticed that 2D trivial algorithm is analogous to the 1D case (cf.

[Ath–2004], Section 2.1). In practice the first mismatch between element of PA and TA
occurs usually very soon. But this analogy is limited though, because we do not have any
natural language in terms of pictures, therefore we cannot simply find any constant CL and
say that for this kind of pictures the 2D pattern matching using the trivial algorithm is linear.

5.4 General models of two-dimensional pattern matching using finite au-
tomata

Reusing of the finite automata from one-dimensional pattern matching into two-dimensional
pattern matching has some advantages: the same formal method of modelling of pattern
matching algorithms in both cases and description of all problems (one- and more- dimen-
sional) using a unified view.
Melichar and Holub [MH–1997] showed, that all one-dimensional pattern matching prob-

lems are sequential problems and therefore it is possible to solve them using finite automata.
Of course, we cannot use one-dimensional automata directly, because two or more di-

mensional problems are inherently not sequential. Therefore our aim is to find a way of
appropriate transformation of nonsequential problems to sequential problems.

63



In general we can

• use multiple automata passing their results among them, or

• modify run of pattern matching automaton to process text and pattern array in somehow
“linearized” form.

Before we turn our attention to the first of these two approaches, let us briefly explain
the latter one. This method is based on the following observation: we can treat whole
image as one one-dimensional string using a path in a picture defined along some space
filling curve. The simplest curve is the C-curve (the compound curve). It starts at the
picture origin and goes to the end of the first row, then continues from the beginning of the
next row until it reaches the last element of the picture. Having such curve, we can apply for
example SFOECS automaton on it and proceed as usual in one-dimensional pattern matching.
SFOECS automaton ([Ath–2004], Figure 4.18) is NFA for exact string matching of sequence
of strings – rows of the pattern array.

Using the C-curve we can imagine that our automaton “reads” the text in the same
manner we usually do: row-wise from left to right. Such linearization is very simple, on the
other hand we are only able to find fragments (rows) of the original pattern array that may
be far away from each other and even in the same row of the text array (i.e. for n > 2m).

Considering its disadvantages we will not discuss this approach further in this text.

Our general model of two-dimensional pattern matching based on the first one of those
approaches (i.e. passing of results) consists of two processing steps and involves two types of
pattern matching automata:

1. (Nondeterministic) finite automaton preprocessing text array TA as a set of columns
(or rows), which produce text array TA′ of the same shape as TA.

2. (Nondeterministic) finite automaton searching for a representing string in rows (or
columns, it depends on direction selected in the previous step) of TA′, occurrence of
this string determine position of the 2D occurrence of PA in TA.

5.5 Two-dimensional exact pattern matching

Two-dimensional exact pattern matching is at present time relatively well explored area. The
method presented hereinafter follows the basic approach found by Bird and, independently,
by Baker [Bir–1977, Bak–1978]. Since then, many additional methods have been presented,
however they are often quite complicated.

Bird and Baker in their algorithm employed algorithms simulating nondeterministic pat-
tern matching automata, namely the Aho-Corasick and the Knuth-Morris-Pratt pattern
matching machines ([Ath–2004], Chapter 5 – Simulation of nondeterministic pattern matching
automata). Instead of these algorithms we will use determinized versions of selected automata
described in the second chapter of the Athens’ Tutorial.

Let the pattern array PA be viewed as a sequence of strings. Without loss of generality
let these strings be its columns. To locate columns of the pattern array within columns of
the text array requires searching for several strings, see the idea in Figure 5.3 or Figure 5.2.

64



Occurrence

Text ArrayPattern Array

m

m’

n

n’

Figure 5.3: Pattern matching searching for columns of the pattern array PA in the text array
TA

Moreover, the two-dimensional occurrence of the pattern PAmust be found in a particular
configuration within rows. All columns of the pattern are to be found in the order specified
by the order of strings in the pattern, and all ending on the same row of the text array.

The strategy of searching for PA in the text array TA is as follows. Let PS be the set of
all (distinct) columns of PA, treated as individual strings. First we build the string-matching
automaton M(PS) with final states. Each final state of this automaton corresponds to some
pattern in the set PS. Therefore, each column of the pattern array PA is unambiguously
identified with corresponding final state of the automaton M(PS). However, there can be
less than m final states owing to possible identities between some columns (Figure 5.3). Once
the automaton M(PS) is constructed, it is applied to each column of TA. We generate an
array, say TA′, of the same size as TA, and whose elements are determined by the run of
M(PS).

The pattern array PA itself is replaced by a string P over the set of final states: the ith

symbol of P is the final state identified with the ith column of PA. The rest of the entire
process consists of locating P inside the rows of TA′, reporting eventual occurrences of P and
therewith also PA.

5.5.1 Construction of NFA for the exact matching of a set of strings

Let m be the number of columns and m′ be the number of rows of pattern array PA, md

be the number of distinct columns of PA, md ≤ m. Construction of automaton M(PS),
M(PS) = (Q,A, δ, q0, F ), for searching for the set PS, PS = P1, P2, . . . , Pmd

, consists of md

nondeterministic finite automata for the exact pattern matching, M1,M2, . . . ,Mmd
. Careful

reader of the Athens’ Tutorial already knows this kind of automata as the SFOECO automata

65



([Ath–2004], Figure 2.2) and their construction algorithm ([Ath–2004], Algorithm 2.1).
Our nondeterministic finite automaton M(PS), also known as the SFFECO automaton

([Ath–2004], Figure 2.13), and its construction algorithm ([Ath–2004], Algorithm 2.9) is based
on the union of SFOECO sub-NFAs for each pattern from the set PS. The Algorithm 5.1 is
a variant of above mentioned SFFECO construction algorithm customized for our purpose.

The resulting automaton M(PS) with the maximum number of its states is in Figure 5.4.

p
1,1

p
m,1

p
2,1

A

0

p
m,2

p
m,m’

p
2,2

p
2,m’

p
1,2

p
1,m’

...

Figure 5.4: NFA for searching for a set of strings PS, md = m

Lemma 5.11
A non-minimized nondeterministic finite automaton for the exact string matching of set of
md patterns each of length m′, constructed by Algorithm 5.1, has at most mdm

′ + 1 states.
The maximum of states of such NFA (the size of a maximal trie over the set PS) is mm ′ + 1
and mm′ + 1 ≥ mdm

′ + 1.

Proof
We have built md NFAs for the exact pattern matching, constructed by SFOECO automaton
construction algorithm ([Ath–2004], Algorithm 2.1) and we made a union of them. From the
same algorithm we already know, that each of these NFAs has m′ + 1 states. Due to the
operation union all initial states are merged into q0, to the initial state of the first of these
sub-NFAs. Moreover, all states representing common prefixes of particular strings are merged.
The worst case takes place if each string starts with different symbol than the others, i.e. there
is no common prefix of two or more strings. Therefore the number of states of constructed
NFA M(PS) is at most mdm

′ + 1.

Moreover the number of distinct strings in the set PS cannot be greater than the number
of columns of the pattern array PA, m ≥ md, thus inequality mm′ + 1 ≥ mdm

′ +1 holds. 2

To be able to preprocess the text array TA the determinization of the automatonM(PS) is
required. We can obtain deterministic finite automaton from the NFA in several ways. One of
them is an algorithm from [Ath–2004], Section 2.3 – Deterministic pattern matching automata.
Using this algorithm we are able to determinize the NFA M(PS) in time Θ(|A||Q|). Such
plausible time complexity we can reach owing to the special characteristics of the automaton

66



Algorithm 5.1: Construction of NFA for the exact matching of the set of strings PS
Input: Set PS of (distinct) strings of pattern array PA (its columns or rows). Cardinality
of the set PS is |PS| = m.
Output: NFA M accepting language L(M), L(M) = {wPi | w ∈ A∗, 1 ≤ i ≤ m, Pi ∈ PS}.
Description: Note that the first part of this algorithm does not construct exactly the
SFOECO automata, because they lack their, for our purpose useless, self loops of the initial
states.
Method:
NFA M = (Q,A, δ, q0, F ), where Q, F and the mapping δ are constructed in the following
way:

m = |PS|
m′ = |P1| { |P1| = |P2| = · · · = |Pm| }
Q = {q0, q1, . . . , qm(m′+1)}
for i = 1 to m do
for j = 0 to m′ − 1 do

δ(q(i−1)(m′+1)+j , pi,j+1) = {q(i−1)(m′+1)+j+1} { forward transitions for Pi[j + 1] }
end
δ(q(i−1)(m′+1)+j , a) = ∅, ∀a ∈ A { no transition leading from the final state }

end
for i = 1 to m− 1 do

δ(q(i−1)(m′+1), ε) = {qi(m′+1)} { constructs ε-transitions }
end
Create the union of these m sub-NFAs.
δ(q0, a) = δ(q0, a) ∪ {q0}, ∀a ∈ A { self loop of the initial state }

M(PS), for detailed discussion see [Ath–2004], Section 2.4 – The state complexity of the
deterministic pattern matching automata, especially Theorems 2.28 and 2.29.

Since DFA MD(PS) accepts the same language as NFA M(PS), L(MD(PS)) =
L(M(PS)), these automata are equivalent.

5.5.2 Processing of image with DFA for the exact matching of a set of strings

Suppose we have an array TA′ of the same size as TA. Let DFA M(PS), M(PS) =
(Q,A, δ, q0, F ), denotes determinized version of NFA constructed by Algorithm 5.1. Let F be
the set of all final states of M(PS), the number of final states be denoted by md and m be
the number of columns of the pattern array PA.

Preprocessing of the text array TA consists of finding occurrences of strings from the set
PS for all elements of PA.

Firstly we have to assign an output action to every state of the DFA MD(PS). When
state q, q ∈ Q, becomes active, its associated output action puts its identification into array
TA′ on the active position (position that has been read in the actual step).

Definition of DFA guarantees, that at most one such output action can be active in each
step and that after processing of TA by DFA MD(PS) all elements of TA′ are properly set.

After application ofM(PS) on every column of TA we obtain the text array TA′ prepared

67



for application of the one-dimensional deterministic finite automaton for the exact pattern
matching. NFA for the exact patern matching of one pattern has been mentioned above as
the SFOECO automaton.

Usage of the new text array TA′ is not optimal, and we have to avoid it. Our preprocessing
automaton M(PS) can work over the original array TA, replacing every symbol read with
the appropriate state identifier q, q ∈ Q, thus eliminating need for any extra space, except
for the automata themselves. This is very important, because TA is expected to be large.

Formally, for MD(PS), MD(PS) = (Q,A, δ, q0, F ), q ∈ Q, q is the active state after
reading symbol from the element TA[i, j], holds

TA′[i, j] = δ(q, TA[i, j]) for ∀i, j 1 ≤ i ≤ n, 1 ≤ j ≤ n′

5.5.3 Searching for two-dimensional exact occurrences

We have to construct DFA, say M ′
D, as the determinized version of SFOECO automaton

over the alphabet Q of all state identifiers of the automaton MD(PS) searching for a string
consisting of properly ordered final state identifiers of MD(PS) (or even M(PS), because
selected determinization method leaves final states’ identifiers of M(PS) intact).

More precisely, let determinized M(PS) be MD(PS), MD(PS) = (QD, A, δD , q0D, F ).
Let F , F = {f1, f2, . . . , fmd

}, |F | = md, be the set of all final state identifiers of the au-
tomaton M(PS). Then it is possible to construct deterministic finite automaton M ′

D =
{Q′

D, QD, δ′D, q′0D, F ′
D} as a determinized version of the SFOECO automaton that searches

for the pattern P of length m in TA′, see Figure 5.5.

Pattern P (the representing string) is created by Algorithm 5.2.

Algorithm 5.2: Construction of pattern P representing the pattern array PA for the exact
pattern matching
Input: Correspondence between strings from the set PS and final states of automaton
M(PS), M(PS) = (Q,A, δ, q0, F ). Let pattern P be P = {p1p2 · · · pm} and |PS| = md.
Output: Pattern P of length m.
Method:
for i = 1 to m do

pi = fj, fj ∈ F , such that column PA[i] corresponds to the final state fj of M(PS),
1 ≤ j ≤ md

end

When deterministic finite automaton M ′
D, M

′
D = {Q′

D, QD, δ′D, q′0D, F ′
D}, is constructed,

it is applied on each row (or column, depending on the direction that has been selected for the
preprocessing step) of TA′ and eventually will find occurrences of the representing string P
within rows of TA′. Consequently, it will find 2D occurrences of PA in TA, because position
of the element of TA′ where 1D occurrence of P is eventually reported, is also position of the
lower right element of 2D occurrence of PA in TA. Knowing position of this element it is
easy to compute the origin of the 2D occurrence. Let (x, y) be the actual position, where an
occurrence has been reported, then position of the origin is (x−m + 1, y −m′ + 1).

68



Q D

0
21 m

fff

Figure 5.5: NFA for the exact pattern matching of string P , |P | = m, consisting of the final
states of DFA MD(PS) over finite alphabet QD

5.6 Results

Presented method of two-dimensional exact pattern matching yields the subsequent results.

Theorem 5.12
Let A be finite alphabet, TA be the text array of size (n×n′) = N1, TA ∈ An×n′

, PA be the
pattern array of size (m×m′) = N2, PA ∈ Am×m′

, md be the number of distinct columns of
PA, md ≤ m, and let PS be set of these columns. Moreover, suppose that condition N2 ≤ N1

holds. Then two-dimensional exact pattern matching using the finite automata can be done
with O(N1) asymptotic time complexity.

Proof
The construction of the (nondeterministic) SFFECO pattern matching automaton M(PS)
takes time O(N2), according to Algorithm 5.1. Its determinization takes time O(|A||Q|m) =
O(|A||N2|m), because the number of states of NFA M(PS) is Q = mdm

′ + 1 = O(N2)
(Lemma 5.11). Informally speaking, the determinization works with such time complexity in
our case, because M(PS) is acyclic (tree-like) automaton with only one self loop at its initial
state. Interested reader may consult ([Ath–2004] Section 2.4) for details. However, there exist
an algorithm constructing automaton simulating our model that builds the AC-automaton in
time O(N2).
The construction of the array of state identifiers TA′, i.e. processing TA by determinized

automaton M(PS), clearly takes Θ(N1) time.
String P representing pattern array PA can be created in Θ(m) time, where length of P is

m. This operation and construction of corresponding (nondeterministic) SFOECO automaton
require Θ(m) time. Determinization then takes analogously with the previous step O(|A|m)
time, using the following refinement: let X be X = Q \ F (all nonfinal states of MD(PS)),
then we can treat all nonfinal state identifiers as one special ”identifier” X, so there is only
O(m + 1) = O(m) symbols of the alphabet. Hence we are able to determinize automaton M ′

in the desired O(|A|m) time.
The final search phase consists of pattern matching of string P inside rows of TA ′. This

is done using determinized SFOECO pattern matching automaton for string P and it takes
time Θ(N1).
Total asymptotic time complexity of two-dimensional exact pattern matching for fixed

alphabet is then

O(N2) + Θ(N1) +O(m) + Θ(N1) = O(2N1 + N2 + m) = O(N1 + N2).

Let us suppose, that condition N2 ≤ N1 holds. Then our proof can be completed stating that

O(N1 + N2) = O(N1)

69



2

Theorem 5.13
Let presumptions from the previous Theorem 5.12 hold.
Then asymptotic space complexity of two-dimensional exact pattern matching using the finite
automata is O(max{N2,m

2}).

Proof
Two-dimensional exact pattern matching needs two different automata.

1. In the first step it is determinized SFFECO pattern matching automaton with O(|A|N2)
space complexity.

2. In the second string P is created, representing pattern array PA with Θ(m) space
complexity, and

3. determinized SFOECO pattern matching automaton with O((m+1)m) = O(m2) space
complexity, using the observation that it is possible to replace all nonfinal state identi-
fiers by one special identifier (see the explanation in proof of Theorem 5.12).

Therefore asymptotic space complexity of two-dimensional exact pattern matching is the
maximum from these space requirements: O(max{|A|N2,m

2}).

Assuming fixed alphabet it is O(max{N2,m
2}). 2

5.7 Example

Let us show small example of the idea presented above. Let PA, TA be pattern and text
array, respectively.

PA =

a c a

b b a

c a b

, TA =

b a c a b a c

c b b a a a c

b b a b b a b

a a c a c b a

b b b a c a c

a c a b b a b

c a a c a b a

b b b b a c c

a c c a b a b

, |PA| = (3× 3), |TA| = (7× 9).

Then set PS is the set of three strings over finite alphabet A = {a, b, c}, PS = {abc, cba,
aab}. NFA M(PS) = (Q,A, δ, q0, F ), constructed by Algorithm 5.1, is in Figure 5.6. An
equivalent deterministic finite automaton to the automaton M(PS) can be constructed using
determinisation algorithm from [Ath–2004].

70



0 1
a b

3
c

2

5
b

4

8
a

7
b

6

a

c

a,b,c

Figure 5.6: Minimized nondeterministic finite automaton for the exact matching of set of
patterns PS, PS = {abc, cba, aab}, is a trie of PS

a b c

a

014

c

b a

bc

a

c

c
b

c

b

a b

b

b
ca

a

a

c
a

0 01 036

025

018

02

0706

b

c

Figure 5.7: Deterministic version of the finite automaton from Figure 5.6 for the exact match-
ing of set of patterns PS

Figure 5.7 shows the result of determinization. Notice that the number of states of DFA
did not change compared to its source NFA. It suggests that NFA has already been minimal.

71



Table 5.1: Determinisation of NFA M(PS)

Q a b c Q a b c

→ 0 0,1 0 0,6 → 0 01 0 06
1 4 2 – 01 014 02 06
2 – – 3 02 01 0 036

← 3 – – – 06 01 07 06
4 – 5 – 07 018 0 06

← 5 – – – 014 014 025 06
6 – 7 – ← 018 014 02 06
7 8 – – ← 025 01 0 036

← 8 – – – ← 036 01 07 06

Table 5.2: TA and TA′ as a result of processing columns of TA by DFA from Figure 5.7

b a c a b a c 0 01 06 01 0 01 06

c b b a a a c 06 02 07 014 01 014 06

b b a b b a b 07 0 018 025 02 014 07

a a c a c b a 018 01 06 01 036 025 018

b b b a c a c 02 02 07 014 06 01 06

a c a b b a b 01 036 018 025 07 014 07

c a a c a b a 06 01 014 036 018 025 018

b b b b a c c 07 02 025 07 014 036 06

a c c a b a b 018 036 036 018 025 01 07

72



Table 5.3: Result of matching for P in rows of TA′ by DFA from Figure 5.9 and found
2D occurrences of PA in TA

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

a c a 1 1 1 1 2 1 1

b b a c a 1 1 1 1 1 1 1

c a b b a 1 2 3 4 1 1 1

a c a b 1 1 1 2 3 4 1

b b a 1 1 1 1 1 2 1

c a b 1 2 2 3 4 1 1

Q

321
036 018 025

4

Figure 5.8: Nondeterministic SFOECO automaton for exact matching of the representing
string P

321
036 018 025

4

Z

036

036

Y
036

X
X

Figure 5.9: Determinized finite automaton from Figure 5.8, X = Q\{036}, Y = Q\{018, 036},
Z = Q \ {025, 036}

73



References

[Bak–1978] Baker, T.P.: A technique for extending rapid exact-match string matching to
arrays of more than one dimension, in: SIAM Journal on Computing, Vol. 7,
No. 4 (November 1978), pp. 533–541

[Bir–1977] Bird, R.S.: Two-dimensional pattern matching, in: Information Processing
Letters, Vol. 6, No. 5 (October 1977), pp. 168–170

[GR–1997] Giammarresi, D. and Restivo, A.: Two-dimensional languages, in: Hand-
book of Formal Languages, Vol. III Beyond Words, Springer-Verlag, Heidelberg
(1997), pp. 216–267

[MH–1997] Melichar, B. and Holub, J.: 6D classification of pattern matching problems,
in: Proceedings of the Prague Stringologic Club Workshop ’97, Collaborative
Report DC-97-03, editor: Holub, J., Department of Computer Science and En-
gineering, Faculty of Electrical Engineering, Czech Technical University, Prague
(1997), pp. 24–32

[Ath–2004] Melichar, B., Holub, J. and Polcar, T.: Text searching algorithms, Tu-
torial for Athens course, Department of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical University, Prague (2004)

74


