On the All Occurrences of a Word in a Text

O.C. Dogaru

West University of Timișoara
Bd. V. Pârvan, nr. 4, Timișoara, 1900, Romania

e-mail: dogaru@info.uvt.ro

Abstract. In this paper a simple straight string search algorithm is presented. For a string s that consists of n characters and a pattern p that consists of m characters the order of comparisons is $O(n \cdot m)$, $0 < m \leq n$, in the worst case, but the average time complexity is good. The algorithm presented finds all occurrences of p in s. It does not use a precompiling of the pattern p.

1991 Mathematical Subject Classifications: 68P10 [Searching and Sorting]

Key words: direct, string, pattern, search

1 Introduction

The string matching problem is following. Given an array $s[0..n-1]$ of n characters and an array $p[0..m-1]$ of m characters where $0 < m \leq n$, the task is to find all occurrences of p in s. The string s is regarded as a text and the string p as a word(pattern). Generally, s and p are item.

In [W86] it is presented a direct method to determine the first occurrence of p in s. In the same book it is presented the fact that the algorithm proposed is very inefficient, for example, if the pattern is $p=a^{m-1}b$ and the string is $s=a^{n-1}b$, then $m \cdot n$ comparisons are necessary to determine that p is in s.

In this direct method the pattern and the text are aligned at the left ends. The searching begins with p_0 and s_0. If a mismatch appears then a new searching begins always with p_0, the first character of the pattern.

2 The algorithm

The algorithm proposed by us begins with p and s aligned at the left ends but in the case that a mismatch occurs in the process of comparisons of p and s ($p_j \neq s_j$) then the searching continues with the character of p which produced the mismatch, that is p_j, which is searched between s_{j+1} and s_{n-m+j}. On this idea the algorithm is built. It will contain the followings.

1. One compares successively p_0 with s_i, $i=0,1,\ldots,n-m$. If it exists no match of the p_0 with s_i, $i=0,1,\ldots,n-m$ then $'p$ is not in $s' and the process is terminated.

2. If s_i is the first match of p_0 then one compares successively p_1 with s_{i+1}, p_2 with s_{i+2} etc. If all p_j match with s_{j+i}, $j=0,1,\ldots,m-1$ then this is the first occurrence of p in s. A new searching is resumed beginning with p_0 and s_{i+m}.
3. If in the process of searching a mismatch occurs between p_j and s_{i+j} ($p_j \neq s_{i+j}$) then p_j is searched in the rest of string s between s_{i+j+1} and s_{n-m+j}. If p_j is not in this rest then the searching is ended.

4. If in the substring $s_{i+j+1}, ..., s_{n-m+j}$ there exists a character which match with p_j, one renames this character s_i. Therefore $p_j = s_i$. In this case one compares the left and right neighbours of p_j and s_i that is $p_0, p_1, ..., p_j, ..., p_{m-1}$ with correspondings $s_{i-m}, ..., s_i, ..., s_{i+m-1}$. If all occur then this is an occurrence of p in s and the process of searching is resumed. If in the time of verification the neighbours of p_j and s_i a mismatch occurs then a new searching of p_j begins with the character s_{i+1}.

5. The algorithm stops if $i \geq n - m + j$.

Example.

\begin{verbatim}
p=abcd (m=4) s=xabcdxabxxaycdxabcd (n=19)
 a
 abcd
 a
 abc
 c
 c
 c
 a?c
 c
 c
 a?c
 c
 a?c
 c
 a?c
 a?c
 abcd
\end{verbatim}

In this example there are 23 comparisons to find two occurrences of p in s.

The complete algorithm, presented as a procedure named DO3(written in a Pascal-like language described in [HS83]), is the following.

```pascal
procedure DO3(s,p,n,m)
//find all occurrences of the word p(0..m-1)//
//in the string s(0..n-1) if this exists. If yes//
//then procedure writes 'p is in s' else it//
//write 'p is not in s'. 0<m<=n//
  char p(0..m-1),s(0..n-1); integer i,j,m,n,k; boolean f;
  i:=0; f:=false;
  loop
    j:=0;
    while (j<m) and (p(j)=s(i)) do i:=i+1; j:=j+1 repeat;
    if (j=m) then write('p is in s');f:=true;cycle endif
      // the character p(j) is a mismatch:p(j)<>s(j) //
      i:=i+1;
    while (i<=n-m+j)and(p(j)<>s(i)) do i:=i+1 repeat
```
if $i > n-m+j$ and not f then exit endif;
 // it exists i thus $p(j) = s(i)$, one verifies the
 // left and right neighbours of $p(j)$ and $s(i)//$
 $k := 0$;
 while ($k <= m-1$) and ($p(k) = s(i-j+k)$) do $k := k+1$ repeat;
 if $k = m$ then write ('p is in s'); $f:= true$; $i:= i-j+m$
 else goto 1 endif
 until $i > n-m+j$ repeat;
 if not f then write ('p is not in s') endif
endDO3;

3 Number of comparisons

The maximum number of comparisons to determine that 'p' is or it is not in s', theoretically, it is obtained when, after $p_k = s_i$, $k = 0, 1, ..., j - 1$ match, it appears $p_j \neq s_j$, but $p_j = s_i; i = j + 1, ..., n - m + j$ and all the left neighbours of p_j match with the corresponding neighbours of s_i and the right neighbours of p_j, that is, $p_{j+1}, p_{j+2}, ..., p_{m-2}$ match with the right corresponding neighbours of s_i excepting p_{m-1}. For $i = n - m + j, p_{m-1}$ may or it may not match with its corresponding in s. Therefore for:

\[i = j+1, \; p_0 = s_1, ..., p_j = s_i, ..., p_{m-2} = s_{m-1}; \; p_{m-1} \neq s_m \] there are m comparisons;
\[i = j+2, \; p_0 = s_2, ..., p_j = s_i, ..., p_{m-2} = s_m; \; p_{m-1} \neq s_{m+1} \] there are m comparisons;

\[i = n - m + j, \; p_0 = s_{n-m+j}, ..., p_j = s_i, ..., p_{m-2} = s_{n-2} \] and $p_{m-1} = s_{n-1}$ or $p_{m-1} \neq s_{n-1}$, there are m comparisons. Therefore in all it exists $j + 1$ comparisons p_k with $s_i, \; k = 0, 1, ..., j$; between $j + 1$ and $n - m + j$ there exists $(n - m + j) - (j+1)+1 = n - m$ cases for which p_j may match with $s_i; i = j+1, j+2, ..., n - m + j$ and the neighbours of p_j, that is $p_0, p_1, ..., p_{m-2}$ match with the corresponding neighbours of s_i, but $p_{m-1} \neq s_{n+k}, k = -1, 0, 1, ..., n - m - 1$. Possibly, $p_{m-1} = s_{n-1}$. Every case gives m comparisons. Hence the maximum number of comparisons is

\[N_{max} = j + 1 + (n - m) \cdot m \leq m - 1 + 1 + (n - m)m = m(n - m + 1). \]

The complexity of the algorithm DO3 is $O(n.m)$ too.

But in the most unfavourable cases the algorithm DO3 reduces the maximum number of comparisons from $m \cdot n$ as in algorithm presented by N.Wirth in [W86] to $m(n - m + 1)$.

For the example $p=a^{m-1}b$ and $s=a^n b$ presented in Section 1, the algorithm DO3 carries out $n + m - 1$ comparisons.

4 Profiling

The variant of this algorithm (OD) written to determine the first occurrence of p in s [D98] has been compared with a direct method (DIR) presented in [W86] and the Boyer-Moore algorithm (BM) [BM77]. The tests have been realized for different
values of $p(m=5, 10, 20, 50, 100)$ and $s(n=1000, 2000, 3000, 4000, 5000)$. The p
and s have been generated randomly. One generated sequences of m and n decimal
integer random numbers between 32-127 and one has taken the ASCII corresponding
characters for p respectively for s. For the same m and n the three methods have
been executed 10 times. The average time for an m and five values for $n(=1000,$
2000, 3000, 4000, 5000) are written down in the following table

<table>
<thead>
<tr>
<th>m</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td>0.52</td>
<td>0.20</td>
<td>0.56</td>
<td>0.24</td>
<td>0.30</td>
<td>0.364</td>
</tr>
<tr>
<td>DIR</td>
<td>0.46</td>
<td>0.58</td>
<td>0.24</td>
<td>0.34</td>
<td>0.58</td>
<td>0.432</td>
</tr>
<tr>
<td>BM</td>
<td>0.12</td>
<td>0.22</td>
<td>0.44</td>
<td>0.42</td>
<td>0.22</td>
<td>0.284</td>
</tr>
</tbody>
</table>

Between the average times of three methods there are the relations

\[t_{OD} = 1.28t_{BM}; \quad t_{DIR} = 1.18t_{OD}. \]

But if the three methods are executed 100 times then the values are the following

<table>
<thead>
<tr>
<th>m</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td>0.362</td>
<td>0.374</td>
<td>0.396</td>
<td>0.376</td>
<td>0.368</td>
<td>0.372</td>
</tr>
<tr>
<td>DIR</td>
<td>0.408</td>
<td>0.398</td>
<td>0.408</td>
<td>0.414</td>
<td>0.396</td>
<td>0.404</td>
</tr>
<tr>
<td>BM</td>
<td>0.364</td>
<td>0.350</td>
<td>0.308</td>
<td>0.300</td>
<td>0.312</td>
<td>0.326</td>
</tr>
</tbody>
</table>

In this case the relations are

\[t_{OD} = 1.14t_{BM}; \quad t_{DIR} = 1.08t_{OD}. \]

5 Correctness of the algorithm

Theorem. The algorithm DO3 works correctly.

Proof. To proof the correctness of the algorithm we use a proof table [TBCG92]

procedure DO3(s,p,n,m)
char p(0:m-1),s(0:n-1); integer i,j,m,n,k; boolean f;
{pre:input=(p0,p1,...,pm-1)∧(s0,s1,...,sn-1)∧
n ≥ m > 0∧∀i∈{0,1,...,n-1}:s_i are characters∧
∀j∈{0,1,...,m-1}:p_j are characters}
f:=false; i:=0;
loop
j:=0;
while (j<m) and (p(j)=s(i)) do
{inv: \forall h \in \{0,1,...,j-1\}: p_h = s_h \land 0 \leq j, i \leq m}
i:=i+1; j:=j+1 repeat;
{\forall h \in \{0,1,...,j-1\}: p_h = s_h \land (j=m \lor p_j \neq s_j)}
if (j=m) then write('p is in s'); f:=true;
{output f=false}
cycle endif

// the character p(j) is a mismatch: p(j) \neq s(j) //
{f=false \land j < m \land p_j \neq s_j}
i:=i+1;
{0 < i \leq n-m+j \land p_j \neq s_i} \land \forall i > n-m+j}
while (i<=n-m+j) and (p(j)=s(i)) do
{inv: p_j \neq s_{i-1} \land i \leq n-m+j}
i:=i+1 repeat;
{(p_j \neq s_{i-1} \land \neg (i=n-m+j \land p_j \neq s_i) \equiv \{p_j \neq s_{i-1} \land i > n-m+j\} \lor (s_i = p_j \land i < n-m-j)}
if i > n-m+j and not f then
{p_j \neq s_i} exit endif;

// it exists i thus p(j)=s(i) //
// one verifies the left and right neighbours of p(j) and s(i)//
k:=0;
while (k<=m-1) and (p(k)=s(i-j+k)) do
{inv: \forall h \in \{0,1,...,k-1\}: p_h = s_{i-j+k} \land 0 \leq k \leq m}
k:=k+1 repeat;
{(\forall h \in \{0,1,...,k-1\}: p_h = s_{i-j+k} \land \neg (k < m \land p_k = s_{i-j+k})}\equiv (\forall k \in \{0,1,...,m-1\}: p_k = s_{i-j+k} \land k=m) \lor
{(\forall h \in \{0,1,...,k-1\}: p_h = s_{i-j+k} \land p_k \neq s_{i-j+k})}
if k=m then write('p is in s'); f:=true; i:=i-j+m
{\exists k \in \{0,1,...,m-1\}: p_k \neq s_{i-j+k}}
goto 1
endif
until i>=n-m+j repeat;
{f=false \lor f=true \land 0 \leq j = m \land i < n-m+j}
if not f then write('p is not in s') endif;
{post: output=\emptyset}
end DO3;

The justifications are based on the application of logical equivalences and the rules of inference to the sequence of Pascal statements. These are:

i) the assignment rule of inference
{P(e)} v:=e {P(v)}

ii) the conditional rules of inference
a) \{P \land B\} s \{Q\}

b) \{P \land B \} s1 \{Q\}
\begin{align*}
P \land \neg B & \Rightarrow Q \\
\{P\} \text{ if } B \text{ then } s \{Q\} \\
\text{iii) the loop rules of inference} \\
a) \{\text{inv} \land B\} \text{ s } \{\text{inv}\} \\
\{\text{inv}\} \text{ while } B \text{ do } s \{\text{inv} \land \neg B\} \\
b) \{\text{inv} \land B\} \text{ s } \{\text{inv}\} \\
\{\text{inv}\} \text{ repeat s until } B \{\text{inv} \land B\}
\end{align*}

where \(P, Q\) denote propositions, \(B\)-Boolean expression, \(\text{inv}\)-the invariant of the loop and \(s, s_1, s_2\) are statements.

Conclusions

1) Algorithm OD is faster than algorithm DIR in average time;
2) There are pairs of \(p\) and \(s\) where algorithms OD or DIR are faster than algorithm BM;
3) At limit, the average times of the three methods tend to approach;
4) Possibly, for other \(p\) and \(s\), the relations between the average times of the three methods can be slight different.

References

