The Set-Set Closest Common Subsequence Problem

Gabriela Andrejková

Department of Computer Science, Faculty of Science, P. J. Šafárik University,
Jesenná 5, 041 54 Košice, Slovakia

e-mail: andrejk@kosice.upjs.sk

Abstract. Efficient algorithm is presented that solves a general case of the
Common Subsequence Problem, in which both input strings contain sets of
symbols with membership values in the sets. The problem arises from a searching
of the sets of most similar strings.

Key words: Subsequence, common subsequence, measure of the string, dynamic programming, design and analysis of algorithms.

1 Introduction

The motivation to the Closest Common Subsequence (CCS Problems) can be found
in the typing of a text on the keyboard. The following mistakes can be made in
typing some string: (1) Typing a different character, usually from the neighbour area
of the given character. (2) Inserting a single character into the source string. (3)
Omitting (skipping) any single source character. (4) Transposition of two elements.
It means, we have some words with mistakes. The problem is how to find the strings
they are very similar very closed to the exact strings. Very important role has here
the common subsequence of similar strings.

The common subsequence problem of two strings is to determine one of the sub-
sequences that can be obtained by deleting zero or more symbols from each of the
given strings. It is possible to demand some additional properties for the common
subsequence. Usually, it is the greatest length of the common subsequence, but we
can consider some different measures for the common subsequence.

The longest common subsequence problem (LCS Problem) of two strings is to deter-
mine the common subsequence with the maximal length. Algorithms for this problem
can be used in chemical and genetic applications and in many problems concerning
data and text processing [4, 8, 10]. Further applications include the string-to-string
correction problem [8] and determining the measure of differences between text files
[4]. The length of the longest common subsequence (LLCS Problem) can determine

1This research was partially supported by Slovak Grant Agency for Science VEGA, project No.
1/4375/97
the measure of differences (or similarities) of text files. The simulation method for
the approximate strings and sequence matching using the Levenstein metric can be
found in J. Holub [7] and the algorithm for the searching of the subsequences is in Z.

D. S. Hirschberg and L. L. Larmore [6] have discussed a generalization of LCS Prob-
lem, which is called Set-Set LCS Problem (SSLCS Problem). In this case both strings
are strings of subsets over an alphabet Ω. In the paper [6] is presented the $O(m \cdot n)$-
time algorithm for the general SSLCS Problem.

In this paper we present algorithms for more general case of the Common Subsequence
Problem, it means Closest Common Subsequence Problem $SCCCS$ Problem for two
strings of symbol sets with membership values of elements in the sets.

2 Basic Definitions

In this section, some basic definitions and results concerning to CCS Problem, SCCC
and SCCC Problem are presented.

Let Ω be a finite alphabet, $|\Omega| = s$, $P(\Omega)$ the set of all subsets of Ω, $|P(\Omega)| = 2^s$.

Let $A = a_1a_2 \ldots a_m$, $a_i \in \Omega$, $1 \leq i \leq m$ be a string over an alphabet Ω, where $|A| = m$
is the length of the string A.

The string $C \in \Omega^*$, $C = c_1 \ldots c_p$ is a subsequence of the string $A = a_1 \ldots a_m$, if a
monotonous increasing sequence of natural numbers $i_1 < \cdots < i_p$ exists such that
$c_j = a_{i_j}$, $1 \leq j \leq p$. The string C is a common subsequence of two strings A, B if C
is a subsequence of A and C is a subsequence of B. $|C|$ is the length of the common
subsequence. The classical problem to find the longest common subsequence is defined
and solved in Hirschberg [5]. In the classical problem, each element in the string is
in his position as full member, but sometimes we are not sure about it in texts. The
element should be in his position with 70\%, it means, the element is in his position
with 0.7 membership value. Sometimes, we can suppose that in some position should
be one element of some set of elements with membership values.

Let $\mu_A(a_i) \in (0, 1), 1 \leq i \leq m$, be some membership values of elements in the string
A. The pair (A, μ_A) is the string A with the membership function μ_A, m-string μ_A
for short. $Val(\mu_A)$ is a measure of μ_A defined by the (1).

$$Val(\mu_A) = \sum_{i=1}^{m} \mu_A(a_i)$$

(1)

The string $\mu C = (C, \mu_C)$ is a subsequence with the membership function μ_C, shortly
m-subsequence of the m-string μA if C is a subsequence of the string A and $0 < \mu_C(c_t) \leq \mu_A(a_i)$, for $1 \leq t \leq p$. The m-subsequence μC is a closest m-subsequence if
$Val(\mu C) = \sum_{j=1}^{p} \mu C(c_j) = \sum_{j=1}^{p} \mu A(a_i)$.

The string μC is a common m-subsequence of two m-strings μA and μB if μC
is a m-subsequence of μA and μB is a m-subsequence of μB.

The string μC is a closest common m-subsequence of the m-strings μA and μB if μC
is a common m-subsequence with the maximal value $Val(\mu C)$. It means, if μD is a
common m-subsequence of the strings μA and μB then $Val(\mu D) \leq Val(\mu C)$.
If μC is a closest common m-subsequence of the m-strings, μA and μB then $\mu C(c_t) = \min\{\mu_A(a_{k_t}), \mu_B(b_{k_t})\}$, for $1 \leq t \leq p$.

The CCS Problem: Let μA and μB be m-strings. To find a closest common subsequence of the m-strings μA and μB, $CCS(\mu A, \mu B)$ for short.

The MCCS Problem is to find the measure of CCS m-string, $MCCS$ for short. It means, $MCCS(\mu A, \mu B) = Val(CCS(\mu A, \mu B))$.

Algorithms for CCS and MCCS Problem Andrejková [2].

$$
\begin{array}{c}
A = \begin{array}{cccccccc}
\text{a} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{b} \\
0.9 & 0.9 & 0.6 & 0.5 & 0.2 & 0.8 & 0.4 & 0.6 \\
\end{array} \\
B = \begin{array}{cccccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{b} & \text{c} & \text{b} \\
0.6 & 0.6 & 0.3 & 0.4 & 0.9 & 0.5 & 0.6 \\
\end{array}
\end{array}
$$

Figure 1. The closest common subsequence of two m-strings A and B.

Example 1. $\Omega = \{a, b, c\}$, $A = abaabacab, m = 9$, $\mu_A = (.9, .9, .6, .5, .2, .8, .4, .6, .5)$, $B = abcdcbcb, n = 7$, $\mu_B = (.6, .6, .3, .4, .9, .5, .6)$. The string $C = abcb$ is a subsequence, $C' = abcbb$ is the longest common subsequence of the strings A and B, and $\mu C''$, $C'' = abcbb, \mu C'' = (.6, .9, .4, .5)$ is the closest common subsequence of the m-strings μA and μB, $Val(\mu C'') = MCCS(\mu A, \mu B) = 2.4$ as it is shown in Figure 1.

A *string of sets* B over an alphabet Ω, *set-string* for short, is any finite sequence of sets from $P(\Omega)$. Formally, $B = B_1B_2\ldots B_n, B_i \in P(\Omega), 1 \leq i \leq n, n$ is the number of sets in B. The length of the symbol string described by B is $N = \sum_{i=1}^{n}|B_i|$. A string of symbols $C = c_1c_2\ldots c_p, c_i \in \Omega, 1 \leq i \leq p$, is a *subsequence of symbols* (subsequence, for short) of the set-string B if there is a nondecreasing mapping $F : \{1, 2, \ldots, p\} \to \{1, 2, \ldots, n\}$, such that

1. if $F(i) = k$ then $c_i \in B_k$, for $i = 1, 2, \ldots, p$

2. if $F(i) = k$ and $F(j) = k$ and $i \neq j$ then $c_i \neq c_j$.

Let $A = A_1\ldots A_m, B = B_1\ldots B_n, 1 \leq m \leq n$, be two set-strings of sets over an alphabet Ω. The string of symbols C is a *common subsequence of symbols* of A and B is C a subsequence of symbols of A and C is a subsequence of symbols of the set-string B.

As similar as for strings, let define *m-set* as a set with membership function defined on its elements.

Let $\mu_{B_i}, i = 1, 2, \ldots, n$ be the membership functions of the sets $B_i, i = 1, 2, \ldots, n$ in the string B. It means, $\mu B = \mu B_1\mu B_2\ldots \mu B_n$. μB is the m-set-string B of m-sets $B_i, i = 1, 2, \ldots, n$ with the membership functions μ_{B_i}, m-set-string μB for short. The weight of the m-set $B \in P(\Omega)$ with membership function μB is defined by

$$W(B) = \sum_{x \in B} \mu B(x)$$ \hspace{1cm} (2)
A string μC is a m-subsequence of the m-set-string μB if (1) μC is the subsequence of symbols of the set-string B and (2) if $c = c_i, c_i \in B_k$ then $\mu C(c_i) \leq \mu B_k(c_i)$.

The m-string μC is a common m-subsequence of the m-set-strings μA and μB if μC is m-subsequence of μA and μC is m-subsequence of μB.

The string μC is a closest common m-subsequence of the m-set-strings μA and μB if μC is a common subsequence with maximal value $Val(\mu C)$. Note that μC is not in general unique.

The SSCCS Problem: Let $\mu A, \mu B$ be two m-set-strings. The Set-Set Closest Common Subsequence problem of the m-set-strings μA and μB, $(SSCCS(\mu A, \mu B)$ for short, consists of finding a closest common m-subsequence μC with the maximal value $Val(\mu C)$.

The MSSCCS Problem consists of finding the measure of $SSCCS$ m-set-string, $MSSCCS(\mu A, \mu B)$ for short.

It means, $MSSCCS(\mu A, \mu B) = Val(SSCCS(\mu A, \mu B))$.

![Figure 2. The closest common m-subsequence of two m-set-strings A and B.](image)

Example 2. Let $A = \{a, d\}\{c,a,d\}\{e,b,a\}$, $m = 3$, $\mu A_1 = (0.7, 0.3)$, $\mu A_2 = (0.6, 0.4, 0.5)$, $\mu A_3 = (0.6, 0.3, 0.8)$, $B = \{d, e, c\}\{a, d, e\}\{b, d, c\}\{b, d\}$, $n = 4$. $\mu B_1 = (0.4, 0.3, 0.5)$, $\mu B_2 = (0.7, 0.6, 0.8)$, $\mu B_3 = (0.9, 0.5, 0.7)$, $\mu B_4 = (0.5, 0.3)$. The membership values are described according to the named order in the set. For example, $\mu_{A_1}(a) = 0.7, \mu_{A_1}(d) = 0.3$. Then $MSSCCS(\mu A, \mu B) = 2.4$ as it is shown in the Figure 2.

3 ALGORITHM FOR MSSCCS Problem

The basic idea of the algorithm starts from the definition of MSSCCS Problem.

$$MSSCCS(\mu A, \mu B) = \max_{\mu C} \{Val(\mu C) : \mu C \text{ is the common } m\text{-subsequence of } \mu A \text{ and } \mu B\}$$

(3)

In the following part of the paper we will use the m-set only and for a simpler description we will omit the symbol μ in the names of sets.

A flattening of a sequence of sets is defined as a concatenation, in order of the sequence, of strings formed by some permutation of individual elements of the sets in the sequence. For example, a flattening of the m-set-string A in Example 2 is
\(A_{fl1} = dabaceba, \mu_{A_{fl1}} = (3, .7, .5, .4, .6, .6, .3, .8) \) and so is \(A_{fl2} = daacbbae, \mu_{A_{fl2}} = (3, .7, .4, .6, .5, .3, .8, .6) \).

If we have some flattening of both set-strings then it is possible to apply the MCCS algorithm, Andrejková [2]. It is necessary to compute MCCS values of all pairs of all flattenings both set-strings but it is too much time consuming.

If we have the flattening of one set-string and the second is a set-string then it is possible to use the MSCCS algorithms. But it is necessary to compute MSCCS value for all flattenings of one string. It is too much time consuming too. Both algorithms have an exponential time complexity.

It is possible to use the following algorithm of polynomial time complexity. The algorithm works in two steps:

1. to create the string of symbols for each of set-string; each set can be encoded as the string of all permutations of its elements (the length of such string is \(k^2 - 2 \cdot k + 4 \), \(k \) is the number of elements in set [9]); for example, the shortest m-string of elements in the m-set-string \(A \) in example 2 is \(dadabcabcebeab \) and so is \(adacabcabcebebae \).

2. to apply the MCCRS algorithm, Andrejková [1] for the two in the previous step constructed m-strings (each element of the m-set can be used once at most):

 The algorithm works in polynomial time: \(O(M^2 \cdot N^2 \cdot K) \), where \(M = \sum_{i=1}^{m} |A^i| \), \(N = \sum_{j=1}^{n} |B^j| \), and \(K \) is the number of elements in the closest common restricted subsequence.

We formulate the following algorithm with the better time complexity according to Hirshberg’s idea for SSLCS Problem [6]. The algorithm works with intersection, union and equivalence, difference of m-sets. It is possible to use many definitions of them but the following [3, 12] are more obvious:

Let \(A, B \) be the m-sets with membership functions \(\mu_A, \mu_B \), and \(x \in A \) explains a membership of the element \(x \) to the m-set \(A, \mu_A(x) > 0 \), then

1. intersection “\(\cap_m \)” of two m-sets is defined:

\[
A \cap_m B = \text{def} \ \{x | x \in A \land x \in B\}, \ \mu_{A \cap_m B}(x) = \min\{\mu_A(x), \mu_B(x)\}
\]

2. union ”\(\cup_m \)” of two m-sets is defined:

\[
A \cup_m B = \text{def} \ \{x | x \in A \lor x \in B\}, \ \mu_{A \cup_m B}(x) = \max\{\mu_A(x), \mu_B(x)\}
\]

3. equivalence “\(=_m \)” of two m-sets is defined:

\[
A =_m B \iff x \in A \land x \in B \land A \cap_m B \land x \in A \cup_m B
\]

4. difference “\(-_m \)” of two m-sets is defined:

\[
A -_m B = \text{def} \ \{x | x \in A \land x \notin B\}, \ \mu_{A -_m B}(x) = \mu_A(x)
\]

5. \(A \) is m-subset of \(B, A \subseteq_m B \), if and only if \(\forall x \in A \) is fulfilled \(x \in B \) and \(0 < \mu_A(x) \leq \mu_B(x) \).
3.1 Description of the simple algorithm A.

For convenience, we define \(A_0 = B_0 = \emptyset \).

We define \(\text{Ent}(i, j) \) to be the set of quintuples \((k, F_f, F_u, G_f, G_u)\) such that:

1. \(k \) is the measure of \(\gamma \), a common \(m \)-subsequence of some flattening of \(A_1 \ldots A_i \) and some flattening of \(B_1 \ldots B_j \), defined by (1).

2. free \(m \)-set \(F_f \subseteq_m A_i \) is the \(m \)-set of elements of \(A_i \) which are not used by \(\gamma \),

3. free \(m \)-set \(G_f \subseteq_m B_j \), is the \(m \)-set of elements of \(B_j \) not used by \(\gamma \),

4. \(m \)-set of used elements \(F_u \subseteq_m A_i \) is the \(m \)-set of elements of \(A_i \) used by \(\gamma \), and

5. \(m \)-set of used elements \(G_u \subseteq_m B_j \) is the \(m \)-set of elements of \(B_j \) used by \(\gamma \).

Example 3. \((1, 2, \{(c, 0.5), (a, 0.4)\}, \{(b, 0.5)\}, \{(a, 0.4)\}, \{(d, 0.6), (e, 0.8)\})\) is in \(\text{Ent}(2, 2) \) for \(m \)-set-strings in Example 2.

We refer to such quintuple as an entry. The measure of the CCS of the some flattening of \(A_1 \ldots A_m \) and some flattening of \(B_1 \ldots B_n \) is then, by definition, the largest \(k \) such that \((k, F_f, F_u, G_f, G_u) \in \text{Ent}(m, n)\) for some \(m \)-sets \(F_f, F_u, G_f \) and \(G_u \) \(\text{Ent}(0, 0) \) contains just one entry, namely \((0, 0, 0, 0, 0, 0)\), while \(\text{Ent}(i, j) \) can be computed dynamically from \(\text{Ent}(i - 1, j) \) and \(\text{Ent}(i, j - 1) \). The problem is that the cardinality of \(\text{Ent}(i, j) \) could become very large, making such an algorithm exponential in the worst case.

Let \(e = (k, F_f, F_u, G_f, G_u) \in \text{Ent}(i - 1, j) \) and \(F^s, F_u \subseteq_m F^s \) be the \(m \)-set with the following property: \(x \in F^s \iff x \in F_u \) and \(\mu_{F_u}(x) \leq \mu_{F^s}(x) = \mu_{A_i}(x) \). It means, the \(m \)-set \(F^s \) is the maximal \(m \)-set that has the same elements as the \(m \)-set \(F_u \), but membership values of elements in \(F^s \) are the same as in the \(m \)-set \(A_i \).

Let \(S \) be any subset of \(A_i \cap_m G_f \). We say that \(e \) vertically generates \(e' \in \text{Ent}(i, j) \) if

1. \(e' = (k + W(S) - W(A_i \cap_m G_u) + W(S'), A_i - m S, F_u, G_f - m S, G_u) \) for any subset \(S' \) of \(A_i \cap_m G^s, W(S') > W(A_i \cap_m G_u) \), or

2. \(e' = (k + W(S), A_i - m S, F_u, G_f - m S, G_u) \) and for each subset \(S' \) of \(A_i \cap_m G^s \) is \(W(S') \leq W(A_i \cap_m G_u) \).

The element \(e' \in \text{Ent}(i, j) \) and it is shown by the following: If \(\alpha \) is common \(m \)-subsequence with a measure \(k = \text{Val}(\alpha) \) of the flattening of \(A_1 \ldots A_{i-1} \) and some flattening of \(B_1 \ldots B_j \), where \(F_f \subseteq_m A_i - 1 \) and \(G_f \subseteq_m B_j \) are free \(m \)-sets, and \(\beta \) is a \(m \)-sequence consisting of the elements of \(S \subseteq_m A_i \cap G_f \) written in any order, then \(\alpha \beta \) (having measure \(k + \text{Val}(S) \)) is common \(m \)-subsequence of a flattening of \(A_1 \ldots A_i \) and a flattening of \(B_1 \ldots B_j \), with free \(m \)-sets \(A_i - S \) and \(G_f - S \). The used elements from \(m \)-set \(G_u \) can be used with some better membership values and it is evaluated by the comparison of the weights of the sets \(A_i \cap_m G^s \) and \(A_i \cap_m G_u \). If \(W(A_i \cap_m G_u) < W(A_i \cap_m G^s) \) then there exists some better using of elements in \(A_i \).
Similarly, if \((k, F_j, F_u, G_j, G_u) \in \text{Ent}(i, j-1)\) and \(S \subseteq_m F_j \cap_m B_j\) and \(S'\) is any subset of \(B_j \cap_m F_j\), \(W(S') > W(B_j \cap_m F_u)\), we say that \((k, F_j, F_u, G_j, G_u)\) **horizontally generates** \((k + W(S) - W(B_j \cap_m F_u) + W(S'), F_j - m S, F_u, B_j - m S, G_u) \in \text{Ent}(i, j)\) or \((k + W(S), F_j - m S, F_u, B_j - m S, G_u) \in \text{Ent}(i, j)\) according to the relation \(W(B_j \cap_m F_u) < / \geq W(S')\).

Lemma 1 If \(e \in \text{Ent}(i, j)\) for \(i + j \geq 0\) then \(e\) is generated by some element of either \(\text{Ent}(i + 1, j)\) or \(\text{Ent}(i, j - 1)\).

Proof. \(e = (k, F_j, F_u, G_j, G_u) \in \text{Ent}(i, j)\), it means \(e = \alpha \beta\), \(\beta\) is the part of elements in \(A_i \cap B_j\). According to above construction, the part \(\beta\) is the prolongation of some element \(e' \in \text{Ent}(i - 1, j)\) or \(\text{Ent}(i, j - 1)\). In the part \(\alpha\) should be elements with higher membership values. \(\square\)

The element \(e \in \text{Ent}(i, j)\) is generated from elements in \(E(i - 1, j)\) or \(\text{Ent}(i, j - 1)\) using of two sets: the free subset and the used subset of \(B_j\), respectively \(A_i\). The following algorithm is a dynamic programming algorithm in which the boundary conditions are set and then the interval entries are determined:

Algorithm A.

for all \(i\) do \(\text{Ent}(i, 0) := \{(0, A_i, \emptyset, \emptyset, \emptyset)\}\)

for all \(j\) do \(\text{Ent}(0, j) := \{(0, \emptyset, \emptyset, B_j, \emptyset)\}\)

for \(i := 1\) to \(m\) do

for \(j := 1\) to \(n\) do

\(\text{Ent}(i, j) := \{\text{all entries vertically generated from } \text{Ent}(i, j)\}\)

\(\cup \{\text{all entries horizontally generated from } \text{Ent}(i, j - 1)\}\)

\(\max_k := \text{the largest } k \text{ such that } (k, F_j, F_u, G_j, G_u) \in \text{Ent}(m, n) \text{ for some } F_j, F_u, G_j, G_u\).

3.2 Description of a better algorithm

The above algorithm may be very time-consuming because of too many quintuples is necessary to analyze. We will speed the algorithm by eliminating consideration of many quintuples.

If \((k, F_j, F_u, G_j, G_u), (k', F'_j, F'_u, G'_j, G'_u) \in \text{Ent}(i, j)\), we say that \((k, F_j, F_u, G_j, G_u)\) **dominates** \((k', F'_j, F'_u, G'_j, G'_u)\) if the following conditions hold:

1. \(d = k - k' \geq 0\),
2. \((W(F'_j - F_j) \leq d \text{ and } F'_u \subseteq_m F_u)\) or \((W(F'_u - F_u) \leq d \text{ and } F'_j \subseteq_m F_j)\),
3. \((W(G'_j - G_j) \leq d \text{ and } G'_u \subseteq_m G_u)\) or \((W(G'_u - G_u) \leq d \text{ and } G'_j \subseteq_m G_j)\).
The relation "≤" is a transitive, antisymmetric and reflexive relation. The elements of $\text{Ent}(i, j)$ can be ordered according to relation "≤", it means they are ordered in some \textit{chains}. The last element of the chain has maximal measure and that is very important.

\textbf{Lemma 2} Any element of $\text{Ent}(i, j)$ which is not maximal with respect to the relation "≤" can be discarded during execution of the algorithm without affecting the final value of $\text{max} \cdot k$.

\textbf{Proof}. It will be proved by downward induction on both indices i and j. The value of $\text{max} \cdot k$ is obtained from $\text{Ent}(m, n)$ in the last step and all other elements may be discarded with no effect.

Suppose $i + j < m + n$ and $e' \in \text{Ent}(i, j)$, e' is not maximal. Let $e \in \text{Ent}(i, j)$ is maximal. It means, $e' \preceq e$. It is necessary to prove that maximal element of $\text{Ent}(i + 1, j)$ or $\text{Ent}(i, j + 1)$ which is generated by e' can be generated by e too. And the element e' can be discarded.

Let $e = (k, F_f, F_u, G_f, G_u), e' = (k', F'_f, F'_u, G'_f, G'_u)$ and e' vertically generates f'. f' should have two forms for some m-set $P \subseteq A_{i+1} \cap G'_f$

\begin{enumerate}
 \item $f' = (k' + W(P) - W(A_{i+1} \cap m G'_u) + W(A_{i+1} \cap m G^s), A_{i+1} - m P, P, G_f - m P, G_u'),$
 \quad if $W(A_{i+1} \cap m G'_u) < W(A_{i+1} \cap m G^s)$, or
 \item $f' = (k' + W(P), A_{i+1} - m P, P, G'_f - m P, G'_u'),$ if $W(A_{i+1} \cap m G'_u) \geq W(A_{i+1} \cap m G^s)$.
\end{enumerate}

Let $S = P \cap G_f$, and f is vertically generated by e. f should have two forms: (1) \quad $f = (k + W(S) - W(A_{i+1} \cap m G_u) + W(A_{i+1} \cap m G^s), A_{i+1} - m S, S, G_f - m S, G_u)$ or (2) \quad $f = (k + W(S), A_{i+1} - m S, S, G_f - m S, G_u)$. It is necessary to analyze four cases to prove the Lemma (a)-(1), (a)-(2), (b)-(1), (b)-(2). We start with the first one, it means (a)-(1), and $W(A_{i+1} \cap m G'_u) < W(A_{i+1} \cap m G^s)$ and $W(A_{i+1} \cap m G'_u) \leq W(A_{i+1} \cap m G^s)$.

Since $e' \preceq e$, $d = k' - k$, $d \geq 0$, $((W(F'_f - F_f) \leq d$ and $F'_u \subseteq m F_u$) or $(W(F'_f - F_f) \leq d$ and $F'_f \subseteq F_f$), and $(W(G'_f - G_f) \leq d$ and $G'_u \subseteq m G_u$) or $(W(G'_f - G_f) \leq d$ and $G'_f \subseteq m G_f$)). Then $W(P \cap m S) = W(P \cap m P \cap m G_f) = W(P \cap m G^s) \leq W(F'_f - m F_f) \leq d$ and $W(P \cap m S) \leq W(P) - W(S)$. Let $d' = (W(P) - W(S)) - (W(A_{i+1} \cap m G^s) - W(A_{i+1} \cap m G'_u)) - (W(A_{i+1} \cap m G'_u)$ \leq $W(A_{i+1} \cap m G'_u) \leq d$ We prove that $f' \preceq f$, it means f' is not maximal or $f = f'$. According to definition of "≤" it is necessary to check three conditions 1-3.

1. $z = k + W(S) - W(A_{i+1} \cap m G_u) + W(A_{i+1} \cap m G^s) - (k' + W(P) - W(A_{i+1} \cap m G'_u) + W(A_{i+1} \cap m G^s)) = k - k' - (W(P) - W(S)) + W(A_{i+1} \cap m G^s) - W(A_{i+1} \cap m G^s) + W(A_{i+1} \cap m G_u) - W(A_{i+1} \cap m G'_u) \geq d - d' \geq 0$

2. $W(P \cap m S) \leq d$ and $A_{i+1} - m P \subseteq A_{i+1} - m S$

3. $W(G'_f - m P - m (F_f - m S)) = W(G'_f - m G_f) \leq d$ and $G'_u \subseteq m G_u$.
The rest three cases can be proved by a very similar method. And the vertical case is similar. \qed

If \(e = (k, F_f, F_u, G_f, G_u) \in \text{Ent}(i, j) \), we define the horizontal child of \(e \) to be \(\text{hor}(e) = k + W(F_f \cap B_{j+1}) - W(A_i \cap_m G_u) + W(A_i \cap_m G^s), F_f - B_{j+1}, F_u, B_{j+1} - F_f, G_u \) or \(\text{hor}(e) = k + W(F_f \cap B_{j+1}), F_f - B_{j+1}, F_u, B_{j+1} - F_f, G_u \) and define the vertical child of \(e \) to be \(\text{ver}(e) = k + W(A_{i+1} \cap G_f) - W(B_{j+1} \cap G_u) + W(B_{j+1} \cap G^s), B_{j+1} - G_f, F_u, G_f - B_{j+1}, G_u \). We define \(\text{MaxEnt}(i, j) \) to be the set of maximal elements of \(\text{Ent}(i, j) \) under the dominance relation \(\leq^* \).

Lemma 3 Any entry horizontally generates at most one maximal entry and vertically generates at most one maximal entry.

Proof. Let \(e = (k, F_f, F_u, G_f, G_u) \in \text{Ent}(i, j) \). The only elements vertically generated by \(e \) which can be maximal are in the \(\text{ver}(e) \), since they dominates any others vertically generated by \(e \). Similarly, \(\text{hor}(e) \) dominates any entries horizontally generated by \(e \). \qed

We say that \((k, F_f, F_u, G_f, G_u)\) strongly dominates \((k', F_f, F_u, G_f, G_u)\) if \(k > k' \). If \(S \subseteq \text{Ent}(i, j) \), defines \(\text{Dom}(S) \subseteq S \) to be the set obtained by deleting every element of \(S \) which is strongly dominated by another element of \(S \). We now inductively define sets \(\text{Chain}(i, j) \subseteq \text{Ent}(i, j) \) by:

1. \(\text{Chain}(i, 0) = \{(0, A_i, 0, 0, 0)\} \),
2. \(\text{Chain}(0, j) = \{(0, 0, 0, B_j, 0)\} \),
3. \(\text{Chain}(i, j) = \text{Dom}\{\text{ver}(e) | e \in \text{Chain}(i-1, j)\} \cup \{\text{hor}(e) | e \in \text{Chain}(i, j-1)\} \).

We refer to entries \(\text{Chain}(i, j) \) as weakly maximal. We observe the following lemma.

Theorem 1 \(\text{MaxEnt}(i, j) \subseteq \text{Chain}(i, j) \).

Proof. By induction. For \(i = 0 \) or \(j = 0 \) the two sets \(\text{MaxEnt}(i, j) \) and \(\text{Chain}(i, j) \) are identical. For \(i, j > 0 \), and \(e \in \text{MaxEnt}(i, j) \) must be vertical or horizontal child of some maximal element, which is weakly maximal by induction. It means, \(e \) must be weakly maximal, since it is maximal and thus cannot be deleted by operator \(\text{Dom} \). \qed

Using the results of the Lemmas 2 and 3 and Theorem 1 we have the following algorithm:

Algorithm B.

{Using weakly maximal entries.}

for all \(i \) **do** \(\text{Chain}(i, 0) := \{(0, A_i, 0, 0, 0)\} \); **for all** \(j \) **do** \(\text{Chain}(0, j) := \{(0, 0, 0, B_j, 0)\} \);
for \(i := 1 \) to \(m \) do
for \(j := 1 \) to \(n \) do
begin
\(\text{Chain}(i, j) := \emptyset; \)
\text{for all} \((k, F_f, F_u, G_f, G_u) \in \text{Chain}(i, j - 1) \) do begin
\(\text{help} := W(B_j \cap_m F^*) - W(B_j \cap_m F_u); \)
if \(\text{help} \leq 0 \) then
insert \((k + W(F \cap B_j), F_f - B_j, F_u, B_j - F_f, G_u) \) into \(\text{Chain}(i, j) \)
else insert \((k + W(F_f \cap B_j) + \text{help}, F_f - B_j, F_u, B_j - F_f, G_u) \) into \(\text{Chain}(i, j) \)
end;
\text{for all} \((k, F_f, F_u, G_f, G_u) \in \text{Chain}(i - 1, j) \) do begin
\(\text{help} := W(A_i \cap_m G^*) - W(A_i \cap_m G_u); \)
if \(\text{help} \leq 0 \) then
insert \((k + W(A_i \cap G), A_i - G_f, F_u, G_f - A_i, G_u) \) into \(\text{Chain}(i, j) \)
else insert \((k + W(G_f \cap A_i) + \text{help}, A_i - G_f, F_u, G_f - A_i, G_u) \) into \(\text{Chain}(i, j) \)
end;
delete all nonweakly maximal elements from \(\text{Chain}(i, j) \)
end
\(\max_k := \text{the maximum value of } k \text{ such that } (k, F_f, F_u, G_f, G_u) \in \text{Chain}(m, n) \) for some \(F_f, F_u, G_f \) and \(G_u. \)

The algorithm works in \(O(m \cdot n \cdot K \cdot t) \)-time, where \(K \) is the maximal number of elements in \(\text{Chain}(i, j) \) and \(t \) is the maximal time spent for computing the intersection of two sets. The algorithm works in \(O(m \cdot n \cdot k) \)-space, where \(k \) is the maximal number of elements in the \(m \)-sets \(A_i, B_j. \) In the next section we show the idea of some efficient implementation of the algorithm.

3.3 Efficient implementation of algorithm B.

We show the structure of \(\text{Chain}(i, j) \) that will help obtain an efficient implementation of algorithm B. We begin by defining a transitive reflexive relation \(\preceq \) on \(\text{Ent}(i, j) \). We say that \((k, F_f, F_u, G_f, G_u) \preceq (k', F'_f, F'_u, G'_f, G'_u) \) if \(F_f \subseteq_m F'_f, G_f \subseteq_m G'_f, F_u =_m F'_u \) and \(G_u =_m G'_u. \)

Lemma 4
(a) If \(e, e' \in \text{Ent}(i - 1, j) \), and if \(e \prec e' \), then \(\text{ver}(e) \prec \text{ver}(e') \).

(b) If \(e, e' \in \text{Ent}(i, j - 1) \), and if \(e \prec e' \), then \(\text{hor}(e) \prec \text{hor}(e') \).

(c) If \(e \in \text{Ent}(i, j - 1) \) and \(e' \in \text{Ent}(i - 1, j) \), then \(\text{hor}(e) \prec \text{ver}(e') \).
Proof. (a) $\text{ver}(e) = (k, F_f \cap_m B_j, F_u, B_j - m F_f, G_u)$ and $\text{ver}(e') = (k', F'_f - m B_j, F'_u, B_j - m F'_f, G'_u)$. It follows from $F_f \subseteq_m F'_f$ that $F_f - B_j \subseteq_m F'_f - B_j$ and $B_j - F'_f \subseteq_m B_j - F_f$, i.e. $\text{ver}(e) \triangleleft \text{ver}(e')$.

(b) Similar to the proof of (a).

(c) Let $e = (k, F_f, F_u, G_f, G_u)$ and $e' = (k', F'_f, F'_u, G'_f, G'_u)$. Then $\text{hor}(e) = (k, F_f - m B_j, F_u, B_j - m F_f, G_u)$ and $\text{ver}(e') = (k', F'_f - m B_j, F'_u, B_j - m F'_f, G'_u)$. It can be seen that $F_f \subseteq A_i$ since $e \in \text{Ent}(i, j - 1)$, and that $G'_f \subseteq B_j$ since $e' \in \text{Ent}(i - 1, j)$. And we have $F_f - B_j \subseteq A_i - G'_f$ and $G'_f - A_i \subseteq B_j - F_f$, i.e. $\text{hor}(e) \triangleleft \text{ver}(e')$.

\[\square\]

Lemma 5 The relation \triangleleft imposes a total ordering on $\text{Chain}(i, j)$.

Proof. We need to prove that for any distinct $f, f' \in \text{Chain}(i, j)$, either $f \triangleleft f'$ or $f' \triangleleft f$ but not both. If $f' \triangleleft f$ and $f \triangleleft f'$, then f and f' would have the same free sets, which implies they must be identical, else the one with the smaller value of k would not be weakly maximal. Thus, we need only show that f and f' are comparable. We do this by induction on i and j.

$\text{Chain}(0, j)$ contains just one entry, namely $(0, \emptyset, \emptyset, B_j, \emptyset)$, and hence is ordered. Similarly, $\text{Chain}(i, 0)$ contains only the entry $(0, A_i, \emptyset, \emptyset, \emptyset)$.

Suppose, $i, j > 0$, and $f, f' \in \text{Chain}(i, j)$. Both f and f' must be generated by maximal entries e and e', respectively. We consider three cases. If f and f' are the vertical children of e and e', respectively, then by induction, e and e' are comparable, hence f and f' are comparable by above Lemma. If f and f' are the horizontal children of e and e' the proof is similar. If f is the horizontal child of e and f' is vertical child of e', then f and f' are comparable by above Lemma too.

\[\square\]

Lemma 6 $\text{Chain}(i, j)$ has the number of elements at most $1 + |A_i| + |B_j|$, where $|A_i|$, $|B_j|$ are the numbers of elements in the m-sets A_i, B_j, for $i = 1, \ldots, m, j = 1, \ldots, n$.

Proof. The main idea of the proof is in the following: Each element from m-set should be used once at most but with some different membership value.

If $e \in (k, F_f, F_u, G_f, G_u) \in \text{Ent}(i, j)$, define signature of e to be $|F_f| - |G_f|$, which must lie in the interval $[-|B_j|, |A_i|]$. Since $\text{Chain}(i, j)$ is ordered under the relation \triangleleft, each entry must have different signature.

\[\square\]

It means, the algorithm works in $O(m \cdot n \cdot L \cdot t)$-time, where L is the maximal number of the numbers in $\{1 + |A_i| + |B_j|, i = 1, \ldots, m, j = 1, \ldots n\}$ and $t = \max\{|A_i|, |B_j|, i = 1, \ldots, m, j = 1, \ldots, n\}$ is the maximal time spent for computing of the intersection of two sets. The algorithm works in $O(n \cdot L \cdot t)$-space.

4 CONCLUDING REMARKS

Polynomial algorithms for the solutions of the SSCCS and MSSCCS Problem with membership functions have been presented. The algorithms work in $O(m \cdot n \cdot L \cdot t)$-time and $O(n \cdot L \cdot t)$-space, where $L = \max\{1 + |A_i| + |B_j|, i = 1, \ldots m, j = 1, \ldots n\}$ and $t = \max\{|A_i|, |B_j|, i = 1, \ldots m, j = 1, \ldots n\}$ is the maximal time spent for computing of the intersection of two sets.
References

