Algorithms to Compute the Lyndon Array

Frantisek Franek¹, A. S. M. Sohidull Islam², M. Sohel Rahman³, and William F. Smyth¹,³,⁴

¹ Algorithms Research Group
Department of Computing & Software
McMaster University, Hamilton, Canada
{franek/smyth}@mcmaster.ca
² School of Computational Science & Engineering
McMaster University, Hamilton, Canada
sohansayed@gmail.com
³ Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology
msrahman@cse.buet.ac.bd
⁴ School of Engineering & Information Technology
Murdoch University, Perth, Australia

Abstract. In the Lyndon array \(\lambda = \lambda_x[1..n] \) of a string \(x = x[1..n] \), \(\lambda[i] \) is the length of the longest Lyndon word starting at position \(i \) of \(x \). The computation of \(\lambda \) has recently become of great interest, since it was shown (Bannai et al., The “Runs” Theorem) that the runs in \(x \) are computable in linear time from \(\lambda_x \). Here we describe two algorithms for computing \(\lambda_x \) based on previous results known in different context, but for which no explicit exposition in this context had been given. These two algorithms execute in \(O(n^2) \) time in the worst case. The third algorithm presented that executes in \(\Theta(n) \) time had been suggested and discussed previously, and we provide a more substantial discussion and proof of correctness for one of its steps. This algorithm achieves its linearity at the expense of prior computation of both the suffix array and the inverse suffix array of \(x \). We then go on to sketch a new algorithm and its two variants that avoids prior computation of global data structures and indicate that in worst-case these algorithms perform in \(O(n \log n) \) time.

Keywords: string, Lyndon word, Lyndon array, Lyndon factorization

1 Introduction

If \(x = uv \) for some \(u \) and nonempty \(v \), then \(vu \) is said to be the \(|u| \)th rotation of \(x \), written \(vu = R_{|u|}(x) \). If there exists a string \(u \) and an integer \(e > 1 \) such that \(x = u^e \), then \(x \) is said to be a repetition; otherwise \(x \) is primitive. A primitive string \(x \) that is lexicographically strictly least among all its rotations \(R_k(x), k = 0, 1, \ldots, |x| - 1 \), is said to be a Lyndon word.

The Lyndon array \(\lambda = \lambda_x[1..n] \) of a given nonempty string \(x = x[1..n] \) gives at each position \(i \) the length of the longest Lyndon word starting at \(i \). Note that equivalently we could store in the \(i \)th position of the Lyndon array the end position of the longest Lyndon word starting in \(i \). We will use the notation \(L[i] \) to indicate the end position for the longest Lyndon word starting at \(i \).

\[\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
x & = & a & b & a & b & a & b & a & b \\
\lambda & = & 2 & 1 & 5 & 2 & 1 & 2 & 1 & 3 \\
L & = & 2 & 2 & 7 & 5 & 5 & 7 & 7 & 10 \\
\end{array} \] (1)

This work was supported in part by the Natural Sciences & Engineering Research Council of Canada. The authors wish to thank Maxime Crochemore and Hideo Bannai for helpful discussions.
Since being Lyndon really depends on the order of the underlying alphabet of the string, the Lyndon array of a string will change when we change the order of the alphabet. The Lyndon array has recently become of interest since Bannai et al. [2] showed that the two Lyndon arrays, one with respect to a given order of the alphabet and the other with respect to the inverse of that order, can be used to compute all the maximal periodicities (“runs”) in a string in linear time.

In this paper we describe four algorithms to compute λ_x. Section 2 makes various observations that apply generally to the Lyndon array and its computation. In Section 3 we describe two algorithms that are based on previous results known in a different context, and we present them here explicitly in the context of computing λ_x. Section 6 outlines future work.

2 Preliminaries

Here we make various observations that apply to the algorithms described below.

Observation 1 Let $x = w_1 w_2 \cdots w_k$ be the Lyndon decomposition of x, with Lyndon words $w_1 \geq w_2 \geq \cdots \geq w_k$. Then every Lyndon word $x[i..L[i]]$ of length $\lambda[i]$ is a substring of some w_h, $h \in 1..k$.

Proof. For some $h \in 1..k−1$, consider w_h with a nonempty proper suffix v_h, and for some $t \in 1..k−h$, consider w_{h+t} with a nonempty prefix u_{h+t}. Since v_h is a Lyndon word, $w_h < v_h$, and by lexorder, $u_{h+t} \leq w_{h+t}$. Thus $v_h > w_h \geq w_{h+t} \geq u_{h+t}$, and so $v_h w_{h+1} \cdots w_{h+t−1} u_{h+t}$ cannot be a Lyndon word for any choice of h or t. \[\Box\]

Therefore to compute $L[x]$ it suffices to consider separately each distinct element w_h in the Lyndon decomposition of x. Hence, without loss of generality we suppose that x is a Lyndon word and write it in the form $x_1 x_2 \cdots x_m$, where for each $r \in 1..m$, $|x_r| = \ell_r$ and

$$x_r[1] \leq x_r[2] \leq \cdots \leq x_r[\ell_r],$$

(2)

while for $1 \leq r < m$,

$$x_r[\ell_r] > x_{r+1}[1].$$

(3)

We call x_r a range in x and the boundary between x_r and x_{r+1} a drop. We identify a position j in range x_r, $1 \leq j \leq \ell_r$, with its equivalent position i in x by writing $i = S_{r,j} = \sum_{r=1}^{\ell_r−1} \ell_r + j$.
Observation 2 Let \(i = S_{r,j} \) be a position in \(x \) that corresponds to position \(j \) in range \(x_r \).

(a) If \(x_r[j] = x_r[|r|] \), then \(L[i] = i \).
(b) Otherwise, \(L[i] = i' \), where \(i' \) is the final position in some range \(x_r', r' \geq r \); that is, \(i' = \sum_{s=1}^{r'} \ell_s \).

Proof. (a) is an immediate consequence of (2) and (3). To prove (b), suppose that \(x[i..L[i]] \) is a maximum-length Lyndon word, where \(L[i] \) falls within range \(r' \) but \(L[i] < i' \). Since by (2) \(x[L[i]] \leq x[L[i]+1] \), there are two consecutive Lyndon words \(x[i..L[i]], x[L[i]+1] \) that by the Lyndon decomposition theorem [5] can be merged into a single Lyndon word \(x[i..L[i]+1] \). Thus \(x[i..L[i]] \) is not maximum-length, a contradiction.

We see then that if \(x_r[j] < x_r[|r|] \), then \(x_r[j..|r|] \) is a (not necessarily maximum-length) Lyndon word, and for \(i = S_{r,j} \), \(L[i] \geq S_{r,\ell_r} \):

\[
\begin{array}{c}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
x = a & a & a & b & a & a & b & a & a & b & b & b & b \\
L = 13 13 4 4 9 7 7 9 9 13 13 12 13
\end{array}
\tag{4}
\]

More generally, the integer interval \(\langle i, L[i] \rangle = i..L[i] \) satisfy a “Monge” property that is exploited by Algorithm NSV* (Section 4):

Observation 3 Suppose positions \(i, j \) in \(x[1..n] \) satisfy \(1 \leq i < j \leq n \). Then either \(L[i] \leq j \) or \(L[i] \geq L[j] \): the intervals \(\langle i, L[i] \rangle \) and \(\langle j, L[j] \rangle \) are not overlapping.

Proof. Suppose two such intervals do overlap. Then the maximum-length Lyndon words \(w_1 = x[i..L[i]] \) and \(w_2 = x[j..L[j]] \) have a nonempty overlap, so that we can write \(w_1 = uv, w_2 = v'w' \) for some nonempty \(v \). But then, by well-known properties of Lyndon words, \(w_1 < v < w_2 < v' \), implying that \(w_1v' \) is a Lyndon word, contradicting the assumption that \(w_1 \) is of a maximal length.

Expressing a string in terms of its ranges has the same useful lexorder property that writing it in terms of its letters does:

Observation 4 Suppose strings \(x \) and \(y \) are expressed in terms of their ranges: \(x = x_1x_2\cdots x_m, y = y_1y_2\cdots y_n \). Suppose further that for some least integer \(r \in \{1, \min(m, n)\} \), \(x_r \neq y_r \). Then \(x < y \) (respectively, \(x > y \)) according as \(x_r < y_r \) (respectively, \(x_r > y_r \)).

Proof. If \(x_r < y_r \), then either

(a) \(x_r \) is a nonempty proper prefix of \(y_r \); or
(b) there is some least position \(j \) such that \(x_r[j] < y_r[j] \).

In case (a), if \(r = m \), then \(x \) is actually a prefix of \(y \), so that \(x < y \), while if \(r < m \), then by (3), \(x_{r+1}[1] < y_{r}[|x_r|+1] \), and again \(x < y \). In case (b) the result is immediate. The proof for \(x_r > y_r \) is similar.
3 Basic Algorithms

Here we outline three algorithms for which no clear exposition in the context of Lyndon arrays is available in the literature. We remark that the Lyndon array computation is equivalent to “Lyndon bracketing”, for which an $\mathcal{O}(n^2)$ algorithm was described in [17].

3.1 Folklore — Iterated MaxLyn

This algorithm, see Figure 1, is based on Duval’s linear time algorithm for Lyndon factorization, [9] – it is the application of its first step which we refer to as MaxLyn since it returns the size of the longest Lyndon word starting at that position. This process is iterated for all positions in the input string and this thus gives immediately $\mathcal{O}(n^2)$ worst case complexity for an input string x. Since Duval’s algorithm is in-place, this algorithm is simple and almost in-place, except the space for the Lyndon array. Below, we sketch the reasons the algorithm provides the correct answer.

For a string x of length n, recall that the prefix table $\pi[1..n]$ is an integer array in which for every $i \in 1..n$, $\pi[i]$ is the length of the longest substring beginning at position i of x that matches a prefix of x. Given a nonempty string x on alphabet Σ, let us define $x' = x\$, where the sentinel $\$ < μ for every letter $\mu \in \Sigma$.

Observation 5 x is a Lyndon word if and only if for every $i \in 2..n$, $x'[1+k] < x'[i+k]$, where $k = \pi[i]$.

This result forms the basis of the algorithm given in Figure 1 that computes the length $\max_{j \in 1..n-j+1}$ of the longest Lyndon factor at a given position j in $x[1..n]$. Its efficiency is a consequence of the instruction $i \leftarrow i+k+1$ that skips over positions in the range $i+1..i+k-1$, effectively assuming that for every position i^* in that range, $i^* + \pi[i^*] \leq i+k$. Lemma 11, given in Appendix 1, justifies this assumption. Simply repeating MaxLyn at every position j of x gives a simple, fast $\mathcal{O}(n^2)$ time and $\mathcal{O}(1)$ additional space algorithm to compute λ_x.

procedure MaxLyn($x[1..n], j, \Sigma, \prec$) : integer
 $i \leftarrow j+1$; $max \leftarrow 1$
 while $i \leq n$ do
 $k \leftarrow 0$
 while $x'[j+k] = x'[i+k]$ do
 $k \leftarrow k+1$
 if $x'[j+k] \prec x'[i+k]$ then
 $i \leftarrow i+k+1$; $max \leftarrow i-1$
 else
 return max

Figure 1. Algorithm MaxLyn

Recent work on the prefix table [4,6] has confirmed its importance as a data structure for string algorithms. In this context it is interesting to find that Lyndon words x can be characterized in terms of π_x:

Observation 6 Suppose $x = x[1..n]$ is a string on alphabet Σ such that $x[1]$ is the least letter in x. Then x is a Lyndon word over Σ if and only if for every $i \in 2..n$,

(a) $i + \pi_x[i] < n+1$; and
(b) for every $j \in i + 1 \ldots i + \pi_x[i] - 1$, $j + \pi_x[j] \leq i + \pi_x[i]$.

In Appendix 1, the reader can find an additional result that justifies the strategy employed by MaxLyn (Figure 1).

3.2 Recursive Duval Factorization: Algorithm RDuval

Rather than independently computing the maximum-length Lyndon factor at each position i, as MaxLyn does, Algorithm RDuval recursively computes the Lyndon decomposition, [9], into maximum factors, at each step taking advantage of the fact that $L[i]$ is known for the first position i in each factor, then recomputing with the first letters removed. This again gives immediate worst case complexity of $O(n^2)$. We consider it only because it allows for a more refined discussion of the complexity in special cases for strings over binary alphabets giving an average case complexity of $O(n \log n)$, see below.

By Observation 1, whenever $x = x[1..n]$ is a Lyndon word, we know that $L[1] = n$. Thus computing the Lyndon decomposition $x = w_1 w_2 \cdots w_k$, $w_1 \geq w_2 \geq \cdots \geq w_k$, allows us to assign $\lambda[i_j] = |w_j|$, where i_j is the first position of w_j, $j = 1, 2, \ldots, k$.

Algorithm RDuval applies this strategy recursively, by assigning $\lambda[i_j] \leftarrow |w_j|$, then removing the first letter i_j from each w_j to form w'_j, to which the Lyndon decomposition is applied in the next recursive step. This process continues until each Lyndon word is reduced to a single letter.

The asymptotic time required for RDuval is bounded above by n times the maximum depth of the recursion, thus $O(n^2)$ in the worst case — consider, for example, the string $x = a^{n-1}b$. However, to estimate expected behaviour, we can make use of a result of Bassino et al. [3]. Given a Lyndon word w, they call $w = uv$ the standard factorization of w if u and v are both Lyndon words and v is of maximum size. They then show that if w is a binary string ($\Sigma = \{a, b\}$), the average length of v is asymptotically $3|w|/4$. Thus each recursive application of RDuval yields a left Lyndon factor of expected length $|w|/4$ and a remainder of length $3|w|/4$ to be factored further. It follows that the expected number of recursive calls of RDuval is $O(\log_{4/3} n)$. Hence

Lemma 7 On binary strings RDuval executes in $O(n \log_{4/3} n)$ time on average.

Example 8 For

$$x = a \ a \ b \ a \ a \ b \ a \ b \ a \ b \ a \ b$$
$$\lambda = 12 \ 2 \ 1 \ 9 \ 3 \ 1 \ 1 \ 3 \ 1 \ 1 \ 2 \ 1$$

the factors considered are first 1–12, then

- 2–3 and 4–12 in the first level of recursion;
- 3, 5–7, 8–10 and 11–12 in the second level;
- 6, 7, 9, 10, 12 in the third level.

Positions are assigned as follows: $\lambda[1] \leftarrow 12; \lambda[2] \leftarrow 2; \lambda[4] \leftarrow 9; \lambda[3] \leftarrow 1; \lambda[5] \leftarrow 3; \lambda[8] \leftarrow 3; \lambda[11] \leftarrow 2; \lambda[6] \leftarrow 1; \lambda[7] \leftarrow 1; \lambda[9] \leftarrow 1; \lambda[10] \leftarrow 1; \lambda[12] \leftarrow 1.$
3.3 NSV Applied to the Inverse Suffix Array

The idea of the “next smaller value” (NSV) array for a given array \(x \) had been proposed in various forms and under various names \([1,10,11,15]\).

Definition 9 (Next Smaller Value) Given an array \(x[1..n] \) of ordered values, \(\text{NSV} = \text{NSV}_x[1..n] \) is the next smaller value array of \(x \) if and only if for every \(i \in 1..n \), \(\text{NSV}[i] = j \), where

(a) for every \(h \in 1..j-1 \), \(x[i] \leq x[i+h] \); and
(b) either \(i+j = n+1 \) or \(x[i] > x[i+j] \).

Example 10

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
x = & 3 & 8 & 7 & 10 & 2 & 1 & 4 & 9 & 6 & 5 \\
\text{NSV}_x = & 4 & 1 & 2 & 1 & 1 & 5 & 4 & 1 & 1 & 1 \\
\end{array}
\]

As shown in various contexts in \([11]\), \(\text{NSV}_x \) can be computed in \(\Theta(n) \) time using a stack. Our main observation here, also mentioned in \([12]\), is that \(\lambda_x \) can be computed merely by applying NSV to the inverse suffix array \(\text{ISA}_x \). Proof of this claim can be found in Appendix 2; here we present the very simple \(\Theta(n) \)-time, \(\Theta(n) \)-space algorithm for this calculation:

Figure 2. Apply NSV to \(\text{ISA}_x \)

4 Elementary Computation of \(\lambda_x \) Using Ranges

In this section we describe an approach to the computation of \(\lambda_x \) that applies a variant of the NSV idea to the ranges of \(x \). Figure 3 gives pseudocode for Algorithm \(\text{NSV}^* \) that uses the NSV stack \(\text{ACTIVE} \) to compute \(\lambda \). The processing identifies ranges in a single left-to-right scan of \(x \), making use of two range comparison routines, \(\text{COMP} \) and \(\text{MATCH} \). \(\text{COMP} \) compares adjacent individual ranges \(x_r \) and \(x_{r+1} \), returning \(\delta_1 = -1, 0, +1 \) according as \(x_r < x_{r+1}, x_r = x_{r+1}, x_r > x_{r+1} \). \(\text{MATCH} \) similarly returns \(\delta_2 \) for adjacent sequences of ranges; that is,

\[
\begin{align*}
X_r &= x_r x_{r+1} \cdots x_{r+s}, \text{ for some } s \geq 1; \\
X_{r+s+1} &= x_{r+s+1} x_{r+s+2} \cdots x_{r+s+t}, \text{ for some } t \geq 1.
\end{align*}
\]

Algorithm \(\text{NSV}^* \) is based on the idea encapsulated in Lemma 15 of Appendix 2, the main basis of the correctness of Algorithm \(\text{NSVISA} \) (see Figure 2). We process \(x \) from left to right, using a stack \(\text{ACTIVE} \) initialized with index 1. At each iteration, the top of the stack (say, \(j \)) is compared with the current index (say, \(i \)). In particular, we need to compare \(s_x(i) \) with \(s_x(j) \), where \(s_x(i) \equiv x[i..n] \). As long as \(s_x(i) \geq s_x(j) \), \(\text{NSV}^* \) pushes the current index and continues to the next. When \(s_x(i) < s_x(j) \), it pops the stack and puts appropriate values in the corresponding indices of \(\lambda_x \).
procedure NSV*(x, λ)
nextequal ← 0n; period ← 0n
push(ACTIVE) ← 1
▷ x[n+1] = $, a letter smaller than any in Σ.
for i ← 2 to n+1 do
 prev ← 0; j ← peek(ACTIVE)
 ▷ COMP compares suffixes specified by i, j of two ranges.
 δ1 ← COMP(x[j], x[i]); δ2 ← 1
 while (δ1 ≥ 0 and δ2 > 0) do
 if δ1 = 0 then δ2 ← MATCH(x[j], x[i])
 if δ2 > 0 then
 if prev = 0 or nextequal[j] ≠ prev then λ[j] ← i − j
 else
 λ[j] ← offset ← prev − j
 if period[prev] = 0 then
 if λ[prev] > offset then
 λ[j] ← λ[j] + λ[prev]
 else
 if nextequal[j] = prev and offset ≠ λ[prev] then
 λ[j] ← λ[j] + period[prev]
 if λ[prev] = offset then
 Current position is a part of periodic substring
 if period[prev] = 0 then
 period[j] ← period[prev] + 2 × offset
 else
 period[j] ← period[prev] + offset
 pop(ACTIVE)
 prev ← j; j ← peek(ACTIVE)
 ▷ Empty stack implies termination.
 if j = 0 then EXIT
 δ1 ← COMP(x[j], x[i])
 ▷ Finished processing i — it goes to stack.
 if δ2 = 0 then nextequal[j] ← i
 push(ACTIVE) ← i

Figure 3. Computing λ_x using modified NSV

As noted above, especially Observations 1–3, ranges are employed to expedite these suffix comparisons.

Two auxiliary arrays, nextequal and period, are required to handle situations in which MATCH finds that a suffix of a previous range at position j equals the current range at position i. Thus, when $\delta_2 = 0$, the algorithm assigns nextequal[j] ← i before i is pushed onto ACTIVE. Then when a later MATCH yields $\delta_2 = 0$, the value of period — that is, the extent of the following periodicity — may need to be set or adjusted, as shown in the following example:

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
| x = a a a b a a b a a b a a b a a |
| nextequal = 0 5 0 0 8 0 0 11 0 0 14 0 0 0 |
| period = 0 12 0 0 9 0 0 6 0 0 4 0 0 0 |

A straightforward implementation of COMP and MATCH could require a number of letter comparisons equal to the length of the shorter of the two sequences of ranges being matched. However, by performing $\Theta(n)$-time preprocessing, we can compare two ranges in $O(\sigma)$ time, where $\sigma = |\Sigma|$ is the alphabet size. Given $\Sigma = \{\mu_1, \mu_2, \ldots, \mu_\sigma\}$,

we define Parikh vectors \(P_r[1..\sigma] \), where \(P_r[j] \) is the number of occurrences of \(\mu_j \) in range \(x_r \). Since ranges are monotone nondecreasing in the letters of the alphabet, it is easy to compute all the \(P_r, r = 1, 2, \ldots, m \), in linear time in a single scan of \(x \). Similarly, during the processing of each range \(x_r \), any value \(P_{r,j} \), the Parikh vector of the suffix \(x_r[j..\ell_r] \), can be computed in constant time for each position considered. Thus we can determine the lexicographical order of any two ranges (or part ranges) \(x_r \) and \(x_{r'} \) in \(O(\sigma) \) time rather than time \(O(\max(\ell_r, \ell_{r'})) \). The variant of NSV* that uses Parikh vectors is called PNSV*; otherwise NPNSV* for Not Parikh.

In Appendix 3 we describe briefly another approach to this suffix comparison problem, which we believe achieves run time \(O(n \log n) \) by maintaining a simple data structure requiring \(O(n \log n) \) space.

Now consider the worst case behaviour of Algorithm NSV*. Given the initial string \(x_0 = a^bba^hc_0, \ h \geq 1, c_0 > b > a \), let \(x_k^{(h)} = x_k = x_{k-1}x_{k-1}^* \), \(k = 1, 2, \ldots \), with \(x_{k-1}^* \) identical to \(x_{k-1} \) except in the last position, where the letter \(c_k > c_{k-1} \) replaces \(c_{k-1} \). Then \(x_k \) has length \(n = (h+1)m \), where \(m = 2^{k+1} \) is the number of ranges in \(x_k \). We believe and are working towards a proof that \(x_k \) is a worst-case input for Algorithm NSV*, which requires \(O(n \log n) \) range matches in such cases. Since PNSV* compares two ranges in \(O(\sigma) \) time, it therefore would require \(O(\sigma n \log n) \) time in the worst case, thus \(O(n \log n) \) for constant \(\sigma \).

5 Preliminary Experimental Results

We have done some preliminary tests on the implementations of the two variants of NSV*, with and without employing Parikh vectors. The equipment used was an Intel(R) Core i3 at 1.8GHz and 4GB main memory under a 64-bit Windows 7 operating system. For each length 10000, 20000, \ldots, 100000 we generated 500 random strings for alphabets of sizes \(\sigma = 2, 4 \) and 8. The results indicate, that at least for random strings, the processing time seems linear. The processing time for “with Parikh vectors” is greater because of the initial pre-processing. The data and the corresponding graphs are in Figures 4..11 below.

![Figure 4. Processing times in seconds for the implementation without Parikh vectors](image-url)

![Figure 5. Processing times for random strings over the binary alphabet; without Parikh vectors](image-url)
Figure 6. Processing times for random strings over the alphabet of size 4; without Parikh vectors

Figure 7. Processing times for random strings over the alphabet of size 8; without Parikh vectors

Figure 8. Processing times in seconds for the implementation with Parikh vectors

<table>
<thead>
<tr>
<th>length of the input strings</th>
<th>10000</th>
<th>20000</th>
<th>30000</th>
<th>40000</th>
<th>50000</th>
<th>60000</th>
<th>70000</th>
<th>80000</th>
<th>90000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>alphabet size 2</td>
<td>0.00138</td>
<td>0.00272</td>
<td>0.00407</td>
<td>0.00545</td>
<td>0.00678</td>
<td>0.00810</td>
<td>0.00948</td>
<td>0.01087</td>
<td>0.01221</td>
<td>0.01359</td>
</tr>
<tr>
<td>alphabet size 4</td>
<td>0.00269</td>
<td>0.00578</td>
<td>0.00914</td>
<td>0.01250</td>
<td>0.01589</td>
<td>0.01934</td>
<td>0.02183</td>
<td>0.02383</td>
<td>0.02584</td>
<td>0.02785</td>
</tr>
<tr>
<td>alphabet size 8</td>
<td>0.00435</td>
<td>0.00871</td>
<td>0.01305</td>
<td>0.01724</td>
<td>0.02149</td>
<td>0.02585</td>
<td>0.03017</td>
<td>0.03443</td>
<td>0.03870</td>
<td>0.04298</td>
</tr>
</tbody>
</table>

Figure 9. Processing times for random strings over the binary alphabet; with Parikh vectors

Figure 10. Processing times for random strings over the alphabet of size 4; with Parikh vectors
6 Future Work

There is reason to believe that the Lyndon array computation is less hard than suffix array construction. Thus the authors conjecture that there is a linear-time elementary algorithm (no suffix arrays) to compute the Lyndon array.

References

Appendix 1

The following result justifies the strategy employed in Algorithm MaxLyn (Figure 1):

Lemma 11 Suppose that for some position \(i \) in a Lyndon word \(x[1..n] \), \(k = \pi[i] \geq 2 \). Then for every \(j \in i+1..i+k-1 \), \(\pi[j] \leq i+k-j \).

Proof. The result certainly holds for \(i+k = n+1 \), so we consider \(i+k \leq n \). Assume that for some \(j \in i+1..i+k-1 \), \(\pi[j] > i+k-j \). It follows that

\[
x[1..i+k-j+1] = x[j..i+k],
\]

while \(x[j-i+1..k] = x[j..i+k-1] \). Since \(x \) is Lyndon, therefore \(x[1+k] < x[i+k] \), and so we find that

\[
x[j-i+1..i+k] < x[j..i+k].
\]

From (5) and (6) we see that \(x[1..k+1] \) has suffix \(x[j-i+1..k+1] \) satisfying \(x[j-i+1..k+1] < x[1..i+k-j+1] \), contradicting the assumption that \(x \) is Lyndon. \(\Box \)

Appendix 2

Here we prove Theorem 12 that justifies the algorithm given in Figure 2:

Theorem 12 For a given string \(x = x[1..n] \) on alphabet \(\Sigma \), totally order by \(\prec \), let \(ISA = ISA_x \prec \). Then for every \(i \in 1..n \), the substring \(x[i..j] \) is a longest Lyndon factor with respect to \(\prec \) if and only if

(a) for every \(h \in i+1..j \), \(ISA[j] < ISA[h] \); and
(b) either \(j = n \) or \(ISA[j+1] < ISA[i] \).

The following well-known result is needed to prove Lemma 13:

Lemma 13 (Duval, Lemma 1.6, [9]) Suppose \(x \in \Sigma^+ \), where \(\Sigma \) is an alphabet totally ordered by \(\prec \). Let \(x = u^r u_1 b \), where \(u \) is nonempty, \(r \geq 1 \), \(u_1 \) a possibly empty proper prefix of \(u \), and the letter \(b \neq u_1[1]+1 \).

(a) If \(b < u[|u_1|+1] \), then \(u \) is a longest Lyndon prefix of \(xy \) for any \(y \);
(b) if \(b > u[|u_1|+1] \), then \(x \) is Lyndon with respect to \(\prec \).

For a given string \(x[1..n] \), let \(s_x(i) = x[i..n] \) denote the suffix of \(x \) beginning at position \(i \). When clear from context we write just \(s(i) \).

Lemma 14 Consider a string \(x = x[1..n] \) over alphabet \(\Sigma \) totally ordered by \(\prec \). Let \(x[i..j] \) be the longest Lyndon factor of \(x \) starting at \(i \). Then \(s_x(i) < s_x(k) \) for every \(k \in i+1..j \) and either \(j = n \) or \(s_x(j+1) < s_x(i) \).
Proof. Because $x[i..j]$ is Lyndon, therefore for any $i < k \leq j$, $x[i..j] < x[k..j]$ and so $s(i) < s(k)$. If $j = n$, we are done. So we may assume $j < n$, and we want to show that $s(j+1) < s(i)$. Suppose then that $s(j+1) \neq s(i)$. Since $s(i)$ and $s(j+1)$ are distinct, it follows that $s(i) < s(j+1)$. If we let $d = lcp(s(i), s(j+1)) + 1$, two cases arise:

(a) $0 \leq d \leq j - i$.
Here $i \leq i + d \leq j$. Thus $x[i..i+d-1] = x[j+1..j+d]$ and $x[i+d] < x[j+1+d]$, and so for $j < k \leq j+1+d$, $x[i..j+1+d] < x[k..j+1+d]$. Since $x[i..j]$ is Lyndon, $x[i..j] < x[k..j]$ and so $x[i..j+1+d] < x[k..j+1+d]$ for any $i < k \leq j$. Thus $x[i..j+1+d]$ is Lyndon, contradicting the assumption that $x[i..j]$ is the longest Lyndon factor starting at i.

(b) $0 < j - i \leq d$.
Let $d = r(j - i) + d_1$, where $0 \leq d_1 < j - i$. Then $r \geq 1$ and $x[i..j+1+d] = u^r u_1 b$ where $u = x[i..j]$,

$$u_1 = x[j+r(j-i)+1..j+r(j-i)+d_1-1] = x[j+r(j-i)+1..j+d-1]$$

is a prefix of $x[i..j]$, and $x[i+d] < x[j+1+d]$, so that by Lemma [13] (b), $x[i..j+1+d]$ is Lyndon, contradicting the assumption that $x[i..j]$ is the longest Lyndon factor starting at i.

Thus $s(j+1) < s(i)$, as required. \Box

Lemma [15] describes the property of being a longest Lyndon factor of a string x in terms of relationships between corresponding suffixes.

Lemma 15 Consider a string $x = x[1..n]$ over an alphabet Σ with an ordering \prec.
A substring $x[i..j]$ is a longest Lyndon factor of x with respect to \prec if and only if $s_x(i) < s_x(k)$ for every $k \in i+1..j$ and either $j = n$ or $s_x(j+1) < s_x(i)$.

Proof. Let (A) denote \{ $x[i..j]$ is a longest Lyndon factor of x \} and let (B) denote \{ $s(i) < s(k)$ for any $1 \leq k \leq j$ and $s(j+1) < s(i)$ \}. Then (A) \Rightarrow (B) follows from Lemma [14] so we need to prove that (B) \Rightarrow (A).

Suppose then that (B) holds, and let $x[i..k]$ be a longest Lyndon factor of x starting at position i. If $k < j$, then by Lemma [14] $s(k+1) < s(i)$, a contradiction since $k+1 \leq j$. If $k > j$, then by Lemma [14] $s(i) < s(j+1)$ because $j+1 \leq k$, which again gives us a contradiction. Thus $k = j$ and $x[i..j]$ is a longest Lyndon factor of x. \Box

Now we reformulate Lemma [15] in terms of the inverse suffix array ISA of x using the relationship that $s(i) < s(j) \iff \text{ISA}[i] < \text{ISA}[j]$, thus yielding Theorem [12] as required. Hence the Lyndon array can be computed in a simple three-step algorithm, as shown in Figure[2] that executes in $\theta(n)$ time and uses only one additional array of integers.

Appendix 3

Here we describe a simple data structure that yields an alternative approach to Algorithm NSV$, based on the comparison of longest Lyndon factors as described in Lemma [15] The dictionary of basic factors [18] of string $x[1..n]$ consists of a
sequence of arrays $D_t, 0 \leq t \leq \log n$. The array D_t records information about factors of x of length 2^t — that is, the basic factors. In particular, $D_t[i]$ stores the rank of $x[i..i + 2^t - 1]$, so that

$$x[i..i + 2^t - 1] \preceq x[i..i + 2^t - 1] \iff D_t[i] \leq D_t[i].$$

This dictionary requires $O(n \log n)$ space and can be constructed in $O(n \log n)$ time as follows. D_0 contains information about consecutive symbols of x and hence can be computed in $O(n \log n)$ time by sorting all the symbols appearing in x and mapping them to numbers from 1 and onward. Once D_t is computed, we can easily compute D_{t+1} by spending $O(n)$ time on a radix sort, because $u[i..i + 2^{t+1} - 1]$ is in fact a concatenation of the factors $u[i..i + 2^t - 1]$ and $u[i + 2^t..i + 2^{t+1} - 1]$.

Once this dictionary is computed, we can compare any two factors by comparing two appropriate overlapping basic factors (i.e., factors having length power of two), which is done by checking the corresponding D array from the dictionary. This will require constant time and hence each suffix-suffix comparison can be done in constant time.