On the Number of Distinct Squares

Abstract

Frantisek Franek

Department of Computing and Software
McMaster University, Hamilton, Ontario, Canada

franek@mcmaster.ca

Abstract. Counting the number of types of squares rather than their occurrences, we consider the problem of bounding the maximum number of distinct squares in a string. Fraenkel and Simpson showed in 1998 that a string of length n contains at most $2n$ distinct squares and indicated that all evidence pointed to n being a natural universal upper bound. Ilie simplified the proof of Fraenkel-Simpson’s key lemma in 2005 and presented in 2007 an asymptotic upper bound of $2n\Theta(\log n)$. We show that a string of length n contains at most $\left\lfloor \frac{11n}{6} \right\rfloor$ distinct squares for any n. This new universal upper bound is obtained by investigating the combinatorial structure of FS-double squares (named so in honour of Fraenkel and Simpson’s pioneering work on the problem), i.e. two rightmost-occurring squares that start at the same position, and showing that a string of length n contains at most $\left\lfloor \frac{5n}{6} \right\rfloor$ FS-double squares. We will also discuss a much more general approach to double-squares, i.e. two squares starting at the same position and satisfying certain size conditions. A complete, so-called canonical factorization of double-squares that was motivated by the work on the number of distinct squares is presented in a separate contributed talk at this conference. The work on the problem of the number of distinct squares is a joint effort with Antoine Deza and Adrien Thierry.

At the time of the presentation of this talk, the slides of the talk are also available at http://www.cas.mcmaster.ca/~franek/PSC2014/invited-talk-slides.pdf

This work was supported by the Natural Sciences and Engineering Research Council of Canada

References

