DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
Facurty OF ELECTRICAL ENGINEERING
CZzECH TECHNICAL UNIVERSITY IN PRAGUE

TEXT SEARCHING ALGORITHMS
SEMINARS

Borivoj Melichar, Jan Antos, Jan Holub, Tomé&s Polcar,
and Michal Voracek

December 21, 2005

Preface

“Practice makes perfect.”

The aim of this tutorial text is to facilitate deeper understanding of principles and ap-
plications of text searching algorithms. It provides many exercises from different areas of
this topic. The front part of this text is devoted to review of basic notions, principles and
algorithms from the theory of finite automata. The reason for it is the reality that the next
chapters devoted to different aspects of the area of text searching algorithms are based on
the use of finite automata.

Chapter 1 contains collection of definitions of notions used in this tutorial. Chapter 2 is
devoted to the basic algorithms from the area of finite automata and has been written by Jan
Antos. Chapter 3 contains basic algorithms and operations with finite automata and it has
been partly written by Jan Antos. Chapters 4 and 5 show construction of string matching
automata for exact and approximate string matching and has been partly written by Tomas
Polcar. Chapter 6, devoted to the simulation of string matching automata has been written
by Jan Holub. Chapter 7 and 8 concerning construction of finite automata accepting parts
of strings has been partly written by Tomdas Polcar. Chapter 9 describing computation of
border arrays has been written by Michal Voracek.

Collection of exercises in this tutorial text is based on notions, principles and algorithms
described in main tutorial text Text searching algorithms. Volume I, II. Reference to this
text has the form: [TSA, Chapter xx].

Special thanks of the authors go to Miroslav Balik, Martin Simtnek and Jan Supol for
typesetting of the text using system IATEX and to Olga Vrtiskova for drawing all pictures using
system Corel Draw and for her willingness to react on all changes, additions and corrections.

Authors
Prague, December 21, 2005

Contents

1 Definitions 7

1.1 Basics e e e e 7

1.2 Finite automata 7

1.3 Text searching 10

2 Mastering finite automata 13

2.1 Elimination of e-transitions 13

2.2 Elimination of multiple initial states00 16
2.3 Transformation of nondeterministic finite automaton to deterministic finite au-

tomaton L L e e e e e 17

2.4 Construction of complete finite automaton equivalent to given finite automaton 21

2.5 Minimisation of set of states of a finite automaton 21

3 Operations with finite automata 25

3.1 Union of finite automata 25

3.2 Intersection of finite automata 25

3.3 Regular expressions and finite automata00 27

4 Construction of string matching automata for exact matching 30

5 Construction of string matching automata for approximate string matching 36

6 Simulation of string matching automata 46
6.1 Construction of nondeterministic finite automata for string matching 46
6.2 Simulation of nondeterministic finite automaton by dynamic programming . . 48
6.3 Simulation of nondeterministic finite automaton by bit parallelism 53

7 Prefix and suffix automata 60
7.1 Prefix automata 60
7.2 Suffix automata 62

8 Factor, factor oracle and subsequence automata 70
8.1 Factor automata 70
8.2 Factor oracle automata L 84
8.3 Subsequence automatao oL 86

9 Borders and border arrays 89

10 Repetitions in text 99
10.1 Exact repetitions 99
10.2 Approximate repetitions 103

11 Simulation of searching automata, MP and KMP algorithms 110
11.1 KMP searching automata 110
11.2 Approximate searching automaton and fail function 113

12 Simulation of searching automata, AC algorithm 121

12.1 AC searching automata 121
13 Backward pattern matching of one pattern 132
13.1 Boyer—-Moore-Horspool algorithm 132
13.2 Looking for repeated suffixes oo L. 133
14 Backward pattern matching in text — searching for prefixes and antifactors139
14.1 Exact backward searching of prefixes of pattern in text 139
15 Backward pattern matching of finite set of patterns 142
15.1 Backward searching finite set of patterns — searching of repeating suffixes . . 142
16 Approximate backward pattern matching 144
16.1 Searching for approximate prefixes 144

1 Definitions

This chapter provides the essential definitions needed for understanding this text. These
definitions were incorporated here for more comfortable reading.

1.1 Basics

Definition 1.1 (Alphabet)
An alphabet A is a finite non-empty set of symbols.

Definition 1.2 (Complement of symbol)
A complement of symbol a over A, where a € A, is a set A\ {a} and is denoted a.

Definition 1.3 (String)
A string over A is any sequence of symbols from A.

Definition 1.4 (Set of all strings)
The set of all strings over A is denoted A*.

Definition 1.5 (Set of all non-empty strings)
The set of all non-empty strings over A is denoted A™.

Definition 1.6 (Length of string)
The length of string x is the number of symbols in string z € A* and is denoted |z|.

Definition 1.7 (Empty string)
An empty string is a string of length 0 and is denoted ¢.

Remark 1.8
It holds A* = At U {e}.

Notation 1.9
Exponents for string with repetitions will be used: a® = ¢, a' = a, a®> = aa, a® = aaa, ...,

fora € A and 2¥ = ¢, 2! = 2,2 = zx, 2% = z2x, ..., for x € A*.

Definition 1.10 (Concatenation)

The operation concatenation is defined over the set of strings A* as follows: if x and y are
strings over the alphabet A, then by appending the string y to the string z we obtain the
string xy.

1.2 Finite automata

Definition 1.11 (Deterministic finite automaton)

A deterministic finite automaton (DFA) is a quintuple M = (Q, A, 6, qo, F'), where
Q is a finite set of states,

A is a finite input alphabet,

0 is a mapping from @ x A to @, (Q x A — Q)

qo € Q is an initial state,

F C (@ is the set of final states.

Definition 1.12 (Configuration of FA)
Let M = (Q, A, 6, qo, F) be a finite automaton. A pair (¢, w) € Q x A* is a configuration of the

finite automaton M. A configuration (qo,w) is called an initial configuration, a configuration
(q,€), where q € F', is called a final (accepting) configuration of the finite automaton M.

Definition 1.13 (Transition in DFA)

Let M = (Q, A, d,qo, F) be a deterministic finite automaton. A relation Fy€ (Q x A*) x
(Q x A*) is called a transition in the automaton M. If 6(¢q,a) = p, then (g, aw) s (p, w) for
each w € A*. The k-power of the relation s will be denoted by I—’fw. The symbols I—L and
s denote a transitive and a transitive reflexive closure of the relation s, respectively.

Definition 1.14 (Language accepted by DFA)

We will say that an input string w € A* is accepted by a finite deterministic automaton

M = (Q,A,d,q,F) if (qo,w) 3 (¢,€) for some ¢q € F.

The language L(M) = {w : w € T*, (qo, w) F* (¢,€),q € F} is the language accepted by a finite
automaton M. A string w € L(M) if it consists only of symbols from the input alphabet and
there is a sequence of transitions such that it leads from the initial configuration (go,w) to
the final configuration (q,¢), ¢ € F.

Definition 1.15 (Complete DFA)
A finite deterministic automaton M = (Q, 4, J, qo, F') is said to be complete if the mapping
0(q,a) is defined for each pair of states ¢ € @ and input symbols a € A.

Definition 1.16 (Nondeterministic finite automaton)

A nondeterministic finite automaton (NFA) is a quintuple M = (Q, A, 4, qo, F'), where
Q is a finite set of states,

A is a finite input alphabet,

¢ is a mapping from @) x A into the set of subsets of @,

qo € @ is an initial state,

F C @ is the set of final states.

Definition 1.17 (Transition in NFA)

Let M = (Q, A,d,qo, F') be a nondeterministic finite automaton. A relation

FuC (Q x A*) x (Q x A*) will be called a transition in the automaton M if p € 6(¢,a) then
(g, aw) Far (p,w), for each w € A*.

Definition 1.18 (Language accepted by NFA)

A string w € A* is said to be accepted by a nondeterministic finite automaton

M = (Q, A, 4, qo, F), if there exists a sequence of transitions (go,w) H* (g,¢) for some q € F'.
The language L(M) = {w : w € A* (qo,w) F* (q,¢) for some ¢ € F} is then the language
accepted by a nondeterministic finite automaton M.

Definition 1.19 (NFA with e-transitions)

A nondeterministic finite automaton with e-transitions is a quintuple M = (Q, A, 0, qo, F),
where

Q is a finite set of states,

A is a finite input alphabet,

0 is a mapping from @ x (AU {e}) into the set of subsets of @,

qo € @ is an initial state,

F C (@ is the set of final states.

Definition 1.20 (Transition in NFA with e-transitions)
Let M = (Q, A, 4, qo, F') be a nondeterministic finite automaton with e-transitions. A relation

FuC (Q x A%) x (Q x A*) will be called a transition in the automaton M if p € §(qa),
a € AU{e}, then (q,aw) s (p,w), for each w € A*.

Definition 1.21 (e—CLOSURE)
Function e—CLOSURE for finite automaton M = (Q, A, §, qo, F') is defined as:

e—CLOSURE(q) ={p: (¢,¢) - (p,e),p € Q}.

Definition 1.22 (NFA with set of initial states)

A nondeterministic finite automaton M with set of initial states I is a quintuple
M = (Q,A,d I, F), where:

Q is a finite set of states,

A is a finite input alphabet,

¢ is a mapping from @) x A into the set of subsets of @,

I C @ is the non-empty set of initial states,

F C (@ is the set of final states.

Definition 1.23 (Accessible state)

Let M = (Q, A,d,qo, F) be a finite automaton. A state ¢ € @Q is called accessible if there
exists a string w € A* such that there exists a sequence of transitions from the initial state
qo into the state ¢:

(qo,w) Far (g,€)
A state which is not accessible is called inaccessible.

Definition 1.24 (Useful state)
Let M = (Q, A, 0,qo, F) be a finite automaton. A state ¢ € @ is called useful if there exists
a string w € A* such that there exists a sequence of transitions from the state ¢ into some
final state:

(qvw) l_M (pae)a pE F.
A state which is not useful is called useless.

Definition 1.25 (Finite automaton)
Finite automaton (FA) is DFA or NFA.

Definition 1.26 (Equivalence of finite automata)
Finite automata M; and M, are said to be equivalent if they accept the same language, it
means L(M;) = L(M).

Definition 1.27 (Sets of states)
Let M = (Q, A,d,q0, F) be a finite automaton. Let us define for arbitrary a € A the set
Q(a) C Q as follows:

Qa) ={q:q€d(p,a),a € A,p,q € Q}.
Definition 1.28 (Homogenous automaton)
Let M = (Q, A, 6, qo, F) be a finite automaton and Q(a) be sets of states for all symbols a € T'.
If for all pairs of symbols a,b € A, a # b, it holds Q(a) N Q(b) = (), then the automaton M
is called homogenous. The collection of sets {Q(a) : a € A} is for the homogenous finite
automaton the decomposition on classes having one of these two forms:

in case that g9 € d(¢,a) for all ¢ € @ and all
a € A,

1. Q=] Qa)U{q}

a€A

5. Q= U Q(a) in case that gy € d(g,a) for some ¢ € Q,a € A.

g In this case ¢o € Q(a).

1.3 Text searching

Definition 1.29 (Replace)
Edit operation replace is an operation which converts string wav to string wbv, where
w,v € A*, a,b € A (one symbol is replaced by another).

Definition 1.30 (Insert)
Edit operation insert is an operation which converts string wv to string wav, where
w,v € A*, a € A (a symbol is inserted into a string).

Definition 1.31 (Delete)
Edit operation delete is an operation which converts string wav to string wv, where
w,v € A*, a € A (a symbol is removed from a string).

Definition 1.32 (Transpose)
Edit operation transpose is an operation which converts string wabv to string wbav, where
w,v € A*, a,b € A (two adjacent symbols are exchanged).

Definition 1.33 (Distances of strings)
Three variants of distances between two strings u and v, where u,v € A*, are defined as
minimal number of editing operations:

1. replace (Hamming distance, R-distance),
2. delete, insert and replace (Levenshtein distance, DIR-distance),
3. delete, insert, replace and transpose (generalized Levenshtein distance,

DIR T-distance),

needed to convert string w into string v.

Definition 1.34 (“Don’t care” symbol)
“Don’t care” symbol is a special universal symbol o that matches any other symbol including
itself.

Definition 1.35 (Set of all prefixes)
The set Pref(x), © € A*, is a set of all prefixes of string x:
Pref(z) ={y : z = yu, x,y,u € A*}.

Definition 1.36 (Set of all suffixes)
The set Suff(z), x € A*, is a set of all suffixes of string z:

Suﬁ(x) = {y =y, TLY,u A*}

Definition 1.37 (Set of all factors)
The set Fact(x), © € A*, is a set of all factors of the string x:
Fact(z) ={y: x = uyv, z,y,u,v € A*}.

10

Definition 1.38 (Set of all subsequences)
The set Sub(z), x € A*, is a set of all subsequences of the string x:
Sub(x) ={ajaz...am : T =Yoa1y102 . . . GmYm,
Y € A1 =0,1,2,...,m,a; € A,
j=12....,m, m>0}

Definition 1.39 (Set of approximate prefixes)
The set of approximate prefixes A Pref of the string x is a set:
APref(x) = {u:v € Pref(x), D(u,v) < k}.

Definition 1.40 (Set of approximate suffixes)
The set of approximate suffixes ASuff of the string x is a set:
ASuff(x) = {u : v € Suff(z), D(u,v) <k}.

Definition 1.41 (Set of approximate factors)
The set of approximate factors AFact of the string z is a set:
AFact(z) ={u:v € Fact(z), D(u,v) < k}.

Definition 1.42 (Set of approximate subsequences)
The set of approximate subsequences ASub of the string x is a set:
ASub(z) = {u: v € Sub(x), D(u,v) < k}.

Definition 1.43 (Prefix automaton)
The prefiz automaton for string w is a finite automaton accepting the language Pref(u).

Definition 1.44 (Suffix automaton)
The suffix automaton for string u is a finite automaton accepting the language Suf f(u).

Definition 1.45 (Factor automaton)
The factor automaton for string u is a finite automaton accepting the language Fact(u).

Definition 1.46 (Subsequence automaton)

The subsequence automaton for string w is a finite automaton accepting the language Sub(u).

Definition 1.47 (Approximate prefix automaton)

The approzimate prefiz automaton for string u is a finite automaton accepting the language

APref(u).

Definition 1.48 (Approximate suffix automaton)

The approximate suffix automaton for string u is a finite automaton accepting the language

ASuf f(u).

Definition 1.49 (Approximate factor automaton)

The approximate factor automaton for string u is a finite automaton accepting the language

AFact(u).

Definition 1.50 (Approximate subsequence automaton)

The approzimate subsequence automaton for string u is a finite automaton accepting the

language ASub(u).

Definition 1.51 (Basic pattern matching problems)
Given a text string T' = t1to - - - t, and a pattern P = pips - - - ppy. Then we may define:

1. String matching: verify whether string P is a substring of text T'.

11

2. Sequence matching: verify whether sequence P is a subsequence of text T

3. Subpattern matching: verify whether a subpattern of P (substring or subsequence)
occurs in text T

4. Approximate pattern matching: verify whether pattern X occurs in text 7" so that the
distance D(P, X)) < k for given k < m.

5. Pattern matching with “don’t care” symbols: verify whether pattern P containing
“don’t care” symbols occurs in text T'.

Definition 1.52 (Matching a sequence of patterns)

Given a text string T' = t1ty - - - t,, and a sequence of patterns (strings or sequences) P1, Ps, . . .,
P,. Matching of sequence of patterns Py, Ps,. .., P is a verification whether an occurrence of
pattern P; in text T is followed by an occurrence of P11, 1 <1 < s.

12

2 Mastering finite automata

In this Chapter we show some basic operations that can be applied to finite automata. We
then explain algorithms for performing these operations and we show a number of examples
for further clarification of these algorithms.

2.1 Elimination of e-transitions

A nondeterministic finite automata can contain such transitions, for which no input symbol
is read on an automaton transition. Such transitions are called e-transitions.

These transitions complicate some automaton operations, they are unwelcome when im-
plementing the automaton and as the most important thing, they have to be eliminated during
transformation of nondeterministic automaton into deterministic one (see Section 2.3).

Any nondeterministic finite automaton with e-transitions has an equivalent nondetermin-
istic finite automaton without e-transitions. We will present a simple algorithm for elimination
of these e-transitions.

Example 2.1
Let M be a nondeterministic finite automaton with e-transitions:

M = ({QOa q1,42, q3}’ {CL, b}v 57 qo, {qla q2, (;73})7 where mapplng 0 is defined as:

Figure 2.1: Transition diagram of the nondeterministic finite automaton with e-transitions
from Example 2.1

To be able to compute the equivalent nondeterministic finite automaton without e-tran-
sitions we use function e—~CLOSURE(q). (See Def. 1.21) Value of this function is the set of
states that can be reached from the state ¢ without reading any input symbol.

Example 2.2
For an automaton from Example 2.1 is:

e~CLOSURE(q0) = {q0,q1, 4},
e=CLOSURE(q1) = {a},
e—CLOSURE(q2) = {q2},
E—CLOSURE((]g) = {Q3}. O

13

We can now formulate the algorithm for elimination of e-transitions.

Algorithm 2.3

Construction of a nondeterministic finite automaton without e-transitions equivalent to non-
deterministic finite automaton with e-transitions.

Input: Finite automaton M = (Q, A, 6, qo, F') with e-transitions.

Output: Finite automaton M’ = (Q, A, ¢, qo, F') without e-transitions equivalent to M.
Method:

1. §(q.a) = U 8(p, a).

pee—CLOSURE(q)

2. F' ={q:e—CLOSURE(q)NF #0,q € Q}.

Example 2.4

Let us construct the equivalent nondeterministic finite automaton without e-transitions for
the finite automaton from Example 2.1. We use already computed function e—CLOSURFE
from Example 2.2. We are then able to construct automaton M = (Q, A, ', qo, F'), where:

¢'(qo, @) = 0(qo,a) U d(q1,a) U 5(qe, a)
i U U {g3}
= {q1, a3},
d'(g0,b) = 6(qo,b) U d(q1,b) U (g2, b)
=0 U {QQ} U
= {CJ2},

§'(q1,a) = 0(q1,a) = 0,
'(q1,0) = 6(q1,b) = {a2},
'(q2,a) = 6(q2,a) = {g3},
(g2, 0) = 0(g2,b) = 0,
d'(g3,a) = 0(gs,a) = 0,
d'(g3,0) = 0(g3,b) = 0,

F' = {QOaQDQQ,CB}» ecause

b
e—~CLOSURE(q) N F = {q1, 2},
e~CLOSURE(q1) N F = {q1},
e~CLOSURE(q2) N F = {¢2},
e—~CLOSURE(q3) N F = {g3}.

The transition diagram of resulting automaton is given in Figure 2.2. O
Example 2.5

Construct a nondeterministic finite automaton without e-transitions equivalent to the au-
tomaton having transition diagram depicted in Figure 2.3.

e—CLOSURE function for nontrivial cases is:

14

Figure 2.2: Transition diagram of the resulting nondeterministic finite automaton from Ex-
ample 2.4

Figure 2.3: Transition diagram of the nondeterministic finite automaton with e-transitions
from Example 2.5

5_CLOSURE(QO) = {Q[:quan?qv?)}?
e—CLOSURE(q1) = {q1,q3}
Now we are able to construct resulting automaton M = (Q, A, ', qo, F'), where:

(g0, a) = 6(qo,a) U d(q1,a) U d(ga,a) U d(gs, a)
= {0} U0 uo U {g3}
= {qo0, a3},

'(q0,0) = 6(qo,b) U d(qu1,b) U d(ga,b) U (g3, b)
=0 Ui{ga} U U
= {(h},

5,(q07c) = 5((1070) U 5(‘]1:C) U 6(q256) U 6(q3vc)
=10 U U{g} U

= {as},
6,(qlaa) = 5(q17a)) 6(q37a)
=0 U {qg3}
= {as},
5,(q17b) = 5((]17[7)) 6(q37b)
= {m} U0
= {Q1}7
5,(qluc) = 6((1170)) 6(q370)
=0 uo
= 0.
Transition diagram of the resulting automaton is given in Figure 2.4. Notice, that state
@2 is not accessible and can be removed from the automaton. O

15

Figure 2.4: Transition diagram of the nondeterministic finite automaton without e-transitions
from Example 2.5

2.2 Elimination of multiple initial states

A nondeterministic finite automaton can be defined with a single initial state or with a finite
set of initial states. For every automaton with the set of initial states there exists an equivalent
automaton with a single initial state. This Section shows how to construct such an equivalent
automaton.

It is shown in Figure 2.5 an example of an automaton with three initial states. As you
can see, states gp, q1 and g2 are all initial states. Next example (Figure 2.6) shows, that
automaton with more initial states does not have to be necessarily connected.

START START START

a b 3 a

Figure 2.5: Transition diagram of the nondeterministic finite automaton with more initial

states
a b a
b a b

Figure 2.6: Transition diagram of the nondeterministic finite automaton with more initial
states

[\S)

Algorithm 2.6

Construction of a nondeterministic finite automaton with single initial state equivalent to
nondeterministic finite automaton with several initial states.

Input: Finite automaton M = (Q, A, d, I, F') with nonempty set I.

Output: Finite automaton M’ = (Q’, A, 9, qo, F') with a single initial state qq.

Method: Automaton M’ will be constructed using following two steps:

16

L Q' =QU{q}, 90 ¢ Q,
2. 5/(qO,€) = I,
8 (q,a) = d(q,a) for all ¢ € Q and all a € A. O

Algorithm is very straightforward. It just adds a new state and makes e-transitions to all
former initial states. If we do not want to get an automaton with e-transitions, we have to
eliminate these using Algorithm 2.3.

Example 2.7

Construct an equivalent nondeterministic automaton with a single initial state to the automa-
ton having transition diagram depicted in Figure 2.5. Transition diagram of the resulting
automaton is depicted in Figure 2.7.

Figure 2.7: Transition diagram of the nondeterministic finite automaton with a single initial
state from Example 2.7

Example 2.8

Construct an equivalent nondeterministic automaton with a single initial state to the automa-
ton having transition diagram depicted in Figure 2.6. Transition diagram of the resulting
automaton is depicted in Figure 2.8.

Figure 2.8: Transition diagram of the nondeterministic finite automaton with a single initial
state from Example 2.8

2.3 Transformation of nondeterministic finite automaton to deterministic
finite automaton

A deterministic automaton can be understood as a special case of a nondeterministic finite
automaton. From this follows that each language accepted by a deterministic finite automaton
is also accepted by a nondeterministic finite automaton. The fact, that for each language
accepted by a nondeterministic finite automaton a deterministic finite automaton accepting
the same language can be found, is one of the most important results from the theory of finite
automata.

17

Algorithm 2.9
Transformation of a nondeterministic finite automaton to a deterministic finite automaton.
Input: Nondeterministic finite automaton M = (Q, A, 0, qo, F).
Output: Deterministic finite automaton M’ = (Q', A, ¥, ¢(, F') such that
L(M)=L(M").
Method:

1. The set Q" = {{go}} will be defined, the state ¢ = {go} will be treated as unmarked.
(Please notice, that each state of a deterministic automaton consists of a set of states
of a nondeterministic automaton.)

2. If each state in Q' is marked then continue with step 4.

3. An unmarked state ¢’ will be chosen from @’ and the following operations will be
executed:

8 (q',a) =Ud(p,a) for p € ¢’ and for all a € A,

Q' =Q Ud(d,a)forallae A,

the state ¢’ € Q' will be marked,

(a
(b
(c

N ~— ~—

(d) continue with step 2.
4. qp = {qo}-
5. F'={q¢ :¢ €Q,¢dNF #0}. O

Note: Let us mention, that all states of the resulting deterministic finite automaton M’ are
accessible states. (See Def. 1.23)

A deterministic finite automaton resulting from this algorithm can be seen as a “parallel”
simulator of all possible sequences of moves of the nondeterministic finite automaton. States
of the deterministic automaton are sets of states of the nondeterministic automaton which
can be reached for at least one input string.

Figure 2.9: Transition diagram of the nondeterministic finite automaton from Example 2.10

18

Example 2.10

Construct a deterministic finite automaton equivalent to the nondeterministic finite automa-
ton having transition diagram given in Figure 2.9. The transition table of this automaton is
of the form:

4] 0 1

q | {90, 1} | {90, 2}
o | {a, a3} | {a}
@ | {e} |{e e}
qs @ @

We start with the initial state g and create a adequate line in the transition table of
resultant automaton. As we see, we have defined two new states named ¢p1 and gp2. For
these states we add new lines to the table and follow computing the line number two. It
states the transitions for the state gg 1. Because of:

§'(go,1,0) = 6(qo0,0)
5I(q0,17 1) = 5(q07 1)

we create new two states named go 1,3 and go,1,2. We follow this approach until we receive the
resulting transition table:

9(q1,0) ={qo,q1, 93},

U
U 5(q17 1) = {QO7q17QQ}

) 0 1
q0 q0,1 40,2
qo0,1 q0,1,3 q0,1,2
q0,2 q0,1,2 q0,2,3

q0,1,3 q0,1,3 q0,1,2
q0,2,3 q0,1,2 q0,2,3
q0,1,2 | 490,1,2,3 | 40,1,2,3
q0,1,2,3 | 490,1,2,3 | 90,1,2,3

States accessible from the initial state are listed in this table only. An accessible state
is such a state, into which an automaton can get from the initial state by performing some
sequence of moves. (See Def. 1.23)

The states of resulting deterministic automaton are the sets of the original nondetermin-
istic automaton. Final states of DFA are those states, that contain at least one final state of
NFA. In our case state g3 is a final state in NFA, so states qo.13, ¢0,2,3, g0,1,2,3 are final states
in the resulting DFA.

Transition diagram of the automaton for this transition table is depicted in Figure 2.10.

Example 2.11
Construct a deterministic finite automaton for the nondeterministic finite automaton having
transition diagram given in Figure 2.11.

We use the same approach as in the previous example. We start with the initial state gq.
Transition function in NFA for state go is d(qo,0) = {qo,¢q1} so transition function for state
qo in DFA is ¢'(qo,0) = {qo,1}. The same applies for §(qo, 1) = 0 which gives us ¢§'(go, 1) = 0.
We then compute the transition function for the newly created state qo 1:

¢'(q0,1,0) = 8(q0,0) U d(q1,0) = {q0, 1},
6/(q0,17 1) - 5(q07 1) U 5((]17 1) = {qlan}-

19

Figure 2.11: Transition diagram of the nondeterministic finite automaton from Example 2.11

A new state g1 2 was created during this process so we also have to compute transition
function for this state:

8 (q1,2,0) = 0(¢1,0) U (q2,0) = {qo, a1},
8 (q12,1) = 6(q1,1) U 6(q2,1) = {qo0, 1}

Final state in nondeterministic finite automaton was state ¢o, so all states of deterministic
finite automaton containing this state are final. In this example it is the only state ¢ 2.

The final transition function is shown in the following table and the transition diagram of
the resulting automaton is depicted in Figure 2.12.

0 0 1
qo | 90,1 0
qo0,1 | 90,1 | 41,2
q1,2 | 90,1 | 90,1

Figure 2.12: Transition diagram of the deterministic finite automaton from Example 2.11

20

2.4 Construction of complete finite automaton equivalent to given finite
automaton

Algorithm 2.12

Making a finite automaton complete.

Input: Finite automaton M = (Q, T, 9, qo, F).

Output: Complete finite automaton M’ = (@', T, 9, qo, F') such that L(M') = L(M).
Method:

1. Create a new state gy ¢ @ which will be called sink state. @' = Q U {qp}.

2. If §(q,a) in not defined for any pair g € ', a € T then we define 6’'(¢,a) = gy for such
pair.

3. For all other cases §'(q,a) = (g, a).]

Example 2.13
Let a finite automaton be M = ({qo,¢1,42},{a,b,c},d,q0,{q0,q1,62}), where mapping J is
given by the table:

dlal|b|ec
qo | 90 | 91 | 92
q a1 | Q2
qz q2

The mapping ¢ is not defined for some cases. The complete finite automaton has the
following transition table:

alb|ec
qo | 90 | 91 | 92
q1 | 99 | 91 | 92
a2 | dp | 99 | 92
dp | 99 | 90 | 90

2.5 Minimisation of set of states of a finite automaton

The construction of a finite automaton may lead to the situation that the resulting automaton
can contain equivalent states. In this section, an approach is shown which leads to the
construction of finite automaton where equivalent states are replaced so that the resulting
automaton will be equivalent to the original automaton.

Example 2.14

Let finite automaton be M = ({4, B,C, D, E, F'},{a,b},0, A, {A}), where mapping J is shown
in Fig. 2.13 in the form of transition diagram and transition table. It is matter of fact
that states C' and E can be replaced by single state C'FE with appropriate reconstruction of
mapping 9.

21

o | O Q| | >
0| T W e
O Q| | Qe

Figure 2.13: Transition table and transition diagram of the finite automaton from Exam-
ple 2.14

Definition 2.15

Let a finite automaton be M = (Q,T,d,q0, F). States ¢;,q; € Q of automaton M are
equivalent when all possible sequences of transitions starting in states ¢; and g; for every
string of input symbols are leading either to some final state or to some nonfinal state. More
formally: It holds for every string x € T which can be read by finite automaton M:

(gi,2)F ... F(q,€),
(gj,2)F ... F(ga,€)

and either q1,q2 € F or q1,q2 ¢ F.
If states ¢; and g; are not equivalent then they are distinguishable.

A method of minimisation of a finite automaton consists in finding of classes of equivalent
states and replacing of each such class by a single state. The method shown here is applicable
for complete automata. The method proceeds backwards. At first, it distinguishes states into
two classes: class of final states and class of nonfinal states. In the next steps, it distinguishes
states inside of every class. This is done according to the existence of transition for some
symbol to different classes of states.

Algorithm 2.16

Minimisation of deterministic complete finite automaton.

Input: Deterministic complete finite automaton M = (Q, T, 9, qo, F).

Output: Finite automaton M,,;, equivalent to the automaton M which have minimum

number of states.
Method:

1. Create two classes of states: Q11 =F, Qi2=Q\ F. Set k =2.

22

2. Create a transition table for all states ¢ € (). The classes of states will be used instead
of states.

3. Divide every class @)y, into classes Qr+1.y1, Qk+1,42,- - - > @r+1,yn 50 that states in one
class have equal rows in transition table.

4. Set k:=k+1.

5. Repeat steps 2, 3 and 4 as long as the number of classes is growing. Stop this process
in the moment when Q. , = Qi1 for all z.

6. Resulting automaton will contain a single state for every class.

Example 2.17

Complete finite automaton M is given in Example 2.14. Construct equivalent deterministic

finite automaton having minimum number of states. We proceed in this way:

Step 1: Divide states of automaton M into two classes: Q11 = {4}, Q12 ={B,C,D,E,F'}.
State A is the final state, other states are nonfinal ones. This division is shown in
the last column of Table 2.1.

J a b Ql,x
A B C 1
B D A 2
c E F 2
D A C 2
E C F 2
F A D 2

Table 2.1: Transition table after the first step of minimisation of finite automaton from
Example 2.17

Step 2: The transition table of automaton M we change in such way that we replace states
inside the table by the number of class to which the state belongs. The result is
shown in the Table 2.2 a).

Ql,x o a b QQ,:E QQ,;L’ o a b Q3,x
1 A 2 2 1 1 A 2 3 1
2 B 2 1 2 2 B 4 1 2
2 c |22 3 3 c |3 |4 3
2 D 1 2 4 3 E 3 4 3
2 E 2 2 3 4 D 1 3 4
2 F 1 2 4 4 F 1 4)

a) b)

Table 2.2: Transition tables during minimisation of finite automaton from Example 2.17

23

Step 3: k = 2. The new set of classes is created according to transitions for symbols a and
b. The class 1 cannot be divided and therefore: Q21 = {A}. The class 2 is divided
into three new classes: Q22 = {B},Q23 = {C,E}, Q24 = {D,F}. The resulting
division is shown in the last column of Table 2.2a).

Step 4: Repeat steps 2 and 3 for classes Q2. The resulting transition table is shown in
Table 2.2b). The iteration of classes @3, is performed. It is not necessary to divide
classes Q2,1,Q22 and Q23. Therefore Q31 = Q2,1, @32 = Q22 and Q33 = Q23.
The class Q24 must be divided.The classes Q34 = {D} and Q35 = {F} are result
of this division. The result is shown again in the last column of Table 2.2b). Next
iteration is performed for classes @)3,. The result is shown in Table 2.3a). The
number of classes is 5.

Q3z| O a | b 6 | al b
1 A 2 3 1 2 3
2 B 4 1 2 4 1
3 cC | 3|5 31315
3 E | 3|5 4 1113
4 D |13 5111 4
5 F | 1|4

a) b)

Table 2.3: Transition tables during minimisation of finite automaton from Example 2.17,
steps 4 and 5

Step 5: The resulting finite automaton M,,;, is constructed in this way: A single state
of finite automaton is created for every class Q3. The transition table of the
minimised finite automaton is shown in Table 2.3b).

24

3 Operations with finite automata

3.1 Union of finite automata

The languages accepted by finite automata are regular languages. Set operations union,
intersection defined for these regular languages. So it is possible to compute the union of lan-
guages, intersection of languages and so on. Therefore we can also construct finite automata
for languages, which are the results of the operations of union, and intersection.

This section presents a construction of finite automata for union of two languages. The
algorithm is based on insertion of new initial state with e-transitions to all former initial
states.

Algorithm 3.1

Construction of finite automaton for union of languages.

Input: Two finite automata M; and Mo.

Output: Finite automaton M accepting the language L(M) = L(M;) U L(M2).
Method:

L. Let My = (Q1, 4, 61,q01, 1), Ma = (Q2, A, 02, qoz2, F»).
2. Resulting automaton M = (Q, A, d, qo, F') is constructed using following steps:

(a) Q=0Q1UQ2U{qo}, q0 € Q1 U Q2,

(b) d(q0,€) = {qo1, q02},
d(g,a) = d1(q,a) for all g € Q1 and all a € A,
d(q,a) = d2(q,a) for all ¢ € Q2 and all a € A.

3. F=F UFs. a

As you can notice, this algorithm is very similar to the algorithm for elimination of multiple
initial states 2.6. Especially Example 2.8 can be seen as union of two automata (if we consider
each connected part of the mentioned automaton to be a separated automaton).

Example 3.2
For finite automata M; and M, having transition diagrams depicted in Fig. 3.1 we construct
automaton M using Algorithm 3.1. Its transition diagram is depicted in Fig. 3.2 O

If we need to obtain a deterministic finite automaton accepting the union of languages,
we have to eliminate the e-transitions and construct an equivalent deterministic automaton
by using Algorithms 2.3 and 2.9.

3.2 Intersection of finite automata

This section presents a construction of finite automata for intersection of two languages. The
algorithm presented here generates only the accessible states of resulting automaton.

Algorithm 3.3

Construction of finite automaton for intersection of two languages.

Input: Two finite automata M = (Q1, A, 01, qo1, F1), M2 = (Q2, A, d2, qoz, F2).

Output: Finite automaton M = (Q, A, 0, qo, F'), accepting language L(M) = L(M;)NL(Ms).
Method:

25

—(U——0

—()—

Figure 3.1: Transition diagrams of finite automata M; and My accepting languages a™ and
bT, respectively, from Example 3.2

N}
\ 4

Figure 3.2: Transition diagram of finite automaton M accepting language a* U b™ from
Example 3.2

1. Let @ = {(qo01,902)}. A state (o1, go2) will be treated as unmarked.
2. If all states in) are marked go to step 4.

3. Take any unmarked state ¢ = (gn1, gm2) from @ and perform these operations:
(a) determine 6((qn1,qm2),a) = (01(gn1, @), 62(gm2, a)) for all a € A,

(b) if both transitions d1(gn1,a) and 62(gm2,a) are defined then

Q = QU (01(gn1,a), d2(amz, a)) and state (d1(qn1,a),02(gm2,a)) will be treated as
unmarked only if it is a new state in @),

(c) state (qn1,gm2) in @ will be treated as marked,
(d) go to step 2.

4. qo0 = (qo1, qo2)-
5. F={q:q€Q, ¢=(qn1,qm2);, qn1 € F, qm2 € F}. O

26

Figure 3.3: Transition diagram of the finite automaton M; from Example 3.4

0 0 0 0
START,)~ 1 - 1 - 1

Figure 3.4: Transition diagram of the finite automaton My from Example 3.4

Example 3.4
Construct a finite automaton M for intersection of two languages L(M) = L(My) N L(M2).
Transition diagram of the automata M; and Ms are depicted in Figures 3.3 and 3.4.

We start with the state (q10, g20). There are transitions from states g19 and gop for symbol 1
defined in both of these automata: §(q10,1) = {q11} and 6(g20,1) = {g21} so the new transition
in resulting automaton is ¢’ (q1020) = {qu1,21}. Transition for symbol 0 is not defined in
both of the automata, so it will not be defined in the resulting automaton either. Then
we make transitions from state gi121. Transitions for symbol are 1 are not defined, but
transitions for symbol 0 are: §(q11,0) = {qi2} and 6(g21,0) = {g21}. Therefore new transition
is 8'(q11,21,0) = {q12,21}. We make transitions from the state ¢1221 and so on. The resulting
automaton has the transition diagram depicted in Figure 3.5. As you can notice, the resulting
automaton accepts language of only one string {101010}. This string is the only string
accepted by both automata M; and M. O

(022D D 2DHC DS HED

Figure 3.5: Transition diagram of the finite automaton M from Example 3.4

Example 3.5

Construct a finite automaton M for intersection of two languages L(M) = L(M;y) N L(My).
Automata M; (accepting the language of binary numbers divisible by 2) and Ms (accepting
the language of binary numbers divisible by 3) have transition diagrams depicted in Figures 3.6
and 3.7. The resulting automaton accepting the language of binary numbers divisible by 6 is
depicted in Figure 3.8. O

3.3 Regular expressions and finite automata

There are several ways of construction of an equivalent finite automata for a given regular
expressions. In this section we show the method called 'method of neighbours’.

27

Figure 3.7: Transition diagram of the finite automaton My from Example 3.5

Algorithm 3.6

Construction of an equivalent finite automaton for a given regular expression.
Input: Regular expression V.

Output: Finite automaton M = (Q, A, J, qo, F') such, that h(V) = L(M).
Method: Let us have a regular expression V over alphabet A.

1.

Let us number 1,2, ..., n all occurrences of symbols from A in expression V' so that every
two occurrences of the same symbol are numbered with different numbers. Let us name
the resulting regular expression V.

. Let us construct the set of initial symbols Z = {z; : * € A, symbol z; is the initial

symbol of some string from h(V')}.

Let us construct set of neighbors P = {x;y;: symbols x; and y; occur next to each other
in some string from h(V’)}.

Let us construct the set of final states F' = {x;: symbol z; is the last symbol of some

Figure 3.8: Transition diagram of the finite automaton M from Example 3.5

28

string from h(V)} U {qo : e € h(V)}.
5. Let us construct the set of states of finite automaton @ = {qo}U{z; : x € A,i € <1,n>}.

6. Function ¢ is defined as follows:

(a) 0(qo,x) contains x; for all z; € Z such, that z; was created by numbering z.
(b) 0(z;,y) contains y; for all couples x;y; € P such that y; was created by numbering
Y.

7. Set F'is the set of final states. O

Example 3.7

Let us have a regular expression V = (a+b)*ab(a+b)*. Let us construct the equivalent finite
automaton M:

V, = (al + bg)*a3b4(a5 + bﬁ)*,

Z = {a17b27a3}7
P = {aia1,a1b2, ara3, baay, babe, baas, aszbs, baas, babs, asas, asbs, beas, bebs },
F= {b47a57b6}'

The initial state of automaton is state qg, the set of final states is F' and the transition function
is defined as follows:

0(qo, x) contains x; for all z; € Z such, that x; was created by numbering z,

d(x;,y) contains y; for all couples x;y; € P such, that y; was created by numbering y.

For given regular expression we then construct the finite automaton
M, = ({qo,a1,b2,a3,b4,as5,b6},{a,b},d,qo, {bs,as,bs}), where function § is defined by the
following transition table:

1) a b

qo | {a1,a3} | {b2}
ar | {ar,a3} | {b2}
by | {a1,a3} | {b2}
as @ {b4}
be | {as} | {bs}
as | {as} | {be}
be | {as} | {bs}

29

4 Construction of string matching automata for exact match-
ing

Exercise 4.1

Create an exact string matching automaton for string abab over an alphabet A = {a, b}.
Solution of Exercise 4.1 is a deterministic automaton accepting language A*abab, which

contains all strings over the alphabet A closed by the suffix abab. This automaton can be

created by following two steps:

1. Create a nondeterministic version of this automaton as it is shown in Figure 4.1. It is a
combination of an automaton that accepts the language A* and an automaton accepting
only one string abab.

a,b

STAR
=)= O—O—O—0

Figure 4.1: Transition diagram of the nondeterministic finite automaton for searching the
string abab from Exercise 4.1 step 1

2. Transform this automaton to a deterministic one using subset construction. Transi-
tion tables of both (nondeterministic and deterministic) automata are described in the
following tables:

a b a b
0 0,1 0 0 01 0
1 2 01 01 02
2 3 02 013 0
3 4 013 01 024
4 024 013 0
Transition diagram of the deterministic automaton is shown in Figure 4.2. O

Figure 4.2: Transition diagram of the deterministic finite automaton for searching the string
abab from Exercise 4.1 step 2

30

This exercise has shown a general method of the pattern matching automata construction.
It is created a nondeterministic automaton that is transformed to a deterministic one using
subset construction.

Exercise 4.1 has also shown that the number of states of the deterministic finite automaton
is the same as the number of states of an equivalent nondeterministic finite automaton. This
proposition holds for exact matching of either one string or finite number of strings.

Exercise 4.2
Create a deterministic finite automaton for searching all nonempty factors of a string abab,
over an alphabet A = {a,b}. The method of construction is performed in three steps:

1. Construction of nondeterministic finite automaton. The transition diagram of the non-
deterministic finite automaton is shown in Figure 4.3.

Figure 4.3: Transition diagram of the nondeterministic finite automaton for searching all
nonempty factors of the string abab from Exercise 4.2 step 1

2. Removal of e-transitions. Transition diagram of the automaton after removing e-tran-
sitions is shown in Figure 4.4.

3. Determinisation. Transition tables of both (nondeterministic and deterministic) au-
tomata are shown in the Table 3. Transition diagram of the deterministic automaton is
shown in Figure 4.5.

Exercise 4.3
Create a deterministic finite automaton for searching all strings from the set P = {kajak,
jak,kaj,aja,ja}, over an alphabet A = {a, j, k,z}.

1. The transition diagram of the nondeterministic automaton is shown in Figure 4.6.

31

Figure 4.4: Transition diagram of the nondeterministic finite automaton for searching all
nonempty factors of the string abab after removing e-transitions from Exercise 4.2 step 2

a b

0 0,1,8 0,5, X

1 5 a b
5 3 0 018 05X
3 1 018 018 0259X
1 0259X 01368 05X
5 5 01368 018 024579.X
5 - 024579.X 01368 05X
7 05X 0168 05X
3 9 0168 018 02579X
9 02579X 01368 05X
X

Table 4.1: Transition tables of both nondeterministic and deterministic finite automata from
Exercise 4.2

32

START a

Figure 4.5: Transition diagram of the deterministic finite automaton for searching all non-
empty factors of the string abab from Exercise 4.2 step 3

START

Figure 4.6: Transition diagram of the nondeterministic finite automaton for searching all
strings from the set P = {kajak, jak, kaj,aja,ja} from Exercise 4.3 step 1

33

2. Transition tables of both the nondeterministic and the deterministic finite automata are
shown in Table 4.2. Transition diagram of this automaton is shown in Figure 4.7.

Table 4.2: Transition tables of both the nondeterministic and the deterministic finite automata

from Exercise 4.3

a j k T
0 0,C 0,6, F 0,1,9 0
1 2
2 3
3 4
4 5
5
6 7
7 8
8
9 A
A B
B
C D
D E
E
F G
G
a 7 k T
0 0C 06 F 019 0
019 02AC 06 F 019 0
02AC 0C 036BDF 019 0
036BDF 047CEG 06F 019 0
047CEG oc 06DF 01589 0
01589 02AC 06 F 019 0
06F 07CG 06 F 019 0
06DF 07TCEG 06 F 019 0
07CG oC 06DF 0189 0
07TECG 0C 06DF 0189 0
0C 0C 06DF 019 0
0189 02AC 06F 019 0

34

k a

k
START
0 J»{(019 p(02a¢)>(Q36BDE)- k 01589
T

J

k
k

N
a a k
06F 0189
a .
, J

J

k - f
0C J{(06DF @

a J

Figure 4.7: Transition diagram of the deterministic finite automaton for searching all strings
from the set P = {kajak, jak, kaj,aja,ja} from Exercise 4.3 step 2

35

5 Construction of string matching automata for approximate

string matching

Exercise 5.1

Create a deterministic finite automaton for searching a string abc using Hamming distance
with at most two errors allowed, k = 2, over an alphabet A = {a,b, c,d}.

1. The transition diagram of the nondeterministic automaton is shown in Figure 5.1.

2. Transition tables of both (nondeterministic and deterministic) automata are described

in the following tables:

a b c d
0 01 04 04 04
01 015 024 045 045
015 0158 0248 0456 0458
a b c d 0158 0158 0248 0456 0458
0 0,1 0,4 0,4 0,4 024 0167 0456 0347 0467
1 5 2 5 5 0167 015 024 0458 045
2 6 6 3 6 0248 0167 0456 0347 0467
3 0347 017 045 0478 047
4 7 5 7 7 017 015 024 0458 045
5 8 8 6 8 045 0178 0458 0467 0478
6 0178 015 024 0458 045
7 8 0456 0178 0458 0467 0478
8 0458 0178 0458 0467 0478
0467 017 045 0478 047
047 017 045 0478 047
0478 017 045 0478 047
04 017 045 047 047

Exercise 5.2

a

Create a deterministic finite automaton for searching a string aba using Levenshtein distance
with at most one error allowed, k = 1, over an alphabet A = {a,b}. Method of this automaton
construction is nearly the same as the automata construction in previous cases. The only

difference is one more step, removing e-transitions.

1. Create a nondeterministic version of this automaton as it is shown in Figure 5.2.

2. Remove e-transitions. The automaton after removing e-transitions is shown in Fig-

ure 5.3.

3. Transform this automaton to a deterministic one using subset construction. Transition
tables of both (nondeterministic and deterministic) automata are shown in Table 5.1.

Transition diagram of the deterministic automaton is shown in Figure 5.4.

Exercise 5.3

O

Create a deterministic finite automaton for searching string aba using generalized Levenshtein
distance with at most one error allowed, k = 1, over an alphabet A = {a, b}.

36

Figure 5.1: Transition diagram of the nondeterministic finite automaton for searching the
string abc using Hamming distance with at most 2 errors allowed from Exercise 5.1 step 1

Figure 5.2: Transition diagram of the nondeterministic finite automaton for searching the
string aba using Levenshtein distance with at most 1 error allowed from Exercise 5.2 step 1

Figure 5.3: Transition diagram of the nondeterministic finite automaton for searching the
string aba using Levenshtein distance with at most 1 error allowed after removing e-transi-
tions from Exercise 5.2 step 2

37

Table 5.1: Transition tables of both nondeterministic and deterministic finite automata from

Exercise 5.2

a b a b

0 01 045

(1) 407516 0;14’25 01 01456 0245
5 ’5 é 5:6 0245 01356 0456
5 (7b 7 01356 01456 02456
1 0 3 045 0156 045
7 5 0 0456 0156 045
5 0 0 0156 01456 02456
01456 01456 02456

Figure 5.4: Transition diagram of the deterministic finite automaton for searching the string
aba using Levenshtein distance with at most 1 error allowed from Exercise 5.2 step 3

38

1. The transition diagram of the nondeterministic automaton is shown in Figure 5.5.

Figure 5.5: Transition diagram of the nondeterministic finite automaton for searching the
string aba using generalized Levenshtein distance with at most 1 error allowed from Exer-
cise 5.3 step 1

2. Transition diagram of the automaton after removing e-transitions is shown in Figure 5.6.

3. Transition tables of both (nondeterministic and deterministic) automata are shown in
the Table 5.2. Transition diagram of the deterministic automaton is shown in Figure 5.7.

Od
a b a b
0 0,1 0,4,5,7 0 01 0457
1 4,5,6,8 2,4 01 014568 02457
2 3 6 02457 01356 04567
3 0 0 01356 014568 02457
4 0 5 04567 0156 0457
5 6 0 0457 0156 0457
6 0 0 014568 014568 024567
7 5 0 0156 014568 02457
8 0 6 024567 01356 04567

Table 5.2: Transition tables of both nondeterministic and deterministic finite automata from
Exercise 5.3

Exercise 5.4

Create a deterministic finite automaton for searching all strings from the set P = {aba, aab}
using Hamming distance with at most one error allowed, over an alphabet A = {a,b}. This
automaton can be created by following three steps:

39

Figure 5.6: Transition diagram of the nondeterministic finite automaton for searching the
string aba using generalized Levenshtein distance with at most 1 error allowed after removing
e-transitions from Exercise 5.3 step 2

Figure 5.7: Transition diagram of the deterministic finite automaton for searching the string
aba using generalized Levenshtein distance with at most 1 error allowed from Exercise 5.3
step 3

40

1. Create a string searching automaton using Hamming distance for each string from the
set P. After that, construct an union of this automata. This way created automaton is
depicted in Figure 5.8.

Figure 5.8: Transition diagram of the nondeterministic finite automaton for searching all
strings from the set P = {aba, aab} using Hamming distance with at most one error allowed
from Exercise 5.4 step 1

2. Remove e-transitions. Transition diagram of the automaton after removing e-transitions
is shown in Figure 5.9.

3. Transform this automaton to a deterministic one using subset construction. Transition
tables of both (nondeterministic and deterministic) automata are shown in the Table 5.3.
Transition diagram of the deterministic automaton is shown in Figure 5.10. a

Exercise 5.5

Construction of the SFOA CO nondeterministic finite automaton is based on the composition
of two copies of the SFOECO automaton. The composition is done by insertion of “diagonal”
transitions starting in states of the first copy. The inserted transitions represent replace
operations. Algorithm 5.6 describes the construction of the SFOACO automaton in detail.

Algorithm 5.6

Construction of the SFO ACO automaton.

Input: Pattern P = pips...pm, k, SFOECO automaton M’ = (Q’, A,d', ¢, F') for P.
Output: SFOACO automaton M.

Method:

1. Create a pair of instances of SFOECO automata:
M = (Q1, A, 01, o1, F1),
My = (Q2, A, 02, qo2, F2),
where Q1 = {qo1,q11,- - -, qm1},
Q2 = {q02, Q12 - - -, m2}-

41

a b
0 0,2,6 0,A,D
2 B 3
3 4 C
4
A B
B C
C
6 7 E
7 F 8
8
D E
E F
F
a b
0 026 0AD
026 0267B 03ADE
0267B 0267BCF 038ADE
03ADE 0246 F 0ABCDF
0267BCF 0267BCF 038ADE
0246 F 02678 03ADEF
038ADE 0246 F 0ABCDF
0AD 026F 0ABD
0ABD 026CE 0ABD
026 F 02678 03ADEF
03ADEF 0246 F 0ABCDF
0ABCDF 026C'E 0ABD
026CE 0267B 03ADEF

Table 5.3: Transition tables of both nondeterministic and deterministic finite automata from
Exercise 5.4

42

Figure 5.9: Transition diagram of the nondeterministic finite automaton without e-transitions
for searching all strings from the set P = {aba, aab} using Hamming distance with at most
one error allowed from Exercise 5.4 step 2

2. Construct SFOACO automaton M = (Q, A, d, qo, F') as follows:
Q=0Q1UQx,
d(g,a) =8 (q,a) for all g € Q,a € A,
5(gin,a) = {qir12},a € pFT foralli =0,1,...,m — 1,

do = qo1,
F=FU {qmg}.
3. Remove state qg2, which is inaccessible from state gg1. O

The SFOACO automaton has 2m + 1 states.

43

Figure 5.10: Transition diagram of the deterministic finite automaton for searching all strings
from the set P = {aba,aab} using Hamming distance with at most one error allowed from
Exercise 5.4 step 3

44

Figure 5.11: Transition diagram of NFA for string A-matching (SFOACO problem) for
pattern P = p1papspa

45

6 Simulation of string matching automata
6.1 Construction of nondeterministic finite automata for string matching

Exercise 6.1
Create a nondeterministic finite automaton for exact string matching for string abab over an
alphabet A = {a, b}.

We construct a finite automaton for accepting string abab. Then we add self-loop to the
initial state labeled by A in order to skip a string preceding each occurrence of the string
abab. The resulting automaton is in Figure 6.1.

A

STARTOa@b@a b

Figure 6.1: Transition diagram of the nondeterministic finite automaton for exact string
matching for the string abab from Exercise 6.1

We can look at the resulting nondeterministic finite automaton also as to the concatenation
of automaton accepting A* and automaton accepting abab.

Exercise 6.2

Create a nondeterministic finite automaton for approximate string matching using Hamming
distance for string abab over an alphabet A = {a,b}. Let maximum number k of errors allowed
be 1.

Figure 6.2: Transition diagram of the nondeterministic finite automaton for approximate
string matching using Hamming distance for the string abab and k = 1 from Exercise 6.2

We take two copies M = (Q, 4,6,qo, F) and M' = (Q', A, ¢, q, F') of nondeterministic
finite automaton for exact string matching from Exercise 6.1. M forms level 0 and M’ forms
level 1 of the resulting automaton. Level j represents j errors in the found string.

We remove the initial state g and insert transitions representing edit operation replace.
Such transition leads from state g; to qg- 41 and is labeled by A. It increases number of errors
(level is inreased) and it is labeled by any symbol of alphabet. The resulting automaton is
shown in Figure 6.2.

46

Exercise 6.3
Create a nondeterministic finite automaton for approximate string matching using Leven-
shtein distance for string abab over an alphabet A = {a,b}. Let maximum number k of errors
allowed be 1.

Figure 6.3: Transition diagram of the nondeterministic finite automaton for approximate
string matching using Levenshtein distance for the string abab and k£ = 1 from Exercise 6.3

We take nondeterministic finite automaton from the previous exercise and add transition
for edit operations insert and delete. Transition representing edit operation insert leads from
state ¢; to qg and is labeled by A. Transition representing edit operation delete leads from
state g; to q} 41 and is labeled by e. Both transitions increase number of errors by one. The
resulting automaton is shown in Figure 6.3.

Exercise 6.4

Create a nondeterministic finite automaton for approximate string matching using generalized
Levenshtein distance for string abab over an alphabet A = {a,b}. Let maximum number k of
errors allowed be 1.

Figure 6.4: Transition diagram of the nondeterministic finite automaton for approximate
string matching using generalized Levenshtein distance for the string abab and k = 1 from
Exercise 6.4

We take nondeterministic finite automaton from the previous exercise and add transition

47

for edit operations transpose. This transition leads from state g; to new state q;’ and is labeled
by pj+2. The transition leading from ¢} is then labeled by p;;1 and leads to state g} ,. It
represents that symbols pji1p;y2 are read in inverted order and this increses the number of
errors by one. The resulting automaton is shown in Figure 6.4.

6.2 Simulation of nondeterministic finite automaton by dynamic program-
ming

For simulation of nondeterministic finite automaton using the dynamic programming algo-
rithm we evaluate matrix D of size (m + 1) x (n + 1), where m is length of pattern and n
lenght of text. In each step of simulation we compute one column of the matrix. Value of
the j-th row in i-th step of simulation represents the highest active state in depth j of the
nondeterministic finite automaton after i-th symbol is read from the input.

Exercise 6.5
Let us have pattern P = abab and text T' = aababaabab. Construct nondeterministic finite au-
tomaton for exact string matching for pattern P and simulate the run of this nondeterministic
finite automaton on text 7" using dynamic programming.

Nondeterministic finite automaton for exact string matching for pattern P has been con-
structed in Exercise 6.1. For the simulation we will evaluate matrix D of size (|P|+1)x (|T|+1)
according to the following formula.

dj70:17 O<]§m7
do; =0, 0<i<n, (1)
dj,i = if t; = Dbj then djfl’l',l else 1

0<2<n, 0<y<m.

At the beginning only the initial state is active. In each step ¢ of simulation (i.e., evaluation
of each column of the matrix) the only active states are those represented by value 0 in the
i-th column. For example the column with values 0,0, 1,0, 1 says that only states 0,1,3 are
active. They hold the information that prefixes a and aba of the pattern were found on the
text position corresponding to the column. If the last value of vector is 0, the final state is
active which means that the pattern was found in the corresponing position.

The resulting matrix is in Table 6.1. The pattern was found at positions 5 (ds5 = 0) and
10 (d4,10 = 0).

D alalblalblalal|lb|lal|b

0/0|{0|0|0|0O|O|0O|O|0O]O
a|1]0(0|1(0|1]0]|0|1]0]|1
bl1{1(1(0|1]0|1]{1|0]|1]0
a|1|1|1|1]|0|1]0]|1]|1]0]1
bl1j1{1{1}j1j0f1|1|1|1|0

Table 6.1: Simulation of nondeterministic finite automaton for exact string matching for
string P = abab in text T' = aababaabab using dynamic programming

Exercise 6.6
Let us have pattern P = adbbca and text T = adcabcaabadbbca. Construct nondeterministic

48

finite automaton for approximate string matching using Hamming distance for pattern P
with maximum number of errors £ = 3. Simulate then the run of the nondeterministic finite
automaton on the text T using dynamic programming.

We construct the nondeterministic finite automaton which has transition diagram shown
in Figure 6.5. Then we simulate its run. For the simulation we will evaluate matrix D using
Formula 2.

A

START a d b b C

\4
\ 4
\ 4

& EE S

b_ c_
L L

Figure 6.5: Transition diagram of the nondeterministic finite automaton for approximate
string matching using Hamming distance for the string adbbca and k = 3 from Exercise 6.6

dj70 — k+1, 0<j<m
do;i — 0, 0<i<n (2)
djﬂ' — ift; = Py then dj—l,i—l else dj—l,i—l +1, 0<i<n,0<j<m

At the beginning only the initial state is active. Entries of vector d.o (i.e., column of
matrix D for step 0) for other depths is set to k + 1 which represents no active state in the
corresponding depth of the nondeterministic finite automaton.

Term d;j_1,;—1 represents transition for match, when the input symbol ¢; matches symbol
pj in the pattern. In case they do not match, the transition for edit operation replace is used.
It is represented by term d;_1 ;—1 + 1 which increases level by one (and thus increases number
of errors by one as well).

The simulation process is displayed in Table 6.2. Each entry greater than k = 3 represents
no active state in the corresponding depth of nondeterministic finite automaton. We can
replace all such values by value £ + 1 and thus we may decrease space requirements for
represenations of entries in the matrix since then we need only [log,(k + 1)] bits per matrix
entry.

49

)

O S O S N 1 I

SIS S e~

= Ot Ot Ot ot O OfR
S Oy O O © — O X
O =N = OO
S0 NWN OO
O W W N == OIS
=W WD~ O
Wk W wNn oo
=k R W= O O R
LUt W~ M = OS
U N NN O O
Tt W W w o+ Ol
=k W o N~ O
U O NN = Ol
GO W W N~ OO0
O = B W O o

Table 6.2: Simulation of nondeterministic finite automaton for approximate string matching
using Hamming distace with at most & = 3 errors for pattern P = adbbca and text T =
adcabcaabadbbca

Exercise 6.7
Modify Formula 2 so that the greatest value in the matrix would be k + 1.

Exercise 6.8
Let us have pattern P = adbbca and text T = adcabcaabadbbca. Construct nondeterministic
finite automaton for approximate string matching using Levenshtein distance for pattern P
with maximum number of errors £ = 3. Simulate then the run of the nondeterministic finite
automaton on the text 7" using dynamic programming.

We construct the nondeterministic finite automaton which has transition diagram shown
in Figure 6.6. Then we simulate its run. For the simulation we will evaluate matrix D using
Formula 3.

djo «— J, 0<j<m
Cl()’i — 0, 0 < 7 <n
dj,i — mln(lf ti =DPj then djfl,ifl
else dj—l,i—l + 1,
if 7 < m then dj7i_1 + 1,
dj_l,z'—i-l), 0<i1<n,0<ji<m

At the beginning not only the initial state gg is active but also the state saccessible from
the initial state using e-trantitions (i.e., all states of e~CLOSURE(qp)). That is why entry
d;o of vector is set to j.

Term dj_1 ;1 represents transition for match, term d;_1 ;1 + 1 represents replace. Term
d;i—1 + 1 represents insert—it increases level but preserves depth of the nondeterministic
finite automaton. Term d;_;; + 1 represents delete—it increases both level and depth of the
nondeterministic finite automaton while not reading any input symbol (i.e., index i does not
change).

The simulation process is displayed in Table 6.3.

50

START a d | b o b c .
SA N SA é‘A SA
A A A A
ENA ENA ENA ENA
A A A
b b c
€A EAE SA
A v A
bL CL

Figure 6.6: Transition diagram of the nondeterministic finite automaton for approximate
string matching using Levenshtein distance for the string adbbca and k = 3 from Exercise 6.8

D|-|la|d|cla|b|lc|lalal|b|la|d|b|b|c]|a
-10j0}0jOJOlOJO]O]O|O]O]O]O]O]O]|O
al|l]0|1|1|0f1]|1]0|0]|1]0|1|1]1]1]0O
d|2|1/0(1|1|1}(2(1|1j1(1]0f1(2]2]1
bl3j2(1|1|2(|1|2|2|2|1|2]1|0|1|2]|2
bl413(222(2|2|3[3|2|2]2|1|01]2
c|5(4(3[2(3[3[2|3|4(3|3|3|2|1]0]|1
a |6|51413|2|4(|3[2[3[4(3[4]3|2|1]0

Table 6.3: Simulation of the nondeterministic finite automaton for approximate string match-
ing using Levenshtein distace with at most & = 3 errors for pattern P = adbbca and text
T = adcabcaabadbbca

o1

Exercise 6.9
Let us have pattern P = adbbca and text T = adcabcaabadbbca. Construct nondeterministic
finite automaton for approximate string matching using generalized Levenshtein distance for
pattern P with maximum number of errors k = 3. Simulate then the run of the nondeter-
ministic finite automaton on the text T using dynamic programming.

We construct the nondeterministic finite automaton which has transition diagram shown
in Figure 6.7. Then we simulate its run. For the simulation we will evaluate matrix D using
Formula 4.

A

START a

Figure 6.7: Transition diagram of the nondeterministic finite automaton for approximate
string matching using generalized Levenshtein distance for the string adbbca and k = 3 from
Exercise 6.9

dio — J 0<j<m
doﬂ' — 0, 0 S) S n
dj; <« min(if ¢t; =p; then d;_; ;1 else d;_1 ;-1 + 1,
if j <m then d;; 1 +1,
dj—1;+1,
ifi>land j>1
and ti—l = pj and ti = pj_l
then d;_5; 2+ 1), 0<i<n0<j<m

The initial configuration of vector d, o is the same as in the previous exercise.
In addition to the term for transitions match, replace, delete, and insert we have to add
term dj_9;-2 + 1) for transition transpose. In this transition an active state goes through

52

two depths of automaton while increasing level by one and reading two consequent symbols
of the pattern in inverted order. The simulation process is displayed in Table 6.4.

D|-|la|d|b|lc|blala|b|la|d|b|b|c]|a
-|0l0JO]OJO|O|O]O]|O]O]O]O]O]O]|O
a|1|0|1|1(1]1]0j0]|1/01|1]1|1]0
d|2|1(0(1]2]|2|1j1|11]0|1|2|2]1
b(3(2(1|01]2|2|2|1|2]|1]0]|1|2]2
bl43|2|1|1]1]2]|3]|2|2]|2]1]0|1]2
c|b514(3|2|1]1]2]|3[3[3|3[2|1]0]1
a|6|514(3[2|2|1(2|4|13[4|3]|2|1]0

Table 6.4: Simulation of the nondeterministic finite automaton for approximate string match-
ing using generalized Levenshtein distace with at most k = 3 errors for pattern P = adbbca
and text T' = adcabcaabadbbca

6.3 Simulation of nondeterministic finite automaton by bit parallelism

Bit parallelism method is covered by several algorithms: Shift-Or, Shift-And, and Shift-Add.
We will focus on Shift-Or. Algorithm Shift-And differs only in such a way that 0 and one is
exchanged as well as bitwise operations OrR and AND.

Shift-Or algorithm uses bitwise matrices R!, 0 <1 < k of size m x (n+1) and mask bitwise
matrix D of size m x |A|. Every entry réﬂv, 0 <j<m,0<1i<n, contains 0 only if the state
in depth j and level [is active. Every entry d;,, 0 < 7 <m, € A, contains 0 when p; = z,
or 1 otherwise. The matrices are represented as tables of bit vectors as shown below.

71l17i dl,z
1 Tl?,i d27x .
R; = a Dix] =) ,0<i<n,0<I<k,xeA (5)
’rin,i dm,w

Exercise 6.10

Let us have pattern P = adbbca and text T = adcabcaabadbbca. Construct nondetermin-
istic finite automaton for exact string matching for pattern P and simulate the run of this
nondeterministic finite automaton on text T' using Shift-Or algorithm.

Figure 6.8: Transition diagram of the nondeterministic finite automaton for exact string
matching for the string adbbca from Exercise 6.10

Nondeterministic finite automaton for exact string matching for pattern P is shown in
Figure 6.8. In Shift-Or algorithm we have one bit vector R! of length m for each level [

93

of nondeterministic finite automaton. For the simulation we will evaluate R?, 0<i1<n
according to Formula 6.

T?’O — 1, 0<ji<m
RY « shr(R) ;)orD[t;], 0<i<n (6)

(2

Mask table for pattern P is shown in Table 6.5.

D|al|b|c|d]|X\{abcd}
a |0O]1 1|1 1
d|{1]11]0 1
b|1]0]1]1 1
b |1]0]1]1 1
c|1]1]0]1 1
a 01|11 1

Table 6.5: Matrix D for pattern P = adbbca

At the beginning only the initial state is active. That is why all bits of the vector Rf)
contain only ones. The initial state is not represented in the vector since it is always active.
It is implemented by inserting 0 at the beginning of the vector during bitwise operation right
shift (shr()).

Term shr(RY ;) OrR D[t;] simulates transition match, when all states move to the right
and only those matching input symbol ¢; are selected. The simulation process is displayed in
Table 6.6.

ROJ-lald|eclalblelalalblald|b]|b]c]a
a (1|01 |1|/0|1f1l0|O}j1|0|1(1]|1]1|0
d|1(1|0|1|1|1|1f1|1f1|1|Oof1|1|1]1
b 1111|1111 |1j1f1]|1]jO0|1|1]|1
b |1|j1|1|11 1|11 f(1f(1f(1(1(1(0|1]|1
c (11111 }j1}j1|{1{1{1|1}{1}{1]1]0]|1
a (1|11 (1y1|{1f{1f1|1}1y1{1(1]1]1|0

Table 6.6: Matrix R° for exact string matching for pattern P = adbbca and text T =
adcabcaabadbbca

Exercise 6.11
Let us have pattern P = adbbca and text T = adcabcaabadbbca. Construct nondeterministic
finite automaton for approximate string matching using Hamming distance for pattern P with
maximum number of errors k£ = 3. Simulate the run of this nondeterministic finite automaton
on text T" using Shift-Or algorithm.

For the simulation we need k + 1 vectors Rﬁ, 0<i<n,0<Il <k Wewill evaluate them
according to Formula 7.

54

=
=2
VI
VI
(@)
S
VIV
N e
VvV Vv
o O
M
Q
o~
o
ok
=
-5
— ™
Ll
o«
SO

0<I<Ek

9

0<i<n

1—
i1);

1) OR D[t;]) AND shr(R;

(shr(RL_

«—

l
()

) simulates tran-

1) OR D[t;] simulates transition match and term shr(R. "1

0
i—

Term shr(
sition replace, where all active states move to the next depth but also to the next level of the

nondeterministic finite automaton. The simulation process is displayed in Table 6.7.

1

1

1

0|0

0

1

0

1

1

0|0

0/,0{0(0]|O0]O

0|0

1

1
1

0|0

1

1

1

1

1

1

0|0

00

1

00|00

1

0

o/o0j0/0j0|O0|O0O|0OjO|0O]|O|O0O]O

1
1

oj0/j0/0(0jO0|O0O|O0O|0O]|O|O|O|O]O

o,0j0/0/{0jfO0O|jO}]O|O0O|O|O|O]O0O]|O

1

o,0/{0/0|{0OjO|O0O|O|O|O]|O|0O]j0O|O0]O

o,0/{0/0|{0OjO|O0O|O|O0O|O0O]|O|0O]jO|O0]O

1

0,0/0/0|{0OjO|0O}|O|0O0O|O0O]j]O|0O]jO|O0]O

1
1

1

1
1

1
1
1

RO

a

R2

a
d

R3

a
d

Table 6.7: Simulation of nondeterministic finite automaton for approximate string matching
using Hamming distace with at most & = 3 errors for pattern P = adbbca and text T

adcabcaabadbbca

95

Exercise 6.12
Let us have pattern P = adbbca and text T = adcabcaabadbbca. Construct nondeterministic
finite automaton for approximate string matching using Levenshtein distance for pattern P
with maximum number of errors & = 3. Simulate the run of this nondeterministic finite
automaton on text 7" using Shift-Or algorithm.

During the simulation we evaluate vectors Ré, 0<i<n,0<][<kaccording to Formulae 8
and 9.

by — 0, 0<j<L0<I<Ek

ro <= L [<j<m0<I<k

R « shr(RY ;) or D[t], 0<i<n (8)
R« (shr(Rl_,) or DIt;)

AND shr(RI"] aND RI7Y) anD (RIEJ0rR V), 0<i<n,0<1<k

U1

V2
V= .|, kdevy, =1awv; =0,Vj,1<j<m. (9)

Um

Term shr(RY_,) Or DIt;] simulates transition match and term shr(R."1) simulates tran-
sition replace. Term Rﬁ:} OR V simulates transition insert where all active states move to
the next level within the same depth. Vector V preserves insert transition in the last depth
whe no transition insert is. Term shr(Ré_l) represents transition delete, where all active
states move to the next level in the next depth of the nondeterministic finite automaton while
not input symbol is read. Note, that we changed the initial setting of the vector because of
e—CLOSURE(qo).

The simulation process is displayed in Table 6.8.

Exercise 6.13

Let us have pattern P = adbbca and text T = adcabcaabadbbca. Construct nondeterministic
finite automaton for approximate string matching using generalized Levenshtein distance for
pattern P with maximum number of errors £ = 3. Simulate the run of this nondeterministic
finite automaton on text 71" using Shift-Or algorithm.

During the simulation we use not only vectors Rﬁ, 0<1i<n,0<I<Ek but also vectors
Sf, 0<i<n,0<I]<k Wewill evaluate them according to Formulae 11 and 10.

St=| 7" |,0<l<k0<i<n. (10)

56

rho — 0, 0<j<L0<I<k

réo - 1, l<j<m0<I<k

R} « shr(RY ;) or D[t], 0<i<n

R« (shr(R_;) or D[t;])
AND shr(RI"1 anp R anD (S or D[t])) (11)
AND (R} OR V), 0<i<n0<l<k

sho — 1, 0<ji<m0<Il<k

Sl «— shr(R!_,) or shi(D[t]), 0<i<n0<Il<k

Term shr(RY_,) or DI[t;] simulates transition match, term shr(R'"1) simulates transition
replace, term R.~1 OR V simulates transition insert and term shr(R!™!) represents transition
delete.

In addition to Formula 8 we had to add simulation of transition replace. Term S!~1 or D[t;]
for evaluation of R! together with term shr(R!_,) or shl(Dl[t;]) for evaluation of S! provides
that all active states move to the next level while depth of nondeterministic finite automaton
is increased by two and two current consecutive pattern symbols are read in inverted order.

The simulation process is displayed in Table 6.9.

o7

1
1

1
1

1

0/0]0

000

0/0]0

1

00|00

1

00|00

0/0]0
1
1

1
1

1

0

1
1

1

0

1

0

0/j0/0|0]j0]|0|O

0/,0{0j0|0]|0O0]|O

1

1

1

0|0

0/0{0(0]|O0]O

1

1

1

0/0]0

1

0

1

1

0|0

0|0

0/0|0|0]O0

0/0j0|0]j0|O0

1

0/0j0|0]|O

1

oj0jo,0|{0j{0|0}jO0|0O|O0O]jO|O0O]jO|O0O]O

1

0,0/0/0j0jO0O|jO0O|O0O|O0O]|O|O|O0O|0O|O0]O

1
1

o,o0j0/0j0j0|0O|0OjO0OjO|O|O0O|0O0]|0O]|O0OO0

1
1

o/j0j0,0{0j0|0O|O0|O0O|O0OjO|0O|O|O]|O]O

0/0/j0,0{0j0|0|0O|0O0O|0O|O0O|O0|O|O]|O]O

1
1

o/j0jo0,0{0j0|0|O0|O0O|0OjO|0O|O|O]|O]O

o,o0/j0/0j0j0|jO0O|0OjO0O|O|O|O0O|0O0]|O]|O0OO0

o/j0j0,0{0j0|0|O0|O0O|O0OjO|0O0|O|O]|O]O

1
1

RO

a

R2

a
d
b

RS

a
d
b
b
c

Table 6.8: Simulation of nondeterministic finite automaton for approximate string matching
using Levenshtein distace with at most k = 3 errors for pattern P = adbbca and text T

adcabcaabadbbea

o8

0/0]|O0

0/0]|O0

0|0
0|0

00|00

0|0
0|0

00|00

000

1
1

1
1

1

1

0

1

0/0/0|0]|0O0|O0O]O

1

1

1

0|0

0/{0j|0|0]|O0]|O

1

0|0

1

1

1

1

00

1

0/0|0]|0|O

0/0]0|0]O0

o,0/0|{0|O0O|O|O0O|O0O|O|O|O]|O]O

0/0|0

o0/0/0|0|0jO0O|jO|O0O|O|O|O0O|0O]|O]O

o/o0j0|j0j0j0j0|0O|jO|O]|O]|O]O]|O

1

o/ 0/{0j0j0j0|0O|O0O|jO|O]|O0O]|O]|O|O]O

o/ 0/{0j0j0OjO0O|O0O|]O|jO|O]|O]|O]|O|O]O

1

o/ 0/0j0j0j0|0O|O0O|jO|O]|O]|O]|O|O0O]O

oo 0|j0|0j0O|jO|O0OjO|O|O|O]|O]|O]|O

1
1

a

a

dj0/0l0|O0O|O|O|lO|O0O|O|O|O|O|O]|O]O

b

a

dj0/0/0|0|O|O|O|O0O|O|O]|O]|O|O]|O]O

b
b

c

RO

SO

Rl

Sl

R2

SQ

RS

Table 6.9: Simulation of nondeterministic finite automaton for approximate string matching

using generalized Levenshtein distace with at most k = 3 errors for pattern P = adbbca and

text T = adcabcaabadbbca

99

7 Prefix and suffix automata

7.1 Prefix automata

Exercise 7.1
Create prefix automaton accepting set Pref (abab).
Solution of this task is very simple:

1. Create a finite automaton accepting string abab.

2. Make all states final.

Transition diagram of the resulting prefix automaton is depicted in Fig. 7.1. O

STARaba

Figure 7.1: Transition diagram of the prefix automaton accepting set Pref(abab) from Exer-
cise 7.1

Exercise 7.2
Create prefix automaton accepting set of prefixes of set S = {abab, aabb}.
Solution of this task can be done in this way:

1. Create a deterministic finite automaton accepting set S.

2. Make all states final.

Transition diagram of the resulting prefix automaton is depicted in Fig. 7.2. O

Figure 7.2: Transition diagram of the prefix automaton accepting set Pref (abab, aabb) from
Exercise 7.2

Exercise 7.3
Create prefix automaton accepting set of approximate prefixes from set A Pref (abab) for Ham-
ming distance with k = 1.

Solution of this task can be done in this way:

1. Create a deterministic finite automaton accepting set of strings having Hamming dis-
tance k < 1 from string abab.

2. Make all states final.

Transition diagram of the resulting approximate prefix automaton is depicted in Fig. 7.3.
O

60

Figure 7.3: Transition diagram of the approximate prefix automaton from Exercise 7.3

Exercise 7.4
Create prefix automaton accepting set of approximate prefixes from set A Pref (abab) for Lev-
enshtein distance with k£ = 1.

Solution of this task can be done in this way:

1. Create a nondeterministic finite automaton M; accepting set of strings having Leven-
shtein distance k < 1 from string abab. Transition diagram of this automaton is depicted
in Fig. 7.4.

START

Figure 7.4: Transition diagram of the automaton M; from Exercise 7.4

2. Construct finite automaton Ms without e-transitions equivalent to automaton Mj.
Transition diagram of this automaton is depicted in Fig. 7.5.

Figure 7.5: Transition diagram of the automaton My after removal of e-transitions from
Exercise 7.4

3. Construct deterministic finite automaton M3 equivalent to automaton M,. Make all
states final. Transition diagram of this automaton is depicted in Fig. 7.6. Transition
tables of automata My and M3 are shown in Table 7.1. O

61

STAR a

Figure 7.6: Transition diagram of the deterministic prefix automaton M3 from Exercise 7.4

a b
a b 0 1 12/

0 1 1,2 1 (23 2
12,3 2 2 | 3 3.4
2 3 |34 3 | 4 | 4
3| 4 4 4
4 172" | 3 2/
1 2/ 2/3" | 3 4
203 34 4’
3 4/ 2/ 3
4’ 3 4’

4/

a) b)

Table 7.1: Transition tables of automata My and M3 from Exercise 7.4

7.2 Suffix automata

Exercise 7.5

Create a deterministic suffix automaton for text T' = ababa.

Construction of the suffix automaton can be done in four steps using e-transitions based
method.

1. Create a finite automaton accepting text T'. Its transition diagram is depicted in Fig-
ure 7.7.

START.a.b<>a<>b<>a
Figure 7.7: Transition diagram of the deterministic finite automaton accepting string ababa
from Exercise 7.5 step 1

2. Insert e-transitions from the initial state leading into all other states. The result of
this step is a nondeterministic finite automaton accepting all suffixes of text T having
transition diagram shown in Figure 7.8.

62

Figure 7.8: Transition diagram of the nondeterministic finite automaton accepting all suffixes
of string ababa from Exercise 7.5 step 2

3. Remove all e-transitions from the automaton created in the previous step. The result is
a nondeterministic finite automaton without e-transitions, which has transition diagram
shown in Figure 7.9.

Figure 7.9: Transition diagram of the nondeterministic finite automaton without e-transitions
accepting all suffixes of the string ababa from Exercise 7.5 step 3

4. Transform the nondeterministic finite automaton to a deterministic one using subset
construction. Transition tables of both (nondeterministic and deterministic) automata
are shown in Table 7.2. The result is a deterministic finite automaton having transition

diagram shown in Figure 7.10. a

a | b a | b

0135 |24 0 [135]|24

1 2 135 24

2| 3 24 | 35

3 4 35 4

41 5 4 5

5 5

Table 7.2: Transition tables of nondeterministic and deterministic suffix automata from Ex-
ercise 7.5

Exercise 7.6
Create a deterministic suffix automaton for set of strings S = {aba, abab, bab}.

Construction of the suffix automaton can be done in four steps using e-transitions based
method:

1. Create a finite automaton M, accepting strings from set S. Its transition diagram is
depicted in Fig. 7.11.

63

Figure 7.10: Transition diagram of the deterministic finite automaton accepting all suffixes
of the string ababa from Exercise 7.5 step 4

—~O——0

=0

Figure 7.11: Transition diagram of the finite automaton M; from Exercise 7.6 step 1 accepting
set S = {aba, abab, bab}

2. Insert e-transitions from the initial state leading into all other states. The result of this
step is a nondeterministic finite automaton accepting all suffixes of all strings in set S.
Its transition diagram is depicted in Fig. 7.12.

3. Remove all e-transitions from the automaton created in the previous step. The result
is a nondeterministic finite automaton without e-transitions having transition diagram
shown in Fig. 7.13.

4. Transform the nondeterministic finite automaton to a deterministic one using subset
construction. Transition tables of both (nondeterministic and deterministic) automata
are shown in Table 7.3. The result is a deterministic finite automaton having transition
diagram shown in Fig. 7.14. O

Exercise 7.7
Create a deterministic suffix automaton for set of approximate suffixes from Suff (aabb) over
alphabet A = {a,b} for Hamming distance with k£ = 1.

Construction of the approximate suffix automaton can be done in four steps using e-tran-
sitions based method:

1. Create a finite automaton accepting string aabb and all strings having Hamming distance
k =1 from it. Its transition diagram is depicted in Fig. 7.15.

2. Insert e-transitions from the initial state leading into all states on the zero level (states
1, 2, 3 and 4). The result of this step is a nondeterministic finite automaton accepting
all approximate suffixes of string aabb. Its transition diagram is depicted in Fig. 7.16.

3. Remove e-transitions from the automaton created in the previous step. The result is
a nondeterministic finite automaton without e-transitions having transition diagram

64

STAR 0 a 12 b 27)}—4 e

Figure 7.12: Transition diagram of the nondeterministic finite automaton accepting all suffixes
of strings from set S from Exercise 7.6 step 2

depicted in Fig. 7.17.

. Transform the nondeterministic finite automaton to a deterministic one using subset

construction. Transition tables of both (nondeterministic and deterministic) automata
are shown in Table 7.4. The result is a deterministic finite automaton having transition
diagram shown in Fig. 7.18. a

Exercise 7.8
Create a deterministic suffix automaton accepting set of approximate suffixes from Suff (aabb)
over alphabet A = {a,b} for Levenshtein distance with k = 1.

Construction of the approximate suffix automaton can be done in four steps using e-tran-
sitions based method:

1.

Create a finite automaton accepting string aabb and all strings having Levenshtein
distance k = 1 from it. Its transition diagram is depicted in Fig. 7.19.

. Insert e-transitions from the initial state leading into all states on the zero level (states

1, 2, 3 and 4). The result of this step is a nondeterministic finite automaton accepting
all approximate suffixes of string aabb. Its transition diagram is depicted in Fig. 7.20.

Remove e-transitions from the automaton created in the previous step. The result is
a nondeterministic finite automaton without e-transitions having transition diagram
depicted in Fig. 7.21.

. Transform the nondeterministic finite automaton to a deterministic one using the subset

construction. Transition tables of both (nondeterministic and deterministic) automata
are shown in Table 7.5. The result is a deterministic finite (suffix) automaton having
transition diagram shown in Fig. 7.22. O

65

Figure 7.13: Transition diagram of the nondeterministic finite automaton without e-transi-
tions accepting all suffixes of set S from Exercise 7.6 step 3

i R B D)

Figure 7.14: Transition diagram of the deterministic suffix automaton accepting all suffixes
of set of strings S = {aba, abab,bab} from Exercise 7.6

Figure 7.15: Transition diagram of the deterministic finite automaton accepting string aabb
and all strings having Hamming distance £ = 1 from it from Exercise 7.7

Figure 7.16: Transition diagram of the nondeterministic finite automaton accepting all ap-
proximate suffixes of string aabb from Exercise 7.7

66

a b
0 | 11,1321 23 32 12,22 24 31 33 a b
11 12 0 1113212332 | 1222243133
12 13 11132192332 12222133
13 1222243133 | 132332
2! 22 12229433 1323
22 23 132332 2123
23 21 1323 21
24 2123
3! 32 21
32 33
33

a) b)

Table 7.3: Transition tables of nondeterministic and deterministic suffix automata from Ex-
ercise 7.6

Figure 7.17: Transition diagram of the nondeterministic finite automaton without e-transi-
tions accepting all approximate suffixes of string aabb from Exercise 7.7

Figure 7.18: Transition diagram of the deterministic approximate suffix automaton accepting

ASuff (aabb) from Exercise 7.7

67

a b
a b 0 1234’ | 341’2/
01,23,43,4,1,2 12347 | 23 | 324
1 2 2/ 34172 | 2/4/ 43
2 3 3 23/ 3 34
3 4’ 4 32'4/ 4’ 43
4 2'4 3
1 2/ 43’ 4
2/ 3 3 4
3 4’ 34/ 4’ 4
4’ 4’
4
a) b)

Table 7.4: Transition tables of both nondeterministic and deterministic approximate suffix

automata for string aabb from Exercise 7.7

Figure 7.19: Transition diagram of the finite automaton accepting string aabb and all strings

having Levenshtein distance & = 1 from it from Exercise 7.8

Figure 7.20: Transition diagram of the nondeterministic finite automaton accepting all ap-

proximate suffixes of string aabb from Exercise 7.8

68

Figure 7.21: Transition diagram of the nondeterministic finite automaton without e-transi-
tions accepting all approximate suffixes of string aabb from Exercise 7.8

STAR| .

Figure 7.22: Transition diagram of the deterministic approximate suffix automaton accepting
ASuff (aabb) from Exercise 7.8

a b

a b 0 121/2'3'4" | 341'2'3'4/
011,2,1,2,3,4 |3,4,1,2/, 3,4 1212'3'4" | 212’3 31'2'3'4/
1 2,1 1,2 341'2'3'4 2'3'4/ 43’4/
2 2/ 3 3,2 21’23’ 23’ 32/3'4
3 3,4 4,3 31'2'3'4 234/ 43'4/
4 2'3'4/ 34
1 2/ 43’4/ 4’
2/ 3 2'3 34
3/ 4 3234 34 43'4
4/ 34/ 4

4/
a) b)

Table 7.5: Transition tables of both nondeterministic and deterministic approximate suffix
automata for string aabb from Exercise 7.8

69

8 Factor, factor oracle and subsequence automata

8.1 Factor automata

Exercise 8.1
Create a deterministic factor automaton for a text 1" = abbcbbd.

The construction of the factor automaton can be done in four steps using e-transitions
based method.

1. Create a finite automaton M7 accepting all prefixes of text T'. Its transition diagram is
depicted in Figure 8.1.

START
OO O O O OO0 @
Figure 8.1: Transition diagram of the deterministic finite automaton accepting all prefixes of

the string abbcbbd from Exercise 8.1 step 1

2. Insert e-transitions from the starting state leading into all other states except the last
one. Result of this step is an automaton having transition diagram shown in Figure 8.2.

Figure 8.2: Transition diagram of the nondeterministic finite automaton accepting all factors
of the string abbcbbd from Exercise 8.1 step 2

3. Remove all e-transitions from the automaton created in the previous step. The result
is a nondeterministic finite automaton without e-transitions having transition diagram
shown in Figure 8.3.

Figure 8.3: Transition diagram of the nondeterministic finite automaton without e-transitions
accepting all factors of the string abbcbbd from Exercise 8.1 step 3

4. Transform this automaton to a deterministic one using subset construction. Transi-
tion tables of both (nondeterministic and deterministic) automata are shown in the
Table 8.1. The result is a deterministic finite automaton having transition diagram
shown in Figure 8.4. a

70

a b c d
a b c d 0 1 2356 | 4 7
0 1 2,3,5,6 4 7 1 2
1 2 2 3
2 3 2356 36 4 7
3 4 3 4
4 5 36 4 7
5 6 4 5
6 7 5 6
7 6 7
7

Table 8.1: Transition tables of both nondeterministic a deterministic finite automata from
Exercise 8.1

Figure 8.4: Transition diagram of the deterministic finite automaton accepting all factors of
the string abbcbbd from Exercise 8.1 step 8.3

Exercise 8.2
Create a deterministic factor automaton for the same text as in Exercise 8.1 (1" = abbcbbd).
In this case, use the method based on a finite automaton with more initial states.

1. The construction starts with the same automaton, accepting all prefixes of the given
text, as in previous case — Figure 8.1.
2. Modify this automaton like that all states are initial states, as it it is shown in Figure 8.5.

Figure 8.5: Transition diagram of the nondeterministic finite automaton with eight initial
states accepting all prefixes of the string abbcbbd from Exercise 8.2 step 2

3. Transform this automaton to a deterministic one using subset construction. Transition
tables of both (nondeterministic and deterministic) automata are shown in Table 8.2.
d

Anyone can see that both deterministic automata, created in this and previous example,
are the same (except the name of the initial state). The transition diagram of this automaton

71

a b c d
b c d 0123456 | 1 |2356 | 4 7
0 1 1 2
1 2 2 3
2 3 2356 36 4 7
3 4 3 4
4 5 36 4 7
5 6 4 5
6 7 5 6
7 6 7
7

Table 8.2: Transition tables of both nondeterministic and deterministic finite automata from
Exercise 8.2

is shown in Figure 8.4.

Exercise 8.3
Create an approximate deterministic factor automaton for text 1" = abbc over alphabet A =
{a, b, ¢} using Hamming distance with at most one error allowed.

In the first step, create a finite automaton accepting all exact an approximate prefixes of
a given text. Its transition diagram is shown in Figure 8.6.

START

Figure 8.6: Transition diagram of the deterministic finite automaton accepting all approxi-
mate prefixes of the string abbc using Hamming distance with at most one error allowed from
Exercise 8.3

After that, insert an e-transitions from the initial state to the states 1,2,3,4. The result
is the approximate nondeterministic factor automaton having transition diagram shown in
Figure 8.7.

In the next step, remove the e-transitions. It leads to the automaton having transition
diagram shown in Figure 8.8.

In the last step, transform the automaton to the deterministic one using the subset con-
struction. Transition tables of both (nondeterministic and deterministic) automata are shown
in Table 8.3. The transition diagram of the deterministic automaton is shown in Figure 8.9.

O

Exercise 8.4
Create an approximate deterministic factor automaton for text T = aabba over alphabet
A = {a, b} using Levenshtein distance with at most one error allowed.

Construction of the factor automaton can be done in four steps using e-transition based
method.

72

Figure 8.7: Transition diagram of the nondeterministic factor automaton with e-transitions
accepting all approximate factors of the string abbc using Hamming distance with at most
one error allowed from Exercise 8.3

Figure 8.8: Transition diagram of the nondeterministic factor automaton accepting all ap-
proximate factors of the string abbc without e-transitions using Hamming distance with at
most one error allowed from Exercise 8.3

1. Create a finite automaton accepting all approximate prefixes of string aabba using Lev-
enshtein distance k = 1 from it. Its transition diagram is shown in Figure 8.10.

2. Insert e-transitions from the initial state leading into all states on the zero level (states
1,2,3,4,5). The result of this step is a nondeterministic finite automaton accepting all
approximate factors of string aabba. Transition diagram of it is depicted in Figure 8.11.

3. Remove e-transitions from the automaton created in previous step. The result is a non-
deterministic finite automaton (factor automaton) without e-transitions having transi-
tion diagram depicted in Fig. 8.12.

4. Transform the nondeterministic factor automaton to a deterministic one using the sub-
set construction. Transition tables of both nondeterministic and deterministic factor
automata are shown in Table 8.4.

It can be seen from the transition table (see Table 8.4 b) that sets of states (52’3’4’5’,
2'3'4’5%), (434’5, 43'47), (3’4’5, 3’4’) and (54’5’, 4'5’,4’) are equivalent and therefore min-
imised deterministic factor automaton has transition diagram depicted in Fig. 8.13. O

Exercise 8.5
Create an approximate deterministic factor automaton for string T' = abbc over ordered
alphabet A = {a,b, ¢} using A distance with at most one error allowed.

73

a b c
0 1213141 [231141 | 4112131
1213141 2! 23! 2141
a b c 231141 | 3141 | 3214t 431
0 | 1213141 [231141 | 4112131 4112131 2131 41
1 21 2 21 23! 3! 3 3141
2 3! 3 3! 32141 41 3141 4
3 4! 4! 4 431 41
4 4
11 21 2! 3!
2! 31 2141 31
3! 41 3141 41
41 2131 31 41
3 41 41 4
3! 41
41

Table 8.3: Transition tables of both nondeterministic and deterministic factor automata from
Exercise 8.3

a b
0 1251'2'3'4’5" | 341'2'3'4'5
1251/2'3'4'5’ 2123’5’ 31234/
a b 21'2'3'5’ 2'3 32'3'4
01,2,5,1,2.3 4 5(3,4,1,2/,3 45| | 341727345’ | 5234’5 434’5
1 2,1 1,2 31234’ 2/3'4'5/ 43’4’
2 2.3 3,2 32/3'4 34’5 43'4'
3 3,4 4,3 43’4’5 54’5/ 4’5
4 5,4/ 4" 5 43’4’ 54’5/ 4’5
5 52'3'4'5/ 5/ 34/
1 2/ 2/3'4'5’ 5 34/
2/ 3/ 54’5 5/
3 4 4’5 5’
4 5’ 4/ 5’
5’ 23 34/
34’5 5/ 4
a) 34 5’ 4’
5/
b)

Table 8.4: Transition tables of both nondeterministic and deterministic factor automata for
string aabba from Exercise 8.4

74

Figure 8.9: Transition diagram of the deterministic approximate factor automaton for the
string abbc using Hamming distance with at most one error allowed from Exercise 8.3

START

Figure 8.10: Transition diagram of finite automaton accepting all approximate prefixes of
string aabba using Levenshtein distance k = 1 from Exercise 8.4

The construction of the factor automaton can be done in four steps using e-transitions
based method.

1.

2.

Create a finite automaton accepting all approximate prefixes of string T' = abbc using
A distance k =1 from it. Its transition diagram is depicted in Figure 8.14.

Insert e-transitions from the initial state leading into states {1,2,3,4}. The result of
this step is a nondeterministic finite automaton accepting all approximate factors of
string T' = abbc. Transition diagram of it is depicted in Figure 8.15.

Remove all e-transitions from the automaton created in the previous step. The result
is a nondeterministic finite automaton (factor automaton) without e-transitions having
transition diagram depicted in Figure 8.16.

Transform this automaton to a deterministic one using the subset construction. Tran-
sition tables of both (nondeterministic and deterministic) factor automata are shown
in the Table 8.5. The result is the deterministic factor automaton having transition
diagram shown in Fig. 8.17.

It can be seen from transition table (Table 8.5 b) that set of states {42°3’, 2’3’, 2’3’4’}
{3’,3'4’, 43’} and {4,4’} are equivalent and therefore the minimised deterministic factor
automaton has transition diagram depicted in Fig. 8.18. O

75

Figure 8.11: Transition diagram of the nondeterministic finite automaton accepting all ap-
proximate factors of string aabba from Exercise 8.4

Figure 8.12: Transition diagram of the nondeterministic factor automaton without e-transi-
tions accepting all approximate factors of string aabba from Exercise 8.4

Exercise 8.6
Create an approximate deterministic factor automaton for string 7' = abbc over ordered
alphabet A = {a, b, c} using I distance with at most one error allowed.

The construction of the factor automaton can be done in four steps using e-transitions
based method.

1.

2.

Create a finite automaton accepting all approximate prefixes of string T' = abbc using
I' distance k =1 from it. Its transition diagram is depicted in Figure 8.19.

Insert e-transitions from the initial state leading into states {1,2,3,4}. The result of
this step is a nondeterministic finite automaton accepting all approximate factors of
string T" = abbc. Transition diagram of it is depicted in Figure 8.20.

Remove all e-transitions from the automaton created in the previous step. The result
is a nondeterministic finite automaton (factor automaton) without e-transitions having
transition diagram depicted in Figure 8.21.

Transform this automaton to a deterministic one using the subset construction. Tran-
sition tables of both (nondeterministic and deterministic) factor automata are shown
in the Table 8.6. The result is the deterministic factor automaton having transition
diagram shown in Fig. 8.22.

It can be seen from transition table (Table 8.6 b) that set of states {2’, 2’4’}, {3’,
3'4’, 43’} and {4,4’} are equivalent and therefore the minimised deterministic factor
automaton has transition diagram depicted in Fig. 8.23. a

76

a b c
0 123" | 231'4" | 42’3’
. 5 - 12/ /3’ / 2: 31 23; 4; 2/ 3/’ 4/'
7 — — | 231747 | 2'3" | 32'4" | 423
L2323 M T [A2] Do oy
5 oY 3 oY 324 3 34/ 43’
3 v 1 34/ 4 4
) 42'3 3 34 34/
7 o7 o7 o 2'3/ 3/ 34 34/
o By By By 2/3'4" | 3 34 34/
3 4 4 3 4 ¥
7 34/ 4’ 4
43 4! 4
a) 4
4/
b)

Table 8.5: Transition tables of both nondeterministic and deterministic factor automata for
string abbc from Exercise 8.5

a b c
0 | 123 | 2314 | 423
p ; - 23| 2 | 23 | 27
0125 2500 47y BLAL S |82 | 48
Iy [2 | 7 23 | 8 | 3 |34
2| 3 g | 224 34| 4
3 ¥ | 4
/
Z i i :
1/ 2/ 4,
2/ 3/ 2/ 3/
3 Iy 24 i
7 3 4!
: 34 4
a) 43’ 7
1273 3 |
b)

Table 8.6: Transition tables of both nondeterministic and deterministic factor automata for
string abbc from Exercise 8.6

7

START

a SN, @ -/ P b a T
Q> T CD L @DED-4HGED
b b

b a
v v
31'2'3'4" 2'3' b
b N b a a
\ 4 4
a

Figure 8.13: Transition diagram of the optimised deterministic factor automaton
AFact(aabba) from Exercise 8.4

START

Figure 8.14: Transition diagram of the finite automaton accepting all approximate prefixes
of string abbc using A distance k = 1 from Exercise 8.5

Exercise 8.7
Create an approximate deterministic factor automaton for string 7' = abbc over ordered
alphabet A = {a,b, c} using (A,T") distance with (k,1) = (1,2).

The construction of the factor automaton can be done in four steps using e-transitions
based method.

1.

2.

Create a finite automaton accepting all approximate prefixes of string T' = abbc using
(A,T) distance (1,2) from it. Its transition diagram is depicted in Figure 8.24.

Insert e-transitions from the initial state leading into states {1,2,3,4}. The result of
this step is a nondeterministic finite automaton accepting all approximate factors of
string T' = abbc. Transition diagram of it is depicted in Figure 8.25.

Remove all e-transitions from the automaton created in the previous step. The result
is a nondeterministic finite automaton (factor automaton) without e-transitions having
transition diagram depicted in Figure 8.26.

Transform this automaton to a deterministic one using the subset construction. Tran-
sition tables of both (nondeterministic and deterministic) factor automata are shown
in the Table 8.7. The result is the deterministic factor automaton having transition
diagram shown in Fig. 8.27.

It can be seen from transition table (Table 8.7 b) that set of states {43’2”, 3’27}, {2’3”,
437}, {334,347}, {3”, 4’37, 3747, 43"} and {4,4’, 4”7} are equivalent and therefore
the minimised deterministic factor automaton has transition diagram depicted in Fig.
8.28. |

78

Figure 8.15: Transition diagram of the nondeterministic finite automaton accepting all ap-
proximate factors of the string abbc from Exercise 8.5

Figure 8.16: Transition diagram of the nondeterministic factor automaton without e-transi-
tions accepting all approximate factors of string abbc from Exercise 8.5

Figure 8.17: Transition diagram of the deterministic factor automaton from Exercise 8.5

79

Figure 8.18: Transition diagram of the minimised deterministic factor automaton from Exer-
cise 8.5

Figure 8.19: Transition diagram of the finite automaton accepting all approximate prefixes
of string abbc using I' distance k = 1 from Exercise 8.6

Figure 8.20: Transition diagram of the nondeterministic finite automaton accepting all ap-
proximate factors of the string abbc from Exercise 8.6

80

Figure 8.21: Transition diagram of the nondeterministic factor automaton without e-transi-
tions accepting all approximate factors of string abbc from Exercise 8.6

Figure 8.22: Transition diagram of the deterministic factor automaton from Exercise 8.6

81

Figure 8.23: Transition diagram of the minimised deterministic factor automaton from Exer-
cise 8.6

Figure 8.24: Transition diagram of the finite automaton accepting all approximate prefixes
of string abbc using (A, T') distance (1,2) from Exercise 8.7

Figure 8.25: Transition diagram of the nondeterministic finite automaton accepting all ap-
proximate factors of the string abbc from Exercise 8.7

82

Figure 8.26: Transition diagram of the nondeterministic factor automaton without e-transi-
tions accepting all approximate factors of string abbc from Exercise 8.7

Figure 8.27: Transition diagram of the deterministic factor automaton from Exercise 8.7

83

a b c
0 12'3" | 231’4 | 42’3’
12/3/ 2/3// 23/4// 2/4/3//
23174" | 32" | 324" | 43'2"
. b p 23/4// 3/ 34// 3/4/
011,2/,312,3,1,4'|4,2,3 324 | 37 34 437
1 ’ 2/ ’ 7 72 ’ ’ 2/ 7 347 & 1
2 3/ 3 3/ 42/3/ 3// 3/4// 4/3//
; 43/2// 3//4// 4/
3 4 4 43// 4//
4
4
/ " / Y/
;/ ;// ;/ ;// 2/3// 3// 3/ 3//4//
3, 4/, 4, 2/4/3// 3// 3/ 3//4//
4, 3/2// 3//4// 4/
2// 3// 3, 4,/ 4,
3” 4/, 3/4/ 4// 4/
- 3/4// 4// 4/
4 7
a) 4/3// 4//
3// 4//
3//4// 4//
4//
b)

Table 8.7: Transition tables both of nondeterministic and deterministic factor automata for
string abbc from Exercise 8.7

8.2 Factor oracle automata
We give some examples of various factor oracle automata.

Exercise 8.8
Let us construct factor oracle automaton for text T" = abbbaab. The nondeterministic factor
automaton My has transition diagram depicted in Fig. 8.29. Transition diagram of factor
oracle automaton Mo (T') is shown in Fig. 8.30. This automaton accepts all factors of text T’
and some subsequences of T

aba, abaa, abba, abbaa
which are not factors of T'. O

84

Figure 8.28: Transition diagram of the minimised deterministic factor automaton from Exer-
cise 8.7

Figure 8.29: Transition diagram of nondeterministic factor automaton My from Exercise 8.8

Exercise 8.9

Let us construct factor oracle automaton for text T' = abbcabc. The nondeterministic factor
automaton My (7T) has transition diagram depicted in Fig. 8.31. Transition diagram of factor
oracle automaton Mo (T') is shown in Fig. 8.32. This automaton is reporting factor abc before
its fist occurrence. a

Exercise 8.10

Let us construct factor oracle automaton for text T' = abbbabaaab. The deterministic factor
automaton Mp(7T) has transition diagram shown in Fig. 8.33. To construct factor oracle
automaton Mo we identify pairs of corresponding states:

(2346A,26A), (34,3), (57,5), and (89, 8).

Resulting automaton has transition diagram depicted in Fig. 8.34. The back end part of
the transition diagram is shown in the same Figure when we select for merging states of
automaton Mp(T') pair (89,9) instead of pair (89,8). The resulting factor oracle automaton
M, has less transitions than automaton Mp. This automaton is recognising factor abe before
its fist occurrence. O

85

Figure 8.31: Transition diagram of nondeterministic factor automaton My (7T) from Exer-
cise 8.9

8.3 Subsequence automata

Exercise 8.11
Create a deterministic subsequence automaton for a text T' = abbc.

The construction of the subsequence automaton can be done in four steps using e-transi-
tions based method. It is based on a fact, that all subsequences of this text can be described
by the following regular expression:

(a+e)b+e)b+e)(c+e)

1. Create a prefix automaton for the text T" and add e-transitions between each adjacent
states. Its transition diagram is depicted in Figure 8.35.

2. Remove all e-transitions from the automaton created in the previous step. The result
is a nondeterministic subsequence automaton without e-transitions, having transition
diagram shown in Figure 8.36.

3. Transform the nondeterministic finite automaton to a deterministic one using subset
construction. Transition tables of both (nondeterministic and deterministic) automata
are described in Tables 8.8.

The result is a deterministic subsequence automaton having transition diagram shown
in Figure 8.37.

Figure 8.32: Transition diagram of factor oracle automaton Mo (T') from Exercise 8.9

86

Figure 8.34: Transition diagram of factor oracle automaton Mo and fragment of transition
diagram of M(, from Exercise 8.10

Figure 8.35: Transition diagram of the nondeterministic subsequence automaton with e-
transitions for the string abbc from Exercise 8.11 step 1

Figure 8.36: Transition diagram of the nondeterministic subsequence automaton without
e-transitions for the string abbc from Exercise 8.11 step 2

87

b c b c
0 1 23 4 1 23 4
1 23 4 1 23 4
2 3 4 23 3 4
3 4 3 4
4 4

Table 8.8: Transition tables of both nondeterministic and deterministic subsequence automata
from Exercise 8.11

Figure 8.37: Transition diagram of the deterministic subsequence automaton for the string
abbc from Exercise 8.11 step 3

88

9 Borders and border arrays

In this section, the computation of borders and border arrays is being done using the algo-
rithms presented in tutorial [MHP, Chapter 4].

The first step of these algorithms is the construction of nondeterministic and consequently
corresponding deterministic suffix or factor automaton for a given string = or a given set of
strings S. Since the suffix automaton and the factor automaton constructed for the same
string or the same set of strings differ only in that the suffix automaton has final only such
states that correspond to suffixes and the factor automaton has final all the states we can
build only suffix automaton for x or S, respectively, and use it for both for the computation
of borders and for the computation of border array with that during computation of border
array we do not take into account finality of the states of the automaton.

The second step of the algorithms is an extraction of backbone of just built deterministic
suffix automaton. This can be done easily in the way we let the automaton process string =z,
the strings from .S, respectively, and the states and the transtions used during processing lie
on the backbone of the automaton. So, we remove all not used transitions and not visited
states and obtain thus the backbone of the automaton.

The remaining steps differ according to problem being solved and are all based on analysis
of d-subsets of states on the backbone. Therefore it is necessary to memorise d-subsets during
determinisation of the suffix automaton.

Let us remind that border of a string x € A" is every prefix of &, which is simultaneously
its suffix. The set of all borders of the string x is denoted bord(z) and the longest border of
x is denoted Border(x). The border array [([1..n] of the string x is a vector of the length of
the longest borders of all prefixes of x.

Moreover, border of a set of strings S = {x1,z2,... ,l“s‘} is every prefix of some z; € S
which is the suffix of some z; € S,7,j €< 1,|S| >. The set of all borders of the set S is
denoted mbord(S). The longest border which is the suffix of z;,i €< 1,|S| > belongs to the
set mBorder(S). The mborder array mf3[1..n| of the set S is a vector of the longest borders
of all prefixes of strings from S.

The backbone of the factor automaton M of a set of strings S is a part of a factor automaton
M enabling sequences of transitions for all strings from the set S starting in the initial state
and nothing else.

The depth of the state of the factor automaton on its backbone is the number of transitions
which are necessary in order to reach the state ¢ from the initial state.

Exercise 9.1
Let us have string x = aabaabaa over alphabet A = {a, b}.

1. Compute set of all borders of string x bord(x) and the longest border Border(x) of string
T

2. Compute border array ([1..|x|] of string x.

First, we construct nondeterministic suffix automaton for string x. This automaton has
the transition table shown in Table 9.1 a) and the transition diagram depicted in Fig. 9.1.

Next, we determinise the automaton and thus we obtain deterministic suffix automaton
which has the transition table shown in Table 9.1 b) and the transition diagram depicted
in Fig. 9.2. During determinisation we memorise d-subsets. In the next step, we extract

89

a b a b
0] 124578 | 36 0 124578 | 36
1 2 124578 | 258 | 36
2 3 258 36
3 4 36 47
4 5 47 58
5 6 58 6
6 7 6 7
7 8 7 8
8 8

a) b)

Table 9.1: Transition tables of both the nondeterministic and deterministic suffix automata
for £ = aabaabaa from Exercise 9.1

Figure 9.1: Transition diagram of the nondeterministic suffix automaton for z = aabaabaa
from Exercise 9.1

backbone of the deterministic suffix automaton in the way we process string x and remove
all not used transitions (0 -1, 36, 124578 -2 36 drawn with dashed lines).

. -~
a ~~a
~
~~
'~
~

-~
S -
...........

Figure 9.2: Transition diagram of the deterministic suffix automaton for x = aabaabaa from
Exercise 9.1

To compute all borders of x we search sequences of transition on the backbone leading
from the initial state to some final state except the very last one. We find following sequences
of transitions:

0-——0
0 — 124578
0 —% 124578 L 258

0 - 124578 —% 258 -2 36 —% 47 % 58

By concatenating labels of transitions of each found sequence we obtain following strings
g, a, aa, aabaa. These strings are borders of z and the longest border is aabaa. So, we can
write bord(x) = {¢, a, aa, aabaa} and Border(z) = aabaa.

90

To compute border array of string x we do analysis of d-subsets of the states on the
backbone. First, we create an empty array [of length |x| = 6 and initialise all its elements
by 0. Next, we perform the analysis of the states on the backbone having d-subset with more
than one item, what are states 124578, 258, 36, 47 and 58 in order from left to right and
compute values of already not set elements of (.

When analysing the current d-subset we set elements of 3 on positions given by the items
in the d-subset and at the same time containing 0 to value equal to the depth of the state
(also expressed by the first item in the d-subset). The process of computation is shown in the
next table:

Analysed state | Values of border array elements

124578 Bi2l=1, pl4] =1, p5] =1, p[7]=1, B8] =1
258 B85l =2, B8] =2

36 gl6] =3

47 BTl =4

58 B8l =5

The resulting border array ((aabaabaa) is summed up in the next table:

i 1 2 3 4 5 6 7 8
symbol | a
Bi] 0 1 0 1 2 3 4 5

=
=
IS
s}

Exercise 9.2
Let us have string = aaaaaaa over alphabet A = {a, b}.

1. Compute set of all borders bord(x) of string « and the longest border Border(z) of string
x.

2. Compute border array ([1..|z|] of string .

First, we construct nondeterministic suffix automaton for string x. Next, we determinise
the automaton and thus we obtain deterministic suffix automaton which has the transition
diagram depicted in Fig. 9.3. During determinisation we memorise d-subsets. In the next
step, we extract backbone of the deterministic suffix automaton in the way we process string
x and remove all not used transitions and visited states. We see we use all transitions and
visit all states when processing x, hence the backbone is the same as the automaton itself.

START S

Figure 9.3: Transition diagram of the deterministic suffix automaton for z = aaaaaaa from
Exercise 9.2

To compute all borders of x we search sequences of transition on the backbone leading
from the initial state to some final state except the very last one. We find following sequences
of transitions:

91

0-50

0 -2 1234567

0 -2 1234567 —= 234567

0 -2 1234567 -2 234567 - 34567

0 — 1234567 — 234567 — 34567 — 4567

0 -5 1234567 - 234567 - 34567 - 4567 — 567

0 — 1234567 — 234567 — 34567 — 4567 — 567 — 67

By concatenating labels of transitions of each found sequence we obtain following strings ¢,
a, aa, aaa, aaaq, aaaaa, acaaaa and aaaaaaa. These strings are borders of x and the longest
one aaaaaaa is the border of z. So, we can write bord(z) = {¢, a, aa, aaa, acaa, acaaa, acaaaa}t
and Border(z) = aaaaaa.

To compute border array of string x we do analysis of d-subsets of the states on the
backbone. First, we create an empty array (3 of length |z| = 7 and initialise all its elements
by 0. Next, we perform the analysis of the states on the backbone having d-subset with more
than one item, what are states 1234567, 234567, 34567, 4567, 567 and 67 in order from left
to right and compute values of 3. The process of computation is shown in the next table:

Analysed state | Values of border array elements

1234567 B2l =1,8[3] =1,0[4] = 1,8[5] = 1,5[6] = 1,8]7] =1
234567 B3] = 2, 6[4] = 2,6[5] = 2,8[6] = 2,5[7] =2
34567 Bl4] = 3, 5[5 = 3,6[6] =3,8[7] =3
4567 pl5] = 4, 8[6] = 4, f[7] = 4
567 8l6] = 5,57 = 5
67 Bl7] =6
The resulting border array ((abaababa) is summed up in the next table:
i 1 2 3 4 5 6 7
symbol | a a a a a a
Bli] 0 1 2 3 4 5 6

Exercise 9.3
Let us have string « = abaabaabaaba over alphabet A = {a, b}.

1. Compute set of all borders bord(x) of string x and the longest border Border(x) of
string x.

2. Compute border array ([1..|z|] of string .

First, we construct nondeterministic suffix automaton for string x. Next, we determinise
the automaton and thus we obtain deterministic suffix automaton which has the transition
diagram depicted in Fig. 9.4 (X, Y and Z represent numbers 10, 11 and 12, respectively).
During determinisation we memorise d-subsets. In the next step, we extract backbone of
the deterministic suffix automaton in the way we process string x and remove all not used

transitions (0 b, 258y, 134679X Z % 47X drawn with dashed lines).

92

O+ @ -

Figure 9.4: Transition diagram of the deterministic suffix automaton for x = abaabaabaaba
from Exercise 9.3

To compute all borders of x we search sequences of transition on the backbone leading
from the initial state to some final state except the very last one. We find following sequences
of transitions:

00

0 - 134679X Z

0 -4 134679X Z L 258Y % 3697

0 % 134679X Z -2 258Y —% 3697 —% 47X 2 58Y %, 697

0 -% 134679X Z -2 258Y -2 3607 —%s 47X -2 58Y % 697 —%» 7X -2 8Y -% 97

By concatenating labels of transitions of each found sequence we obtain following strings
g, a, aba, abaaba and abaabaaba. These strings are borders of and the longest one abaabaaba
is the border of x. So, we can write bord(x) = {¢, a, aba, abaaba, abaabaaba} and Border(z) =
abaabaaba.

To compute border array of string x we do analysis of d-subsets of the states on the
backbone. First, we create an empty array [of length |x| = 12 and initialise all its elements
by 0. Next, we perform the own analysis of the states on the backbone having d-subset with
more than one item, what are states 134679X 7, 258Y, 3697, 47X, 58Y, 697, 7X, 8Y and
97, in order from left to right and compute values of 3. The process of computation is shown
in the next table:

Analysed state | Values of border array elements

13679XZ Bl3l=1,0[6]=1,0[7 =169 =1,p5[X]=1,5[Z] =1
258Y g5l =2,6[8] =2,8[Y] =2

3697 Bl6] = 3,59 =3,5[Z] =3

47X Bl7 =4,0[X] =4

58Y B8] =5,8[Y]=5

697 B9l =6,0[Z] =6

X BIX]="7

8Y BlY] =38

97 BlZ] =9

The resulting border array ((abaabaabaaba) is summed up in the next table:

i 1 2 3 4 5 6 7 8 9 X Y
symbol | a b a a b a a b a a b a

Bil [0 |0 | 1[0 | 23|45 6] 7| 8] 9

93

Exercise 9.4
Let us have string x = abbabbabba over alphabet A = {a,b}.

1. Compute set of all borders bord(x) of string x and the longest border Border(x) of
string x.

2. Compute border array ([1..|z|] of string .

First, we construct nondeterministic suffix automaton for string x. Next, we determinise
the automaton and thus we obtain deterministic suffix automaton which has the transition
diagram depicted in Fig. 9.5 (X represents number 10). During determinisation we memorise
d-subsets. In the next step, we extract backbone of the deterministic suffix automaton in the

way we process string x and remove all not used transitions and not visited states (0 b,
235689, 235689 LI 369, 235689 — 47X and the state 235689 drawn with dashed lines).

Figure 9.5: Transition diagram of the deterministic suffix automaton for = abbabbabba from
Exercise 9.4

To compute all borders of x we search sequences of transition on the backbone leading
from the initial state to some final state except the very last one. We find following sequences
of transitions:

0-—=—0

0% 147X

0 % 147X -5 258 -2 369 —% 47X

0% 147X -2 258 -2 369 —% 47X -2 58 —25 69 -2 7X

By concatenating labels of transitions of each found sequence we obtain following strings
g, a, abba and abbabba. These strings are borders of x and the longest one abbabba is the
border of z. So, we can write bord(z) = {¢, a, abba, abbabba} and Border(x) = abbabba.

To compute border array of string x we do analysis of d-subsets of the states on the
backbone. First, we create an empty array (3 of length || = 10 and initialise all its elements
by 0. Next, we perform the analysis of the states on the backbone having d-subset with more
than one item, what are states 147X, 258, 369, 47X, 58, 69 and 7.X in order from left to right
and compute values of 3. The process of computation is shown in the next table:

94

Analysed state | Values of border array elements
147X B4 =1,0[1=1pX]=1

258 B85l =2,0[8] =2

369 B6] = 3,69 =3

47X Bl7] =4,08[X] =4

58 B8] =5

69 B19] =6

X BIX] =7

i 1 2 3 4 5 6 7 8 9 X
symbol | a a
Bli] 0 0 0 1 2 3 4 5 6 7

>
>
S

>
>
S

>
>

Exercise 9.5
Let us have set of strings S = {aabba, abbaa} over alphabet A = {a, b}.

1. Compute set of all borders mbord(S) of string S and the longest border mBorder(S) of
set of strings S.

2. Compute border array m(of set of strings .S.

First, we construct nondeterministic suffix automaton for set of strings S. This automaton
has the transition table shown in Table 9.2 a) and the transition diagram is depicted in Fig. 9.6.

. 5 a b
0 124’55 | 2'33/4
TER/ Taal
(1) 124255 2 3;,)’ 1 ey | 25 23
5 3 2/33'4 4’5 3’4
> 7 25/ 3
3 1 2'3 3’4
ey 7 3 4
1 5 3’4 4’5
e 1 5
5 4’5 5/
5 >
5/
a) b)

Table 9.2: Transition tables of the nondeterministic and the deterministic suffix automata for
S = {aabba, abbaa} from Exercise 9.5

Next, we determinise the automaton and thus we obtain deterministic suffix automaton
which has the transition table shown in Table 9.2 b) and the transition diagram is depicted
in Fig. 9.7. During determinisation we save d-subsets. In the next step, we extract backbone
of the deterministic suffix automaton in the way we process strings os set S and remove all

95

Figure 9.6: Transition diagram of the nondeterministic suffix automaton for set of strings
S = {aabba, abbaa} from Exercise 9.5

~~~~~~
----------------------

Figure 9.7: Transition diagram of the deterministic suffix automaton for S = {aabba, abbaa}
from Exercise 9.5

not used transitions and not visited states ( 0 b o3y 4, 2'33'4 BLINEY 4, 2'33'4 %5 4’5 and
the state 233’4 - drawn with dashed lines).

To compute all borders of set S we search sequences of transition on the backbone leading
from the initial state to some final state except the very last ones. We find following sequences
of transitions:

0-—=0

0 - 124'55

0 % 124’55 % 25/

0 % 124’55 -2 273 2 34 4 45

By concatenating labels of transitions of each found sequence we obtain following strings
g, a, aa, abba. These strings are borders of set S and the longest one abba is the border of
set S. So, we can write mbord(S) = {e, a, aa,abba} and mBorder(S) = abba.

To compute border array of set S we do analysis of d-subsets of the states on the backbone.
First, we create an empty array mg of length 9 what is number of different nonempty prefixes
of S and hence the number of states (except the initial one) of the nondeterministic suffix
automaton for S.

We initialise all elements of m3 by 0. Next, we perform the own analysis of the states on
the backbone having d-subset with more than one item, what are states 124’55, 25/, 2’3, 3/4

and 4’5 in order from left to right with increasing depth of states. The process of computation
is shown in the Table 9.3.

96



Analysed state | Values of mborder array elements

124’55’ mp[2] = 1,mpB[4] =1,mpB[5] = 1,mp[5'] =1
25/ mp[5] =2

2’3 mp[3] =2

34 mB[4] =3

4'5 mpB[5] =4

Table 9.3: Computation of mf3(s) from Exercise 9.5

The resulting mborder array mg(S) is shown in the next table:

state 1 2 2/ 3 3 4 4 5 5
symbol a a b b b b a
mf[state] | 0 1 0 2 0 3 1 4 2

S
S

Exercise 9.6
Let us have set of strings S = {aabaab, ababab} over alphabet A = {a, b}.

1. Compute set of all borders mbord(S) of string S and the longest border mBorder(S) of
set of strings S.

2. Compute border array m( of set of strings .S.

First, we construct nondeterministic suffix automaton for set of strings S. Next, we
determinise the automaton and thus we obtain deterministic suffix automaton which has the
transition diagram depicted in Fig. 9.8. During determinisation we memorise d-subsets. In
the next step, we extract backbone of the deterministic suffix automaton in the way we process

strings os set S and remove all not used transitions (0 b, 9/34/66 - drawn with dashed lines).

Figure 9.8: Transition diagram of the deterministic suffix automaton for set of strings S =
{aabaab, ababab} from Exercise 9.6

To compute all borders of set .S we search sequences of transition on the backbone leading
from the initial state to some final state except the very last ones. We find following sequences
of transitions:

00
0 % 123'455' —* 2/3466/

a

0 —% 123/455 —% 25 % 36

a

0 -2 123455 -2 2/34/66) - 3/45' 2 46/

97



By concatenating labels of transitions of each found sequence we obtain following strings
g, a, aa, abba. These strings are borders of set S and the longest one abba is the border of
set S. So, we can write mbord(S) = {e, ab, aab, abab} and mBorder(S) = abab.

To compute border array of set .S we do analysis of d-subsets of the states on the backbone.
First, we create an empty array m( of length 11 what is number of different nonempty prefixes
of S and hence the number of states (except the initial one) of the nondeterministic suffix
automaton for S.

We initialise all elements of mg3 by 0. Next, we perform the own analysis of the states
on the backbone having d-subset with more than one item, what are states 123’455, 2'34'66/,
25, 3/45', 36 and 4’6’ in order from left to right with increasing depth of states. The process
of computation is shown in the following table:

Analysed state | Values of mborder array elements

123’455 mp[3'] =1,mpB[2] = 1,mpP[4] = 1,mpB[5] = 1,mpB[5'] =1
2'34'66' mp[4'] = 2,mpB[3] = 2,mp[6] = 2,mpB[6'] =2

25 mp[5] =

345’ mp[5'] =3, mpBl4] =3

36 mp[6] =3

4’6’ mp[6'] =

The resulting mborder array mf(S) is shown in the following table:

state 1 2 2/ 3 3 4 4 5 5 6 6’
symbol a a b a b a a
mf[state] | 0 1 0 2 1 3 2 2 3 3 4

S
s

S
S

98



10 Repetitions in text

10.1 Exact repetitions

Exercise 10.1
Find repetitions in string x = abcaabc. Nondeterministic factor automaton for x has transition
diagram depicted in Fig. 10.1.

Figure 10.1: Transition diagram of a nondeterministic factor automaton for x = abcaabc

Transition tables of both nondeterministic and deterministic factor automata are shown in
Table 10.1.

a b c a | b | c
0|1,4,5|2,6]3,7 0 |1451]26 |37
1 2 145 5 | 26
2 3 26 37
3 4 37 | 4
4 5 4 5
5 6 5 6
6 7 6 7
7 7

Table 10.1: Transition tables both of nondeterministic and deterministic factor automata
from Exercise 10.1

Transition diagram of deterministic factor automaton is depicted in Fig. 10.2. Repetition

@

Figure 10.2: Transition diagram of deterministic factor automaton for = = abcaabe

table is shown in Table 10.2. It can be seen from this table that all repetitions are with gap
and that maximum repeating factor is = abe. All other repeating factors are factors of r.O

99



d—subset | Factor | Repetitions
145 a (1,F), (4,G),(5,G)
26 ab (2,F),(6,G)
37 abe | (3,F),(7,G)

Table 10.2: Repetition table for string x = abcaabe from Exercise 10.1

Exercise 10.2

Find repetitions in string x = abcabc.

Nondeterministic factor automaton for x has transition diagram depicted in Fig. 10.3. Tran-
sitions tables of nondeterministic and deterministic factor automata are shown in Table 10.3.
Transition diagram of deterministic factor automaton is depicted in Fig. 10.4. Repetition

Figure 10.3: Transition diagram of nondeterministic factor automaton for x = abcabc from
Exercise 10.2

a b c al| b | c
011,4]2,5]3,6 01425136
1 2 14 25
2 3 25 36
3| 4 36| 4
4 5 4 5
5 6 5 6
6 6

Table 10.3: Transition tables of both nondeterministic and deterministic factor automata for
string abcabc from Exercise 10.2

table is shown in Table 10.4. It can be seen from this table that almost all repetitions are
with gap but repetitions of maximum repeating factor » = abc. Factor abc is repeating as a
square and z = (abc)?. ]

Exercise 10.3
Find repetitions in string « = ababa. Nondeterministic factor automaton for x has transition
diagram depicted in Fig. 10.5.
Transition tables of both nondeterministic and deterministic factor automata are shown in
Table 10.5.

Transition diagram of deterministic factor automaton is depicted in Fig. 10.6.
Repetition table has this form:

100



Figure 10.4: Transition diagram of deterministic factor automaton for z = abcabc from Ex-
ercise 10.2

d-subset | Factor | Repetitions
14 a (1,F),(4,G)
25 ab (2,F),(5,G)
36 abc (3, F),(6,5)

Table 10.4: Repetition table for string x = abcabc from Exercise 10.2

d-subset | Factor | Repetitions
135 a (1, F),(3,G),(5,Q)
24 ab (2,F),(4,5)
35 aba | (3,F),(5,0)

It can be seen from this table that string x = ababa contains all kinds of repetitions:

a is repeating with gap,

(ab)? is a square,

aba is repeating with overlapping.
The maximum repeating factor is r = aba. O
We will show classes of strings with large number of repetitions in following exercises.

Exercise 10.4

Find repetitions in string = aaaaaa = a®. Nondeterministic factor automaton for z has
transition diagram depicted in Fig. 10.7.

Transitions tables of both deterministic and nondeterministic factor automata are shown in
Table 10.6. Transition diagram of deterministic factor automaton is depicted in Fig. 10.8.
Repetition table is shown in Table 10.7. It can be seen from this table that in string x = a®

are all kinds of repetitions. Even there is a cube (aa)?.

r=ad.

The maximum repeating factor is

a

Figure 10.5: Transition diagram of nondeterministic factor automaton for string x = ababa
from Exercise 10.3

101



a b a b
0]1,3,5|2,4 0 |135]24
1 2 135 24
2 3 24 | 35
3 4 35 4
4 5 4 5
5

Table 10.5: Transition tables of both nondeterministic and deterministic factor automata for
string abcabce from Exercise 10.3

Figure 10.6: Transition diagram of deterministic factor automaton for x = ababa from Exer-
cise 10.3

Exercise 10.5

Find repetitions in string z = ababab = (ab)3. Nondeterministic factor automaton for = has
transition diagram depicted in Fig. 10.9. Transitions tables of both deterministic and non-
deterministic factor automata are shown in Table 10.8. Transition diagram of deterministic
factor automaton is depicted in Fig. 10.10. Repetition table is shown in Table 10.9. It can
be seen from this table that in string x = (ab)? are all kinds of repetitions. String x itself is
a cube. The maximum repeating factor is r = abab. O

Exercise 10.6

Find repetitions in string x = abaababa. This string is Fibonacci string f5. Nondeterministic
factor automaton for x has transition diagram depicted in Fig. 10.11. Transitions tables of
both deterministic and nondeterministic factor automata are shown in Table 10.10. Transition
diagram of deterministic factor automaton is depicted in Fig. 10.12. Repetition table is shown
in Table 10.11. It can be seen from this table that in string f5 are all repetitions with gaps
and squares. The maximum repeating factor is r = aba. O

Exercise 10.7
Find repetitions in set of strings X = {abaababa,ababab} = {fs,(ab)?} (see Exercises 10.5
and 10.6). Moreover, find the longest common factor of both strings. Nondeterministic

Figure 10.7: Transition diagram of nondeterministic factor automaton for string = a% from
Exercise 10.4

102



a a
0]1,2,3,4,5,6 0 | 123456
1 2 123456 | 23456
2 3 23456 | 3456
3 4 3456 | 456
4 5 456 56
5 6 56 6
6 6

Table 10.6: Transition tables of both nondeterministic and deterministic factor automata for

string abcabc from Exercise 10.4

Figure 10.8: Transition diagram of factor automaton for = a% from Exercise 10.4

factor automaton for X has transition diagram depicted in Fig. 10.13. Transition table
of nondeterministic factor automaton is shown in Table 10.12. A part of transition table
of deterministic factor automaton (it contains only rows for multiple states) is shown in
Table 10.13. Corresponding part of transition diagram is depicted in Fig. 10.14. It can
be seen from automaton depicted in Fig. 10.14 that the longest common factor of both
strings is LOF (fs, (ab)?) = ababa. This fact is indicated by state 85’. All factors of string
LCOF(fs,(ab)?) are also common factors of both strings. The repetition table is shown in
Table 10.14. O

10.2 Approximate repetitions

Exercise 10.8
Find exact and approximate repetitions in string = abcabd, with Hamming distance k =
1. Transition diagram of nondeterministic approximate factor automaton is depicted in
Fig. 10.15. Transition table of this automaton is shown in Table 10.15.

We construct during the determinisation of the nondeterministic approximate factor au-
tomaton a multiple front end of deterministic factor automaton containing states correspond-

d-subset | Factor | Repetitions
123456 a (1,F),(2,5),(3,G),(4,G),(5,G),(6,G)
23456 aa (2,F),(3,0),(4,5),(5,G),(6,G)
3456 aca | (3,F),(4,0),(5,0),(6,S)
456 aaaa | (4,F),(5,0),(6,0)
56 aaaaa | (5,F),(6,0)

Table 10.7: Repetition table for string z = a® from Exercise 10.4

103



Figure 10.9: Transition diagram of nondeterministic factor automaton for string x = (ab)?
from Exercise 10.5

a b a b
0]1,3,5|2,4,6 0 | 135 246
1 135 246
2 246 | 35
3 35 46
4 46 | 5
5 5 6
6 6

Table 10.8: Transition tables of both nondeterministic and deterministic factor automata for
string abcabce from Exercise 10.5

ing to d-subsets having these properties:

- contain more states from level 0 (exact repetitions),

- contain both states from level 0 and level 1 (approximate repetitions).

Transition table of multiple front end of deterministic factor automaton is in Table 10.16.
Transition diagram of the multiple front end of approximate deterministic factor automaton
is depicted in Fig. 10.16. Repetition table is shown in Table 10.17.

Exercise 10.9
Find exact and approximate repetitions in string x = abcabe over alphabet A = {a,b,c,d}
with

1. Levenshtein distance k =1,

2. A distance k =1,

3. T distance k =1,

4. (A,T') distance k =2, [ = 1.

The solution of this Exercise is left to the reader. d

Figure 10.10: Transition diagram of factor automaton for z = (ab)? from Exercise 10.5

104



Figure 10.11: Transition diagram of nondeterministic factor automaton for string = f5 from

Exercise 10.6

Table 10.10: Transition tables of both nondeterministic and deterministic factor automata

d-subset | Factor | Repetitions
135 a (1, F),(3,G),(5,G)
246 ab (2,F),(4,5),(6,G)
35 aba | (3,F),(5,0)
46 abab | (4,F),(6,0)

a b a b
0]1,3,4,6,8|2,5,7 0 13468 | 257
1 2 13468 4 257
2 3 257 368
3 4 368 4 7
4 5 4 5
5 6 5 6
6 7 6 7
7 8 7 8
8 8

for string « = abaababa from Exercise 10.6

Figure 10.12: Transition diagram of factor automaton for z = f5 from Exercise 10.6

d-subset | Factor | Repetitions
13468 a (1,F),(3,G),(4,G),(6,G), (8,G)
257 ab (2,F), (5,G),(7,G)
368 aba | (3,F),(6,5),(8,G)

Table 10.11: Repetition table for string z = f5 from Exercise 10.6

105




Figure 10.13: Transition diagram of nondeterministic factor automaton for strings from set
X = {fs, (ab)?} from Exercise 10.7

a b
01]1,3,4,6,8,1,3.5 |2,5,7,2 4,6
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8
1 2/
2/ 3
3/ 4
4/ 5/

5/ 6’
6/

Table 10.12: Transition table of the nondeterministic factor automaton from Exercise 10.7

106



a b
0 134681'3'5" | 2572'4’¢’
134681'3'5’ 4 2572'4'¢’
2572'4'¢’ 3683’5
3683’5’ 4 74’6’
74’6/ 85/
85/ 6’

Table 10.13: Part of transition table of the deterministic factor automaton from Exercise 10.7

Figure 10.14: Part of transitions diagram of deterministic factor automaton for set X =
{fs, (ab)®} from Exercise 10.7

d—subset | Factor | Repetitions
134681'3'5 a (1,F),(1',F),(3,G),(4,5),(6,G),(8,G),(3,G),(5,G)
2572'4'¢' b (2,F),(2/,F),(5G),(7,G), (4,G),(6,G)
2572'4'6 ab (2, F),(2/,F),(5,G),(7,5),(4,95),(6,95)
3683’5’ ba (3, F),(3,F),(6,G),(8,9),(5,9)
3683’5’ aba | (3,F),(3,F),(6,5),(8,0),(5,0)
74’6 bab | (7,F), (4, F),(6,0)
74’6/ abab | (7, F), (4, F),(6,0)
85’ baba | (8, F), (5, F)
85’ ababa | (8,F), (5, F)

Table 10.14: Repetition table for set X = {fs, (ab)?} from Exercise 10.7

107



Figure 10.15: Transition diagram of the nondeterministic approximate factor automaton for
x = abcabd, Hamming distance k£ = 1, from Exercise 10.8

a b c d
011,4,2,3,5,6"2,5,1,3,4,6"|3,1,2,4,5,6'|6,1,2,3 4.5
1 2/ 2 2! 2/
2 3 3’ 3 3
3 4 4/ 4 4
4 5/ 5 5’ 5/
5 6’ 6’ 6’ 6
6
1 2/

2/ 3

3/ 4

4’ 5/

5/ 6’
6/

Table 10.15: Transition table of the nondeterministic approximate factor automaton from
Exercise 10.8

START
b
()T 4.2°.3°,5°.6

Figure 10.16: Interesting part of the deterministic approximate factor automaton for string
x = abcabd, Hamming distance k = 1 from Exercise 10.8

108



a b c d

0 1,4,2",3',5,6'|2,5,1',3",4',6(3,1",2",4',5,6"|6,1',2,3",4", 5
1,4,2',3,5,6 2. 4" 5 2,5 2/.3,5 2,56
2,5,1,3,4',6 3,46 2/,3",5,6 3,6’ 6,3’
3,1,2,4,5,6 4 2. 4" 5 3.4 4’6
6,1,2,3 .45 4’ 2.5 3 6’

2,5 3,6 3,6 3,6 6,3

3,6 4 4’ 4’ 4

6,3 4

Table 10.16: Transition table of multiple front end of the deterministic approximate factor
automaton from Exercise 10.8

d-subset | Factor | Repetitions
2,5 ab (2,F),(5,G,0)
3.6’ abe | (3,F),(6,S5,1)
6,3’ abd | (6,F),(3,S,1)

Table 10.17: Repetition table for string x = abcabd from Exercise 10.8

109



11 Simulation of searching automata, MP and KMP algo-
rithms

Some examples of Knuth-Morris-Pratt (KMP) searching automata which are simulators of
nondeterministic finite automata for exact pattern matching of one pattern (SFOECO au-
tomata) are shown in this chapter. Moreover this approach is shown for an approximate
pattern matching of one pattern.

11.1 KMP searching automata

Exercise 11.1

Construct KMP searching automaton for pattern P = abab. First we compute border array
for pattern P = abab. The transition diagram of the nondeterministic factor is depicted in
Fig. 11.1. Table 11.1 is the transition table of the deterministic factor automaton. Transition
diagram of the deterministic factor automaton is depicted in Fig. 11.2.

Figure 11.1: Transition diagram of the nondeterministic factor automaton for pattern P =
abab from Exercise 11.1

a | b
0 |13]24
13 24
24| 3
3 4
4

Table 11.1: Transition table of the deterministic factor automaton from Exercise 11.1

-

START@ 4 . b b a . b |.

Figure 11.2: Transition diagram of the deterministic factor automaton for pattern P = abab
from Exercise 11.1, dashed transition is out of the backbone

-
- -
S

The analysis of d-subsets on the backbone of the deterministic factor automaton is shown
in this table:

Analysed state|Value of border array element
13 w3l =1
24 wld] =2

110



Let us recall that the elements of border array are equal to the fail function. Values of
the fail function ¢ (equal to the border array elements) are shown in this table:

j 112|314
symbol |a |b|a|b
els] 10(0|1|2

Transition diagram of MP searching automaton with fail function ¢ is shown in Fig. 11.3.
Now the optimisation of fail function ¢ takes place. It holds that é(a) = §(aba) and therefore
opt(aba) = p(a) = 0. Transition diagram of KMP automaton with optimised fail function
@opt is shown in Fig. 11.4. Compare this automaton with automaton from Exercise 4.1. O

A-{a}

b a b
abab

- N - P
-
~ -
o< -

Figure 11.3: Transition diagram of the MP searching automaton for pattern P = abab and
fail function ¢ from Exercise 11.1

<4~ — — fail function ¢,

Figure 11.4: Transition diagram of the KMP searching automaton for pattern P = abab and
fail function ¢,y from Exercise 11.1

Exercise 11.2

Construct KMP searching automaton for pattern P = ppppp (five p). First we compute the
border array (fail function ) for pattern P = ppppp. Table 11.2 is the transition table of the
deterministic factor automaton for the pattern P. The transition diagram of the deterministic
factor automaton is depicted in Fig. 11.5.

Figure 11.5: Transition diagram of the deterministic factor automaton for pattern P = abab
from Exercise 11.2

The analysis of d-subsets of the deterministic factor automaton (the automaton is com-
posed of the backbone only) is shown in Table 11.3. Values of the fail function ¢ are shown

111



p
0 12345
12345 2345
2345 345
345 45
45 )
)

Table 11.2: Transition table of the deterministic factor automaton from Exercise 11.2

Analysed state | Values of border array elements
12345 p[2] = ¢[3] = p[4] = 5] = 1
2345 e[3] = 4] = ¢[5] =2

345 wl4] = ¢[5] =3
45 plb] =4

Table 11.3: Table of border array for pattern P = ppppp from Exercise 11.2

in Table 11.4.

Transition diagram of MP searching automaton is depicted in Fig. 11.6. In this figure is
shown fail function ¢ and fail function ¢, of KMP automaton. The optimised fail function
@opt 1s computed using the following fact d(p) = d(pp) = d(ppp) = 6(pppp) and therefore
Popt (PP) = Popt (PPP) = Popt(PPPP) = () = 0. DO

Exercise 11.3

Construct KMP searching automaton for pattern P = blablabla. First we compute the border
array (fail function ¢) for pattern P = blablabla. Table 11.5 is the transition table of the
deterministic factor automaton for the pattern P. Transition diagram of the deterministic
factor automaton is depicted in Fig. 11.7. The analysis of d-subsets on the backbone of the
deterministic factor automaton is shown in the Table 11.6. Values of the fail function ¢ (equal
to the border array elements) are shown in this table:

J 112134567819
symbol | b |l |a|b|l|a
elgl [0]0]0[1]|2][3[4|5]|6

S
o~
S

Transition diagrams of MP and KMP automata are depicted in Fig. 11.8. a

j 11213415
symbol | p plplp
©l7] 0 21314

1

Table 11.4: Table of fail function from Exercise 11.2

112



€------- fail function ¢

4 — — fail function ¢,

Figure 11.6: Transition diagrams of the MP and KMP searching automata for pattern P =
ppppp from Exercise 11.2

a b l
0 369 147 258
147 258
258 369
369 47
47 58
58 69
69 7
7 8
8 9

Table 11.5: Transition table of the deterministic factor automaton from Exercise 11.3

11.2 Approximate searching automaton and fail function

Exercise 11.4

Pattern P = abab over alphabet A = {a,b} is given. Construct KMP approximate search-
ing automaton for pattern P with Hamming distance £k = 1. Nondeterministic searching
automaton (SFORCO automaton, see [TSA, Chapter 2]) has transition diagram depicted in
Fig. 11.9.

First the approximate fail function will be computed. To do this the following approach
will be used. Construct approximate prefix automaton for it with Hamming distance equal
to 1. Its transition table is shown in Table 11.7 and its transition diagram is depicted in
Fig. 11.10.

First we compute the approximate border array (fail function @) for the pattern P. We

Figure 11.7: Transition diagram of the deterministic factor automaton for pattern P =
blablabla from Exercise 11.2, dashed transitions are out of the backbone

113



Analysed state| Values of border array elements
147 [ =gl =1
258 o[5] = p[8] =2
369 o[9] = pl6] =3
47 7] =4
58 8] =5
69 0l9] =6

€------- fail function ¢

4 — — fail function ¢,

Figure 11.8: Transition diagrams of the MP and KMP searching automata for pattern P =
blablabla from Exercise 11.3

construct approximate factor automaton for pattern P = abab and Hamming distance equal
to 1. Transition diagram of this automaton with e-transitions is depicted in Fig. 11.11.
Transition diagram of the approximate factor automaton after elimination e—transitions is
depicted in Fig. 11.12. Transition table of this automaton is shown in Table 11.2a).

Deterministic approximate factor automaton has transition diagram depicted in Fig. 11.13.
Transitions and states drawn by dashed lines are out of the backbone. Its transition table is
shown in Table 11.2b).

The next operation should be computation of “approximate” border array. But this way
is not straightforward, because there are some states (2'3'4’,3’,4’) to which more than one
sequence of transitions from the initial state are leading for different strings. This situation
is shown in Table 11.2.

Figure 11.9: Transition diagram of the nondeterministic searching automaton (SFORCO
automaton) from Exercise 11.4

114



b
0 1 I
1 2/ 2
2 3 3
3 4 4
4
v 2/
2/ 3
3 4’
4/

Table 11.7: Transition table of approximate prefix automaton from Exercise 11.4

Figure 11.10: Transition diagram of the prefix automaton from Exercise 11.4

Figure 11.11: Transition diagram of the approximate factor automaton with e-transitions

from Exercise 11.4

115



Figure 11.12: Transition diagram of the approximate nondeterministic factor automaton from

Exercise 11.4 after elimination of e—transitions

Table 11.8: Transition tables of both nondeterministic and deterministic approximate factor

automata from Exercise 11.4

116

a b a b
0 132'3'4’ 241'2'3'4’ 0 132'3'4’ 241'2'3'4'
1 2/ 2 132'3'4’ 2/3'4/ 244’
2 3 3 241'2'3'4 33 2/3'4
3 4 4 244’ 3 3
4 2/3'4 3 4
1 2/ 33 4 44
2/ 3 4
3/ 4 3 4/
4’ 4’

a) b)




Figure 11.13: Transition diagram of the deterministic approximate factor automaton for string
abab with Hamming distance equal to 1 from Exercise 11.4

State Sequences of labels of transitions
from the initial state
9/97 4/ aa
3 bb
abb

aaa

3/

baa

abaa
o abbb
aaab
bbab

Table 11.9: Sequences of transitions for some states of approximate factor automaton from
Exercise 11.4

117



This conflict situation can be solved by the following approaches:

1. To reconstruct the backbone of the approximate factor automaton in order to obtain an
automaton having only one sequence of transitions to each state from the initial state.

2. To make elements of the border array (and in the same time the fail function) dependent
on the sequence of transitions from the initial state.

The reconstruction of the backbone of the approximate factor automaton can be done by
splitting of states. Each state in question is splitted into the number of states equal to the
number of sequences leading from the initial state to it (see Table 11.2). Using this approach,
we obtain the backbone of the factor automaton having transition diagram depicted in Figure
11.14. We can see that this automaton has a tree-like form. It means that the set of all strings
having maximum Hamming distance equal to one from pattern P = abbb is treated as a finite
set H; = {abab, bbab, aaab, abbb, abaa}. This task can be solved by Aho-Corasick algorithm
described in [TSA, Chapter 5].

Figure 11.14: Transition diagram of the backbone of approximate factor automaton after
splitting states 2'3’4’, 3’ and 4’ from Exercise 11.4

The second approach, making the fail function dependent on the sequence of transitions
from the initial state, can be explained using the backbone of the approximate factor automa-
ton having transition diagram depicted in Fig. 11.13.

It can be mentioned that it is necessary to define fail function only for states 4,1’,2’, 3" and
4’| because in all other states with exception of the state 1’ the transitions for all symbols of
the alphabet exist. Therefore in the next overview of the computation of fail function we can
take into account only d-subsets containing above mentioned states. The overview is shown
in Table 11.10.

Now the fail function ¢ can be computed. It depends on the state and moreover on
the labels on paths leading to this state from the initial state. Values of the fail function
depending on states and the labels of a respective path is shown in Table 11.11. It can be
seen that some suffixes of strings labelling the paths from the initial state are enough to

118



Figure 11.15: Transition diagram of the MP search Hamming automaton

function ¢ from Exercise 11.4

aa abb
bb aaa

bba

abaa
abbb
aaab
bbab

d-subset |String| Values of border array elements
13234 | a | @2]=¢3]=¢pd]=1
244’ ab | [4] = p[d] =2
2412341 b | ol4] = ¢[2] = [3] = p[4] =1’
1914/ aa | @[3 = p[4]=2
S T IS A o

with added fail

Table 11.10: Computation of approximate border array for pattern P = abab and Hamming
distance equal to one from Exercise 11.4

distinguish values of the fail function. This suffixes are on the right of the symbol ‘|” used in

the heading of the table.
In Fig.

11.15 is depicted Hamming automaton with added the fail function ¢. Some

transitions corresponding to the fail functions are labelled by suffixes of strings labelling the
paths from the initial state used for the distinguishing values of the fail function. Moreover,
there is list of strings for which the paths are leading from the initial state to states 2’, 3" and
4’. Let us mention that the fail function ¢ is not possible to optimise and therefore ¢q,r = ¢.

119



el ala|blb|albb|alaa|blba | ablaa | ablbb |aalab | bblab
4 12
110
2/ 171
3 2/ 2/ 1
4’ 2/ 2/ 2 2

Table 11.11: Values of fail function ¢ depending on the state and the path leading from the
initial state to the state in question from Exercise 11.4

120



12 Simulation of searching automata, AC algorithm

Some examples of Aho-Corasick (AC') searching automata which are simulations of nondeter-
ministic finite automata for exact matching of a finite set of patterns (SFFECO automata)
are shown in this Chapter.

12.1 AC searching automata

Exercise 12.1

Construct AC searching automaton for searching set of patterns P={abba,baba} over alphabet
A = {a,b}. Nondeterministic searching automaton for the finite set of pattern P (SFFECO
automaton, see [T'SA, Chapter 2]) has transition diagram depicted in Fig. 12.1. First the

Figure 12.1: Transition diagram of the nondeterministic searching automaton (SFFECO au-
tomaton) for the set of patterns P={abba,baba} from Exercise 12.1

m-border array mf will be computed. To do this the following approach will be used.
The starting point is the construction of prefix automaton for the set of patterns P={abba,
baba}. Its transition diagram is depicted in Fig. 12.2.

Figure 12.2: Transition diagram of the prefix automaton for the set of patterns P={abba,baba}
from Exercise 12.1

The next step is the addition of e-transitions from the initial state to all other states of the
prefix automaton. The resulting automaton is a factor automaton with e-transitions having
transition diagram depicted in Fig. 12.3.

The nondeterministic factor automaton is obtained by the removal of e-transitions. The
resulting automaton has transition diagram depicted in Fig. 12.4.

The last step is determinisation of the factor automaton. Transition tables of both non-
deterministic and deterministic factor automata are shown in Table 12.1. Transition diagram
of the deterministic factor automaton having transition table shown in Table 12.1 is depicted
in Fig. 12.5. Note that dashed lines are out the backbone of the factor automaton. An anal-
ysis of the multiple d-subsets is shown in Table 12.2. The resulting m-border array mgs(P)

121



Figure 12.3: Transition diagram of the factor automaton with e-transitions for the set of
patterns P={abba,baba} from Exercise 12.1

Figure 12.4: Transition diagram of the nondeterministic factor automaton for the set of
patterns P={abba,baba} from Exercise 12.1

is shown in Table 12.3. Transition diagram of AC automaton is depicted in Fig. 12.6. Fail
function ¢,y is shown only in case when it is different from fail function ¢. O

122



a b a b
0 | 11,4122 4% |21 31 12 32 0 11412242 | 21311232
1t 21 11419242 2132
21 3! 21311232 | 419242 31
31 41 2132 42 31
41 3! 41
12 22 41
22 32 419242 32
32 42 32 42
42 42

a) b)

Table 12.1: Transition tables of both nondeterministic and deterministic factor automata for

the set of patterns P={abba,baba} from Exercise 12.1

Figure 12.5: Transition diagram of the deterministic factor automaton for the set of patterns

P={abba,baba} from Exercise 12.1

Analysed state | Values of m-border array elements
11412242 mpB[4] = mp[4%] = mB[2?%] = 1!
2132 mp[3%) = 2!
21311232 mp[2Y] = mp[3t] = mp[al] = 1°
412242 mpB[4'] = mp[4?] = 22

Table 12.2: Analysis of the multiple d-subsets of the backbone of the factor automaton from

Exercise 12.1

State b ot |34t [12]22]|3%2] 42
Symbol a | b|lb|lalb|lal|b|a
mQ[state] | 0 |12 |12 22| 0 [ 1! |2t |22

Table 12.3: The m-border array m3(P) from Example 12.1

123




“------- fail function ¢

4= — — fail function ¢,

Figure 12.6: Transition diagram of AC searching automaton for the set of patterns
P={abba,baba} from Exercise 12.1

124



Exercise 12.2

Construct AC' searching automaton for searching of the set of patterns P={k,ok,rok,brok,
obrok}. Nondeterministic searching automaton for the finite set of pattern P (SFFECO
automaton, see [TSA, Chapter 2]) has transition diagram depicted in Fig. 12.7.

Figure 12.7: Transition diagram of the nondeterministic searching (SFFOECO) automaton
for the set of patterns P={k,ok,rok,brok,obrok} from Exercise 12.2

Construction of the prefix automaton and factor automaton with e-transitions is left to the
reader. Nondeterministic factor automaton after the removal of e-transitions has transition
diagram depicted in Fig. 12.8.

Figure 12.8: Transition diagram of the nondeterministic factor automaton for the set of
patterns P={k,ok,rok,brok,obrok} from Exercise 12.2

Next step is a determinisation of the factor automaton. Transition tables of both nonde-
terministic and deterministic factor automata are shown in Table 12.4. Transition diagram
of the deterministic factor automaton is depicted in Fig. 12.9. An analysis of the multiple
d-subsets is shown in Table 12.5. The resulting m-border array mg(P) is shown in Table 12.6.

125



Figure 12.9: Transition diagram of the deterministic factor automaton for the set of patterns
P={k,ok,rok,brok,obrok} from Exercise 12.2

Transition diagram of the AC automaton is depicted in Fig. 12.10.Fail function ¢, is shown

A, fail function ¢

<— — — fail function ¢,

Figure 12.10: Transition diagram of AC searching automaton for the set of patterns
P={k,ok,rok,brok,obrok} from Exercise 12.2

only in case, when it differs from fail function . For text T' = ob_rok obroky this automaton
makes the following sequence of transitions:

o b u r o k u o
eE—0—0b—-——b——¢—c—r —ro—1r0k— —0k—-——k—-——c—¢e¢—
oLobLobTLomeobrok——>b7’0k——>m-—>@——>k——>€i>€
The found elements of the set of patterns P are underlined. O

126



b k 0 r
0 [ 1%,2° [11,2%,3% 4% 55 | 12,2%,3%,15 4% | 13,24 3°
11
12 22
22
13 23
23 33
33
14 24
24 34
34 44
44
15 25
25 35
35 45
45 55
55
a)
b k 0 r
0 1495 | 1122334455 | 1223341545 | 132435
1122334455
1223311545 | 25 | 223347155
22334155
132435 233145
233145 2435
334455 2135
1495 2435
2135 3445
3445 4450
4455
25 3°
3° 45
45 5°
55
b)

Table 12.4: Transition tables of both nondeterministic and deterministic factor automata for
the set of patterns P={k,ok,rok,brok,obrok} from Exercise 12.2

127



Analyzed state | Values of m-border array elements
1122334455 | mpB[2%] = mB[3%] = mpB[4%] = mp[5°] = 1!
12233%5°4° | mpB[2%] = mpB[3%] = mp[4°] = 1%°

22334155 mp[3%] = mp[4t] = mpB[5°] = 22
132135 mp2Y = mpB[3°] = 13
233145 mB[31] = mp[4°] = 23
334455 mp[4Y] = mp[5°] = 33
142° mp3[2°] = 1%
243° mp[3°] = 24
3445 mpA[4°] = 3*
4455 mp[5°] = 4%

Table 12.5: Analysis of multiple d-subsets of the deterministic factor automaton for the set
of patterns P={k,ok,rok,brok,obrok} from Exercise 12.2

State 12t [ 3[4l [ 12223242
Symbol a|lb|b|lal|lb|al|b|a
mQ[state] | 0 [ 12 [ 12|22 | 0 |11 | 2! | 22

Table 12.6: m-border array m/ for the set of patterns P={k,ok,rok,brok,obrok} from Exer-
cise 12.2

128



Exercise 12.3

Construct AC' searching automaton for searching of the set of patterns P={hers,he,his,she}.
Nondeterministic searching automaton for the finite set of patterns P (SFFECO automaton,
see [TSA, Chapter 2]) has transition diagram depicted in Fig. 12.11.

Figure 12.11: Transition diagram of the nondeterministic searching automaton SFFOECO
automaton for the set of patterns P = {hers, he, his, she} from Exercise 12.3

Construction of the prefix automaton and factor automaton with e-transitions is left to the
reader. Nondeterministic factor automaton after the removal of e-transitions has transition
diagram depicted in Fig. 12.12.

Figure 12.12: Transition diagram of the nondeterministic factor automaton SFFOECO au-
tomaton for the set of patterns P={hers,he,his,she} from Exercise 12.3

The next step is a determinisation of factor automaton. Transition tables of both nonde-
terministic and deterministic factor automata are shown in Table 12.7. Transition diagram
of the deterministic factor automaton is depicted in Fig. 12.13. An analysis of the multiple
d-subsets is shown in Table 12.8. The resulting m-border array m3(P) is shown in the Ta-
ble 12.9. The transition diagram of the resulting AC automaton is depicted in Fig. 12.14. As
each state of the automaton corresponds to a prefix of some element of some the set of pat-
terns P, we add this prefixes to the labeling of states. Fail function ¢, is in this case equal
to the fail function . For text T=reshersche this automaton makes the following sequence
of transitions:
ngi)gLsLshihsihe—e @Lherﬁ@—as——hsith
h - he

129



Figure 12.13: Transition diagram of the deterministic factor automaton for the set of patterns

P = {hers, he, his, she} from Exercise 12.3

Figure 12.14: Transition diagram of AC searching automaton for set of patterns P =

{hers, he, his, she} from Exercise 12.3

The found elements of the set of patterns are underlined.

130



e h i s
0 212’34 1123’24 23 31 14’33’41
1123 212 23
212 23
31 41
1
33 33
33
11 2!
2t | 3t
34
a)
e h | s
0 21234 112324 23 31 143341
112324 21234 23
21234 31
3t 41
41
23 3
33
1 2
24 3t
34
b)

Table 12.7: Transition tables of both nondeterministic and deterministic factor automata for
the set of patterns P={hers,he,his,she} from Exercise 12.3

Analysed state | Values of mborder array elements
112324 mﬁ[24] — 1123
21234 mﬁ[34] — 212
143341 mpB[3%] = mp[4'] = 1

Table 12.8: Analysis of multiple d-subsets of the deterministic factor automaton for the set
of patterns P = {hers,he,his,she} from Exercise 12.3

State | 1123 |14 |22 [ 23 2% [31 ]33] 3% | 4!
Symbol h s | e i h r|s| e | s
mPlstate] | 0 [0 ] 0 |0 [1B]o[17]22] 17

Table 12.9: m-border array m3(P) for P = {{hers,he,his,she} from Exercise 12.3

131



13 Backward pattern matching of one pattern

13.1 Boyer—Moore—Horspool algorithm

The simplest method of backward searching is shown here. It is BMH (Boyer—-Moore—
Horspool) algorithm, which use the heuristic called “bad character shift”. The computation
of shifts is very simple. Shifts are computed for all symbols of an alphabet and are equal to
the distance symbol in the pattern from the end of the pattern.

Exercise 13.1

Let pattern be P = abcaba over alphabet A = {a,b,c,d}. We compute the table of shifts
(BCS table) for BMH algorithm. Moreover we make search in text T' = bcbaabcabab. First
the nondeterministic factor automaton is constructed for reversed pattern P. Its transition
diagram is depicted in Fig. 13.1. It is enough to compute the first row of the transition table

Figure 13.1: Transition diagram of the nondeterministic factor automaton for pattern PF =
abacab from Exercise 13.1

of the deterministic factor automaton:

a b c
0 136 25 4

It is selected for each symbol of the alphabet a state having the shortest distance from the
end of the pattern greater than one and the one is subtracted. The shift for each symbol is
computed this way. The result is the BC'S table of shifts:

symbol a b c
BCSshift 2 1 3

For symbols of the alphabet which do not occur in the pattern is the shift equal to the length
of the pattern. In our case the shift for symbol d is equal to 6. This procedure can be written
in the form of program in this way:

(1) for symbol := symbl[1] to symb[|Al|] do shift [symbol] := m;

(2) for j:=1tom—1 do shift [P[j]] :=m — j;

The computation of shifts for pattern P = abcaba is shown in this table:

Initial for loop(2)
setting (1) |j=1]j=2|7=3|j=4|j=5
a 6 5 @
b 6 4 )
c 6 8
d ©

132



Circles show the computed shifts for all symbols.
Now the search of pattern P = abcaba in text T' = bcbaabcabab is performed:

bcbaabcabab  mismatch
abcaba shift[b]=1

bcbaabcabab  mismatch
abcaba shift[c]=3

bcbaabcabab  match
abcaba shift[a]=2

The shift is now behind the end of the text and the search is finished.

13.2 Looking for repeated suffixes

The heuristics used for the looking for repeated suffixes is called “good suffix shift” (GSS)
and the tool for this approach is the backbone of the factor automaton.

Exercise 13.2

Let pattern be P = babba. We compute GS'S table for the pattern P. We start by constructing
the backbone of the factor automaton for reversed pattern P® = (babba)® = abbab. Transition
diagram of the nondeterministic factor automaton for pattern abbab is depicted in Fig. 13.2.
Its deterministic equivalent has transition diagram depicted in Fig. 13.3. Deterministic factor

Figure 13.2: Transition diagram of the nondeterministic factor automaton for pattern P =
abbab from Exercise 13.2

Figure 13.3: Transition diagram of the deterministic factor automaton for pattern P* = abbab
from Exercise 13.2

automaton for pattern abbab shows this facts:
a) suffix a is repeating at positions 1 and 4,

b) suffix ab is repeating at positions 2 and 5,

133



c) factor b is repeating at positions 2,3 and 5.

From the point of view of our task only the repetitions of suffixes are interesting. The
repetitions are given by multiple states on the backbone of the factor automaton. State
235 and the transitions connected with it are outside of the backbone and may be removed.
Transition diagram of the backbone of factor automaton is depicted in Fig 13.4. The suffix
repetition table has the following form:

d-subset | suffix | repetitions
14 a (1,F), (4,G)
25 ba | (2,F),(5G)
3 3 3 3 5 1

Figure 13.4: Backbone of the factor automaton for pattern P® = abbab from Exercise 13.2

The GSS table has the following form:

state 014 (25| 3 4 5
suffix €| a | ba | bba | abba | babba

GSS(state) |13 |3 | 5 5 5

GSSopi(state) | 1| 5| 3| 5 5 5

There is a possible optimisation of the G.SS table for state 14. The suffix a is repeating three
positions to the left but with the same symbol in front of it. Therefore we can enlarge the
GS'S shift to 5. a

Exercise 13.3

Let pattern be P = ababa. We compute GSS table for the pattern P. We start by con-
structing backbone for the reversed pattern P® = ababa. We construct factor automaton
M for this reversed pattern. Transition diagram of nondeterministic factor automaton M7 is
depicted in Fig. 13.5.All its states are final states. The next step is the construction of equiva-

Figure 13.5: Transition diagram of nondeterministic factor automaton M7 for reversed pattern
PR = gbaba from Exercise 13.3

lent deterministic factor automaton Ms,. During this construction we save created d—subsets.
Transition tables of both nondeterministic factor automaton M; and its deterministic equiv-
alent My are shown in Table 13.1. Transition diagram of deterministic factor automaton My
is depicted in Fig. 13.6.To obtain backbone of factor automaton My, we remove transitions
from state 0 it state 24 for input symbol b. Now we construct the suffix repetition table. It
has the following form:

134



a b
0 | 1,35 2.4
1 2
2 3
3 4
4 )
)
a) transition table of M;

a b
0 135 24
135 24
24 35
35 4
4 5
5

b) transition table of Ms

Table 13.1: Transition tables of factor automata M7 and M5 from Exercise 13.3

Exercise 13.3

———

-

Figure 13.6: Transition diagram of deterministic factor automaton My for P® = ababa from

d-subset | Suffix | Repetitions
135 al(1,F),(3,G),(5QG)
24 ba | (2,F),(4,95)
35 aba | (3,F),(5,0)

Sem prijde vsuvka zbytek Ex. 7.4+Ex.7.5 z Vol II.

Exercise 13.4

~

Let pattern be P = aabaa. We compute the GSS table. Transition diagrams of the nonde-
terministic factor automaton and the backbone of deterministic factor automaton for pattern
P are depicted in Fig. 13.7. This pattern has two suffixes a and aa, which are also prefixes.

Figure 13.7: Transition diagrams of the nondeterministic factor automaton and deterministic
factor automaton for pattern P¥ = aabaa from Exercise 13.4

135



Suffix repetition table has the following form:

d-subset | Suffix Repetitions
1245 a (1, F),(2,9),(4,G),(5,95)
25 aa (2,F),(5,G)

According to the longest repeated suffix aa the shift in states 25,3,4 and 5 is computed. It
has value 3 (5-2=3). The shift in state 0 is 2, because the last but one symbol is equal to the
last one and it is again a. The shift in state 1245 is 1, because the found suffix a is repeating
in the distance 1. Resulting G.SS table has the following form:

state 01124525345
GSS(state) | 2] 1 313133

Exercise 13.5

Let pattern be P = bbaba. Compute the GSS table. Transition diagrams of the nondeter-
ministic factor automaton and the backbone of deterministic factor automaton for pattern P
are depicted in Fig. 13.8.In this case two suffixes a and ba are repeating factors of the pattern.

Figure 13.8: Transition diagram of nondeterministic factor automaton and the backbone of
factor automaton for pattern P% = ababb from Exercise 13.5

Suffix repetition table has the following form:

d-subset | Suffix | Repetitions

3 | a |[(LF).3.0)
24 ba | (2,F),(4,0)
The GSS table has the following form:
state 0113124 | 3 4 5
Suffix €| a | ba | aba | baba | bbaba
GSS(state) |12 |2 | 5 5 5
GSSopt(state) | 1| 5| 2| 5 5 5

136



There is a possible optimisation of this GS.S table for state 13. The suffix a is repeating two

positions to the left but with the same symbol in front of it. Therefore we can enlarge the

GSS shift to 5.
O

Exercise 13.6

Let pattern be P = babaa. Compute GS'S table. Transition diagrams of the nondeterministic
factor automaton and the backbone of the deterministic factor automaton for pattern P are
depicted in Fig. 13.9. Suffix repetition table has the following form:

Figure 13.9: Transition diagrams of the nondeterministic factor automaton and the backbone
of the deterministic factor automaton for pattern P® = aabab from Exercise 13.6

d-subset | Suffix Repetitions
124 a (1,F),(2,59),(4,G)

The GSS table has the following form:

state 0124 | 2 3 4 5
Suffix €| a |aa|baa | abaa | babaa

GSS(state) |1| 1 | 5] 5 5 5

GSSope(state) |2 1 | 5 | 5 5 5

There is possible optimization of GS'S table for state 0. The mismatch symbol at the end of
pattern is a. The last but one symbol in the pattern is again a. Therefore using this shift the
mismatch appears again. The shift can be enlarged to 2. O

Exercise 13.7

Let pattern be P = aaaaa. Compute GS.S table. Transition diagrams of the nondeterministic
factor automaton and the backbone of the deterministic factor automaton for pattern P are
depicted in Fig. 13.10. Suffix repetition table has the following form:

d-subset | Suffix | Repetitions
12345 a (1, F),(2,9),(3,9),(4,5),(5,9)

2345 | aa | (2,F),(3,0),(4,5),(5,0)
345 | aaa | (3,F),(4,0),(5,0)
45 | aaaa | (4,F),(5,0)




Figure 13.10: Transition diagrams of the nondeterministic factor automaton and the backbone
of the deterministic factor automaton for pattern P® = aaaaa from Exercise 13.7

The GSS table has the following form:

state 0]12345 | 2345 | 345 | 45
Suffix € a aa | aaa | aaaa

GSS(state) |1 1 1 1 1

GSSopt(state) | 5 4 3 2 1

There are possible optimisations of GSS table. The last symbol a is repeating in all positions,
therefore G\SSp; shift can be 5. All other suffixes (aa,aaa,aaaa) are repeating with the same
symbol in front of them. Therefore GSS,,: can be optimised as shown in the preceding table.

O

138



14 Backward pattern matching in text — searching for prefixes
and antifactors

Basic tool for searching prefixes of the pattern is a suffix automaton constructed for reversed
pattern. Suffix automaton is accepting finite languages Suf(P%) composed of all suffixes of
reversed pattern PT. It means, that it accepts all prefixes of pattern P during reading of the
text from right to left.

14.1 Exact backward searching of prefixes of pattern in text

Exercise 14.1

Let pattern be baba. Construct suffix automaton for reversed pattern baba™, which accepts
the set Suf(baba’®) composed of all suffixes of string abab. Use this automaton for backward
searching of prefixes of the pattern. Suf(baba®) = {e,b,ab,bab,abab}. Set Suf(baba®)
contains all reversed prefixes of pattern baba. We start by construction of finite automaton
M, which accepts the reversed pattern. Its transition diagram is depicted in Fig. 14.1.

OO0 00
Figure 14.1: Transition diagram of automaton M; accepting string abab from Exercise 14.1

The next step is the addition of e-transitions from initial state to all other states. The
result is the finite automaton My having transition diagram depicted in Fig. 14.2.

Figure 14.2: Transition diagram of finite automaton My accepting all suffixes of string abab =
(baba)® from Exercise 14.1

To obtain deterministic suffix automaton the two standard operations will be used - re-
moval e-transitions and determinisation. Suffix automaton Mj after removal e-transitions is
depicted in Fig. 14.3.

Figure 14.3: Transition diagram of the suffix automaton M3 after removal of e-transitions

In case, when no symbol in pattern is repeating which means that all symbols of the
pattern are different, automaton M3 is deterministic and the procedure is finished. If at
least one symbol in pattern is repeating then, automaton M3 is nondeterministic and it is

139



necessary to make the determinisation. In our case transition diagram of the deterministic
suffix automaton My is depicted in Fig. 14.4. O

Figure 14.4: Transition diagram of the deterministic suffix automaton M, from Exercise 14.1

We use suffix automaton M, from Exercise 14.1 for searching of pattern P = baba in text
T = aaaabbabab. The pattern is placed at the beginning of the text and the longest prefix
of the pattern is backward searched. If the shortest prefix is found then the shift is given by
the difference of the pattern and the length of the found prefix. If no prefix is found the shift
is equal to the length of the pattern. The longest prefix is then searching in all cases. The
algorithm for the searching of prefixes uses suffix automaton for reversed pattern (in our case
My). For determination of the length of shift the following variables will be used:

m — length of pattern,
position — position of symbol in text, corresponding to the last symbol of the pattern,
tcounter — transition counter,

Iprefiz — length of the longest found prefix.

The configuration of the algorithm is a quadruple (g, position — tcounter, tcounter, lpre fix),
where ¢ is the state of suffix automaton. The initial configuration is (0,m,0,0).

For text T = 11213/41516]789]10 and pattern P = baba
alalalalblblalb|lal| b

the searching algorithm performs this sequence of transitions:
(0,4,0,0) F* (13,3,1,0).

The next transition in the suffix automaton is not possible and the length of prefix is 0,
therefore the shift will be 4 — 0 positions in text to the right:

- (0,8,0,0)
Fb(24,7,1,1)
e (3,6,2,1)
b (4,5,3,3)

The next transition is not possible and the length of prefix is 3, therefore the shift will be
4 — 3 =1 position to the right:

F (0,9,0,0)
e (13,8,1,0)
Fb o (24,7,2,2)
e (3,6,3,2)
Fb (4,5,4,4)

The pattern is found, shift has the length 2 (length of period) to the right:
+ (0,11,0,0).

140



Because position is greater the length of text, searching is finished. It can be seen from this
sequence of transitions that the algorithm is not effective, because the found prefix is checked
up again. The algorithm can be modified order to avoid the checking of found prefix again.
An additional variable will be introduced:

ncomp —number of necessary comparisons.

Its initial value will be the length of shift and during every transition it is decreased by one.
Its value is equal to zero if the pattern is found.

The configuration of the algorithm will be in this case fivetuple (g, position — tcounter,
tecounter, lpre fiz, ncomp). The initial configuration is (0,m,0,0,m).

For text T the searching algorithm performs the sequence of transitions:

(0,4,0,0,4)
-
l_b
La
l_b
-
La
-

(13,3,1,0,3) shift by 4

(0,8,0,0,4)

(247 77 1? 17 3)

(3,6,2,1,2)

(4,5,3,3,1)  shift by 1

(0,9,0,0,1)

(13,8,1,0,0) pattern found, shift by 2
(0,11,0,0,2) finish.

In this case the automaton performed 8 transitions, while in the preceding case it per-

formed 11 transitions.

O

141



15 Backward pattern matching of finite set of patterns

15.1 Backward searching finite set of patterns — searching of repeating
suffixes

Exercise 15.1

Let set of patterns be S = {bbaba, babaa} over alphabet A = {a,b}. Compute shifts for it.
Transition diagrams of nondeterministic suffix automaton and the backbone of the determin-
istic suffix automaton for set S are depicted in Fig. 15.1.Transition table of the backbone

Figure 15.1: Transition diagrams of the nondeterministic suffix automaton and the back-
bone of the deterministic suffix automaton for set of patterns S = {bbaba’®, babaa®} from
Exercise 15.1

is shown in Table 15.1. In this table are shown only transitions of the backbone of the
deterministic suffix automaton. Suffix repetition table (GSS table) has the following form:

142



d-subset | Suffix Repetititons
1223142 a (1 F), (2% ,S) 31, G), ( Q)
21324152 | ba | (21, F), (3%, F), (41, 9),( AS)
3142 aba (31,53 (42 1?)
4152 abab | (41, F), (52,55
The GSS and GSS,y: table has the following form:
state 0| 122342 | 21324152 | 3142 | 4152 | 51 |22 | 32 | 42 52
Suffix € a ba aba | abab | bbaba | aa | baa | abaa | babaa
GSS(state) |1 * 1 1 1 5 515 5 5
GSSopi(state) | 1 * 1 5 51 5 5 5

* — Shift is not defined, because transitions for both a and b §(1223142

are defined.

a b

0 1223142
1223142 22 21324152
21324152 | 3142

3142 4152

4152 51

22 32

32 42

42 52

a) and §(1223%42 b)

|

Table 15.1: Transition table of the backbone of deterministic suffix automaton for set S¥ =
{ababb, aabab} from Exercise 15.1

143



16 Approximate backward pattern matching

16.1 Searching for approximate prefixes

The basic tool for backward pattern matching of approximate prefixes is an approximate
suffix automaton constructed for reversed pattern. The Hamming distance is used in the next
exercises. The Hamming suffix automaton accepts finite language HSuf fi(P) composed of
all suffixes of pattern P and all strings having Hamming distance less or equal to k from this
suffixes.

Exercise 16.1

Construct approximate good prefix shift (AGPS) table for pattern P = baba for Hamming
distance k = 1. First we construct the Hamming suffix automaton HSuf fi(P) for reversed
pattern P = baba®® = abab. This construction is started by construction of finite automaton
M7 accepting reversed pattern and all string having Hamming distance equal to one from it.
Transition diagram of this automaton is depicted in Fig. 16.1

Figure 16.1: Transition diagram of automaton M; accepting string P = baba™ = abab and
strings with distance one from pattern P from Exercise 16.1

The next step is an addition of e-transitions from the initial state to the zero level states (it
corresponds to the exact suffixes). The automaton My with the e-transitions has transition
diagram depicted in Fig. 16.2 The resulting automaton after replacing of e-transitions is

Figure 16.2: Transition diagram of suffix automaton Ms with e-transitions accepting language
H Sufi(abab) from Exercise 16.1

automaton M3 having transition diagram depicted in Fig. 16.3.

The last step is the construction of the equivalent deterministic suffix automaton Mj.
Transition tables of the nondeterministic suffix automaton M3 and an equivalent determin-
istic suffix automaton are shown in Table 16.1. Transition diagram of deterministic suffix

144



Figure 16.3: Transition diagram of nondeterministic suffix automaton M3 accepting all suffixes
of the language HSufi(abab) from Exercise 16.1

a b a b

0| 132/4" | 241’3 0 132'4" | 241’3/
1 2/ 2 132/4" | 2'3'4’ 24
2 3 3 241’3/ 3 234/
3 4 4 2/3'4/ 3 4

4 24 3 3/
1 2/ 3 4/ 4

2/ 3 4

3/ 4/ 3 4’
4 4’

Table 16.1: Transition tables of finite automaton M3 and automaton M, from Exercise 16.1

automaton M, is depicted in Fig. 16.4.

We use the suffix automaton My for searching of pattern P = baba in text T' = aaabbbabab.
The searching algorithm behave in the same way as for exact searching (see Exercise 14.1).
The number of errors in the found pattern can be fixed according to the state reached when
the pattern is found. In our case the pattern is found without errors in state 4. The pattern
is found with one error in state 4’. The configuration of searching algorithm is the same as
for exact searching (see Exercise 16.1). For text

1123145678910

T:aaabbbabab

145



Figure 16.4: Transition diagram of deterministic suffix automaton My accepting all suffixes
of the language HSuf1(abab) from Exercise 16.1

performs the searching algorithm this sequence of transitions:

(0,4,0,0,4) -0 (241'3',3,1,1)
4 (3,2,2,1) shift by 3
l_
132’4’ 6,1,1)

(

0,

(

(

(3

4, 3 4 2) pattern found with one error, shift by 2
(0,9,0,0)

a(132'4/,8,1,1)

b (24,7,2,2)

“(3,
* (4,
(

4 5 4 2) pattern found without errors, shift by 2
0,11,0,0)  finish

For optimisation it is needed to define approximate period and approximate border. O

146



