Abstract. Kolpakov and Kucherov proposed a variant of the Lempel-Ziv factorization, called the reversed Lempel-Ziv (RLZ) factorization (Theoretical Computer Science, 410(51):5365–5373, 2009). In this paper, we present an on-line algorithm that computes the RLZ factorization of a given string w of length n in $O(n \log^2 n)$ time using $O(n \log \sigma)$ bits of space, where $\sigma \leq n$ is the alphabet size. Also, we introduce a new variant of the RLZ factorization with self-references, and present two on-line algorithms to compute this variant, in $O(n \log n)$ time using $O(n \log n)$ bits of space, and in $O(n \log^2 n)$ time using $O(n \log \sigma)$ bits of space.

Keywords: reversed Lempel-Ziv factorization, on-line algorithms, suffix trees, palindromes

1 Introduction

The Lempel-Ziv (LZ) factorization of a string [21] is an important tool of data compression, and is a basis of efficient string processing algorithms [4] and compressed full text indices [11]. In the off-line setting where the string is static, there exist efficient algorithms to compute the LZ factorization of a given string w of length n, running in $O(n)$ time and using $O(n \log n)$ bits of space, assuming an integer alphabet. See [4] for a survey, and [3,5,6,7] for more recent results in this line of research. In the on-line setting where new characters may be appended to the end of the string, Okanohara and Sadakane [14] gave an algorithm that runs in $O(n \log^3 n)$ time using $n \log \sigma + o(n \log \sigma) + O(n)$ bits of space, where σ is the size of the alphabet. Later, Starikovskaya [13] proposed an algorithm running in $O(n \log^2 n)$ time using $O(n \log \sigma)$ bits of space, assuming $\frac{\log N}{4}$ characters are packed in a machine word. Very recently, Yamamoto et al. [20] developed a new on-line LZ factorization algorithm running in $O(n \log n)$ time using $O(n \log \sigma)$ bits of space.

In this paper, we consider the reversed Lempel-Ziv factorization (RLZ in short) proposed by Kolpakov and Kucherov [10], which is used as a basis of computing gapped palindromes. In the on-line setting, the RLZ factorization can be computed in $O(n \log \sigma)$ time using $O(n \log n)$ bits of space, utilizing the algorithm by Blumer et al. [3]. We present a more space-efficient solution to the same problem, which requires only $O(n \log \sigma)$ bits of working space with slightly slower $O(n \log^2 n)$ running time.

We also introduce a new, self-referencing variant of the RLZ factorization, and propose two on-line algorithms; the first one runs in $O(n \log \sigma)$ time and $O(n \log n)$ bits of space, and the second one in $O(n \log^2 n)$ time and $O(n \log \sigma)$ bits of space. A

1 Not to be confused with the relative Lempel-Ziv factorization proposed in [12].
key to achieve such complexity is efficient on-line computation of the longest suffix palindrome for each prefix of the string \(w \).

As an independent interest, we consider the relationship between the number of factors in the RLZ factorization of a string \(w \), and the size of the smallest grammar that generates only \(w \). It is known that the number of factors in the LZ factorization of \(w \) is a lower bound of the smallest grammar for \(w \) [17]. We show that, unfortunately, this is not the case with the RLZ factorization with or without self-references.

2 Preliminaries

2.1 Strings and model of computation

Let \(\Sigma \) be the alphabet of size \(\sigma \). An element of \(\Sigma^n \) is called a string. For string \(w = xyz \), \(x \) is called a prefix, \(y \) is called a substring, and \(z \) is called a suffix of \(w \), respectively. The sets of substrings and suffixes of \(w \) are denoted by \(\text{Substr}(w) \) and \(\text{Suffix}(w) \), respectively. The length of string \(w \) is denoted by \(|w| \). The empty string \(\varepsilon \) is a string of length 0, that is, \(|\varepsilon| = 0 \). For \(1 \leq i \leq |w| \), \(w[i] \) denotes the \(i \)-th character of \(w \). For \(1 \leq i \leq j \leq |w| \), \(w[i..j] \) denotes the substring of \(w \) that begins at position \(i \) and ends at position \(j \). Let \(w^{\text{rev}} \) denote the reversed string of \(s \), that is, \(w^{\text{rev}} = w[|w|] \cdots w[2]w[1] \). For any \(1 \leq i \leq j \leq |w| \), note \(w[i..j]^{\text{rev}} = w[j]w[j-1] \cdots w[i] \).

A string \(x \) is called a palindromic if \(x = x^{\text{rev}} \). The center of a palindromic substring \(w[i..j] \) of a string \(w \) is \(\frac{i+j}{2} \). A palindromic substring \(w[i..j] \) is called the maximal palindrome at the center \(\frac{i+j}{2} \) if no other palindromes at the center \(\frac{i+j}{2} \) have a larger radius than \(w[i..j] \), i.e., if \(w[i-1] \neq w[j+1] \), \(i = 1 \), or \(j = |w| \). In particular, a maximal palindrome \(w[i..|w|] \) is called a suffix palindrome of \(w \).

The default base of logarithms will be 2. Our model of computation is the unit cost word RAM with the machine word size at least \(\lceil \log n \rceil \) bits. We will evaluate the space complexities in bits (not in words). For an input string \(w \) of length \(n \) over an alphabet of size \(\sigma \leq n \), let \(r = \frac{\log \sigma s}{4} = \frac{\log n}{4 \log \sigma} \). For simplicity, assume that \(\log n \) is divisible by \(4 \log \sigma \), and that \(n \) is divisible by \(r \). A string of length \(r \), called a meta-character, fits in a single machine word. Thus, a meta-character can also be transparently regarded as an element in the integer alphabet \(\Sigma^r = \{1, \ldots, n\} \). We assume that given \(1 \leq i \leq n - r + 1 \), any meta-character \(A = w[i..i + r - 1] \) can be retrieved in constant time. We call a string on the alphabet \(\Sigma^r \) of meta-characters, a meta-string. Any string \(w \) whose length is divisible by \(r \) can be viewed as a meta-string \(w \) of length \(m = \frac{n}{r} \). We write \(\langle w \rangle \) when we explicitly view string \(w \) as a meta-string, where \(\langle w \rangle[j] = w[(j - 1)r + 1..jr] \) for each \(j \in [1, m] \). Such range \([(j - 1)r + 1, jr] \) of positions will be called meta-blocks and the beginning positions \((j - 1)r + 1 \) of meta-blocks will be called block borders. For clarity, the length \(m \) of a meta-string \(\langle w \rangle \) will be denoted by \(\|\langle w \rangle\| \). Note that \(m \log n = n \log \sigma \).

2.2 Suffix Trees and Generalized Suffix Tries

The suffix tree [14] of string \(s \), denoted \(\Stree(s) \), is a rooted tree such that

1. Each edge is labeled with a non-empty substring of \(s \), and each path from the root to a node spells out a substring of \(s \);
2. Each internal node \(v \) has at least two children, and the labels of distinct out-going edges of \(v \) begin with distinct characters;
3. For each suffix x of w, there is a path from the root that spells out x.

The number of nodes and edges of $STree(s)$ is $O(|s|)$, and $STree(s)$ can be represented using $O(|s| \log |s|)$ bits of space, by implementing each edge label y as a pair (i, j) such that $y = s[i..j]$.

For a constant alphabet, Weiner’s algorithm \cite{19} constructs $STree(s^{rev})$ in an online manner from left to right, i.e., constructs $STree(s[1..j]^{rev})$ in increasing order of $j = 1, 2, \ldots, |s|$, in $O(|s|)$ time using $O(|s| \log |s|)$ bits of space. It is known that the tree of the suffix links of the directed acyclic word graph \cite{3} of s forms $STree(s^{rev})$.

Hence, for larger alphabets, we have the following:

Lemma 1 (\cite{3}). Given a string s, we can compute $STree(s^{rev})$ on-line from left to right, in $O(|s| \log \sigma)$ time using $O(|s| \log |s|)$ bits of space.

In our algorithms, we will also use the generalized suffix trie for a set W of strings, denoted $STrie(W)$. $STrie(W)$ is a rooted tree such that

1. Each edge is labeled with a character, and each path from the root to a node spells out a substring of some string $w \in W$;
2. The labels of distinct out-going edges of each node must be different;
3. For each suffix s of each string $w \in W$, there is a path from the root that spells out s.

2.3 Reversed LZ factorization

Kolpakov and Kucherov \cite{10} introduced the following variant of LZ77 factorization.

Definition 2 (Reversed LZ factorization without self-references). The reversed LZ factorization of string w without self-references, denoted $RLZ(w)$, is a sequence (f_1, f_2, \ldots, f_m) of non-empty substrings of w such that

1. $w = f_1 \cdot f_2 \cdots f_m$, and
2. For any $1 \leq i \leq m$, $f_i = w[k..k + \ell_{\text{max}} - 1]$, where $k = |f_1 \cdots f_{i-1}| + 1$ and $\ell_{\text{max}} = \max\{\ell \mid 1 \leq \ell < k - \ell + 1, (w[t..t + \ell - 1])^{rev} = w[k..k + \ell - 1]\} \cup \{1\}$.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{STree.png}
\caption{STree(w) with $w = abaaabbbab$.}
\end{figure}
Assume we have f_1, \ldots, f_{i-1}, and let $k = [f_1 \cdots f_{i-1}] + 1$. The above definition implies that f_i is the longest non-empty prefix of $w[k..n]$ that is also a substring of $(w[1..k-1])^{rev}$ if such exists. See also Figure 2.

Example 3. For string $w = abaaaaabbac$, $RLZ(w)$ consists of the following factors: $f_1 = a$, $f_2 = b$, $f_3 = ba$, $f_4 = a$, $f_5 = aabb$, $f_6 = ba$, and $f_7 = c$.

We are interested in on-line computation of $RLZ(w)$. Using Lemma 1, one can compute $RLZ(w)$ on-line in $O(n \log \sigma)$ time using $O(n \log n)$ bits of space [10], where $n = |w|$. The idea is as follows: Assume we have already computed the first j factors f_1, f_2, \ldots, f_j, and we have constructed $STree(w[1..l_j])^{rev}$, where $l_j = \sum_{h=1}^{j} |f_h|$. Now the next factor f_{j+1} is the longest prefix of $w[l_j + 1..n]$ that is represented by a path from the root of $STree(w[1..l_j])^{rev}$. After the computation of f_{j+1}, we update $STree(w[1..l_j])^{rev}$ to $STree(w[1..l_{j+1}])^{rev}$, using Lemma 1. In the next section, we will propose a new space-efficient on-line algorithm which requires $O(n \log^2 n)$ time using $O(n \log \sigma)$ bits of space.

We introduce yet another new variant, the reversed LZ factorization with self-references.

Definition 4 (Reversed LZ factorization with self-references). The reversed LZ factorization of string w with self-references, denoted $RLZS(w)$, is a sequence (g_1, g_2, \ldots, g_p) of non-empty substrings of w such that

1. $w = g_1 \cdot g_2 \cdots g_p$, and
2. For any $1 \leq i \leq p$, $g_i = w[k..k + \ell_{\text{max}} - 1]$, where $k = |g_1 \cdots g_{i-1}| + 1$ and $\ell_{\text{max}} = \max\{(\ell \mid 1 \leq 2r < k, (w[r..r + \ell - 1])^{rev} = w[k..k + \ell - 1]) \cup \{1\})$.

Since r is at most $k - 1$ in the above definition, g_i is the longest non-empty prefix of $w[k..n]$ that is also a substring of $(w[1..k + |g_i| - 2])^{rev}$ if such exists, and $g_i = w[k]$ otherwise. See also Figure 3.

Example 5. For string $w = abaaaaabbac$, $RLZS(w)$ consists of the following factors: $g_1 = a$, $g_2 = b$, $g_3 = baaaab$, $g_4 = ba$, and $g_5 = c$.

Figure 2. Let $k = [f_1 \cdots f_{i-1}] + 1$, f_i is the longest non-empty prefix of $w[k..n]$ that is also a substring of $(w[1..k - 1])^{rev}$ if such exists.

Figure 3. Let $k = [g_1 \cdots g_{i-1}] + 1$. g_i is the longest prefix of $w[k..n]$ that is also a substring of $(w[1..k + |g_i| - 2])^{rev}$ if such exists.
Note that in Definition 1 the ending position of a previous occurrence of \(q_t \) does not have to be prior to the beginning position \(k \) of \(q_t \), while in Definition 2 it has to, because of the constraints \(t < k - \ell + 1 \). This is the difference between \(RLZ(w) \) and \(RLZS(w) \).

In this paper we propose two on-line algorithms to compute \(RLZS(w) \); the first one runs in \(O(n \log \sigma) \) time using \(O(n \log n) \) bits of space, and the second one does in \(O(n \log^2 n) \) time using \(O(n \log \sigma) \) bits of space.

3 Computing \(RLZ(w) \) in \(O(n \log^2 n) \) time and \(O(n \log \sigma) \) bits of space

The outline of our on-line algorithm to compute \(RLZ(w) \) follows the algorithm of Starikovskaya [18] which computes Lempel-Ziv 77 factorization [21] in an on-line manner and in \(O(n \log^2 n) \) time using \(O(n \log \sigma) \) bits of space. The Starikovskaya algorithm maintains the suffix tree of the meta-string \(w \) in an on-line manner, i.e., maintains \(STree(w[1..k]) \) in increasing order of \(k = 1, 2, \ldots, n/r \), and maintains a generalized suffix trie for a set of substrings of \(w[1..kr] \) of length \(2r \) that begin at a block border. In contrast to the Starikovskaya algorithm, our algorithm maintains \(STree((w)[1..k])^{rev} \) in increasing order of \(k = 1, 2, \ldots, n/r \), and maintain a generalized suffix trie for a set of substrings of \(w[1..kr]^{rev} \) of length \(2r \) that begin at a block border.

Assume we have already computed the first \(i-1 \) factors \(f_1, \ldots, f_{i-1} \) of \(RLZ(w) \) and are computing the \(i \)th factor \(f_i \). Let \(l_i = \sum_{j=1}^{i-1} |f_j| \). This implies that we have processed \((w[1..k])^{rev} \) where \(k = [l_i/r] \), i.e., the \(k \)th meta block contains position \(l_i \). As is the case with the Starikovskaya algorithm, our algorithm consists of two main phrases, depending on whether \(|f_i| < r \) or \(|f_i| \geq r \).

3.1 Algorithm for \(|f_i| < r \)

For any \(k \) \((1 \leq k \leq n/r)\), let \(W_k^{rev} \) denote the set of substrings of \(w[1..kr]^{rev} \) of length \(2r \) that begin at a block border, i.e., \(W_k^{rev} = \{ w[t+1..(t+2)r]^{rev} \mid 1 \leq t \leq (k-2) \} \). We maintain \(STrie(W_k^{rev}) \) in an on-line manner, for \(k = 1, 2, \ldots, n/r \). Note that \(STrie(W_k^{rev}) \) represents all substrings of \(w[1..kr]^{rev} \) of length \(r \) which do not necessarily begin at a block border. Therefore, we can use \(STrie(W_k^{rev}) \) to determine if \(|f_i| < r \), and if so, compute \(f_i \). An example for \(STrie(W_k^{rev}) \) is shown in Figure 3.

A minor issue is that \(STrie(W_k^{rev}) \) may contain “unwanted” substrings that do not correspond to a previous occurrence of \(f_i^{rev} \) in \(w[l_i..l_i] \), since substrings \(w[(k-2)r+1..y]^{rev} \) for any \(l_i < y \leq kr \) are represented by \(STrie(W_k^{rev}) \). In order to avoid finding such unwanted occurrences of \(f_i^{rev} \), we associate to each node \(v \) representing a reversed substring \(x^{rev} \), the leftmost ending position of \(x \) in \(w[1..kr]^{rev} \). Assume we have traversed the prefix of length \(p \geq 0 \) of \(w[l_i+1..n] \) in the trie, and all the nodes involved in the traversal have positions smaller than \(l_i + 1 \). If either the node representing \(w[l_i+1..l_i+p+1] \) stores a position larger than \(l_i \) or there is no node representing \(w[l_i+1..l_i+p+1] \), then \(f_i = w[l_i+1..l_i+p] \) if \(p \geq 1 \), and \(f_i = w[l_i+1] \) if \(p = 0 \).

As is described above, \(f_i \) can be computed in \(O(|f_i| \log \sigma) \) time. When \(l_i + p > kr \), we insert the suffixes of a new substring \(w[(k-1)r+1..(k+1)r]^{rev} \) of length \(2r \) into the trie, and obtain the updated trie \(STrie(W_{k+1}^{rev}) \). Since there exist \(\sigma^{2r} = \sigma^{\log n} = \sqrt{n} \),
Figure 4. Let $r = 3$ and consider string $w = bba|aaa|bbabac$, where $|$ represents a block border. The figure shows $STrie(W_{3}^{rev})$ where $W_{3}^{rev} = \{aaaabb, abbaaa\}.

distinct strings of length $2r$, the number of nodes in the trie is bounded by $O(\sqrt{n}r^{2}) = O(\sqrt{n}(\log_{n} n)^{2})$. Hence the trie requires $o(n)$ bits of space. Each update adds $O(r^{2})$ new nodes and edges into the trie, taking $O(r^{2}\log\sigma)$ time. Since there are n/r blocks, the total time complexity to maintain the trie is $O(nr\log\sigma) = O(n\log n)$.

The above discussion leads to the following lemma:

Lemma 6. We can maintain in $O(n\log n)$ total time, a dynamic data structure occupying $o(n)$ bits of space that allows whether or not $|f_{i}| < r$ to be determined in $O(|f_{i}|\log\sigma)$ time, and if so, computes f_{i} and a previous occurrence of f_{i}^{rev} in $O(|f_{i}|\log\sigma)$ time.

3.2 Algorithm for $|f_{i}| \geq r$

Assume we have found that the length of the longest prefix of $w[l_{i} + 1..n]$ that is represented by $STrie(W_{k}^{rev})$ is at least r, which implies that $|f_{i}| \geq r$.

For any string f and integer $0 \leq m \leq \min(|f|, r - 1)$, let strings $\alpha_{m}(f)$, $\beta_{m}(f)$, $\gamma_{m}(f)$ satisfy $f = \alpha_{m}(f)\beta_{m}(f)\gamma_{m}(f)$, $|\alpha_{m}(f)| = m$, and $|\beta_{m}(f)| = j^{'r}$ where $j^{'} = \max\{j \geq 0 \mid m + jr \leq |f|\}$. We say that an occurrence of f in w has offset m ($0 \leq m \leq r - 1$), if, in the occurrence, $\alpha_{m}(f)$ corresponds to a suffix of a meta-block, $\beta_{m}(f)$ corresponds to a sequence of meta-blocks (i.e. $\beta_{m}(f) \in Substr(\langle w \rangle))$, and $\gamma_{m}(f)$ corresponds to a prefix of a meta-block. Let f_{i}^{m} denote the longest prefix of $w[l_{i} + 1..n]$ which has a previous occurrence in $w[1..l_{i}]$ with offset m. Thus, $|f_{i}| = \max_{0 \leq m < r}|f_{i}^{m}|$.

Our algorithm maintains two suffix trees on meta-strings, $STree((\langle w \rangle[1..k - 1])^{rev})$ and $STree((\langle w \rangle[1..k])^{rev})$. Depending on the value of m, we use either $STree((\langle w \rangle[1..k - 1])^{rev})$ and $STree((\langle w \rangle[1..k])^{rev})$.

If $l_{i} - (k - 1)r \geq m$, i.e. the distance between the $(k - 1)$th block border and position l_{i} is not less than m, then we use $STree((\langle w \rangle[1..k])^{rev})$ to find f_{i}^{m}. We associate to each internal node v of $STree((\langle w \rangle[1..k])^{rev})$ the lexicographical ranks of the leftmost and rightmost leaves in the subtree rooted at v, denoted $left(v)$ and $right(v)$, respectively. Recall that the leaves of $STree((\langle w \rangle[1..k])^{rev})$ correspond to the block borders $1, r + 1, \ldots, (k - 1)r + 1$. Hence, $\alpha_{m}(f_{i}^{m})\beta_{m}(f_{i}^{m})$ occurs in $w[1..l_{i}]^{rev}$ iff there is a node v representing $\beta_{m}(f_{i}^{m})$ and the interval $[left(v), right(v)]$ contains at least one block
border b such that $w[b - m..b - 1] = \alpha_m(f_i^m)$. To determine $\gamma_m(f_i^m)$, at each node v of $\text{STree}((\langle w \rangle[1..k])^{rev})$ we maintain a trie T_v that stores the first meta-characters of the outgoing edge labels of v. Then, $\alpha_m(f_i^m)\beta_m(f_i^m)\gamma_m(f_i^m)$ occurs in $w[1..l]^{rev}$ iff there is a node u of T_v representing $\gamma_m(f_i^m)$ and the interval $[\text{left}(u_1), \text{right}(u_2)]$ contains at least one block border b such that $w[b - m..b - 1] = \alpha_m(f_i^m)$, where u_1 and u_2 are respectively the leftmost and rightmost children of u in T_v.

If $l_i - (k - 1)r < m$, i.e. if the the distance between the $(k - 1)$th block border and position l_i is less than m, then we use $\text{STree}((\langle w \rangle[1..k - 1])^{rev})$ to find f_i^m. This allows us to find only previous occurrences of f_i^{rev} that end before $l_i + 1$. All the other procedures follow the case where $l_i - (k - 1)r \geq m$, mentioned above.

Lemma 7. We can maintain in $O(n \log \sigma)$ total time, a dynamic data structure occupying $O(n \log \sigma)$ bits of space that allows to compute f_i with $|f_i| \geq r$ and a previous occurrence of f_i^{rev} in $O(|f_i| \log^2 n)$ time.

Proof. Traversing the suffix tree for $\beta_m(f_i^m)$ takes $O(|f_i^m| \log n) = O(|f_i^m| \log \sigma)$ time since $||\beta_m(f_i^m)|| \leq |f_i^m|$. Also, traversing the trie for $\gamma_m(f_i^m)$ takes $O(r \log \sigma)$ time, since $|\gamma_m(f_i^m)| < r$. To assure $\beta_m(f_i^m)\gamma_m(f_i^m)$ is immediately preceded by $\alpha_m(f_i^m)$, we use the dynamic data structure proposed by Starikovskaya [13] which is based on the dynamic wavelet trees [13]. At each node v, the data structure allows us to check if the interval $[\text{left}(v), \text{right}(v)]$ contains a block border of interest in $O(\log^2 n)$ time, and to insert a new element to the data structure in $O(\log^2 n)$ time. Thus, f_i can be computed in $O(\sum_{0 \leq n \leq r - 1}(|f_i^m| \log \sigma + r \log \sigma + |f_i^m| \log^2 n)) = O(|f_i^m| \log^2 n)$. The position of a previous occurrence of f_i^{rev} can be retrieved in constant time, since each leaf of the suffix tree corresponds to a block border. Once f_i is computed, we update $\text{STree}((\langle w \rangle[1..k])^{rev})$ to $\text{STree}((\langle w \rangle[1..k'])^{rev})$, such that the k'th block border contains position l_{i+1} in w. Using Lemma 4, the suffix tree can be maintained in a total of $O(\frac{n}{r} \log \sigma) = O(n \log n)$ time.

It follows from Lemma 3 that the suffix tree on meta-strings requires $O(\frac{n}{r} \log n) = O(n \log \sigma)$ bits of space. Since the dynamic data structure of Starikovskaya [13] takes $O(n \log \sigma)$ bits of space, the total space complexity of our algorithm is $O(n \log \sigma)$ bits.

The main result of this section follows from Lemma 3 and Lemma 4.

Theorem 8. Given a string w of length n, we can compute RLZ(w) in an on-line manner, in $O(n \log^2 n)$ time and $O(n \log \sigma)$ bits of space.

4 On-line computation of reversed LZ factorization with self-references

In this section, we consider to compute RLZS(w) for a given string w in an on-line manner. An interesting property of the reversed LZ factorization with self-references is that, the factorization can significantly change when a new character is appended to the end of the string. A concrete example is shown in Figure 3, which illustrates on-line computation of RLZS(w) with $w = \text{abbaaababbac}$. Focus on the factorization of abbaaab. Although there is a factor starting at position 5 in RLZS(abbaaab), there is no factor starting at position 5 in RLZS(abbaaab). Below, we will characterize this with its close relationship to palindromes.
\[\text{RLZS}(w) \text{ of } w = ababaaabbabc. \]

Figure 5. A snapshot of on-line computation of \text{RLZS}(w) with \(w = ababaaabbabc \). For each non-empty prefix \(w[1..k] \) of \(w \), \(|\) denotes the boundary of factors in \text{RLZS}(w[1..k]).

4.1 Computing \text{RLZS}(w) in \(O(n \log \sigma) \) time and \(O(n \log n) \) bits of space

Let \(w \) be any string of length \(n \). For any \(1 \leq j \leq n \), the occurrence of substring \(p \) starting at position \(j \) is called self-referencing, if there exists \(j' \) such that \(w[j..j'] + |p| - 1]^{rev} = w[j..j + |p| - 1] \) and \(j \leq j' + |p| - 1 < j + |p| - 1 \).

For any \(1 \leq k \leq n \), let \(Lpal_w(k) = \max\{k - j + 1 \mid w[j..k] = w[j..k]^{rev}, 1 \leq j \leq k\} \). That is, \(Lpal_w(k) \) is the length of the longest palindrome that ends at position \(k \) in \(w \).

Lemma 9. For any string \(w \) of length \(n \) and \(1 \leq k \leq n \), let \(\text{RLZS}(w[1..k-1]) = g_1, \ldots, g_p \). Let \(\ell_q = \sum_{h=1}^{q} |g_h| \) for any \(1 \leq q \leq p \). Then

\[
\text{RLZS}(w[1..k]) =
\begin{cases}
 g_1, \ldots, g_p, w[k] & \text{if } g_pw[k] \in \text{Substr}(w[1..\ell_{p-1}]^{rev}) \text{ and } \ell_{p-1} + 1 \leq d_k, \\
 g_1, \ldots, g_p, w[k] & \text{if } g_pw[k] \notin \text{Substr}(w[1..\ell_{p-1}]^{rev}) \text{ and } \ell_{p-1} + 1 \leq d_k, \\
 g_1, \ldots, g_j, w[\ell_j + 1..k] & \text{otherwise,}
\end{cases}
\]

where \(d_k = k - Lpal_w(k) + 1 \) and \(j \) is the minimum integer such that \(\ell_j \geq d_k \).

Proof. By definition of \(Lpal_w(k) \) and \(d_k \), \(w[d_k..k] \) is the longest suffix palindrome of \(w[1..k] \). If \(\ell_{p-1} + 1 \leq d_k \), \(w[\ell_{p-1} + 1..k] \) cannot be self-referencing. Hence the first and the second cases of the lemma follow. Consider the third case. Since \(\ell_j \geq d_k \), \(w[\ell_j + 1..k] \) is self-referencing. Since \(\text{RLZS}(w[1..\ell_j]) = g_1, \ldots, g_j \), the third case follows.

See Figure 5 and focus on \(\text{RLZS}(ababaaab) \), where \(g_1 = a, g_2 = b, g_3 = ba \), and \(g_4 = aaab \). Consider to compute \(\text{RLZS}(ababaaabb) \). Since the longest suffix palindrome \(bbabaaabb \) intersects the boundary between \(g_3 \) and \(g_4 \) of \(\text{RLZS}(ababaaab) \), the third case of Lemma 5 applies. Consequently, the new factorization \(\text{RLZS}(ababaaabb) \)
Proof. Suppose we have already computed $RLZS(w[1..k-1])$, and we are computing $RLZS(w[1..k])$ for $1 \leq k \leq n$.

Assume $\ell_{p-1} + 1 \leq d_k$. We check whether $g_p w[k] \in Substr(w[1..\ell_{p-1}]^{rev})$ or not using $STree(w[1..\ell_{p-1}]^{rev})$. If the first case of Lemma 9 applies, then we proceed to the next position $k+1$ and continue to traverse the suffix tree. If the second case of Lemma 9 applies, then we update the suffix tree for the reversed string, and proceed to computing $RLZS(w[1..k+1])$.

Assume $\ell_{p-1} + 1 > d_k$, i.e., the third case of Lemma 9 holds. For every $j < e \leq p$, we remove g_e of $RLZS(w[1..k-1])$, and the last factor of $RLZS(w[1..k])$ is $w[\ell_j+1..k]$. We then proceed to computing $RLZS(w[1..k+1])$.

As is mentioned in Section 2.3, in a total of $O(n \log \sigma)$ time and $O(n \log n)$ bits of space, we can check whether the first or the second case of Lemma 9 holds, as well as maintain the suffix tree for the reversed string on-line. In order to compute $Lpal_w(k)$ in an on-line manner, we can use Manacher’s algorithm [14] which computes the maximal palindromes for all centers in w in $O(n)$ time and in an on-line manner. Since Manacher’s algorithm actually maintains the center of the longest suffix palindrome of $w[1..k]$ when processing $w[1..k]$, we can easily modify the algorithm to also compute $Lpal_w(k)$ on-line. Since Manacher’s algorithm needs to store the length of maximal palindromes for every center in w, it takes $O(n \log n)$ bits of space.

Finally, we show the total number of factors that are removed in the third case of Lemma 9. Once a factor that begins at position j is removed after computing $RLZS(w[1..k])$ for some k, for any $k \leq k' \leq n$, $RLZS(w[1..k'])$ never contains a factor starting at position j. Hence, the total number of factors that are removed in the third case is at most n. This completes the proof. \hfill \Box

4.2 Computing $RLZS(w)$ in $O(n \log^2 n)$ time and $O(n \log \sigma)$ bits of space

In this subsection, we present a space efficient algorithm that computes $RLZS(w)$ on-line, using only $O(n \log \sigma)$ bits of space. Note that we cannot use the method mentioned in the proof of Theorem 10, as it requires $O(n \log n)$ bits of space. Instead, we maintain a compact representation of all suffix palindromes of each prefix $w[1..k]$ of w, as follows.

For any string w of length $n \geq 1$, let $Spals(w)$ denote the set of the beginning positions of the palindromic suffixes of w, i.e.,

$$Spals(w) = \{n - |s| + 1 \mid s \in \text{Suffix}(w), s \text{ is a palindrome}\}.$$

Lemma 11 (2[15]). For any string w of length n, $Spals(w)$ can be represented by $O(\log n)$ arithmetic progressions.

The above lemma implies that $Spals(w)$ can be represented by $O(\log^2 n)$ bits of space.

Lemma 12. We can maintain $O(\log^2 n)$-bit representation of $Spals(w[1..k])$ on-line for every $1 \leq k \leq n$ in a total of $O(n \log n)$ time.
Lemma 12 to compute \(L_{\text{pal}} \) the next factor. Overall, the algorithm takes \(O(n) \) time and \(O(n \log \sigma) \) bits of space.

The main result of this subsection follows:

Theorem 13. Given a string \(w \) of length \(n \), we can compute \(RLZS(w) \) in an on-line manner, in \(O(n \log^2 n) \) time and \(O(n \log \sigma) \) bits of space.

Proof. Assume that we are computing a new factor that begins at position \(\ell \) of \(w \). First, we use the algorithm of Theorem 8 and obtain the longest prefix \(f \) of \(w[\ell..n] \) such that \(f^{rev} \) has an occurrence in \(w[1..\ell - 1] \). Then we apply Lemma 9 for \(w[1..\ell + |f| - 1] \), and if the third case holds, then we compute the self-reference factor. We use Lemma 12 to compute \(L_{\text{pal}}(k) \) for any given position \(k \). After computing the new factor, then we update the suffix tree of the meta-string, and proceed to computing the next factor. Overall, the algorithm takes \(O(n \log^2 n) \) time and \(O(n \log \sigma + \log^2 n) = O(n \log \sigma) \) bits of space.

5 Reversed LZ factorization and smallest grammar

For any string \(w \), the number of the LZ77 factors \([21] \) (with/without self-references) of \(w \) is known to be a lower bound of the smallest grammar that derives only \(w \) [17].
Here we briefly show that this is not the case with the reversed LZ factorization (for either with or without self-references).

Theorem 14. For $\sigma = 3$, there is an infinite series of strings for which the smallest grammar has size $O(\log n)$ while the size of the reversed LZ factorization is $O(n)$.

Proof. Let $w = (abc)^2$. Then, $RLZ(w) = RLZS(w) = a, b, c, a, b, c, \ldots, a, b, c$, consisting of exactly n factors. On the other hand, it is easy to see that there exists a grammar of size $O(\log n)$ that generates only w. This completes the proof.

The above theorem applies to any constant alphabet of size at least 3. When $\sigma = 1$, the size of the smallest grammar and the number of factors in $RLZ(w)$ are both $O(\log n)$, while the number of factors in $RLZS(w)$ is $O(1)$. The binary case where $\sigma = 2$ is open.

References

