Optimal Partitioning of Data Chunks in Deduplication Systems

Michael Hirsch¹, Ariel Ish-Shalom¹, and Shmuel T. Klein²

¹ IBM — Diligent, Atidim Industrial Park, Tel Aviv 61580, Israel
{michael.hirsch, arielish}@il.ibm.com

² Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

Abstract. Deduplication is a special case of data compression in which repeated chunks of data are stored only once. For very large chunks, this process may be applied even if the chunks are similar and not necessarily identical, and then the encoding of duplicate data consists of a sequence of pointers to matching parts. However, not all the pointers are worth being kept, as they incur some storage overhead. A linear, sub-optimal solution of this partition problem is presented, followed by an optimal solution with cubic time complexity and requiring quadratic space.

1 Introduction and Background

Large backup and storage systems need to process ever increasing amounts of data, and standard lossless data compression methods may not be able to cope with it. On the other hand, the use of classical compression may be an overkill, since backup data has generally the property that only a small fraction of it is changed between consecutive backup generations. This calls for a special form of data compression, known as deduplication, which tries to store repetitive data only once. The challenge is, of course, to locate as much of the duplicated data as possible.

A general paradigm to achieve this goal could be the following. Partition the input database, which is often called the repository, into fixed or variable sized blocks, called chunks, apply a cryptographically strong hash function on each of these input chunks, and store the different hash values, along with the address of the corresponding chunk, in a fast to access data structure, like a hash table or a B-Tree [6,7]. When a fresh copy of the data is given, e.g., for a weekly or even daily backup, the new data, often called a version, is also partitioned into similar chunks, and a chunk is only kept if the corresponding hash value is not stored yet. Otherwise it is replaced by a pointer to the already stored copy.

A major dilemma is to decide what the (average) chunk size should be, as if it is too small, the number of chunks and the accompanying overhead might be too large; on the other hand, the larger the chunks, the lower is the probability of finding identical ones, reducing the potential deduplication benefits. Note that systems based on using hashing functions are generally only able to detect identical chunks, because most hashing functions are designed with the specific aim that even small changes in the argument should imply substantive changes in the hashed values. This lead to the idea of devising deduplication systems based on similarity rather than identity, thereby allowing the use of considerably larger chunks, as in the IBM ProtecTIER product, described in ⁴. An extension of this similarity based deduplication system to an environment using small sized chunks has been presented last year at this
conference [2]. We now focus again on systems using very large chunks, and shall deal with the following problem implied by it.

While a single pointer is sufficient for the compression of an identical chunk, the case of similar chunks is more involved. Similarity might imply that most of the data of the version chunk can be copied from the repository, but the data to be copied is not necessarily contiguous and might appear in various chunks; moreover, even if several pointers refer to the same repository chunk, they could point to locations that are scattered throughout it. In fact, the encoding of a compressed chunk will be a sequence of various copy items, interspersed with stretches of new data. If one considers quite long chunks, say, of the order of 16MB, and adds to this the fact that the new data can be as short as a single byte, the conclusion is that the number of elements in the encoding of a single chunk may be large.

This situation is aggravated in a typical scenario of a backup system, which stores several consecutive generations of almost the same data. There might only be minor changes between adjacent generations, but these changes have a cumulative effect, leading to chunks that are increasingly fragmented into smaller and smaller copy and non-copy items. However, storing the data needed to reconstruct a highly fragmented chunk may itself create a compression problem.

In the next section, we define the specific problem dealt with herein, namely finding an optimal partition of a chunk into matching and non-matching parts. Section 3 then suggests a sub-optimal, yet linear, algorithm, and Section 4 an optimal one, requiring cubic time. Section 5 brings a few improvements. We opted for suggesting only a theoretical framework, so there is no experimental section, which is justified in the conclusion.

2 Definition of the problem

We thus consider applying a filtering stage after having located all the matching parts, which should eliminate those parts of the compressed data that will ultimately not be worth being kept, because the required overhead might be larger than the compression gain. The input to this part of the process is a chunk of data and a list of matches, each consisting of a pair of pointers, one to the given version chunk, one into the repository, and the size of the matching substring. The expected output is a partition of the given chunk into a sequence of mismatching and matching blocks. The compressed form of the chunk will then consist of a copy of the mismatching parts, and of pointers describing where the matching parts can be found.

A simplistic solution would of course be to build the output by just copying the input, that is, accept exactly the partition found by listing all the matches. But this would ignore the fact that at least a part of the matches are not worth being kept, as they might cause a too high degree of fragmentation. The challenge is therefore to decide which matches should be kept, and which should be ignored.

\[
\begin{array}{cccccccc}
N_1 & M_{1,1} & M_{1,2} & N_2 & M_{2,1} & N_3 & M_{3,1} & M_{3,2} & M_{3,3} & N_4 & M_{4,1}
\end{array}
\]

Figure 1. Schematic representation of the partition of a data chunk
Figure 1 shows a possible partition of a data chunk into alternating areas of non-matches and matches. The non-matches, represented by the grey rectangles, contain new data and are indexed N_1, N_2, \ldots, N_k. The matches, drawn as the white rectangles, contain data that has previously appeared in the repository, and will be stored by means of pointers of the form $(\text{address}, \text{length})$; the matching parts between the non-matching blocks N_i and N_{i+1} are indexed $M_{i,1}, M_{i,2}, \ldots, M_{i,j_i}$. Non-matching parts cannot be consecutive — this is new data, and any stretch of such new characters is considered a single new part. The matching parts, on the other hand, may consist of several different sub-parts that are located in different places on the disk; each sub-part needs therefore a pointer of its own.

We consider two functions defined on these matching and non-matching parts. A cost function $c()$ giving the price we incur for storing the pointers in the meta-data; typically, but not necessarily, all pointers are of fixed length E (in our implementation, $E = 24$ bytes), that is $c(N_i) = c(M_{\ell,j}) = 24$ for all indexes, so that actually, the cost for the meta-data depends only on the number of parts, which is $k + \sum_{i=1}^{k} j_i$. In other implementations, the pointers may undergo another layer of compression, e.g., Huffman coding, resulting in variable length elements.

The second function $s()$ measures, for each part, the size of the data on the disk. So we have that $s(N_i)$ will be just the number of bytes of the non-matching part, as these new bytes have to be stored physically somewhere, and $s(M_{\ell,j}) = 0$, since no new data is written to the disk for a matching part. However, we shall define $s(M_{\ell,j}) = \text{length}$ for a block $M_{\ell,j}$ that is stored by means of a pointer $(\text{address}, \text{length})$, which means that the size will be defined as the number of bytes written to the disk in case we decide to ignore the fact that $M_{\ell,j}$ has occurred earlier and thus has a matching part already in the repository.

The compressed data consists of the items written to the disk plus the pointers in the meta-data, but these cannot necessarily be traded one to one, as storage space for the meta-data will generally be more expensive. We shall assume that there exists a multiplicative factor F such that, in our calculations, we can count one byte of meta-data as equivalent to F bytes of data written to the disk. This factor need not be constant and may dynamically depend on several run-time parameters. Practically, F will be stored in a variable and may be updated when necessary, but we shall use it in the sequel as if it were a constant.

Given the above notations, the size of the compressed file is then

$$F \cdot \left[\sum_{i=1}^{k} \left(c(N_i) + \sum_{t=1}^{j_i} c(M_{i,t}) \right) \right] + \sum_{i=1}^{k} s(N_i),$$

and in the particular case of fixed length pointers of size E, which we shall assume, for simplicity, in the sequel:

$$F \cdot E \cdot \left(k + \sum_{t=1}^{k} j_t \right) + \sum_{i=1}^{k} s(N_i),$$

whereas the uncompressed file has size

$$\sum_{i=1}^{k} \left(s(N_i) + \sum_{t=1}^{j_i} s(M_{i,t}) \right).$$

The optimization problem we consider is based on the fact that the partition we obtain as input may be altered. The non-matching parts N_i can obviously not be
touched, so the only degree of freedom we have is to decide, for each of the matching parts \(M_{i,j} \), whether the corresponding pointer should be kept, or whether we opt to ignore the match and treat this part as if it were non-matching. There is a priori nothing to be gained from such a decision: the pointer in the meta-data is changed from matching to non-matching, but incurs the same cost, and some data has been added to the disk, so there will always be a loss.

The following example shows that nevertheless, there can also be a gain in certain cases. Consider the block \(M_{1,2} \) in Figure 1. If we decide to ignore its matching counterpart, the data of \(M_{1,2} \) has to be written to the disk, but it is contiguous with the data of \(N_2 \). The two parts may therefore be fused, which reduces the number of meta-data entries by one. This will result in a gain if

\[
s(M_{1,2}) < F \cdot E.
\]

Moreover, if indeed we decide to consider \(M_{1,2} \) as a non-matching block, this will leave \(M_{1,1} \) as a single match between two non-matches. In this case, ignoring the match may allow to unify the three blocks \(N_1, M_{1,1}, N_2 \), reducing the number of meta-data entries by two. This will be worthwhile even if

\[
s(M_{1,1}) < 2 F \cdot E.
\]

More generally, any extremal matching blocks (those touching on at least one of their sides with a non-match) may be candidates for such a fusion, which can trigger even further unifications like in the example. But these are not the only cases: even non-extremal blocks may profit from unification. This is not true for a single matching blocks, whose both neighbors are also matching, like \(M_{3,2} \) in Figure 1, because we add data to the disk, but do not remove any meta-data, just change one of the entries. But there might be a stretch of several matching blocks that can profit from unification.

It should be noted that devising a new partition is not only a matter of trading a byte of meta-data versus \(F \) bytes of disk data. Reducing the number of entries in the meta-data has also an effect of the time complexity, since each entry requires an additional read operation. Many compression algorithms have to deal with such time/space tradeoffs, and for our purpose, we shall assume that the factor \(F \) already takes also the time complexity into account, that is, \(F \) reflects our estimation of how many bytes of disk space we are ready to pay in order to save one byte of meta-data, considering all aspects, including space, CPU and I/O.

The challenge is therefore to come up with an efficient, and if possible, optimal way to select an appropriate subset of the input partition which minimizes the size of the compressed file as measured by equation (1).

3 Linear sub-optimal algorithm

The following algorithm is a first solution attempt. The partition it produces is not necessarily optimal, but the complexity is linear with the number of elements \(N_i \) and \(M_{i,j} \). The algorithm uses as main data structure a doubly linked list \(L \), the elements of which represent the matching or non-matching data blocks defined above, so their initial number is \(n = k + \sum_{i=1}^{k} j_i \). Each element \(p \) of the list \(L \) has the following fields:

- \(\text{status}(p) \) – indicating whether the element pointing \(p \) is matching (M), non-matching (NM), or a sentinel element (S) for smoother programming
– $\text{prev}(p)$ – pointing to the predecessor of p
– $\text{succ}(p)$ – pointing to the successor of p
– $\text{size}(p)$ – if $\text{status}(p) = \text{NM}$, this is the number of non-matching bytes; if $\text{status}(p) = \text{M}$, this is the length of the element to be copied; if $\text{status}(p) = \text{S}$, $\text{size}(p)$ is not defined.
– $\text{data}(p)$ – defined only if $\text{status}(p) = \text{NM}$, in which case it contains the new data not found in the repository; if $\text{status}(p) = \text{M}$, nothing will be stored in $\text{data}(p)$, but we shall refer by $\text{DATA}(p)$ to the bytes pointed to by the (address, length) pointer.

We first add sentinel elements at the beginning and end of the list, which avoids the necessity to check at each step whether successors and predecessors exist. The main idea is then to scan the list of items with a pointer p and perform local substitutions according to the contexts, if possible. If the current item is of type NM, it is skipped. If it is a matching item, we consider 5 disjoint cases.

1. **Case 1**: The item pointed to by p is surrounded by NM items. In this case, all 3 elements can be merged into one, if appropriate, that is, if $\text{size}(p) < 2FE$.
2. **Case 2**: The item pointed to by p is preceded by an NM item; it can then be merged into the preceding item, if appropriate. Note that if several consecutive items can be merged, this is dealt with in the following iterations.
3. **Case 3**: The item pointed to by p is followed by an NM item; this case is symmetric to Case 2.
4. **Case 4**: The item pointed to by p is surrounded by M items. We then check whether two M items can be merged into one NM item. Longer chains of M items are considered in the following iterations, though then in Case 3.
5. **Case 5**: No substitution is possible, just advance p to its successor.

The four first cases are schematically represented in Figure 2, where as before, NM items appear in grey and M items in white. As part of the actions to be performed in each case, the pointer p has to be repositioned. In the first 2 cases, p will point to the item following the newly merged block, so the next iteration will take us to Case 2, and in the last 2 cases, p will point to the item preceding the newly merged block, so the next iteration will take us to Case 3.

It therefore follows that the main pointer of the procedure may also move backwards, which could result in an unbounded number of iterations. But in each iteration, either the pointer is advanced by one step, or the overall number of items is reduced.
\begin{verbatim}
p ← succ(TOP)
while succ(p) ≠ NULL
 if status(p) ≠ M then
 p ← succ(p)
 else
 if status(prev(p)) = NM and status(succ(p)) = NM and size(p) < 2 F E then
 // Case 1
 q ← prev(p)
 size(q) ← size(q) + size(p) + size(succ(p))
 q ← succ(succ(p))
 delete succ(p) from L
 delete (p) from L
 p ← q
 else if status(prev(p)) = NM and size(p) < F E then
 // Case 2
 q ← prev(p)
 size(q) ← size(q) + size(p)
 q ← succ(p)
 delete (p) from L
 p ← q
 else if status(succ(p)) = NM and size(p) < F E then
 // Case 3
 q ← succ(p)
 size(q) ← size(q) + size(p)
 q ← prev(p)
 delete (p) from L
 p ← q
 else if status(prev(p)) ≠ NM and status(succ(succ(p))) ≠ NM
 and size(p) + size(succ(p)) < F E then
 // Case 4
 status(p) ← NM
 size(p) ← size(p) + size(succ(p))
 q ← prev(p)
 delete succ(p) from L
 p ← q
 else
 p ← succ(p)
\end{verbatim}

Figure 3. Linear sub-optimal algorithm
by one, which bounds the global complexity to be at most $2n$ iterations, each requiring $O(1)$ commands. Note, however, that this solution is not necessarily optimal, as sequences of consecutive blocks are substituted greedily by pairs. It may happen that 3 consecutive M items could be merged, but considered as two pairs, none of them will result in a substitution. The formal algorithm is given in Figure 3.

4 Optimal solution of the partition problem

We now turn to an optimal solution of the partition problem. The solution will be applied individually on each sequence of consecutive M-items, surrounded on both ends by NM-items, since these cannot be altered, and the only possible transformation is to declare matching blocks as if they were non-matching. Therefore the originally given NM-items will appear also in the final optimal solution, so we can concentrate on each sub-part on its own. Consider then the (matching) elements as indexed $1, 2, \ldots , n$, and the non-matching delimiters as indexed 0 and $n + 1$.

Notation: we shall return the required partition in the form of a bit-string of length n, with the bit in position i being set to 1 if the i-th element should be of type NM, and set to 0 if the i-th element should be of type M. This notation implies immediately that the number of possible solutions is 2^n, so that an exhaustive search of this exponential number of alternatives is ruled out.

The basis for a non-exponential solution is the fact that the optimal partition can be split into sub-parts, each of which has to be optimal for the corresponding subranges. We can thus get the solution for a given range by trying all the possible splits into, say, two sub-parts. Such recursive definitions call for resolving them by means of dynamic programming [4]. The tricky part here is that the optimal solution for the range (i, j), might depend on whether its bordering elements, indexed $i - 1$ and $j + 1$, are of type matching or non-matching, so the optimal solution for range (i, j) might depend on the optimal solution on the neighboring ranges.

The optimal partition will thus be built by means of a two-dimensional dynamic programming table $C[i, j]$, and the optimal partition will be stored in a similar table PS, so that $PS[i, j]$ holds the optimal partition for the given parameters, which is a bit-string of length $j - i + 1$. For $1 \leq i \leq j \leq n$, we define $C[i, j]$ as the global cost of the optimal partition of the sub-sequence of elements $i, i + 1, \ldots , j - 1, j$, when the surrounding elements $i - 1$ and $j + 1$ are of type NM. This cost will be given in bytes and reflects the size of the data on disk for NM-items, plus the size of the meta-data for all the elements, using the equivalence factor explained above, that is, each meta-data entry incurs a cost of FE bytes. Once the table is filled up, the cost of the optimal solution we seek is stored in $C[1, n]$ and the corresponding partition is given in $PS[1, n]$.

The basis of the calculation will be the individual items themselves stored in the main diagonal of the matrix, $C[i, i]$ for $1 \leq i \leq n$, as well as the elements just below the diagonal, $C[i, i - 1]$. The following iterations will then be ordered by increasing difference between i and j. We shall thus first deal with all sequences of two adjacent elements, then 3, etc. When calculating the optimal solution for a sequence of ℓ adjacent elements, we can use our knowledge of the optimal solutions for all shorter sub-sequences. If fact, for a sequence of length $\ell = j - i + 1$, we only need to check the sum of the costs of all possible partitions of this range into two subranges, that is the cost for $(i, k - 1)$ plus that of $(k + 1, j)$ for $i < k < j$. We initialize the cost for each subrange by the possibility of leaving all the n elements of type matching.
More specifically, the formal algorithm is given in Figure 4 and the line numbers below refer to this figure. Lines 1 and 3 initialize the table for ranges of size 0, that is, of type \([i+1, i]\), giving them a cost 0. The corresponding bit-string are \(\Lambda\), which denotes the empty string. Lines 4–7 deal with singletons of type \([i, i]\). Since we assume that the surrounding elements are both of type \(\texttt{NM}\), we have to compare the size \(s(i)\) of the matching element with the cost of defining it as non-matching, and letting it be absorbed by the neighboring \(\texttt{NM}\) items. In that case, two elements of the meta-data can be saved, which is checked in line 4.

```
1  C[n + 1, n] ←− 0 PS[n + 1, n] ←− \Lambda
2  for i ←− 1 to n
3      C[i, i − 1] ←− 0 PS[i, i − 1] ←− \Lambda
4      if s(i) − FE < FE then
5          C[i, i] ←− s(i) − FE PS[i, i] ←− '1'
6      else
7          C[i, i] ←− FE PS[i, i] ←− '0'
8  end for i
9  end for diff ←− 1 to n − 1
10 for i ←− 1 to n − diff
11    j ←− i + diff
12    C[i, j] ←− (diff + 1)FE
13    PS[i, j] ←− '000· · ·0' // (length diff + 1)
14    OK ←− 0
15  for k ←− i to j
16      if k = j then
17          L ←− 1
18      else
19          L ←− left(PS[k + 1, j])
20      if k = i then
21          R ←− 1
22      else
23          R ←− right(PS[i, k − 1])
24      end if
25      newcost ←− C[i, k − 1] + C[k + 1, j] + s(k) + (1 − L − R)FE
26      if newcost < C[i, j]
27          C[i, j] ←− newcost
28          OK ←− k
29      end if
30  end for k
31  if OK > 0 then
32      PS[i, j] ←− PS[i, OK − 1] || '1' || PS[OK + 1, j]
33  end for i
34 end for diff
```

Figure 4. Optimal algorithm
The main loop starts then on line 9. The table is filled primarily by diagonals, each corresponding to a constant difference \(\text{diff} = j - i \), and within each diagonal, by increasing \(i \). Line 11 redefines \(j \) just for notational convenience.

In lines 12–13, the table entries are given default values, corresponding to the extreme case of all \(\text{diff} + 1 \) elements in the range between and including \(i \) and \(j \) remaining matching as initially given in the input. This corresponds to a bitstring of \(\text{diff} + 1 \) zeroes ‘000· · · 0’ in \(PS \). As to the cost of the default partition, we have to store \(\text{diff} + 1 \) meta data blocks, at the total price of \((\text{diff} + 1)FE \).

After having initialized the table, the loop starting in line 15 tries to partition the range \((i, j)\) into two sub-pieces. The idea is to consider two possibilities for the optimal partition of the range \([i, j]\): either all the \(\text{diff} + 1 \) elements should remain matching, as we assume in the default setting initializing the \(C[i, j] \) value in line 12, or there is at least one element \(k \), with \(i \leq k \leq j \), which in the optimal partition should be turned into an \(\text{NM} \)-element. The optimal solution is then obtained by solving the problem recursively on the remaining sub-ranges \((i, k - 1)\) and \((k + 1, j)\). The advantage of this definition is that the surrounding elements of the sub-ranges, \(i - 1 \) and \(k \) for \((i, k - 1)\), and \(k \) and \(j + 1 \) for \((i, k - 1)\), are again both of type \(\text{NM} \), so the same table \(C \) can be used.

![Figure 5. Schematic representation of a partition of a sub-range](image)

However, to combine the optimal solutions of the sub-ranges into an optimal solution for the entire range, one needs to know whether the elements adjacent to the separating element indexed \(k \) are of type \(\text{M} \) or \(\text{NM} \). For if one or both of them are \(\text{NM} \), they can be merged with the separating element itself, so the meta-data decreases by one or two elements, reducing the price by \(FE \) or \(2FE \). Let \(L \) denote the leftmost element of the right range \([k + 1, j]\), and \(R \) the rightmost element of the left range \([i, k - 1]\). These values are assigned in lines 16–23, including extremal values. The general case is depicted in Figure 5. We thus need a function \(f(L, R) \), giving the number of additional meta-data elements needed as function of the type 0 or 1, corresponding to \(\text{M} \) or \(\text{NM} \), of the bordering elements \(L \) and \(R \). This function should give values according to Table 1. A possible function is thus \(f(L, R) = 1 - L - R \), which explains the definition of the \(\text{newcost} \) in line 24.

\[
\begin{array}{ccc}
L & R & f(L, R) \\
1 & 1 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{array}
\]

Table 1. Values for \(f(L, R) \)

We check the sum of the costs of the optimal solutions of the sub-problems plus the cost of the separating element, and keep the smallest such sum, over all the possible
partition points \(k \), in the table entry \(C[i, j] \). In other words,

\[
C[i, j] \leftarrow \min \begin{cases}
(diff + 1) FE, \\
\min_{i \leq k \leq j} (C[i, k - 1] + C[k + 1, j] + s(k) + (1 - L - R) FE).
\end{cases}
\]

OK stores the value of \(k \) for which the optimal partition has been found, i.e., that with minimum cost. If the default value has been changed, the optimal solution, expressed as a bitstring of length \(diff + 1 \), is obtained in line 30 by concatenating the bitstrings corresponding to the optimal solutions of the subranges and between them the string ‘\(1 \)’ corresponding to the element indexed \(k \). The operator \(\| \) denotes concatenation.

The complexity of evaluating the table is dominated by the loops starting at line 9. There are three nested loops, and the loop on \(k \) goes from \(i \) to \(j - 1 = i + diff - 1 \), so it is executed \(diff \) times for each possible value of \(diff \) and \(i \). The total number of iterations is therefore

\[
\sum_{i=1}^{n-1} i(n-i) = \left[n \frac{n(n-1)}{2} - (n-1)n(2n-1) \right] = \frac{1}{6}(n^3 - n).
\]

Such a cubic number of iterations might be prohibitive, even though the coefficient of \(n^3 \) is at most 0.17. Recall that \(n \), the input parameter of the number of consecutive blocks dealt with in each call to the program for the optimal partition, is the number of consecutive matching items between two non-matching ones. In terms of our bit-string notation: the result of applying the deduplication algorithm of a large input chunk is a sequence of matching or non-matching items, which we denoted by a bit-string of the form, e.g., 1001000101110000000100. . . The optimal partition algorithm is then invoked for each of the 0-bit runs, which, on the given example, are of lengths 2, 3, 1, 0, 0, 7, etc. There is of course no need to call the procedure when \(n = 0 \).

5 Improvements

5.1 Reducing the time complexity

If certain values of \(n \) are too large, one may try to reduce the complexity a priori by applying a preliminary filtering heuristic that will not impair the optimal solution. For example, one could consider the maximal possible gain from declaring a matching item (0) to be non-matching (1). This happens if the two adjacent blocks are non-matching themselves, and then all 3 items could be merged into a single one. The savings would then be equivalent to \(2FE \) bytes, which have to be counterbalanced by the loss of \(s(i) \) bytes that are not referenced anymore, so have to be stored explicitly. Thus, if \(s(i) > 2FE \), the \(i \)th M-element will surely not be transformed into an NM-element. It follows that \(s(i) > 2FE \) is a sufficient condition for keeping the value of the \(i \)th bit in the optimal partition as 0.

The heuristic will then scan all the input items and check this condition for each 0-item. If the condition holds, the element can be declared to remain of type 0, which partitions the rest of the elements into two parts. For example, if the middle element of \(n \) is thereby declared as keeping its 0-status, we have split the \(n \) elements into two parts of size \(n/2 \) each, so the complexity is reduced from \(\frac{1}{6}n^3 \) to \(2\frac{1}{6}\left(\frac{n}{2}\right)^3 = \frac{1}{24}n^3 \). Returning to the example bit-string above 1001000101110000000100. . . , if the
There remains a technical problem: the optimal partition evaluated in $C[i, j]$ is based on the assumption that the surrounding elements $i - 1$ and $j + 1$ were of type 1, and if the above heuristic is applied, this assumption is not necessarily true. Two approaches are possible to confront this problem. We could use the value of $C[i, j]$ and the corresponding partition in $PS[i, j]$ and adapt it locally to the cases if one of the surrounding elements is 0. For example, if the rightmost bit in $PS[i, j]$ is 0, and bit $j + 1$ is also 0, then no adaptation is needed; but if the rightmost bit in $PS[i, j]$ is 1, and bit $j + 1$ is 0, then the optimal value $C[i, j]$ took into account that elements j and $j + 1$ were merged, which is not true in our case, so the value of $C[i, j]$ has to be increased by one meta-data element, that is by FE. A similar adaptation is needed for the left extremity, element $i - 1$. Such an adaptation is not necessary optimal, since it might be possible that, had we known that the surrounding elements are not both 1, an altogether different solution will be optimal.

As a second approach, we could extend the definitions of the $C[i, j]$ and $PS[i, j]$ tables to be 4-dimensional, with $C[i, j, L, R]$ being the cost of the optimal partition of the elements $i, i + 1, \ldots, j$, under the assumption that the bordering elements $i - 1$ and $j + 1$ are of type L and R, respectively, where $L, R \in \{0, 1\}$. Similarly, $PS[i, j, L, R]$ will hold the optimal partition for the given parameters. There are only four possibilities for L and R: $LR \in \{00, 01, 10, 11\}$, and the total size of each table is therefore only $2n^2$.

As above, one tries to partition the range (i, j) into two pieces, just without a separating element as before. The ranges will be (i, k) and $(k + 1, j)$, for some $i \leq k < j$. L and R still denote the elements to the left of i and to the right of j, respectively, but we also need the bordering elements of the subranges, which again can be of type M or NM, denoted by 0 or 1, respectively. We therefore need to iterate on the possible internal left and right values IL and IR. It might be easiest to understand the notation by referring to the schema in Figure 7. The left subrange, (i, k), is delimited on its left by L and on its right by IL, whereas the right subrange, $(k + 1, j)$, is delimited on its left by IR and on its right by R. The notation thus refers each bordering element to the position of the corresponding subrange, rather than to its own position, which is why IL appears in the figure to the right of IR.

Iterating of the four possibilities for (IL, IR), we have to check for consistency. Suppose, for example, that we consider $IL = 0$. That means that we are looking for the optimal partition of the left range (i, k), under the condition that the bordering elements are L and $IL = 0$. But we have also to check that the complementing optimal solution of the right range $(k + 1, j)$ is such that its leftmost bit is indeed 0. A similar consistency check verifies that the optimal solution for the right range $(k + 1, j)$ is taken for the given value of IR and that indeed, the rightmost bit of the string corresponding to the left range (i, k) is consistent with this IR value. If there is consistency, we check the sum of the costs of the optimal solutions of the sub-problems, and keep the smallest such sum, over all the possible partition points k. If there is no consistency for any k, the default value of keeping all bits as 0 is chosen. We omit here the formal algorithm and the details.
\begin{algorithm}
\caption{Optimal algorithm with reduced space complexity}
\LinesNumbered
\State $C[n + 1, n] \leftarrow 0$ \hspace*{1em} $LT[n + 1, n] \leftarrow 1$ \hspace*{1em} $RT[n + 1, n] \leftarrow 1$
\For{$i \leftarrow 1$ \text{to} n}
\State $C[i, i - 1] \leftarrow 0$ \hspace*{1em} $LT[i, i - 1] \leftarrow 1$ \hspace*{1em} $RT[i, i - 1] \leftarrow 1$
\If{$s(i) - FE < FE$}
\State $C[i, i] \leftarrow s(i) - FE$ \hspace*{1em} $S[i, i] \leftarrow i$
\State $LT[i, i] \leftarrow 1$ \hspace*{1em} $RT[i, i] \leftarrow 1$
\Else
\State $C[i, i] \leftarrow FE$
\State $LT[i, i] \leftarrow 0$ \hspace*{1em} $RT[i, i] \leftarrow 0$
\EndIf
\EndFor
\For{$\text{diff} \leftarrow 1$ \text{to} $n - 1$}
\For{$i \leftarrow 1$ \text{to} $n - \text{diff}$}
\State $j \leftarrow i + \text{diff}$
\State $C[i, j] \leftarrow (\text{diff} + 1)FE$
\State $LT[i, j] \leftarrow 0$ \hspace*{1em} $RT[i, j] \leftarrow 0$
\State $OK \leftarrow 0$
\For{$k \leftarrow i$ \text{to} j}
\State $L \leftarrow LT[k + 1, j]$
\State $R \leftarrow RT[i, k - 1]$
\State $\text{newcost} \leftarrow C[i, k - 1] + C[k + 1, j] + s(k) + (1 - L - R)FE$
\If{$\text{newcost} < C[i, j]$}
\State $C[i, j] \leftarrow \text{newcost}$
\State $OK \leftarrow k$
\EndIf
\EndFor
\State $S[i, j] \leftarrow OK$
\If{$OK > 0$}
\State $LT[i, j] \leftarrow LT[i, OK - 1]$ \hspace*{1em} $RT[i, j] \leftarrow RT[OK + 1, j]$
\EndIf
\EndFor
\EndFor
\end{algorithm}
5.2 Reducing the space complexity

While the time complexity is $\theta(n^3)$, the $C[i, j]$ table needs only n^2 space. But the strings stored in the $PS[i, j]$ table are of length $j - i + 1$, so that the space for $PS[i, j]$ is also $\theta(n^3)$. We can reduce this and store only $O(1)$ for each entry at the cost of not giving the optimal partition explicitly, but providing enough information for the optimal partition to be built in linear time, similarly to what has been done in [5].

The key to this reduction is storing in $PS[i, j]$ (which we call now $S[i, j]$ to avoid confusions) not the string itself, but the value OK at which the range $[i, j]$ has been split in an optimal way (line 27), or leaving it undefined, if no such value OK exists. Since the string $PS[i, j]$ served also to provide information on its extremal elements (left and right in lines 19 and 23 of the algorithm in Figure 4), these elements have now to be saved in tables LT and RT on their own. The updated algorithm is given in Figure 6.

To build the optimal solution, we initialize a vector A with n zeros, and then change selected values according to the values in the $S[i, j]$ matrix, using the recursive procedure $Fill_Sol$, given in Figure 8. It will be invoked by $Fill_Sol(A, 1, n)$. The total running time of the recursion is clearly bounded by n.

```
1 Fill_Sol(A, i, j)
2    if $j \geq i$ AND $S[i, j]$ is defined
3        $k \leftarrow S[i, j]$
4        $A[k] \leftarrow 1$
5        Fill_Sol(A, i, $k - 1$)
6        Fill_Sol(A, $k + 1$, j)
```

Figure 8. Construction of the optimal solution

6 Conclusion

Papers presenting new compression schemes usually contain experimental sections reporting on tests of the suggested algorithms. But while there are well established test cases which have been agreed upon in the compression community, like the Calgary or the Canterbury corpora, there is no equivalent for deduplication tests. The reason is mainly that the performance does not depend on the nature of the files, but rather on their repetitiveness. Thus even a file containing random data, which cannot be compressed, may still profit from deduplication if it appears more than once in the repository.
There is therefore no possibility to find data that could be deemed to be representative, which is why we have preferred to leave this article on the theoretic level. We nevertheless collect statistics on the performance of the new methods when applied on a large deduplication system. The experimental results will be presented as examples only, without claiming that one could extrapolate from them information on the performance in general. These results will be presented in an extended version of this paper.

References