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Abstract. We describe and analyze in terms of Lyndon words an elementary sort of

maximal Lyndon factors of a string and prove formally its correctness. Since the sort
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1 Introduction

The computation of the maximal Lyndon substrings of a string has been actively re-

searched since Bannai et al. presented a linear-time algorithm for computing runs [3].

Their algorithm relies on knowledge of all maximal Lyndon factors with respect to an

order of the alphabet, and knowledge of all maximal Lyndon factors with respect to

the inverse order. The maximal Lyndon factors of a string x = x[1 .. n] are represented

in the Lyndon array L[1 .. n], where L[i] = the length of the maximal Lyndon factor

starting at position i: see [7,11] and references therein. Other linear-time algorithms

for computing all the runs rely on Lempel-Ziv factorization, and so the comparative

efficiency of the runs algorithms is determined by the comparison of computing the

Lyndon array and computing the Lempel-Ziv factorization: see [6,4] and references

therein.

There is only one known linear-time algorithm for computing the Lyndon array

and it relies on suffix sorting: compute the suffix array, then the inverse suffix array,

and then employ NSV (Next Smaller Value) algorithm to compute the Lyndon array

from the inverse suffix array [12]. All other algorithms haveO(n log n) orO(n2) worst

case complexity: see [9,14] and references therein. The Lempel-Ziv factorization can be

efficiently computed in linear time. Thus, our research focuses on linear computation

of the Lyndon array without the need to build an unrelated global data structure

such as the suffix array.

Baier [1,2] in 2016 presented an elementary though elaborate algorithm for suffix

sorting.The algorithm works in two phases. Soon afterwards, Cristoph Diegelmann in
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reaction to [9] was first to note that phase I of the Baier’s suffix sorting algorithm in

fact identifies and sorts the maximal Lyndon factors in linear time [10]. The perfor-

mance of the algorithm was not great: Baier himself noted that his implementation of

the suffix sort was about four times slower than the best linear algorithms for suffix

sorting. Our analysis indicated that the first phase was the main culprit. We analyzed

phase II in detail and presented a different implementation in [10].

There are three main goals for our study of Baier’s sort. The first is to describe

and formalize Baier’s sort in terms of Lyndon words. The second is to provide a more

formal and more detailed proof of the correctness of the sort in the framework of

Lyndon words. And finally, the third goal is a detailed analysis of the method essential

for a more efficient programming implementation in order to speed up the execution

and lower the memory required. An additional goal is to see whether knowledge of

the Lyndon array for a string can be utilized to speed up Baier’s sort of the maximal

Lyndon factors. This paper concerns the first two goals.

Lyndon words admit the standard factorization and so often are built from these

two components in what is in essence a bottom-up approach [3,16]. However, maximal

Lyndon factors of a string can be built in a top-down fashion not related to the

standard factorization. In Baier’s sort, the maximal Lyndon factors are determined

using what we call the water draining method1 since the process can be best visualized

as if the string represented a bunch of hills in a water tank and we slowly drain the

water from the tank. The maximal Lyndon factors are then built from the hills that

the draining reveals. The water draining method has three steps:

(a) lower the water level by one

(b) extend the existing Lyndon factors

the revealed letters are used to extend the existing Lyndon factors where possible,

or became Lyndon factors of length 1 otherwise;

(c) consolidate the new Lyndon factors

processed from the right, if several Lyndon factors are adjacent and can be joined

to a longer Lyndon factor, they are joined.

In Fig. 1, we illustrate the process:

(1) We start with the string abcdedbcdba and a full tank of water.

(2) We drain one level, only e is revealed, nothing to extend, nothing to consolidate.

(3) We drain one more level and three d’s are revealed, the first d extends e to

de and the remaining two d’s form Lyndon factors d of length 1, nothing to

consolidate.

(4) We drain one more level and two c’s are revealed, the first extends de to cde and

the second extends d to cd, the consolidation then joins cde and d to cded (5).

1 This is not a pun on “graindraining” string used by Baier for illustration of his method.
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(6) We drain one more level and three b’s are revealed, the first extends cded to

bcded, the second extends cd to bcd, the third is a Lyndon factor b of length 1,

nothing to consolidate.

(7) We drain one more level and two a’s are revealed, the first extends bcded to

abcded and the second becomes a Lyndon factor a of length 1, in (8) abcded

and bcd are joined to abcdedbcd, and we continue the consolidation in (9) where

abcdedbcd and b are joined to abcdedbcdb, and the consolidation is complete.

So, during the process the following maximal Lyndon factors were identified: e at

position 5, de at position 4, d at positions 6, 9, cded at position 3, cd at position 8,

bcded at position 2, bcd at position 7, b at position 10, abcdedbcdb at position 1, and

a at position 11. Note that all positions are accounted for, we really got all maximal

Lyndon factors of the string abcdedbcdba. For a depiction of all maximal Lyndon

factors of abcdedbcdba, see Fig. 2.
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Figure 1. The water draining method for abcdedbcdba

The true ingenuity of Baier was to realize the water draining method by a simple

linear mechanism based on the prev() operator.

2 Background notation, notions and facts

In this section, we provide the description and definitions of the basic string notions

and notation we are using in this paper, and the relevant basic facts. A string x is a

sequence x[1..n] of letters x[i], 1 ¡ i ¡ n, each drawn from a set A called the alphabet.

The length of the string is n. A is a totally ordered set.
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· The symbol ε denotes the empty string.

· A concatenation of two strings x and y is denoted by xy. A concatenation of k

copies of u is is denoted as uk, for an integer k ≥ 2.

· If a string x = uvw, then u is a prefix of x, v is a factor or substring of x, and

w is a suffix of x. A prefix (resp. suffix) is trivial if it is empty, and is proper

if it is not the whole x.

· The fact that u is a prefix of x is denoted by u E x, while the fact that u is a

proper prefix of x is denoted by u ⊳ x.

· A string w is a border of a string x, if w is both a proper prefix and a proper suffix

of x. An empty string is a primitive border. If x has only a primitive border, it

is unbordered.

· A string x is primitive if there are no integer k ≥ 2 and string u so that x = uk.

· The expression x ≺ y denotes the fact that x is lexicographically smaller than y;

that is, either x is a proper prefix of y or there is i ≤ min {|x|, |y|} such that

x[1 .. i−1] = y[1 .. i−1] and x[i] ≺ y[i].

· The expression x 4 y denotes the fact that x ≺ y or x = y.

· The expression x ≺· y denotes the fact that x ≺ y, but x is not a prefix of y.

· For a string x = wu, uw is called a rotation of x, if either u or w is empty, than

the rotation is trivial.

· A string x is Lyndon if either |x| = 1, the so-called trivial Lyndon string, or

x is lexicographically strictly smaller than any of its non-trivial rotations. Such a

string is often called a Lyndon word [5].

· A Lyndon factor u = x[i .. j] of a string x = x[1 .. n] is maximal if either j = n

or for any j < ℓ ≤ n, x[i .. ℓ] is not Lyndon.

· For a string x, Ax denotes the alphabet of the string; that is, the set of letters

occurring in x.

· For two factors x[i1 .. j1] and x[i2 .. j2] a string x = x[1 .. n] with i1 ≤ i2, we say

that these two factors

- are disjoint, if j1 < i2 i1 j1 i2 j2

- overlap, if i2 ≤ j1

- intersect, if i2 ≤ j1 ≤ j2 i1 j1i2 j2

- the first includes the second (or, the second is included in the first), if j2 ≤ j1

i1 j2i2 j1

Note that in our terminology
(

x and y overlap
)

⇔
(

(x and y intersect) or (one includes the other)
)

· A family of factors of a string x has the Monge property, if each two distinct fac-

tors from the family are either disjoint or one includes the other, or, equivalently,

no two factors intersect.
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Facts 1. Basic facts of Lyndon strings ([8,12,13,15])

(i) For u of length > 1,

· u is Lyndon ⇒ u is unbordered ⇒ u is primitive

· u is Lyndon iff u ≺ u2 for any u = u1u2

· u is Lyndon iff u1 ≺ u2 for any u = u1u2

· u is Lyndon ⇒ there are Lyndon words u1, u2 so that u1 ≺ u2 and u = u1u2. If

u2 is the largest possible such suffix, it is called the standard factorization

of u.

(ii) Let u = wcv be Lyndon and let c ≺ d. Then uwd = wcvwd is Lyndon.

(iii) Let x = vu for non-empty v and u and let v be a Lyndon factor of x. Then v

is a maximal Lyndon factor of x iff u ≺ vu.

(iv) Let u = u1vu2 be Lyndon and let v be a maximal Lyndon factor of u. Then

u ≺ v.

3 Basic Definitions and Notions

In this section we present the basic definitions and notions for the description and

analysis of Baier’s sort.

Definition 2. Let x = x[1 .. n] be a string.

· A group with a context u, denoted as Gu, is an ascending sequence of indices

i1 < · · · < ik such that u is a prefix of x[iℓ .. n] for every ℓ ∈ 1 .. k.

· A sequence C = [Gu(m), Gu(m−1), . . . , Gu(1)] is a group configuration for x if

(i) for any ℓ ∈ 1 ..m, Gu(ℓ) is a group with the context u(ℓ), and

(ii) u(m) ≺ u(m−1) ≺ · · · ≺ u(1), and

(iii) for any ℓ ∈ 1 ..m, u(ℓ) is a Lyndon substring of x, and

(iv) all the groups are pairwise mutually disjoint, and

(v)
⋃m

ℓ=1 Gu(ℓ) = 1 .. n, and

(vi) the family { C 〈i〉 | 1 ≤ i ≤ n } has the Monge property, where C 〈i〉 =

x[i .. i+|u(ℓ)|−1] for the unique ℓ such that i ∈ Gu(ℓ), note that C 〈i〉 = u(ℓ).

· For i, j ∈ Gu(ℓ), i⊗ j iff |i− j| = |u(ℓ)|. The relation ∼ is defined as a transitive

closure of ⊗. Thus, i ∼ j is an equivalence relation on Gu(ℓ). The symbol [i]∼
denotes the class of equivalence ∼ to which i belongs.

· For i ∈ Gu(ℓ), the valence of i is defined as valC (i) = |[i]∼|.

· grC (i) denotes the unique group of C the index i belongs to, i.e. grC (i) = Gu(ℓ) iff

i ∈ Gu(ℓ).

· A group Gu(ℓ) is complete if

- for any i ∈ Gu(ℓ), C 〈i〉 is a maximal Lyndon factor of x, and

- if u(ℓ) = x[j .. j+|u|−1] is a maximal Lyndon factor of x, then j ∈ Gu(ℓ).
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· The operator prevC (i) = max{j < i | conC (grC (j)) ≺ conC (grC (i))}, if such a j

exists, nil otherwise, where conC (G) denotes the context of group G with respect

to the configuration C .

Note that it is possible for an i ∈ Gu, that not only x[i .. i+|u|−1] = u, but also

x[i+|u| .. x[i+2|u|−1] = u and so forth. This is captured by the notion of the valence:

if i ∈ Gu and val(i) = k, the occurrence of u at position i is a part of a maximal

repetition uk.

It is easy to see, that for j ∈ [i]∼, prevC (i) = prevC (j). Let i, j ∈ Gu. WLOG

assume that j = i+p|u| and so x[i .. j+|u|−1] = up+1. Clearly, prevC (i) ≤ prevC (j).

If prevC (j) > prevC (i), it would indicate that a suffix of u must be lexicographically

smaller than u, which contradicts the Lyndon property of u.

Together, (iv) and (v) assure that the groups of a group configuration form a

disjoint partitioning of the string’s index range 1 .. n.

Since Definition 2 is quite involved, we present and illustrative example on a string

x = x[1..11] = abcdedbcdba.

1 2 3 4 5 6 7 8 9 10 11

a b c d e d b c d b a

Ga = {11}, Gabcdedbcdb = {1}, Gb = {10}, Gbcd = {7}, Gbcded = {2},

Gcd = {8}, Gcded = {3}, Gd = {6, 9}, Gde = {4}, Ge = {5}.

Take for instance the group Gd = {6, 9}, the context of the group is a string

of length 1, d, and indeed, at the positions 6 and 9 we have substrings d starting.

Moreover, Gd is complete, as x[6] and x[9] are both maximal Lyndon, and there is

no other occurrence of a maximal Lyndon substring d. Similarly for Gabcdedbcdb = {1},

x[1..10] = abcdedbcdb, so it is the context, abcdedbcdb is Lyndon, and x[1..10] =

abcdedbcdb is maximal, and there is no other occurrence of maximal abcdedbcdb, so

Gabcdedbcdb is complete. It is easy to see, that the whole set of the groups in the order

given above is a group configuration: a ≺ abcdedbcdb ≺ b ≺ bcd ≺ bcded ≺ cd ≺

cded ≺ d ≺ de ≺ e and Ga∪Gabcdedbcdb∪Gb∪Gbcd∪Gbcded∪Gcd∪Gcded∪Gd∪Gde∪Ge =

1 .. 11.

Denote C = [Ga, Gabcdedbcdb, Gb, Gbcd, Gbcded, Gcd, Gcded, Gd, Gde, Ge]. Consider the

system of factors { C 〈i〉 | 1 ≤ i ≤ n }, let us demonstrate that it indeed has the

Monge property:

C 〈1〉 = x[1 .. 10] = abcdedbcdb, C 〈2〉 = x[2 .. 6] = bcded,

C 〈3〉 = x[3 .. 6] = cded, C 〈4〉 = x[4 .. 5] = de,

C 〈5〉 = x[5] = e, C 〈6〉 = x[6] = d, C 〈7〉 = x[7 .. 9] = bcd,
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C 〈8〉 = x[8 .. 9] = cd, C 〈9〉 = x[9] = d, C 〈10〉 = x[10] = b,

C 〈11〉 = x[11] = a.

For instance, C 〈1〉 = x[1 .. 10] includes C 〈10〉 = x[10], or C 〈9〉 = x[9] and C 〈10〉 =

x[10] are disjoint, etc.

Lemma 3. Let Gu be a group with a primitive context u for a string x. Let i ∈ Gu.

Then [i]∼ = {ℓ ∈ Gu | min [i]∼ ≤ ℓ ≤ max [i]∼}.

Proof. It suffices to prove that if j − i = |u|, then there is no ℓ ∈ Gu so that

i < ℓ < j. Assume there is such an ℓ. Then x[i .. i+|u|−1] = x[j .. j+|u|−1] = u and

since j = i+|u|, we have x[i .. i+2|u|−1] = 2u. Moreover, x[ℓ .. ℓ+|u|−1] = u and

i < ℓ < 2i. Since u is primitive, this contradicts the synchronization principle for

primitive strings. ⊓⊔

To illustrate Lemma 3, consider abbbbabb: Gb = {2, 3, 4, 5, 7, 8}. Consider [3]∼ =

{2, 3, 4, 5}, you can see that [3]∼ = {i ∈ Gb | 2 ≤ i ≤ 5}. Similarly, [7]∼ =

{7, 8} = {i ∈ Gb | 7 ≤ i ≤ 8}.

Definition 4. A group configuration C = [Gu(m), Gu(m−1), . . . , Gu(1)] for a string x

is r-proper for 1 ≤ r ≤ m if

(vii) all the groups Gu(r), . . . , Gu(1) are complete; and

(viii) all the groups Gu(r−1), . . . , Gu(1) have been processed; and

(ix) for any i ∈ Gu(r), if j = prevC (i), then C 〈j〉(C 〈i〉)t where t = valC (i), is a

prefix of x[j .. n].

To process the group Gu(r) entails:

(a) Compute P = {prevCr
(i) | i ∈ Gu(r) and prevCr

(i) 6= nil};

(b) Let ≈ be an equivalence on P defined by i1 ≈ i2 iff grCr
(i1) = grCr

(i2). Compute

the disjoint partitioning of P = P1 ∪P1 ∪ · · · ∪Pk into the classes of equivalence

≈. Let P1 ⊆ Gu(n1), . . . , Pk ⊆ Gu(nk);

(c) For each j ∈ 1 .. k, let ≈j be an equivalence on Pj defined by i1 ≈j i2 iff i1 =

prevC (ℓ1) & i2 = prevC (ℓ2) & val(ℓ1) = val(ℓ2). Let [i1]≈j
denote the class

of equivalence of ≈j containing i1. Define valCr
([i1]≈j

) = val(ℓ1) so that i1 =

prevC (ℓ1). Compute the disjoint partitioning Pj = Pj,1 ∪Pj,2 ∪ · · · ∪Pj,tj into the

classes of equivalence ≈j. Moreover, let val(Pj,1) > val(Pj,2) > · · · > val(Pj,tj).

(d) for each j ∈ 1 .. k, for each ℓ ∈ 1 .. tj, move all indices of Pj,ℓ from Gu(nj) to a

new group G′. The group G′ is placed directly after Gu(nj) which is removed if it

becomes empty. The context of G′ is set to unj
(ur)

val(Pj,ℓ).
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Remark: Definition 4 may not seem sound, for the definition of process is only

provided after it had been used in (viii). However, the definition is in fact recursive;

that is for a 1-proper configuration, no group needs to be processed, then we process

the last group to obtain a 2-proper configuration, and so on.

We will use a simple string aabbabb to illustrate the notions of the equivalence ∼,

and the valence:

1 2 3 4 5 6 7

a a b b a b b

First consider the configuration C1 = [Ga, Gb] where Ga = {1, 2, 5} and Gb =

{3, 4, 6, 7}. Then valC1(1) = valC1(2) = valC1(3) = valC1(4) = valC1(6) = valC1(7) = 2

and valC1(5) = 1. It means, that for the processing of Gb we do not consider 4 and 7,

only 3 and 6 and their valences of 2. Thus P = {2, 5} as 2 = prevC1(3) = prevC1(4)

and 5 = prevC1(6) = prevC1(7). Since grC1(2) = grC1(5) = Ga, 2 and 5 are both in the

same Pj . So, after the refinement of Ga we get a new configuration C2 = [Ga, Gabb, Gb]

where Ga = {1}, Gabb = {2, 5}, and Gb = {3, 4, 6, 7}. Then valC2(2) = valC2(5) = 2,

so P = {1}, as 1 = prevC2(2) = prevC2(5), and so we get a new and final configuration

C3 = [Gaabbabb, Gabb, Gb] where Gaabbabb = {1}, Gabb = {2, 5}, and Gb = {3, 4, 6, 7}.

For illustration, let us perform complete Baier’s sort of abcdedbcdba, the arrows

represent the prev operator. We start with the initial group configuration where each

group groups all indices that start with the same letter. Processing from right, take

the first unprocessed group from right, compute the prev values for indices in that

group, and perform context concatenation wherever it points, partitioning the groups

in the process. Then move to the next unprocessed group, until all groups except the

very first one are processed.

1 2 3 4 5 6 7 8 9 10 11

a b c d e d b c d b a

Ga = {1, 11} Gb = {2, 7, 10} Gc = {3, 8} Gd = {4, 6, 9} Ge = {5}

Ga = {1, 11} Gb = {2, 7, 10} Gc = {3, 8} Gd = {6, 9} Gde = {4} · · ·

Ga = {1, 11} Gb = {2, 7, 10} Gc = {8} Gcde = {3} Gd = {6, 9} · · ·
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Ga = {1, 11} Gb = {2, 7, 10} Gcd = {8} Gcded = {3} · · ·

Ga = {1, 11} Gb = {7, 10} Gbcded = {2} Gcd = {8} · · ·

Ga = {1, 11} Gb = {10} Gbcd = {7} Gbcded = {2} · · ·

Ga = {11} Gabcded = {1} Gb = {10} Gbcd = {7} · · ·

Ga = {11} Gabcded = {1} Gb = {10} · · ·

Ga = {11} Gabcdedb = {1} · · ·

Ga = {11} · · ·

The processed (in bold) classes represent not only all maximal Lyndon factors of the

string, but they are also lexicographically ordered:

Ga = {11}, Gabcdedb = {1}, Gb = {10}, Gbcd = {7}, Gbcdded = {2},

Gcd = {8}, Gcded = {3}, Gd = {6, 9}, Gde = {4}, Ge = {5}.

Compare it to Fig. 2 to see that all maximal Lyndon factors are accounted for.

D E F G H G E F G E D

���������������������������������������������������������

Figure 2. Maximal Lyndon Factors of abcdedbcdba

4 Properties of the group refinement

In this section we deal with the basic arrangement of group configurations referred

in the text as (B) given below:

Given a string x[1 .. n] with the alphabet {a1, . . . , ak}. For r̂ ≥ 1,

C1 =
[

Gu(1,m1)
, Gu(1,m1−1)

. . . , Gu(1, 1)

]

. . . (B)

Cr̂ =
[

Gu(r̂, mr̂)
, Gu(r̂, mr̂−1)

. . . , Gu(r̂, 1)

]

where C1 =
[

Gu(1,m1)
, Gu(1,m1−1)

. . . , Gu(1, 1)

]

= [Ga1 , . . . , Gak ];

for each 1 ≤ r < r̂, Cr is an r-proper group configuration; and the
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configuration Cr+1 =
[

Gu(r+1,mr+1)
, Gu(r+1,mr+1−1)

. . . , Gu(r+1, 1)

]

is produced

by processing of the group Gu(r, r)
.

First, a few fundamental observations of the nature of “refinement” of the groups

during processing.

Observation 5. Referring to (B), for any 2 ≤ r ≤ r̂ and any 1 ≤ i, j ≤ n,

(i) If Cr〈i〉 is a proper suffix of Cr〈j〉, then Cr〈i〉 = u(r, ξ) and Cr〈j〉 = Cξ〈j〉(u(r, ξ))
t

where ξ < r and t = valCξ
(i).

(ii) Either Cr〈i〉 = Cr−1〈i〉 or Cr〈i〉 = Cr−1〈i〉
(

u(r−1, r−1)
)t

where t = valCr−1(i);

consequently, Cr−1〈i〉 is a prefix of Cr〈i〉, while Cr〈i〉 cannot be a prefix of Cr−1〈i〉.

(iii) If |Cr+1〈i〉| > 1, then there exist ξ ≤ r and 1 ≤ ρ ≤ mξ, so that Cr+1〈i〉 =

u(ξ, ρ)
(

u(ξ, ξ)
)t

where t = valCξ
(i+|u(ξ, ρ)|).

Lemma 6 shows how the Monge property of the system of all occurrences of all

the group contexts propagates through a group configuration arrangement.

Lemma 6. Referring to (B), then for any 1 ≤ r ≤ r̂, the system { Cr〈i〉 | 1 ≤ i ≤ n }

has the Monge property.

Proof. We are going to prove it by induction over r. First consider the case when

r = 1.

Then each u(1, ℓ) = c for some letter c of x. Thus each C1〈i〉 = c for some letter c of

x, and hence either C1〈i〉 = C1〈j〉 or C1〈i〉 ∩ C1〈j〉 = ∅ for any i 6= j.

Induction hypothesis: { Cr−1〈i〉 | 1 ≤ i ≤ n } has the Monge property.

Consider Cr〈i〉 and Cr〈j〉 for i 6= j. WLOG assume i < j.

· Case Cr〈i〉 = Cr−1〈i〉 and Cr〈j〉 = Cr−1〈j〉.

By the induction hypothesis, either Cr−1〈i〉 ∩ Cr−1〈j〉 = ∅ or Cr−1〈i〉 includes

Cr−1〈j〉.

· Case Cr〈i〉 = Cr−1〈i〉
(

Cr−1〈ℓ〉
)ρ
, prevCr−1(ℓ) = i, ρ = valCr−1(ℓ), Cr−1〈ℓ〉 =

u(r−1, r−1), and Cr〈j〉 = Cr−1〈j〉. Since for all involved components, no two

can intersect, the possible subcases are:

- Cr−1〈j〉 is disjoint from Cr−1〈i〉
(

Cr−1〈ℓ〉
)ρ
.

- Cr−1〈j〉 is included in a copy of Cr−1〈ℓ〉.

- Cr−1〈j〉 is included in Cr−1〈i〉.

· Case Cr〈i〉 = Cr−1〈i〉 and Cr〈j〉 = Cr−1〈j〉
(

Cr−1〈ℓ〉
)ρ
, prevCr−1(ℓ) = j, ρ =

valCr−1(ℓ), and Cr−1〈ℓ〉 = u(r−1, r−1). Since for all involved components, no two

can intersect, the possible subcases are:

- Cr−1〈i〉 and Cr−1〈j〉 are disjoint.

- Cr−1〈i〉 includes Cr−1〈j〉 as a proper suffix. By Obs. 5(i), it means that Cr−1〈j〉 =

u(r−2, r−2). Since prevCr−1(ℓ) = j, it means u(r−2, r−2) ≺ u(r−1, r−1), which

is a contradiction as u(r−1, r−1) ≺ u(r−1, r−2) = u(r−2, r−2).
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- Cr−1〈i〉 includes Cr−1〈j〉
(

Cr−1〈ℓ〉
)ξ

for some ξ ≤ ρ as a proper suffix. Then

Cr−1〈ℓ〉 is a suffix of Cr−1〈i〉 and by (B), Cr−1〈ℓ〉 = u(r−2, r−2), i.e. u(r−1, r−1) =

u(r−2, r−2), a contradiction.

- Cr−1〈i〉 includes Cr−1〈j〉
(

Cr−1〈ℓ〉
)ρ

but not as a suffix.

· Case Cr〈i〉 = Cr−1〈i〉
(

Cr−1〈ℓ〉
)ρ
, prevCr−1(ℓ) = i, ρ = valCr−1(ℓ), Cr−1〈ℓ〉 =

u(r−1, r−1), and Cr〈j〉 = Cr−1〈j〉
(

Cr−1〈k〉
)ξ
, prevCr−1(k) = j, ξ = valCr−1(k),

Cr−1〈k〉 = u(r−1, r−1). Since for all involved components, no two can intersect,

the possible subcases are:

- Cr−1〈i〉
(

u(r−1, r−1)
)ρ

is disjoint from Cr−1〈j〉
(

u(r−1, r−1)
)ξ
.

- Cr−1〈i〉 includes Cr−1〈j〉
(

u(r−1, r−1)
)ξ

but not as a suffix, which is fine.

- Cr−1〈i〉 includes Cr−1〈j〉
(

u(r−1, r−1)
)ξ

as a suffix, which is a contradiction as

the ξ copies of u(r−1, r−1) are immediately followed by another ρ copies, so

Cr〈j〉 should equal to Cr−1〈j〉
(

Cr−1〈k〉
)ξ+ρ

.

- Cr−1〈i〉 includes Cr−1〈j〉
(

u(r−1, r−1)
)τ
, τ < ξ as a proper suffix. But then

ξ − τ = ρ and ℓ = k + τ |u(r−1, r−1)|. Since prevCr−1(ℓ) = i since Cr〈i〉 =

Cr−1〈i〉
(

u(r−1, r−1)
)ρ

and prevCr−1(ℓ) = j since Cr〈j〉 = Cr−1〈j〉
(

u(r−1, r−1)
)ξ
,

a contradiction.

- Cr−1〈j〉 is a suffix of Cr−1〈i〉 and ρ = ξ. Then ℓ = k and prevCr−1(ℓ) =

i since Cr〈i〉 = Cr−1〈j〉
(

u(r−1, r−1)
)ρ

and prevCr−1(ℓ) = j since Cr〈j〉 =

Cr−1〈j〉
(

u(r−1, r−1)
)ξ
, a contradiction.

⊓⊔

The process of refinement of the groups has a very particular property, namely

u(r, k) is never followed immediately by u(r−ξ, r−ξ) for any r−ξ ≥ 1 if u(r, k) ≺

u(r−ξ, r−ξ).

Lemma 7. Referring to (B), let 1 ≤ r−ξ < r ≤ r̂, let u(r, k) ≺ u(r−ξ, r−ξ), and let

j = i+|u(r, k)|. Then it is impossible to have Cr〈i〉 = u(r, k) and Cr〈j〉 = u(r−ξ, r−ξ).

Proof. Arguing by contradiction assume to have it for some i, j, ξ, r, and k. Then

Cr−ξ〈i〉 E Cr〈i〉 = u(r, k) ≺ u(r, r−ξ) = u(r−ξ, r−ξ), and so prevCr−ξ
(j) ≥ i.

If prevCr−ξ
(j) = i, then Cr〈i〉 ⊳ Cr−ξ+1〈i〉 E Cr〈i〉, a contradiction. Thus, j1 =

prevCr−ξ
(j) > i. So, Cr−ξ+1〈j1〉 and Cr〈i〉 intersect, and so Cr〈j1〉 and Cr〈i〉 inter-

sect as Cr−ξ+1〈j1〉 E Cr〈j1〉. But that contradicts Lemma 6. ⊓⊔

We need to ascertain that the definition of the processing of Gu(r, r)
can be carried

out as defined in Def. 4, i.e. that the property of prev propagates through a group

configurations arrangement. Lemma 8 shows that.
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Lemma 8. Referring to (B), for any 1 ≤ r ≤ r̂, for any i ∈ Gu(r, r)
, if j = prevCr

(i),

then x[j .. n] has Cr〈j〉(u(r, r))
t where t = valCr

(i), as a prefix.

Proof. It is clear that for r = 1 it is true: Let c be the largest letter in x, then

Gu(1, 1)
= Gc. Let i ∈ Gc and let j = prevC1(i). Let i1 = min {ℓ ≤ i | x[ℓ] = c }, then

valC1(i) = valC1(i1) = t and prevC1(i1) = prevC1(i) = j. Then j = i1−1, C1〈j〉 = b for

some b ≺ c, and C1〈i1〉 = ct.

We are assuming it holds true for r.

We shall prove it for r+1, but first we need to prove three simple claims.

Though a bit stronger, in essence, the first claim states that the configuration illus-

trated below cannot happen.

u(r, k) = Cr〈i〉

u(r, r) = Cr〈j〉

i j

Claim 1: If 1 ≤ r ≤ r̂, i, j ∈ 1 .. n, i < j, and ξ ≥ 0, then Cr〈i〉 cannot include

Cr+ξ〈j〉 = u(r+ξ, r+ξ).

Arguing by contradiction, take the minimal r such that for some i < j, and some

ξ, Cr〈i〉 includes Cr+ξ〈j〉 = u(r+ξ, r+ξ). Let Cr〈i〉 = u(r, k) for some k. Since Cr〈i〉

includes Cr+ξ〈j〉 and Cr〈i〉 6= Cr+ξ〈j〉 as i < j, |Cr〈i〉| ≥ 2 and so r > 1. By Obs. 5(iii),

there are r′ < r, k′, and t ≥ 1 so that u(r, k) = Cr〈i〉 = u(r′, k′)

(

u(r′, r′)
)t
. For

0 ≤ h < t, define ℓh = i+|u(r′, k′)| + h|u(r′, r′)|. Then Cr′〈i〉 = u(r′, k′) and each

Cr′〈ℓh〉 = u(r′, r′). For any 0 ≤ h < t, by Lemma 6, u(r+ξ, r+ξ) = Cr+ξ〈j〉 must be

either disjoint from u(r′, r′) = u(r+ξ, r′) = Cr+ξ〈ℓh〉, or one must include the other.

Let ξ′ = r−r′+ξ, then ξ′ ≥ 0 and r+ξ = r′+ξ′.

· If Cr+ξ〈j〉 is disjoint from every Cr+ξ〈ℓh〉, then u(r′+ξ′, r′+ξ′) = u(r+ξ, r+ξ) must

be included in u(r′, k′) = Cr′〈i〉. So u(r′+ξ′, r′+ξ′) is included in u(r′, k′) = Cr′〈i〉,

which contradicts the minamility of r.

· Thus, Cr+ξ〈j〉 must be included in or include Cr+ξ〈ℓh〉 for some h ∈ 0..t−1. If

Cr+ξ〈ℓh〉 = u(r′, r′) included Cr+ξ〈j〉 = u(r′+ξ′, r′+ξ′), we would have a contra-

diction with the minimality of r. Thus Cr+ξ〈j〉 = u(r′+ξ′, r′+ξ′) must include

Cr+ξ〈ℓh〉 = u(r′, r′), and so j = ℓh, u(r′+ξ′, r′+ξ′) = u(r′, r′), and so r′ = r′+ξ′, a

contradiction.

This concludes the proof of Claim 1.

Claim 2: Let j = prevCr
(i), Cr〈i〉 = u(r, r), and for any j < i′ < i, Cr〈i

′〉 6= u(r, r).

Then Cr〈j〉 and Cr〈i〉 are adjacent.

By Claim 1, Cr〈j〉 cannot include Cr〈i〉, and so, by Lemma 6, Cr〈j〉 and Cr〈i〉 are

disjoint. By contradiction, we shall see that they must be adjacent. So assume that

they are not adjacent,
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u(r, r) = Cr〈i〉u(r, k) = Cr〈j〉

j = prevCr
(i)

j iℓ

i.e. Cr〈ℓ〉 < u(r, r), therefore Cr〈ℓ〉 = u(r, ρ) = u(ρ, ρ) for some ρ ≤ r. But since there

is no occurrence of u(r, r) between j and i, ρ < r. But this is not possible by Lemma 7.

This concludes the proof of Claim 2.

Claim 3: Let j = prevCr
(i1) = prevCr

(i2) and let Cr〈i1〉 = Cr〈i2〉 = u(r, r), and let

i2 > i1+|u(r, r)|. Then Cr〈i1+|u(r, r)|〉 = u(r, r).

Let i3 = i1+|u(r, r)|. Since j = prevCr
(i2), it follows that i3 ∈

r
⋃

ξ=1

Gu(r, ξ)
. If i3 ∈

r−1
⋃

ξ=1

Gu(r, ξ)
,

u(r, k) = Cr〈j〉 u(r, r) = Cr〈i1〉

prevCρ
(i1)

u(r, r) = Cr〈i2〉

prevCr
(i2)

j i1 i2i3

then Cr〈i3〉 = u(r, ξ) = u(ξ, ξ) for some ξ < r. Since Cξ〈i1〉 E Cr〈i1〉 ≺ u(r, ξ), it

follows that i4 = prevCξ
(i3) ≥ i1. If prevCξ

(i3) = i1, then for some t ≥ 1, Cξ+1〈i1〉 =

u(r, r)
(

u(ξ, ξ)
)t

E Cr〈i1〉 = u(r, r), a contradiction. Thus i4 > i1 and so Cξ+1〈i4〉 =

x[i4 .. i3−1]
(

u(ξ, ξ)
)t

E Cr〈i4〉 and so Cr〈i1〉 and Cr〈i4〉 intersect, a contradiction with

Lemma 6. Thus, i3 ∈ Gu(r, r)
.

Now we can prove the induction step. Let j = prevCr
(i), let p = |u(r, r)|, and

let Cr〈i〉 = u(r, r). Let ℓ be the smallest i such that j = prevCr
(i) and Cr〈i〉 =

u(r, r). Then by Claim 3, x[i1 .. i1+tp−1] =
(

u(r, r)
)t

where t = valCr
(ℓ), moreover

x[ℓ−p .. ℓ−1] 6= u(r, r) and x[i+tp .. i+(t+1)p−1] 6= u(r, r). By Claim 2, Cr〈j〉 and

Cr〈ℓ〉 are adjacent, and so x[j .. n] has Cr〈j〉
(

u(r, r)
)t

as a prefix. ⊓⊔

Note that for r = 1, Gu(1, 1)
= Gak where ak is the largest letter of x, and so

Gak is complete. Lemma 9 shows how the processing of Gu(r, r)
makes the group

Gu(r+1, r+1)
complete, i.e. how it propagates through the refinement process.
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Lemma 9. Referring to (B), for any 1 ≤ r < r̂, after processing the group Gu(r, r)
,

the group Gu(r+1, r+1)
is complete.

Proof. Assume to have i ∈ Gu(r+1, r+1)
so that u(r+1, r+1) = Cr+1〈i〉 = Cr〈i〉 =

u(r, r+1) is not maximal, i.e. u(r+1, r+1) 4 x[j .. n], where j = i+|u(r+1, r+1)|.

There are two cases.

· Gu(r+1, r+1)
= Gu(r, r+1)

.

Then for some t ≥ 1, and some ξ, x[j .. n] has
(

u(r, r+1)
)t
u(r, ξ) as a prefix and

u(r, ξ) is not a prefix of u(r, r+1), and Cr+1〈i〉 = u(r+1, r+1) = u(r, r+1) 4
(

u(r, r+1)
)t
u(r, ξ), and so u(r, r+1) ≺· u(r, ξ), and so u(r, r) 4 u(r, ξ) and ξ ≤

r. Then we have u(r+1, r+1) immediately followed by u(ξ, ξ), ξ < r+1, and

u(r+1, r+1) ≺ u(ξ, ξ), which contradicts Lemma 7.

· Gu(r+1, r+1)
was created from Gu(r, r+1)

and so Cr+1〈i〉 = u(r, r+1)
(

u(r, r)
)t

for

t = valCr
(j). Let ℓ = i+t|u(r, r+1)|. There are three subcases:

(α) For some p ≥ 1, some t1 > t, x[j .. n] has as a prefix
(

u(r, r+1)
(

u(r, r)
)t
)p

u(r, r+1)
(

u(r, r)
)t1 . But then there is a group that has

u(r, r+1)
(

u(r, r)
)t2 , t2 ≥ t1, as the context, which means that the group with

the context u(r, r+1)
(

u(r, r)
)t

cannot be Gu(r+1, r+1)
, a contradiction.

(β) For some p ≥ 1, some t1 < t, x[j .. n] has as a prefix
(

u(r, r+1)
(

u(r, r)
)t
)p

u(r, r+1)
(

u(r, r)
)t1

u(r, ξ) and u(r, ξ) 6= u(r, r). Since

u(r, r+1) ≺ u(r, ξ), it follows that ξ ≤ r, but since u(r, ξ) 6= u(r, r), we have

ξ < r. So u(r, ξ) = u(ξ, ξ). But then we have u(r, r) immediately followed by

u(ξ, ξ) with u(r, r) ≺ u(ξ, ξ), which contradicts Lemma 7.

(γ) For some p ≥ 1 and some ξ, x[j .. n] has
(

u(r, r+1)
(

u(r, r)
)t
)p

u(r, ξ) as a prefix

and so that u(r, r+1) ≺· u(r, ξ). It follows that ξ ≤ r. If u(r, ξ) = u(r, r), then

this would be case (α) as x[j .. n] would have
(

u(r, r+1)
(

u(r, r)
)t
)p−1

u(r, r+1)
(

u(r, r)
)t+1

as a prefix. Thus we can assume

that ξ < r and so u(r, ξ) = u(ξ, ξ). But then we have u(r, r) immediately

followed by u(ξ, ξ) with u(r, r) ≺ u(ξ, ξ), which contradicts Lemma 7.

Thus, we showed that for any i ∈ Gu(r+1, r+1)
, Cr+1〈i〉 is a maximal Lyndon factor,

i.e. Gu(r+1, r+1)
is complete. ⊓⊔
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Theorem 10. Referring to (B), Cr̂ =
[

Gu(r̂, mr̂)
, Gu(r̂, mr̂−1)

. . . , Gu(r̂, 1)

]

is an

r̂-proper configuration.

Proof. It is straightforward to see that Cr̂ satisfies Def. 2(i)-(v). That it satisfies

Def. 2(vi) follows from Lemma 6. Thus, Cr̂ is a group configuration. That Def. 4(vii)

is satisfied follows from Lemma 9. That Def. 4(viii) is satisfied follows from the fact

that Cr̂ was obtained by processing of Gu(r̂−1, r̂−1)
. Finally, the fact that Def. 4(ix)

is satisfied follows from Lemma 8. ⊓⊔

Theorem 11. For a string x, Baier’s sort identifies and sorts all maximal Lyndon

factors of x.

Proof. Consider (B) when the process of refinement stops. Consider an index i. There

is a unique 1 ≤ ℓ ≤ mr̂ so that i ∈ Gu(r̂, ℓ) . Thus x[i .. n] has u(r̂, r̂) as a prefix. Since

Gu(r̂, ℓ) is complete, x[i .. i+|u(r̂, ℓ)|−1] = u(r̂, ℓ) is a maximal Lyndon factor. Hence

all maximal Lyndon factors of x are accounted for. ⊓⊔

5 Conclusion and future work

We showed how the process of refinement of the initial configuration propagates and

is sustained as long as there are some i’s in the group being processed such that

prev(i) 6= nil. We showed that this process will identify and present in a sorted way

all maximal Lyndon factors of a given string.

An algorithmic analysis of the process and implementation details are a necessary

further step. Baier’s implementation of phase I of his algorithm is linear in time, due

to the use of the prev operator. The prev() values can be computed for the initial

configuration in O(n) steps using a stack of size n, where n is the length of the input

string, and then during the processing they can be updated in O(k) steps to work

properly for the next level of refinement, where k is the the size of the group being

processed. Our introduction of the valence makes the treatment of repetitions of the

context of the group being processed more mathematically sound and straightforward

and it lends itself to a simpler algorithmic treatment allowing to process the indices

of the group being processed simply from the largest to the smallest with very little

overhead. Our C++ implementation uses all these mathematical insights and thus only

uses memory of 13n integers, a significant improvement over Baier’s implementation.

Moreover, our implementation uses a static approach, so all required memory of 13n

integers is allocated once and no further dynamic memory allocation is required,

significantly speeding up the execution. Of course, rigorous comparison testing of

the performances of the two implementations is needed before any conclusion can be

drawn. The code can be obtained from

http://www.cas.mcmaster.ca/~franek/research/bls.cpp

http://www.cas.mcmaster.ca/~franek/research/bls.cpp
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