Finding Characteristic Substrings from Compressed Texts

Shunsuke Inenaga¹ and Hideo Bannai²

¹ Graduate School of Information Science and Electrical Engineering, Kyushu University, Japan
ënaga@c.csce.kyushu-u.ac.jp
² Department of Informatics, Kyushu University, Japan
bannai@inf.kyushu-u.ac.jp

Abstract. Text mining from large scaled data is of great importance in computer science. In this paper, we consider fundamental problems on text mining from compressed strings, i.e., computing a longest repeating substring, longest non-overlapping repeating substring, most frequent substring, and most frequent non-overlapping substring from a given compressed string. Also, we tackle the following novel problem: given a compressed text and compressed pattern, compute the representative of the equivalence class of the pattern w.r.t. the text. We present algorithms that solve the above problems in time polynomial in the size of input compressed strings. The compression scheme we consider is straight line program (SLP) which has exponential compression, and therefore our algorithms are more efficient than any algorithms that work on uncompressed strings.

1 Introduction

Text mining from large scaled data, e.g. biological and web data, is currently a very important topic in computer science [2]. The sheer size of the data makes the task difficult, and hence, it is convenient to store these data in a compressed form. The question is if it is possible to perform text mining operations on compressed strings.

In this paper, we consider the following fundamental text mining problems from compressed strings: given a compressed form \( T \) of a string \( T \), compute (1) a longest repeating substring of \( T \), (2) a longest non-overlapping repeating substring of \( T \), (3) a most frequent substring of \( T \), (4) a most frequent non-overlapping substring of \( T \). We present algorithms to solve Problem 1 in \( O(n^4 \log n) \) time and \( O(n^3) \) space, Problem 2 in \( O(n^6 \log n) \) time and \( O(n^3) \) space, Problem 3 in \( O(|\Sigma|^2 n^2) \) time and \( O(n^2) \) space, and Problem 4 in \( O(n^4 \log n) \) time and \( O(n^3) \) space, where \( n \) is the size of \( T \) and \( \Sigma \) is the alphabet. We also consider the following problem: given compressed forms of two strings \( T \) and \( P \), compute the representative of the string equivalence class [1] of \( P \) in \( T \). We present an \( O(n^4 \log n) \)-time \( O(n^3) \)-space algorithm to solve this problem, where \( n \) denotes the total size of the two compressed representations. By computing the representative of the equivalence class, we can retrieve the left and right contexts of \( P \) in \( T \). The equivalence class and its representative have played central roles in the discovery of characteristic expressions in classical Japanese poems [13], and in a blog spam detection algorithm [10]. To the best of our knowledge, our algorithms are the first to solve the above problems without decompression.

The text compression scheme we consider in this paper is straight line program (SLP). SLP is a context-free grammar in the Chomsky normal form and generates a single string. SLP is an abstract model of many kinds of text compression schemes, as
the resulting encoding of the LZ-family [14,15], run-length, multi-level pattern matching code [5], Sequitur [11] and so on, can quickly be transformed into SLPs [3,12]. The important property of SLP is that it allows exponential compression, i.e., the original (uncompressed) string length $N$ can be exponentially large w.r.t. the corresponding SLP size $n$. Therefore, our algorithms are asymptotically faster than any approaches that treat uncompressed strings.

**Related Work.** Little is known for text mining from compressed strings. Gäsieniec et al. [3] stated that it is possible to compute a succinct representation of all squares that appear in a given compressed string of size $n$ in $O(n^6 \log^2 N)$ time. Matsubara et al. [8] presented an $O(n^4)$-time $O(n^2)$-space algorithm to compute a succinct representation of all maximal palindromes from a given SLP-compressed string.

## 2 Preliminaries

### 2.1 Notations

For any set $U$ of integers and an integer $k$, we denote $U \oplus k = \{i + k \mid i \in U\}$ and $U \ominus k = \{i - k \mid i \in U\}$.

Let $\Sigma$ be a finite alphabet. An element of $\Sigma^*$ is called a string. The length of a string $T$ is denoted by $|T|$. The empty string $\varepsilon$ is a string of length 0, namely, $|\varepsilon| = 0$. For a string $T = XYZ$, $X$, $Y$ and $Z$ are called a prefix, substring, and suffix of $T$, respectively. The $i$-th character of a string $T$ is denoted by $T[i]$ for $1 \leq i \leq |T|$, and the substring of a string $T$ that begins at position $i$ and ends at position $j$ is denoted by $T[i : j]$ for $1 \leq i \leq j \leq |T|$. For convenience, let $T[i : j] = \varepsilon$ if $j < i$.

For any strings $T$ and $P$, let $\text{Occ}(T, P)$ be the set of occurrences of $P$ in $T$, i.e.,

$$\text{Occ}(T, P) = \{k > 0 \mid T[k : k + |P| - 1] = P\}.$$

For any two strings $T$ and $S$, let $\text{LCPref}(T, S)$ and $\text{LCSuf}(T, S)$ denote the length of the longest common prefix and suffix of $T$ and $S$, respectively.

For any string $T$, let $T$ denote the reversed string of $T$, i.e., $T = T[|T|] \cdots T[2]T[1]$. A period of a string $T$ is an integer $p$ ($1 \leq p \leq |T|$) such that $T[i] = T[i + p]$ for any $i = 1, 2, \ldots, |T| - p$.

For any two strings $T$ and $S$, we define the set $\text{OL}(T, S)$ as follows:

$$\text{OL}(T, S) = \{k > 0 \mid T[|T| - k + 1 : |T|] = S[1 : k]\}$$

Namely, $k \in \text{OL}(T, S)$ iff the suffix of $T$ of length $k$ ($k > 0$) matches the prefix of $S$ of length $k$.

### 2.2 Text Compression by Straight Line Programs

In this paper, we treat strings described in terms of *straight line programs* (SLPs). A straight line program $T$ is a sequence of assignments such that

$$X_1 = \text{expr}_1, X_2 = \text{expr}_2, \ldots, X_n = \text{expr}_n,$$

where each $X_i$ is a variable and each $\text{expr}_i$ is an expression either

- $\text{expr}_i = a$ $(a \in \Sigma)$, or
- $\text{expr}_i = X_\ell X_r$ $(\ell, r < i)$.

\(^1\) An important exception is compression schemes based on the Burrows-Wheeler transform.
Denote by $T$ the string derived from the last variable $X_n$ of the program $T$. The size of the program $T$ is the number $n$ of assignments in $T$. We remark that $|T| = O(2^n)$. Figure 1 shows the derivation tree of an SLP which derives string $aababaababaab$.

When it is not confusing, we identify a variable $X_i$ with the string derived from $X_i$. Then, $|X_i|$ denotes the length of the string derived from $X_i$.

For any variable $X_i$ of $T$ with $1 \leq i \leq n$, we define $\overline{X_i}$ as follows:

$$\overline{X_i} = \begin{cases} a & \text{if } X_i = a \ (a \in \Sigma), \\ \overline{X_r} \overline{X_t} & \text{if } X_i = X_t X_r \ (\ell, r < i). \end{cases}$$

Let $\overline{T}$ be the SLP consisting of variables $\overline{X_i}$ for $1 \leq i \leq n$. It is shown in [8] that SLP $\overline{T}$ derives string $\overline{T}$ and $\overline{T}$ can be easily computed from SLP $T$ in $O(n)$ time.

**Pattern Matching on SLP-compressed Strings.** Here we briefly recall some existing results on pattern matching for SLP-compressed strings.

Let $Y_j$ denote a variable of SLP $P$ of size $m$ that generates string $P$, for $1 \leq j \leq m$.

For any SLP variables $X_i = X_t X_r$ and $Y_j$, we define the set $Occ^\triangle(X_i, Y_j)$ of all occurrences of $Y_j$ that cover or touch the boundary between $X_t$ and $X_r$, namely,

$$Occ^\triangle(X_i, Y_j) = \{s > 0 : X_i[s : s + |Y_j| - 1] = Y_j, |X_i| - |Y_j| + 1 \leq s \leq |X_t|\}.$$

**Lemma 1 ([9]).** For any SLP variables $X_i$ and $Y_j$, $Occ^\triangle(X_i, Y_j)$ forms a single arithmetic progression. Moreover, if $|Occ^\triangle(X_i, Y_j)| \geq 3$, then the common difference of the arithmetic progression is the smallest period of $Y_j$.

**Lemma 2 ([9]).** A membership query to $Occ(T, P)$ can be answered in $O(n)$ time, provided that $Occ^\triangle(X_i, Y_m)$ is already computed for every $X_i$.

**Theorem 3 ([7]).** $Occ^\triangle(X_i, Y_j)$ can be computed in a total of $O(n^2 m)$ time and $O(nm)$ space for every $1 \leq i \leq n$ and $1 \leq j \leq m$, using a DP table $App$ of size $n \times m$ such that $App[i, j]$ stores an arithmetic progression for $Occ^\triangle(X_i, Y_j)$.

**Computing Overlaps of SLP-compressed Strings.** The set of overlaps between two variables can be efficiently computed as follows (assume $n > m$).

**Lemma 4 ([4]).** For any SLP variables $X_i$ and $Y_j$, $OL(X_i, Y_j)$ can be represented by $O(n)$ arithmetic progressions.

**Theorem 5 ([4]).** $OL(X_i, Y_j)$ can be computed in total of $O(n^4 \log n)$ time and $O(n^3)$ space for every $1 \leq i \leq n$ and $1 \leq j \leq m$.
2.3 The FM function

For any two SLP variables \(X_i, Y_j\) and any integer \(k\) with \(1 \leq k \leq |X_i|\), we define function \(FM(X_i, Y_j, k)\) which returns the length of the longest common prefix of \(X_i[k : |X_i|]\) and \(Y_j\), that is,

\[
FM(X_i, Y_j, k) = LCPref(X_i[k : |X_i|], Y_j).
\]

Lemma 6 ([4]). For any SLP variables \(X_i, Y_j\) and integer \(k\), \(FM(X_i, Y_j, k)\) can be computed in \(O(n \log n)\) time, provided that \(OL(X_i', Y_j')\) is already computed for any \(1 \leq i' \leq i\) and \(1 \leq j' \leq j\).

3 Computing Repeating Substrings from Compressed Text

3.1 Problems

A string \(P\) is said to be a repeating substring of a string \(T\) if \(|Occ(T, P)| \geq 2\). A longest repeating substring of \(T\) is a longest string \(P\) of \(T\) such that \(|Occ(T, P)| \geq 2\). A most frequent substring of \(T\) is a string \(P\) such that \(|Occ(T, P)| \geq |Occ(T, Q)|\) for any other string \(Q\).

Any two occurrences \(k_1, k_2 \in Occ(T, P)\) with \(k_1 < k_2\) are said to overlap if \(k_1 + |P| \geq k_2\). Otherwise, they are said to non-overlap. A longest non-overlapping repeating substring of \(T\) is a longest string \(P\) such that there exist at least two non-overlapping occurrences in \(Occ(T, P)\). A most frequent non-overlapping substring of \(T\) is a string \(P\) such that it has the most non-overlapping occurrences in \(T\).

In this section we consider the following problems.

**Problem 1 (Computing longest repeating substring from SLP).** Given an SLP \(T\) that derives a string \(T\), compute two occurrences of a longest repeating substring \(P\) of \(T\) and its length \(|P|\).

**Problem 2 (Computing longest non-overlapping repeating substring from SLP).** Given an SLP \(T\) that derives a string \(T\), compute two non-overlapping occurrences of a longest non-overlapping repeating substring \(P\) of \(T\) and its length \(|P|\).

**Problem 3 (Computing most frequent substring from SLP).** Given an SLP \(T\) that derives a string \(T\), compute a most frequent substring \(P\) of \(T\) and a representation and the cardinality of \(Occ(T, P)\).

**Problem 4 (Computing most frequent non-overlapping substring from SLP).** Given an SLP \(T\) that derives a string \(T\), compute a most frequent non-overlapping substring \(P\) of \(T\), and a representation and the number of non-overlapping occurrences of \(P\) in \(T\).

By “representation” in Problems 3 and 4 we mean some succinct (polynomial-sized) representation of the sets. This is due to the fact that the cardinality of the sets can be exponentially large w.r.t. the input size.

In what follows, let \(n\) be the size of SLP \(T\) and let \(X_i\) denote each variable of \(T\) for \(1 \leq i \leq n\).
Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Figure 2. Illustration for Observation 7. The six cases for two distinct occurrences of a substring $Y$ of $X_i$.

3.2 Solution to Problem 1

A key observation for solving Problem 1 is the following.

Observation 7. For any SLP variable $X_i = X_\ell X_r$ and any string $Y$, assume that $|\text{Occ}(X_i, Y)| \geq 2$. Any two occurrences $k_1, k_2 \in \text{Occ}(X_i, Y)$ with $k_1 < k_2$ fall into one of the six following cases (see also Figure 2):

1. $k_1, k_2 \in \text{Occ}(X_\ell, Y)$.
2. $k_1, k_2 \in \text{Occ}(X_r, Y)$.
3. $k_1 \in \text{Occ}(X_\ell, Y)$ and $k_2 \in \text{Occ}(X_r, Y)$.
4. $k_1 \in \text{Occ}(X_\ell, Y)$ and $k_2 \in \text{Occ}^\Delta(X_i, Y)$.
5. $k_1 \in \text{Occ}^\Delta(X_i, Y)$ and $k_2 \in \text{Occ}(X_r, Y)$.
6. $k_1, k_2 \in \text{Occ}^\Delta(X_i, Y)$.

Observation 7 implies that a longest repeating substring of $T$ can be obtained by computing a longest repeating substring for every SLP variable $X_i$ in each case. Case 1 and Case 2 are symmetric, and these two cases actually belong to one of the above cases with respect to variables $X_\ell$ and $X_r$, respectively. Since Case 4 and Case 5 are symmetric, we focus on Case 3, Case 4, and Case 6 in the sequel.

The following lemma is useful to deal with Case 3.

Lemma 8 ([8]). For every pair of SLP variables $X_i$ and $X_j$, we can compute the length of a longest common substring of $X_i$ and $X_j$ plus its occurrence position in $X_i$ and $X_j$ in $O(n^2 \log n)$ time, provided that $\text{OL}(X_i', X_j')$ is already computed for any $1 \leq i' \leq i$ and $1 \leq j' \leq j$.

Now we have the next lemma.

Lemma 9. For every SLP variable $X_i$, two occurrences and the length of a longest repeating substring in Case 3 can be computed in $O(n^2 \log n)$ time.
Figure 3. Illustration for Observation 10.

Figure 4. Illustration for Observation 11. The black rectangles of the left and right diagrams are an element of $OL(X_{\ell}, X_t)$ and $OL(X_s, X_r)$, respectively.

Proof. Note that a longest repeating substring of $X_i = X_{\ell}X_r$ in Case 3 is indeed a longest common substring of $X_{\ell}$ and $X_r$. Hence the lemma holds by Lemma 8. $\Box$

Next we consider Case 4. A key observation is the following:

Observation 10. For the first occurrence of $Y$ in Case 4 of Observation 7, there always exists a variable $X_j$ such that $X_j$ is a descendant of $X_{\ell}$ or $X_{\ell}$ itself, and the first occurrence of $Y$ touches or covers the boundary of $X_j$ (see also Figure 3).

For any SLP variables $X_i = X_{\ell}X_r$ and $X_j = X_sX_t$ and any non-negative integer $z \in OL(X_{\ell}, X_t) \cup \{0\}$, let $h_1$ and $h_2$ be the maximum non-negative integers such that

$$X_i[|X_{\ell}| - z - h_1 + 1 : |X_{\ell}| + h_2] = X_j[|X_s| - h_1 + 1 : |X_s| + z + h_2].$$

That is, $h_1 = LCSuf(X_{\ell}[1 : |X_{\ell}| - z], X_s)$ and $h_2 = LCPref(X_r, X_t[z + 1 : |X_t|])$. Let

$$Ext_{X_i, X_j}(z) = \begin{cases} 
 z + h_1 + h_2 & \text{if } X_i = X_{\ell}X_r \text{ and } X_j = X_sX_t, \\
 z & \text{if } X_i \text{ or } X_j \text{ is constant.}
\end{cases}$$

For a set $S$ of integers, we define $Ext_{X_i, X_j}(S) = \{Ext_{X_i, X_j}(z) \mid z \in S\}$. $Ext_{X_j, X_i}(z)$ and $Ext_{X_j, X_i}(S)$ are defined similarly.

Observation 11. The length of a longest repeating substring of Case 4 is equal to the maximum element of

$$\bigcup_{X_j \in A} (Ext_{X_i, X_j}(OL(X_{\ell}, X_t)) \cup Ext_{X_i, X_j}(0) \cup Ext_{X_j, X_i}(OL(X_s, X_r))) \quad (1)$$

where $A = \{X_j = X_sX_t \mid X_j \text{ is a descendant of } X_{\ell} \text{ or } j = \ell\}$. (See also Figure 4.)
Now we have the following lemma.

**Lemma 12.** For every SLP variable $X_i$, two occurrences and the length of a longest repeating substring in Case 4 can be computed in $O(n^3 \log n)$ time, provided that $OL(X_{i'}, X_{j'})$ and $Occ^\Delta(X_{i'}, X_{j'})$ are already computed for any $1 \leq i' \leq n$ and $1 \leq j' \leq n$.

**Proof.** Let $X_i = X_t X_r$. It was proven by Lemma 4 of [8] that, for any variable $X_j = X_s X_t$ mentioned in Observation 10, $\max(Ext_{X_i,X_s}(OL(X_t,X_t)) \cup Ext_{X_i,X_r}(OL(X_s,X_r)))$ can be computed in $O(n^2 \log n)$ time, provided that $OL(X_{i'}, X_{j'})$ is already computed for any $1 \leq i' \leq n$ and $1 \leq j' \leq n$.

Recall Observation 11. Since the number of distinct descendants of any variable $X_i$ is at most $n - 1$, we can compute Equation (1) in $O(n^3 \log n)$ time. Let $X_h$ be the variable that gives the maximum value of Equation (1). We can retrieve one position of $Occ(X_t, X_h)$ in $O(n^2)$ time from $Occ^\Delta(X_t, X_h), \ldots, Occ^\Delta(X_t, X_h)$. Then it is easy to compute two occurrences of the longest repeating substring in constant time. \hfill \Box

It is not difficult to see that Case 6 can be solved in a similar way to Case 4. By Lemma 9, Lemma 14, Theorem 3, and Theorem 5, we obtain the main result of this subsection.

**Theorem 13.** Problem 1 can be solved in $O(n^4 \log n)$ time and $O(n^3)$ space.

### 3.3 Solution to Problem 2

Here we show how to find a longest non-overlapping repeating substring from a given SLP. The algorithm is based on the one proposed in Section 3.2. Below, we give our strategy to find a maximal non-overlapping repeating substring from the overlapping repeating substring found by the algorithm of Section 3.2.

An obvious fact is that Case 3 of Observation 7 only deals with a non-overlapping repeating substring. Hence we focus on Case 4. The other cases are solved similarly.

**Lemma 14 ([6]).** Let $T$ be any SLP of size $n$ that generates string $T$. For any substring $Y$ of $T$, it takes $O(n)$ time construct a new SLP of size $O(n)$ which generates the substring $Y$.

**Lemma 15.** Let $k_1$ and $k_2$ be any overlapping occurrences of string $Y$ in string $X$ such that $k_1 < k_2$. Let $p$ be the smallest period of $Y$. Then, a longest non-overlapping repeating substring in $X[k_1 : k_2 + |Y| - 1]$ is $Y[1 : k_2 - 1 + pl]$, where $l = \lfloor (|Y| - k_2 + k_1)/2p \rfloor$.

**Proof.** The length of the overlap is $|Y| - k_2 + k_1$, $Y[1 : p]$ appears in $[(|Y| - k_2 + k_1)/p]$ times in the overlap part $Y[k_2 : |Y| + k_1]$. Hence the lemma holds. \hfill \Box

**Lemma 16.** For every SLP variable $X_i$, two occurrences and the length of a longest non-overlapping repeating substring in Case 4 of Observation 7 can be computed in $O(n^3 \log n)$ time and $O(n^3)$ space, provided that $OL(X_{i'}, X_{j'})$ is already computed for any $1 \leq i' \leq n$ and $1 \leq j' \leq n$.

**Proof.** The proof is based on the proof of Lemma 8 of [8].

We consider $Ext_{X_i,X_j}(OL(X_t,X_t))$ of Observation 11. For each descendant $X_j$ of $X_i$, it is sufficient to consider the leftmost occurrence $\gamma$ of $X_j$ in the derivation tree.
of \(X_i\), since no other occurrences of \(X_j\) can correspond to longer non-overlapping repeating substring than the leftmost occurrence.

Let \(\langle a, d, q \rangle\) denote any of the \(O(n)\) arithmetic progressions in \(OL(X_t, X_r)\), where \(a\) denotes the minimal element, \(d\) does the common difference and \(q\) does the number of elements of the progression. That is, \(\langle a, d, q \rangle = \{a + (i - 1)d \mid 1 \leq i \leq q\}\).

Assume \(q > 1\) and \(a < d\), as the case where \(q = 1\) or \(a = d\) is easier to show. Let \(u = X_t[1 : a]\) and \(v = X_r[a + 1 : d]\).

Let \(e_1, e_2\) be the largest integer such that \(X_t[|X_t| - e_2 + 1 : |X_t| + e_1]\) is the longest substring of \(X_t\) that contains \(X_t[|X_t| - d + 1 : |X_t|]\) and has a period \(d\). Similarly, let \(e_3, e_4\) be the largest integer such that \(X_s[|X_s| - e_4 + 1 : |X_s| + e_3]\) is the longest substring of \(X_s\) that contains \(X_s[|X_s| + 1 : |X_s| + d]\) and has a period \(d\). More formally,

\[
\begin{align*}
e_1 &= \text{LCPref}(X_r, (vu)^*) = \begin{cases} FM(X_t, X_r, a + 1) & \text{if } FM(X_t, X_r, a + 1) < d, \\ FM(X_r, X_r, d + 1) + d & \text{otherwise}, \end{cases} \\
e_2 &= \text{LCSuf}(X_t, (vu)^*) = FM(X_t, X_t, d + 1) + d, \\
e_3 &= \text{LCPref}(X_t, (uv)^*) = FM(X_r, X_r, d + 1) + d, \\
e_4 &= \text{LCSuf}(X_s, (uv)^*) = \begin{cases} FM(X_t, X_s, a + 1) & \text{if } FM(X_t, X_s, a + 1) < d, \\ FM(X_r, X_s, d + 1) + d & \text{otherwise}, \end{cases}
\end{align*}
\]

where \((vu)^*\) and \((uv)^*\) denote infinite repetitions of \(vu\) and \(uv\), respectively.

Let \(k \in \langle a, d, q \rangle\). We categorize \(\text{Ext}_{X_i, X_j}(k)\) depending on the value of \(k\), as follows.

1. When \(k < \min\{e_3 - e_1, e_2 - e_4\}\). If \(k - d \not\in \langle a, d, q \rangle\), then we have \(\text{Ext}_{X_i, X_j}(k) = \text{Ext}_{X_i, X_j}(k - d) + d\).

2. When \(k > \max\{e_3 - e_1, e_2 - e_4\}\). If \(k + d \not\in \langle a, d, q \rangle\), then we have \(\text{Ext}_{X_i, X_j}(k) = \text{Ext}_{X_i, X_j}(k + d) + d\).

3. When \(\min\{e_3 - e_1, e_2 - e_4\} < k < \max\{e_3 - e_1, e_2 - e_4\}\). In this case we have \(\text{Ext}_{X_i, X_j}(k) = \min\{e_1 + e_2, e_3 + e_4\}\) for any \(k\) with \(\min\{e_3 - e_1, e_2 - e_4\} < k < \max\{e_3 - e_1, e_2 - e_4\}\).

4. When \(k = e_3 - e_1\). In this case we have

\[
\text{Ext}_{X_i, X_j}(k) = k + \min\{e_2 - k, e_4\} + \text{LCPref}(X_t[|X_t| - k : |X_t|], X_r) \\
= k + \min\{e_2 - k, e_4\} + FM(X_t, X_r, k + 1).
\]

5. When \(k = e_2 - e_4\). In this case we have

\[
\text{Ext}_{X_i, X_j}(k) = k + \text{LCSuf}(X_t[|X_t| - k : |X_t|], X_s) + \min\{e_1, e_3 - k\} \\
= k + FM(X_t, X_s, k + 1) + \min\{e_1, e_3 - k\}.
\]

6. When \(k = e_3 - e_1 = e_2 - e_4\). In this case we have

\[
\text{Ext}_{X_i, X_j}(k) = k + \text{LCSuf}(X_t[|X_t| - k : |X_t|], X_s) + \text{LCPref}(X_t[|X_t| + 1 : |X_t|], X_r) \\
= k + FM(X_t, X_t, k + 1) + FM(X_t, X_r, k + 1).
\]

Consider Case (1). For any \(k - d, k \in \langle a, d, q \rangle\), if the occurrences of the substring that corresponds to \(\text{Ext}_{X_i, X_j}(k - d)\) overlap, then the substring that corresponds to \(\text{Ext}_{X_i, X_j}(k)\) also overlap. Note also that these substrings have the same ending position \(b\) in \(X_i\), and have the same beginning position \(c\) in \(X_j\). Since a membership query to the triple \(\langle a, d, q \rangle\) can be answered in constant time, we can find the largest
Lemma 14, the length of a longest non-overlapping repeating substring in string $P$ can be solved in $O(n)$ space. Consider Case (4). Let $Z$ be the unique substring that corresponds to $\text{Ext}_{\delta_{X_i}X_j}(k)$. Let $x$ and $y$ be the integers such that $x < y$ and $X_h[x : x + |Z| - 1] = X_i[y : y + |Z| - 1] = Z$. If $x + \gamma + |Z| - 2 \geq y$, then we construct a new SLP $P$ that generates string $P = X_i[x + \gamma - 1 : y + |Z| - 1]$ and compute its smallest period. It is clear that $|P| - \max(\text{OL}(P, P) - \{|P|\})$ is the smallest period of $P$. By Theorem 5 and Lemma 14, the length of a longest non-overlapping repeating substring in $P$ can be computed in $O(n^2 \log n)$ time with $O(n^3)$ space. Similar arguments hold for Cases (5) and (6).

The values of $e_1, e_2, e_3, e_4$ can be computed by at most 6 calls of the $FM$ function, each taking $O(n \log n)$ time. Since there is $O(n)$ descendants of $X_i$, the total cost is $O(n^5 \log n)$ time and $O(n^3)$ space.

The next theorem follows from Lemma 16.

**Theorem 17.** Problem 2 can be solved in $O(n^6 \log n)$ time and $O(n^3)$ space.

### 3.4 Solution to Problem 3

Consider Problem 3 of computing a substring that most frequently occurs in $T$.

**Lemma 18.** For any non-empty strings $T$ and $P$, $\text{Occ}(T, P[1 : i]) \geq \text{Occ}(T, P)$ for any integer $0 \leq i \leq |P|$. The above monotonicity lemma implies that the empty string $\varepsilon$ is always the solution for Problem 3. To make the problem more interesting, we consider the following version of the problem where the output is a substring of length at least 2.

**Problem 5 (Computing most frequent substring of length at least 2 from SLP).** Given an SLP $T$ that derives a string $T$, compute a string $P$ such that $|P| \geq 2$ and $|\text{Occ}(T, P)| \geq |\text{Occ}(T, Q)|$ for any other string $Q$ with $|Q| \geq 2$.

Again, by the monotonicity lemma, it is sufficient only to consider a substring of length 2 as a solution to Problem 5.

The next lemma is fundamental for solving Problem 5.

**Lemma 19.** For any SLP variables $X_i$ and $Y_j$ with $|Y_j| \geq 2$, $|\text{Occ}(X_i, Y_j)|$ can be computed in $O(n)$ time, with $O(mn^2)$-time $O(n^2)$-space preprocessing.

**Proof.** Let $D$ be a dynamic programming table of size $n \times n$ such that $D[i, j]$ represents how many times $X_j$ appears in the derivation tree of $X_i$. After initializing all entries with 0, the value of each $D[i, j]$ is computed by the following recurrence:

$$D[i, j] = \begin{cases} 1 & \text{if } i = j, \\ D[\ell, j] + D[r, j] & \text{if } X_i = X_\ell X_r. \end{cases}$$

Then we obtain

$$|\text{Occ}(X_i, Y_j)| = \sum_{h=1}^{i} (D[i, h] \times |\text{Occ}^\Delta(X_h, Y_j) - \{|X_L| - |Y_j| + 1 \mid X_h = X_L X_R\})).$$
We remove an occurrence of $Y_j$ that touches the boundary of $X_h$ from $Occ^\Delta(X_h,Y_j)$, since this occurrence covers the boundary of some other variable (recall we have assumed $|Y_j| \geq 2$).

In the preprocessing stage, we compute $Occ^\Delta(X_i,Y_j)$ for each $1 \leq i \leq n$ and $1 \leq j \leq m$. It takes $O(n^2m)$ time and $O(nm)$ space by Theorem 3. Then we compute the $D$-table in $O(n^2)$ time and space. Hence the preprocessing cost is $O(n^2m)$ time and $O(n^2)$ space, assuming $n \geq m$.

By Lemma 1, the value of $|Occ^\Delta(X_i,Y_m) - \{ |X_i| - |Y_m| + 1 \}|$ is computable in constant time. Thus we can compute $|Occ(T,P)|$ in $O(n)$ time and space. \hfill $\square$

**Theorem 20.** Problem 5 can be solved in $O(|\Sigma|^2n^2)$ time and $O(n^2)$ space.

**Proof.** Let $n$ be the size of SLP $T$ and $X_i$ denote its variable for $1 \leq i \leq n$. For each pair of variables $X_h = a$ and $X_j = b$ such that $a,b \in \Sigma$, we construct a new SLP $S_{h,j} : Y_{h,j} = X_hX_j$, $X_h = a$, $X_j = b$. Then for each $S_{h,j}$, we compute $Occ^\Delta(X_i,Y_{h,j})$ for every variable $X_i$ of $T$. Then a string $Y_{h,j}$ for which $|Occ(X_n,Y_{h,j})|$ is maximum is a solution to Problem 5.

Since the size of each new SLP $S_{h,j}$ is constant, we can compute a DP table $App$ that correspond to $\{ Occ^\Delta(X_i,Y_{h,j}) \}_{i=1}^{nm}$ in $O(n^2)$ time and $O(n)$ space for each new SLP $S_{h,j}$ by Theorem 3.

Due to Lemma 19, $|Occ(X_n,Y_{h,j})|$ can be computed in $O(n)$ time with $O(n^2)$ time and space preprocessing. Note that we can use the same $D$-table of Lemma 19 to compute $|Occ(X_n,Y_{h,j})|$ for every $Y_{h,j}$. On the other hand, we can discard the $App$ table after $|Occ(X_n,Y_{h,j})|$ has been computed. Hence the total space requirement is $O(n^2)$. Since there are $O(|\Sigma|^2)$ new SLPs, it takes a total of $O(|\Sigma|^2n^2)$ time. \hfill $\square$

### 3.5 Solution to Problem 4

Here we consider Problem 4 of computing a substring that has the most non-overlapping occurrences in a string $T$, when given a corresponding SLP $T$.

For any string $P$ to overlap itself, $P$ has to be of length at least 2. Again, to make the problem more interesting, we consider the following problem.

**Problem 6 (Computing most frequent non-overlapping substring of length at least 2 from SLP).** Given an SLP $T$ that derives a string $T$, compute a string $P$ such that $|P| \geq 2$ and no other string $Q$ with $|Q| \geq 2$ has more non-overlapping occurrences in $T$ than $P$ does.

The next lemma is a non-overlapping version of Lemma 18.

**Lemma 21.** For any non-empty strings $T$ and $P$, if there are two non-overlapping occurrences of $P$ in $T$, then there are at least two non-overlapping occurrences of $P[1:i]$ in $T$ for any integer $0 \leq i \leq |P|$.

Hence it suffices to consider a substring of length 2 as a solution to Problem 6.

We are now ready to show the following theorem.

**Theorem 22.** Problem 6 can be solved in $O(n^4\log n)$ time and $O(n^3)$ space.

**Proof.** By Lemma 21, we consider a substring of length 2 as a solution to Problem 6.

For any string $P = ab$ with $a \neq b$, the set of its non-overlapping occurrences in $T$ is identical to $Occ(T,P)$, since $P$ cannot overlap with itself. Thus this case can be solved in the same way to Theorem 5.
Now consider any string $P = aa$. Although we will only show how to compute the number of its non-overlapping occurrences in $T$, it is easy to extend our method to computing a representation of its non-overlapping occurrences in $T$ without increasing asymptotic complexities. For any $a \in \Sigma$ and any variable $X_i$, let $\alpha_{X_i,a} = LCPref(X_i, a^*)$ and $\beta_{X_i,a} = LCSuf(X_i, a^*)$ where $a^*$ denotes an infinite repetition of $a$. Then, for any variable $X_h$, the number $H(X_h, aa)$ of non-overlapping occurrences of $aa$ in $X_h$ can be computed by the following recurrence:

$$H(X_h, aa) = \begin{cases} 
|Occ\triangle(X_h, aa)| & \text{if } |X_h| \leq 2, \\
H(X_{\ell}, aa) + H(X_r, aa) & \text{if } X_h = X_{\ell}X_r \text{ and } |X_h| > 2.
\end{cases}$$

Consider the case where $|X_h| \leq 2$. For each variable $X_h$, $|Occ\triangle(X_h, aa)|$ can be computed in total of $O(n^2)$ time and space, in the same way as mentioned in the proof of Theorem 20.

Now consider the other case. For any variable $X_i$, it holds that

$$\alpha_{X_i,a} = \begin{cases} 0 & \text{if } X_i[1] \neq a, \\
1 + FM(X_i, X_i, 2) & \text{if } X_i[1] = a.
\end{cases}$$

We can check whether $X_i[1] = a$ or not in $O(n)$ time, since the height of the derivation tree of $X_i$ is at most $n + 1$. Therefore, we can compute $\alpha_{X_i,a}$ in $O(n \log n)$ time by Lemma 6. Similar arguments hold for computing $\beta_{X_i,a}$. The number of patterns of the form $P = aa$ is $O(|\Sigma|)$. Thus we need $O(|\Sigma| n \log n)$ time for this case.

To compute the $FM$ function in $O(n \log n)$ time, we need to compute $OL(X_i, X_j)$ for any variables $X_i$ and $X_j$, taking $O(n^4 \log n)$ time and $O(n^3)$ space due to Theorem 5. Overall, it takes $O(n^4 \log n)$ time and $O(n^3)$ space to solve Problem 6. \hfill $\Box$

### 4 Computing the Representative of a Given Pattern from Compressed Text

#### 4.1 Problem

In this subsection, we begin with recalling the equivalence relations on strings introduced by Blumer et al. [1], and then state their properties.

We define two equivalence relations w.r.t. a string $T$ based on $Occ$ as follows. The equivalence relations $\equiv_L$ and $\equiv_R$ w.r.t. a string $T \in \Sigma^*$ are defined by:

$$Y \equiv_L Z \iff Occ(T, Y) = Occ(T, Z), \text{ and }$$

$$Y \equiv_R Z \iff Occ(T, Y) \oplus (|Y| - 1) = Occ(T, Z) \oplus (|Z| - 1),$$

where $Y$ and $Z$ are any strings in $\Sigma^*$. The equivalence classes of a string $Y$ with respect to $\equiv_L$ and $\equiv_R$ are denoted by $[Y]_{\equiv_L}$ and $[Y]_{\equiv_R}$, respectively.

For any substring $Y$ of $T$, let $\overline{Y}$ and $\overline{Y}$ denote the unique longest member of $[Y]_{\equiv_L}$ and $[Y]_{\equiv_R}$, respectively. Let $\overline{Y} = \alpha Y \beta$ such that $\alpha, \beta \in \Sigma^*$ are the strings satisfying $\overline{Y} = \alpha Y$ and $\overline{Y} = Y \beta$, respectively. Intuitively, $\overline{Y} = \alpha Y \beta$ means that:

- Every time $Y$ occurs in $T$, it is preceded by $\alpha$ and followed by $\beta$.
- Strings $\alpha$ and $\beta$ are longest possible.

We define another equivalence relation $\equiv$ w.r.t. $T$ by $Y \equiv Z \iff \overrightarrow{Y} = \overrightarrow{Z}$, and the equivalence class of a string $Y$ is denoted by $[Y]_{\equiv}$. String $\overrightarrow{Y}$ is called the representative of the equivalence class $[Y]_{\equiv}$.

The problem to be tackled in this section is the following.

**Problem 7.** Given two SLPs $T$ and $P$ that derive strings $T$ and $P$ respectively, compute an occurrence position and the length of the representative $\overrightarrow{T}$ w.r.t. $T$, if $|Occ(T, P)| \geq 1$.

### 4.2 Solution to Problem 7

Let $m$ be the size of SLP $P$, and let $Y_j$ denote each variable of SLP $P$ for $1 \leq j \leq m$. Assume without loss of generality that $m \leq n$.

**Theorem 23.** Problem 7 can be solved in $O(n^4 \log n)$ time and $O(n^3)$ space.

**Proof.** We only show how to compute the length and an occurrence position of $\overrightarrow{P}$, since those of $\overrightarrow{P}$ and $\overrightarrow{T}$ can be computed similarly.

We first compute $Occ^\triangle(X_i, Y_m)$ for each $X_i$ according to Theorem 3.

If the length of $\overrightarrow{P}$ is known, then it is trivial that an occurrence position of $\overrightarrow{P}$ can be computed from an occurrence position of $P = Y_m$ in $T = X_n$. An occurrence position of $Y_m$ in $X_n$ can be retrieved in $O(n^4)$ time using the $m$-th column of the $App$ table that correspond to $Occ^\triangle(X_1, Y_m), \ldots, Occ^\triangle(X_n, Y_m)$. Hence we concentrate on how to compute the length of $\overrightarrow{P}$ in the sequel.

For any variables $X_i$ and $X_h$, and integers $1 \leq k_i \leq |X_i|$ and $1 \leq k_h \leq |X_h|$, let $LE_{X_i, X_h}(k_i, k_h)$ be the largest integer $p \geq 1$ such that $X_i[k_i - p : k_i - 1] = X_h[k_h - p : k_h - 1]$. If such $p$ does not exist, then let $LE_{X_i, X_h}(k_i, k_h) = 0$.

Depending on the cardinality of $Occ^\triangle(X_i, Y_m)$, we have the following cases:

1. When $|Occ^\triangle(X_i, Y_m)| = 0$ for every variable $X_i$. Then clearly there is no answer to Problem 7.
2. When $|Occ^\triangle(X_i, Y_m)| = 1$ for some variable $X_i$ and $|Occ^\triangle(X_i', Y_m)| = 0$ for every

   $X_i' \neq X_i$. In this case, we have that $|Occ(T, P)| = 1$. Hence, by definition, we have $|\overrightarrow{P}| = k + |P| - 1$ where $\{k\} = Occ(T, P)$.
3. When $0 \leq |Occ^\triangle(X_i, Y_m)| \leq 1$ for any variable $X_i$ and there are at least two variables such that $|Occ^\triangle(X_i, Y_m)| = 1$. For any variable $X_i$ such that $|Occ^\triangle(X_i, Y_m)| = 1$, let $\{k_i\} = Occ^\triangle(X_i, Y_m)$. Let $A$ and $B$ be the sets of variable pairs such that

   $$
   A = \{(X_i, X_h) \mid LE_{X_i, X_h}(k_i, k_h) < \min\{k_i, k_h\}\},
   $$

   $$
   B = \{(X_i, X_h) \mid LE_{X_i, X_h}(k_i, k_h) = \min\{k_i, k_h\}\}.
   $$

   See also Figure 5.

   (a) When $\min\{LE_{X_i, X_h}(k_i, k_h) \mid (X_i, X_h) \in A\} \leq \min\{LE_{X_i, X_h}(k_i, k_h) \mid (X_i, X_h) \in B\}$. In this case, we have

   $$
   |\overrightarrow{P}| = |\overrightarrow{Y_m}| = \min\{LE_{X_i, X_h}(k_i, k_h) \mid (X_i, X_h) \in A\} + |Y_m|.
   $$


Figure 5. $\text{LE}_{X_i,X_h}(k_i,k_h) < \min\{k_i,k_h\}$ (left) and $\text{LE}_{X_i,X_h}(k_i,k_h) = \min\{k_i,k_h\}$ (right).

(b) When $\min\{\text{LE}_{X_i,X_h}(k_i,k_h) \mid (X_i,X_h) \in A\}$ > $\min\{\text{LE}_{X_i,X_h}(k_i,k_h) \mid (X_i,X_h) \in B\}$.

For any pair of variables $X_i, X_h \in B$, assume w.l.o.g. that $k_i \geq k_h$. Let $X_h = X_{\ell(h)}X_{r(h)}$. For any variable $X_j$ such that $|\text{Occ}^\triangle(X_j,Y_m)| = 1$, we compute

$$G_i = \text{Occ}(X_i, X_{\ell(h)}) \cap (\text{Occ}^\triangle(X_i,Y_m) \ominus k_h).$$

Note that $|G_i| \leq 1$, since $|\text{Occ}^\triangle(X_i,Y_m)| = 1$. Let $X_i, X_j$ be any variables such that $G_i = \{g_i\}, G_j = \{g_j\}$ and $g_i \leq g_j$. We compute $\text{LE}_{X_i,X_j}(g_i,g_j)$ until $\text{LE}_{X_i,X_j}(g_i,g_j) < \min\{g_i,g_j\}$ or $X_i$ is a prefix of $T$ (see Figure 6).

i. When $\min\{\text{LE}_{X_i,X_h}(Y_m,k_i,k_h) \mid (X_i,X_h) \in A\}$ ≥ $\text{LE}_{X_i,X_j}(g_i,g_j)$. In this case, $\text{LE}_{X_i,X_j}(g_i,g_j) + |Y_m|$ is a new candidate for $|Y_m|$.  

ii. When $\min\{\text{LE}_{X_i,X_h}(Y_m,k_i,k_h) \mid (X_i,X_h) \in A\}$ < $\text{LE}_{X_i,X_j}(g_i,g_j)$. In this case, $\text{LE}_{X_i,X_j}(g_i,g_j) + |Y_m|$ is not a candidate for $|Y_m|$.  

4. When $0 \leq |\text{Occ}^\triangle(X_i,Y_m)| \leq 2$ for any $1 \leq i \leq n$. This case can be solved in a similar way to Case 3.

5. When $|\text{Occ}^\triangle(X_i,Y_m)| \geq 3$ for some $1 \leq i \leq n$. It follows from Lemma 1 that $Y_m = P = u^dv$ where $|u|$ is the smallest period of $P$, $d \geq 2$ is a positive integer, and $v$ is a proper (possibly empty) prefix of $u$. It now holds that $|\overline{Y_m}| < |u| + |Y_m|$, since every occurrence of $Y_m$ in $\text{Occ}^\triangle(X_i,Y_m)$ except for the first one is always preceded by $u$.

The length of $\overline{Y_m}$ can be computed as follows. See also Figure 7. For all variables $X_i = X_{\ell(i)}X_{r(i)}$ such that $|\text{Occ}^\triangle(X_i,Y_m)| \geq 1$, compute $\text{FM}(\overline{X_{\ell(i)}},\overline{X_{r(i)}},|u| + 1)$. Then we have

$$|\overline{P}| = |\overline{Y_m}| = \min\{\text{FM}(\overline{X_{\ell(i)}},\overline{X_{r(i)}},|u| + 1) \mod |u| \mid |\text{Occ}^\triangle(X_i,Y_m)| \geq 1\} + |Y_m|.$$ 

Now we analyze the complexity. By Theorem 3, $\text{Occ}^\triangle(X_i,Y_m)$ can be computed in $O(n^3)$ time with $O(n^2)$ space. Moreover, the cardinality, and a membership query to each $\text{Occ}^\triangle(X_i,Y_m)$ is answered in constant time due to Lemma 1. Therefore, Cases 1 and 2 can be solved in constant time provided that $\text{Occ}^\triangle(X_i,Y_m)$ are pre-computed.
Figure 6. Compute $LE_{X_i, X_j}(g_i, g_j)$ until $LE_{X_i, X_j}(g_i, g_j) < \min\{g_i, g_j\}$ or $X_i$ is a prefix of $T$.

Figure 7. Illustration for Case 5. String $w$ is a proper suffix of $u$ such that every occurrence of $Y_m = u^d v$ is preceded by $w$ (left). The length of $w$ can be computed as $|w| = FM(X_{\ell(i)}, X_{\ell(h)}, |u| + 1) \mod |u|$ (right).

Now consider Case 3. We compute the value of $LE_{X_i, X_h}(k_i, k_h)$ for all pairs of variables, whose number is $O(n^2)$. Since $\{k_i\} = O\cc(X_i, Y_m)$ and $\{k_h\} = O\cc(X_h, Y_m)$, it holds that

$$LE_{X_i, X_h}(k_i, k_h) = FM(X_i, X_{\ell(h)}, |X_i| - k_i - |X_{\ell(h)}| + k_j + 1) - |X_{\ell(h)}| + k_h. \quad (2)$$

It follows from Lemma 6 that Case 3a can be solved in $O(n^3 \log n)$ time. Now focus on Case 3b. For any variable $X_i$, $G_i$ can be computed in $O(n)$ time, since $|O\cc(X_i, Y_m)| = 1$ and a membership query to $O\cc(X_i, X_{\ell(h)})$ can be answered in $O(n)$ time due to Lemma 2. In each step of the loop, we compute the value of $LE_{X_i, X_j}(g_i, g_j) + |Y_m|$ for $O(n^2)$ pairs of variables. During this loop, the value of $LE_{X_i, X_j}(g_i, g_j) + |Y_m|$ is monotonically non-decreasing, and the size of $G_i$ is mono-
tonically non-increasing. Hence, the depth of the loop is bounded by \( n \). Moreover, we have that
\[
LE_{X_i, X_j}(g_i, g_j) = FM(\overline{X_j}, \overline{X_{\ell(i)}}), |X_i| - k_j - |X_{\ell(i)}| + k_i + 1) - |X_{\ell(i)}| + g_i. \tag{3}
\]
By Equation (3) and Lemma 6, the total time cost for Case 3b is \( O(n^4 \log n) \). Therefore, Case 3 is solvable in \( O(n^4 \log n) \) time, and so is Case 4.

In Case 5 we call the FM function at most \( n \) times, and each call of the FM function takes \( O(n \log n) \) time by Lemma 6. Hence Case 5 can be solved in \( O(n^3 \log n) \) time.

Computing \( OL(X_i, X_j) \) for each pair of variables \( X_i, X_j \) requires \( O(n^4 \log n) \) time and \( O(n^3) \) space due to Theorem 5. Overall, we conclude that Problem 7 can be solved in \( O(n^4 \log n) \) time with \( O(n^3) \) space.

\[\square\]

References