
Resear
h Report DC{2002{03

Pro
eedings

of the Prague Stringology Conferen
e '02

Edited by Miroslav Bal��k and Milan

�

Sim�anek

September 2002

Department of Computer S
ien
e and Engineering

Fa
ulty of Ele
tri
al Engineering

Cze
h Te
hni
al University

Karlovo n�am. 13

121 35 Prague 2

Cze
h Republi

Program Committee

Gabriela Andrejkov�a, Jun-i
hi Aoe, Maxime Cro
hemore, Jan Holub,

Costas S. Iliopoulos, Thierry Le
roq, Bo�rivoj Meli
har (
hair), Bru
e W. Watson

Organizing Committee

Miroslav Bal��k, Martin Blo
h, Jan Holub, Vojt�e
h Ka�
��rek, Milan

�

Sim�anek,

Zden�ek Tron���
ek, Ladislav Vagner

URL

http://
s.felk.
vut.
z/ps

Pro
eedings of the Prague Stringology Conferen
e '02

Published by Vydavatelstv��

�

CVUT, Zikova 4, 16635 Praha 6, Cze
h Republi

Edited by Miroslav Bal��k and Milan

�

Sim�anek

Conta
t: Prague Stringology Club

Katedra po�
��ta�
�u,

�

CVUT{FEL

Karlovo n�am. 13, Praha 2, Cze
h Republi
.

E-mail: ps
�
s.felk.
vut.
z Phone: +420-2-24357470

Printed by Edi�
n�� st�redisko

�

CVUT, Zikova 4, Praha 6

 Cze
h Te
hni
al University, Prague, Cze
h Republi
, 2002

ISBN 80-01-02616-7

ii

Table of
ontents

Prefa
e v

A Work-Optimal Parallel Implementation of Lossless Image Compres-

sion by Blo
k Mat
hing by Sergio De Agostino 1

A Note on Randomized Algorithm for String Mat
hing withMismat
hes

by Kensuke Baba, Ayumi Shinohara, Masayuki Takeda, Shunsuke Inenaga, and

Setsuo Arikawa 9

A Re
ursive Fun
tion for Cal
ulating the Number of Legal Strings of

Parentheses and for Cal
ulating Catalan Numbers by Kirke Bent 18

Border Array on Bounded Alphabet by Jean-Pierre Duval, Thierry Le
roq,

Arnaud Lefebvre 28

A Note on Cro
hemore's Repetitions Algorithm a Fast Spa
e-EÆ
ient

Approa
h by Franti�sek Fran�ek, W. F. Smyth, and Xiangdong Xiao 36

A Bit-Ve
tor Algorithm for Computing Levenshtein and Damerau Edit

Distan
es by Heikki Hyyr�o 44

String Mat
hing with Gaps for Musi
al Melodi
 Re
ognition by Costas

S. Iliopoulos and Masahiro Kurokawa 55

String Regularities with Don't Cares by Costas S. Iliopoulos, Manal Mo-

hamed, Laurent Mou
hard, Katerina G. Perdikuri, W. F. Smyth and Athanasios

K. Tsakalidis 65

Bidire
tional Constru
tion of SuÆx Trees by Shunsuke Inenaga 75

Image Re
ognition Using Finite Automata by Tom�a�s Skopal, V�a
lav Sn�a�sel,

Mi
hal Kr�atk�y 88

Split and join for minimizing: Brzozowski's algorithm by J.-M. Cham-

parnaud, A. Khorsi, T. Parantho�en 96

iii

iv

Prefa
e

The Prague Stringology Conferen
e 2002 (PSC'02) was held at the Department of

Computer S
ien
e and Engineering of the Cze
h Te
hni
al University in Prague,

Cze
h Republi
, on September 23{24, 2002. The
onferen
e fo
used on stringology

and related topi
s. Stringology is a dis
ipline
on
erned with algorithmi
 pro
essing

of strings and sequen
es.

The papers submitted were reviewed by the programme
ommittee and eleven

were sele
ted for presentation at the
onferen
e, based on originality and quality.

This volume
ontains these sele
ted papers.

In years 1996{2000 the Prague Stringology Club Workshops (PSCW's) and the

Prague Stringology Conferen
e in 2001 pre
eded this
onferen
e. The pro
eedings of

these workshops and the
onferen
e had been published by Cze
h Te
hni
al University

and are available on WWW pages of PSC. Sele
ted
ontributions were published in

a spe
ial issue of the journal Kybernetika.

The Prague Stringology Club (PSC) was founded in 1996 as a resear
h group at the

Department of Computer S
ien
e and Engineering of the Cze
h Te
hni
al University

in Prague. The goal of PSC is to study algorithms on strings and sequen
es with a

spe
ial emphasis on the �nite automata theory. The �rst event PSC organized was

the workshop PSCW'96
onsisting only of invited talks. However, sin
e PSCW'97 the

papers are sele
ted based on peer reviews. The aim is not only to present new results

in stringology, but also to have people working on these topi
s meeting in person.

I would like to thank all those who had submitted papers for PSC'02 as well as

the reviewers. A spe
ial thank goes to all the members of the programme
ommittee,

without whose e�orts it would not have been possible to put together su
h a stimu-

lating program of PSC'02. Last, but not least, my thanks go to the members of the

organizing
ommittee for ensuring su
h a smooth running of the
onferen
e.

In Hamilton, Ontario, Canada

on August 2002

Jan Holub

v

vi

A Work-Optimal Parallel Implementation of

Lossless Image Compression by Blo
k Mat
hing

Sergio De Agostino

S
hool of Computing

Armstrong Atlanti
 State University

11935 Aber
orn Street

Savannah, Georgia 31419

USA

e-mail: agos�armstrong.edu

Abstra
t. Storer suggested that fast en
oders are possible for two-dimensional

lossless
ompression by showing a square greedy mat
hing LZ1 heuristi
 for bi-

level images, whi
h
an be implemented by a simple hashing s
heme [S96℄. In

this paper, we show a work-optimal parallel algorithm using a re
tangle greedy

mat
hing te
hnique requiring O(logM logn) time on the PRAM EREW model,

where n is the size of the image and M the maximum size of a re
tangle.

Key words: lossless image
ompression, sliding di
tionary, parallel algorithm,

PRAM EREW

1 Introdu
tion

Textual substitution
ompression methods (often
alled \LZ" methods due to the

work of Lempel and Ziv [LZ76℄) have been designed by Lempel and Ziv [LZ77, ZL78℄

and Storer and Szymanski [SS82℄. These methods parse a string in phrases and

repla
e them with pointers to
opies,
alled targets of the pointers, that are stored in a

di
tionary. The en
oded string is a sequen
e of pointers (some of whi
h may represent

single
hara
ters). Stati
 methods are when the di
tionary is known in advan
e. By

ontrast, with dynami
 methods (LZ1 [LZ77℄ and LZ2 [ZL78℄) the di
tionary may be

onstantly
hanging as the data is pro
essed (see [BCW90, St88℄ for referen
es).

Storer [S96℄ and Storer and Helfgott [SH97℄ generalized the LZ1 method to lossless

image
ompression and suggested that very fast en
oders are possible by showing a

square greedy mat
hing LZ1
ompression heuristi
, whi
h
an be implemented by a

simple hashing s
heme and a
hieves 60 to 70 per
ent of the
ompression of JBIG1 on

the CCITT bi-level image test set.

With LZ1 text
ompression, one simply pro
eeds from left to right making mat
hes

in greedy fashion between a substring in the
urrent position and a
opy in the part

of the string already seen. A key advantage of LZ1
ompression is that de
oding is

always simple and fast. Another advantage is that it is relatively easy to implement.

The two key issues for pra
ti
al implementations are how the en
oder sear
hes for

mat
hes and how pointers are en
oded.

1

Pro
eedings of the Prague Stringology Conferen
e '02

An image has to be s
anned in some linear order. In order to a
hieve a good

ompression performan
e, bidimensional mat
hes have to be
omputed. In [SH97℄, a

square-mat
h en
oding algorithm is proposed using a simple hashing s
heme dire
ted

to bi-level images. A 64K table with one position for ea
h possible 4x4 subarray is the

only data stru
ture used. All-zero and all-one squares are handled di�erently. The

en
oding s
heme is to pre
ede ea
h item with a
ag �eld indi
ating whether there is

a mono
hromati
 square, a mat
h or raw data. When there is a mat
h, the 4 x 4

subarray in the
urrent position is hashed to yield a pointer to a
opy. This pointer

is used for the
urrent square greedy mat
h and then repla
ed in the hash table by a

pointer to the
urrent position.

To improve the
ompression performan
e, it was also introdu
ed a slower re
tangle

greedy mat
hing te
hnique requiring O(M logM) time where M is the size of the

mat
h [SH97℄. Therefore, O(n logM) is the best sequential time for an image of size

n if we
ompress by re
tangle mat
hing with M the maximum size of a re
tangle.

Both heuristi
s work with an unrestri
ted window. In [CDG01℄ a re
tangle greedy

mat
hing heuristi
 using a �nite window and a bound to the mat
h size was pre-

sented. The heuristi
 is suitable for a fast implementation similar to the one in [S96℄

and a
hieves 75 to 90 per
ent of the
ompression of JBIG1 on the CCITT bi-level

image test set. In this paper, we show a work-optimal PRAM EREW implementation

of lossless image
ompression by blo
k mat
hing requiring O(logM logn) time whi
h

uses a re
tangle greedy mat
hing te
hnique similar to the one in [CDG01℄. The par-

allel heuristi
 a
hieves 95 to 97 per
ent of the
ompression of the sequential heuristi

mentioned above [CDL02℄. In se
tion 2, we show how the sequential heuristi
 works.

In se
tion 3, we explain the parallel algorithm. In se
tion 4,
on
lusions and future

work are given.

2 The Re
tangle Greedy Mat
hing Te
hnique

The
ompression heuristi
 s
ans an image n x m row by row (raster s
an) (the greedy

mat
hing te
hnique
ould work with any other s
an des
ribed in [SH97℄). We denote

with p

i;j

the pixel in position (i; j). The pro
edure for �nding the largest re
tangle

with left upper
orner (i; j) that mat
hes a re
tangle with left upper
orner (k; h) is

des
ribed in Fig. 1.

At the �rst step, the pro
edure
omputes the longest possible width for a re
tangle

mat
h in (i; j) with respe
t to the position (k; h). The re
tangle 1 x `
omputed at

the �rst step is the
urrent re
tangle mat
h and the sizes of its sides are stored in

side1 and side2. In order to
he
k whether there is a better mat
h than the
urrent

one, the longest one-dimensional mat
h on the next row and
olumn j, not ex
eeding

the
urrent width, is
omputed with respe
t to the row next to the
urrent
opy and

to
olumn h. Its length is stored in the temporary variable width and the temporary

variable length is in
reased by one. If the re
tangle R whose sides have size width

and length is greater than the
urrent mat
h, the
urrent mat
h is repla
ed by R.

We iterate this operation on ea
h row until the area of the
urrent mat
h is greater

or equal to the area of the longest feasible width-wide re
tangle, sin
e no further

improvement would be possible at that point. For example, in Fig. 2 we apply the

pro
edure to �nd the largest re
tangle mat
h between position (0; 0) and (6; 6).

2

AWork-Optimal Parallel Implementation of Lossless Image Compression by Blo
k Mat
hing

Figure 1: Computing the largest re
tangle mat
h in (i; j) and (k; h).

A one-dimensional mat
h of width 6 is found at step 1. Then, at step 2 a better

mat
h is obtained whi
h is 2 x 4. At step 3 and step 4 the
urrent mat
h is still 2 x 4

sin
e the longest mat
h on row 3 and 9 has width 2. At step 5, another mat
h of width

2 provides a better re
tangle mat
h whi
h is 5 x 2. At step 6, the pro
edure stops sin
e

the longest mat
h has width 1 and the re
tangle mat
h
an
over at most 7 rows. It

follows that 5 x 2 is the greedy mat
h sin
e a re
tangle of width 1
annot have a larger

area. Obviously, this pro
edure
an be used for
omputing the largest mono
hromati

re
tangle in a given position (i; j) as well. If the 4 x 4 subarray in position (i; j)

is mono
hromati
, then we
ompute the largest mono
hromati
 re
tangle in that

position. Otherwise, we
ompute the largest re
tangle mat
h in the position provided

by the hash table and update the table with the
urrent position. If the subarray

is not hashed to a pointer, then it is left un
ompressed and added to the hash table

with its
urrent position. The positions
overed by mat
hes are skipped in the linear

s
an of the image.

As pointed out in [SH97℄, for typi
al bi-level images this s
heme is extremely

fast for square mat
hes and there is no signi�
ant slowdown over simply reading and

writing the image. As mentioned in the introdu
tion, in [SH97℄ it is shown that the

re
tangle greedy mat
hing te
hnique requires O(M logM) time where M is the size

of the mat
h. Therefore, O(n logM) is the best sequential time for an image of size n

if we
ompress by re
tangle mat
hing with M the maximum size of a re
tangle. The

en
oding s
heme is to pre
ede ea
h item with a
ag �eld indi
ating whether there

is a mono
hromati
 square (0 for white, 10 for bla
k), a mat
h (110) or raw data

(111). Pointers are en
oded with the straightforward en
oding with three integers

for x, y and size while a simple variable-length
ode is used to spe
ify the size of a

mono
hromati
 square. We also mentioned in the introdu
tion that a key issue for

3

Pro
eedings of the Prague Stringology Conferen
e '02

Figure 2: The largest mat
h in (0,0) and (6,6) is
omputed at step 5.

pra
ti
al implementations is how pointers are en
oded. As pointed out in [SH97℄, good

pointer
oding s
hemes are important for text
ompression and be
ome even more

important for images sin
e the number of mat
hes that are used is typi
ally less than

the number found and the straightforward
oding uses many more bits per pointer.

With re
tangular mat
hes this issue be
omes even more signi�
ant. The en
oding of

mono
hromati
 re
tangles is a dominant fa
tor of the
ompression performan
e and

the eÆ
ien
y of the method in
reases with large images.

In [CDG01℄ we experimented our re
tangle greedy mat
hing algorithm with a

bounded size di
tionary de�ned by a window
omprising the last 64K pixels read. We

bounded by twelve the number of bits to en
ode either the width or the length of a

re
tangle mat
h. We use either four or eight or twelve bits to en
ode one re
tangle

side. Therefore, nine di�erent kinds of re
tangle are de�ned. A pointer is en
oded in

the following way:

� the
ag �eld indi
ating the type of item;

� if the item is not mono
hromati
, sixteen bits whi
h are raw or indi
ating the

position of the mat
h in the window;

� three or four bits en
oding one of the nine kinds of re
tangle;

� bits for the length and the width.

Larger re
tangles are less frequent but still relevant for the
ompression performan
e.

Then, four bits are used to indi
ate when twelve bits or eight and twelve bits are

needed for the length and the width. This way of en
oding re
tangles plays a relevant

role for the
ompression performan
e. In fa
t, it wastes four bits when twelve bits are

required for the sides but saves four to twelve bits when four or eight bits suÆ
e. On

4

AWork-Optimal Parallel Implementation of Lossless Image Compression by Blo
k Mat
hing

the CCITT bi-level image test set, we a
hieved 75 to 90 per
ent of the
ompression

of JBIG1.

3 The Parallel Algorithm

To a
hieve logarithmi
 time we partition an m x n image I in x x y re
tangular

areas where x and y are �(log

1=2

mn). In parallel for ea
h area, one pro
essor applies

the sequential parsing algorithm so that in logarithmi
 time ea
h area will be parsed

in re
tangles, some of whi
h are mono
hromati
. We do not allow overlapping of

the mono
hromati
 re
tangles when we apply the sequential algorithm to ea
h area.

Ea
h pro
essor
ould work with a sliding window of size 64K and bounded mat
hes,

using the same pointer en
oding s
heme des
ribed in the previous se
tion. However,

before en
oding we wish to
ompute larger mono
hromati
 re
tangles. If we
ompute

unbounded mono
hromati
 re
tangles, the
oding for them
ould be the
ag �eld, log

m bits for the length and log n bits for the width.

In the des
ription of the algorithm, we use four m x n matri
es RC, CC, W and

L whi
h are determined by the parsing pro
edure on ea
h area. RC[i; j℄ and CC[i; j℄

are equal to zero if I[i; j℄ is not
overed by a mono
hromati
 re
tangle, otherwise

they are equal to the row and
olumn
oordinate of the left upper
orner of the

mono
hromati
 re
tangle. W [i; j℄ and L[i; j℄ are equal to zero if I[i; j℄ is not
overed

by a mono
hromati
 re
tangle, otherwise they are equal to the width and length of

the mono
hromati
 re
tangle. We also use four matri
es TRC, TCC, TW and TR

to store temporary values needed for the
omputation of the �nal parsing, whi
h are

initially set to RC, CC, W and L. The pro
edure to
ompute larger mono
hromati

re
tangles works as in Fig. 3.

Basi
ally, we try to merge mono
hromati
 re
tangles adja
ent on the horizontal

boundaries and then on the verti
al boundaries, doubling in this way the length and

width of ea
h area at ea
h step. It is always the re
tangle of an area in odd position

with respe
t either to the verti
al or horizontal order whi
h tries to merge with the

adja
ent re
tangle in the next area. Generally, this merging operation
auses that the

re
tangles split into two or three subre
tangles. The re
tangle from whi
h we start

the merging is split in at most two subre
tangles sin
e we want to preserve the upper

left
orner. The merging is realized by updating the temporary matri
es storing the

information on the mono
hromati
 re
tangles
omputed on the image. If we obtain a

larger re
tangle then we update the original matri
es, otherwise we
ontinue merging

by working with the temporary values to see if we
an get a larger re
tangle later.

We des
ribe the pro
edure more in details. At the �rst line internal to the main

loop (Figure 3), we
onsider in parallel the left lower
orners of mono
hromati
 re
t-

angles of the areas in odd positions whi
h are adja
ent to a mono
hromati
 re
tangle

with the same
olor in the next area below. Then, at line 3 we
hange the width and

length of the re
tangle
onsidered, where the length is the sum of the lengths of the

two adja
ent re
tangles and the width
hanges if the right
orners of the re
tangle in

the next area are to the left of the right
orners of the other re
tangle. At line 4 and

5 the values in the temporary matri
es are
hanged also for the pixels in the next

area sin
e they merged. Obviously, these
hanges
an be made with optimal work in

logarithmi
 time. As mentioned above, the merging
auses a splitting of re
tangles

into subre
tangles and the values in the temporary matri
es must be rede�ned also

5

Pro
eedings of the Prague Stringology Conferen
e '02

Figure 3: How to
ompute mono
hromati
 re
tangles in parallel.

for the pixels
overed by the other re
tangles produ
ed by the merging. This is done

from line 6 to 10. In parallel we
onsider all the pixels for whi
h, a

ording to the

temporary values, either they are not on the leftmost
olumn of a re
tangle and the

adja
ent pixels in front of them result to be on the rightest
olumn of a re
tangle

(line 6) or they are on the leftmost
olumn (line 7). For ea
h of them, we
ompute

the
losest pixel to the right for whi
h, a

ording to the temporary values, either it

is not on the rightmost
olumn of a re
tangle and the next pixel results to be on the

leftmost
olumn of a re
tangle (line 8) or it is on the rightmost
olumn of a re
tan-

gle (line 9). Being this pixel the
losest to the one
omputed in lines 6 and 7, they

must be on the rightmost and leftmost
olumn of the same mono
hromati
 re
tangle

respe
tively. This is rede�ned in the temporary matri
es at line 10. At this point,

for ea
h left upper
orner of a mono
hromati
 re
tangle (line 11) if we obtained a

larger re
tangle after the merging (line 12) we
an ovewrite the information on the

6

AWork-Optimal Parallel Implementation of Lossless Image Compression by Blo
k Mat
hing

new re
tangle on the original matri
es (line 13). Observe that this way of updating

the matri
es may introdu
e overlapping of the mono
hromati
 re
tangles. Then, we

repeat the same pro
edure trying to merge re
tangles horizontally (line 14{26).

To analize the
omplexity of the algorithm, it is enough to
onsider that at ea
h

iteration of the main loop we double the sides of the areas and to re
all the
lassi
al

parallel pre�x
omputation te
hnique. All the statements inside the loop require

logarithmi
 time with optimal parallel work (lines 8{9 and 21{22 by parallel pre�x).

Sin
e no operation is exe
uted if there is nothing to merge, the total running time

with optimal parallel work is O(log n logM), where M is the maximum size of a

mono
hromati
 re
tangle. Then, from the matri
es we
an easily derive the sequen
e

of pointers with optimal parallel work and logarithmi
 time by parallel pre�x.

4 Con
lusions

In this paper, we showed a work-optimal parallel algorithm for lossless image
ompres-

sion by blo
k mat
hing using a re
tangle greedy mat
hing te
hnique whi
h requires

O(logM logn) time. The algorithm is suitable for an implementation on pra
ti
al

parallel ar
hite
tures as meshes of trees, multigrids and pyramids.

As future work, a detailed study on how the algorithm must be implemented on

these ar
hite
tures
ould be provided. Also, pra
ti
al parallel algorithms for de
om-

pression should be designed.

Referen
es

[BCW90℄ Bell T.C., Cleary J.G., Witten I.H: Text Compression. Prenti
e Hall.

[CDG01℄ Cinque L., De Agostino S., Grande E: LZ1 Compression of Binary Im-

ages using a Simple Re
tangle Greedy Mat
hing Te
hnique. IEEE Data

Compression Conferen
e, 492.

[CDL02℄ Cinque L., De Agostino S., Liberati F.: A Parallel Algorithm for Lossless

Image Compression by Blo
k Mat
hing. IEEE Data Compression Confer-

en
e, 450.

[LZ76℄ Lempel A., Ziv J: On the Complexity of Finite Sequen
es. IEEE Trans-

a
tions on Information Theory, 22, 75-81.

[LZ77℄ Lempel A., Ziv J: A Universal Algorithm for Sequential Data Compres-

sion. IEEE Transa
tions on Information Theory, 23, 337-343.

[St88℄ Storer J.A.: Data Compression: Methods and Theory. Computer S
ien
e

Press.

[S96℄ Storer J. A.: Lossless Image Compression using Generalized LZ1-Type

Methods. IEEE Data Compression Conferen
e, 290-299.

[SH97℄ Storer J. A., Helfgott H.: Lossless Image Compression by Blo
k Mat
hing.

The Computer Journal, 40, 137-145.

7

Pro
eedings of the Prague Stringology Conferen
e '02

[SS82℄ Storer J. A., Szymanski T. G.: Data Compression via Textual Substitu-

tion. Journal of ACM, 29, 928-951.

[ZL78℄ Ziv J., Lempel A.,: Compression of Individual Sequen
es via Variable

Rate Coding. Transa
tions on Information Theory, 24, 530-536.

8

A Note on Randomized Algorithm for String

Mat
hing with Mismat
hes

Kensuke Baba, Ayumi Shinohara,

Masayuki Takeda, Shunsuke Inenaga, and Setsuo Arikawa

Department of Informati
s, Kyushu University 33, Fukuoka 812-8581, Japan

e-mail: fbaba, ayumi, takeda, s-ine, arikawag�i.kyushu-u.a
.jp

Abstra
t. Atallah et al. [ACD01℄ introdu
ed a randomized algorithm for string

mat
hing with mismat
hes, whi
h utilized fast Fourier transformation (FFT)

to
ompute
onvolution. It estimates the s
ore ve
tor of mat
hes between text

string and a pattern string, i.e. the ve
tor obtained when the pattern is slid

along the text, and the number of mat
hes is
ounted for ea
h position. In this

paper, we simplify the algorithm and give an exa
t analysis of the varian
e of

the estimator.

Key words: Pattern mat
hing, mismat
h, FFT,
onvolution, randomized al-

gorithm

1 Introdu
tion

Let T = t

1

; : : : ; t

n

be a text string and P = p

1

; : : : ; p

m

be a pattern string over

an alphabet �. String mat
hing problem is to �nd all o

urren
es of the pattern

P in the text T . Approximate string mat
hing problem is to �nd all o

urren
es

of small variations of the original pattern P in the text T . Substitution, inser-

tion, and deletion operations are often allowed to introdu
e the variations. In this

paper, we allow the substitution operation only. The derived problem is usually

alled string mat
hing with mismat
hes. It is essentially to
ompute the s
ore ve
-

tor C(T; P) = (

1

; : : : ;

n�m+1

) between T and P , where ea
h

i

ounts the number

of mat
hes between the substring t

i

; : : : ; t

i+m�1

of the text T and the pattern P .

If

i

= m, the pattern exa
tly o

urs at position i in the text. Fig. 1 shows an

example of the s
ore ve
tor. A reasonable amount of e�ort has been paid for this

problem [Abr87, BYG92, BYP96, FP74, Kar93℄. Refer the textbooks [CR94, Gus97℄

to know the history and various results.

Re
ently, Atallah et al. [ACD01℄ introdu
ed a randomized algorithm of Monte-

Carlo type whi
h returns an estimation of the s
ore ve
tor C(T; P). The estimation

is performed by averaging independent equally distributed estimates. Let k be the

number of ramdomly sampled estimations, then the time
omplexity is O(kn logm)

by utilizing a fast Fourier transformation (FFT). They showed that the expe
ted

value of the estimation is equal to the s
ore ve
tor, and that the varian
e is bounded

by (m�

i

)

2

=k.

In this paper, we give a slight simpli�
ation of their algorithm. Moreover, we

analyze the varian
e of the estimator exa
tly.

9

Pro
eedings of the Prague Stringology Conferen
e '02

i 1 2 3 4 5 6 7 8 9 10

text a
 b a b b a

 b

pattern a b b a

a b b a

a b b a

a b b a

a b b a

a b b a

i

3 1 1 5 2 0

Figure 1: S
ore ve
tor between the text a
babba

b and the pattern abba
.

2 Preliminaries

Let N be the set of non-negative integers. Let � be a �nite alphabet. An element of

�

�

is
alled a string. The length of a string w is denoted by jwj. The empty string is

denoted by ", that is, j"j = 0. We denote the
ardinality of a set S by jSj or #S.

We de�ne a fun
tion Æ from �� � to f0; 1g by

Æ(a; b) =

�

1 if a = b,

0 if a 6= b.

For a text string T = t

1

t

2

: : : t

n

and a pattern string P = p

1

p

2

: : : p

m

, the s
ore

ve
tor of mat
hes between T and P is de�ned as C(T; P) = (

1

;

2

; : : : ;

n�m+1

), where

i

=

P

m

j=1

Æ(t

i+j�1

; p

j

). That is,

i

is the number of mat
hes between the text and

the pattern when the �rst letter of the pattern in positioned in front of the ith letter

of the string.

3 Deterministi
 Algorithm

In this se
tion, we introdu
e a deterministi
 algorithm to
ompute the s
ore ve
tor

for given text T and pattern P . Although it might not be pra
ti
al for large alphabet,

it will be a base for the randomized algorithm explored in the next se
tion.

3.1 Binary Alphabet Case

We �rst
onsider a binary alphabet � = fa; bg. We de�ne a fun
tion : �! f�1; 1g

by (a) = 1 and (b) = �1. By using , we
onvert the strings T and P into the

sequen
es of integers as follows.

 (T) = (t

1

); (t

2

); : : : : : : : : : ; (t

n

);

 (P) = (p

1

); (p

2

); : : : ; (p

m

):

Let A

(T; P) = (a

1

; a

2

; : : : ; a

n�m+1

) where a

i

=

m

X

j=1

 (t

i+j�1

) � (p

j

).

10

A Note on Randomized Algorithm for String Mat
hing with Mismat
hes

Lemma 1 For any 1 � i � n�m + 1,

i

= (a

i

+m)=2.

Proof. Sin
e

i

= #fj j t

i+j�1

= p

j

; 1 � j � mg, we have a

i

= #fj j t

i+j�1

=

p

j

; 1 � j � mg �#fj j t

i+j�1

6= p

j

; 1 � j � mg =

i

� (m �

i

) = 2

i

�m. Thus

i

= (a

i

+m)=2. 2

The above lemma implies that we have only to
ompute A

(T; P) to get the s
ore

ve
tor C(T; P). Sin
e the sequen
e A

(T; P) is the
onvolution of (T) with the

reverse of (P), we
an
al
ulate all the a

i

's simultaneously by the use of fast Fourier

transform (FFT) in O(n logm) time as follows. As is stated in [ACD01℄, we addition-

ally apply the standard te
hnique [CR94℄ of partitioning the text into overlapping

hunks of size (1 + �)m ea
h, and then pro
essing ea
h
hunk separately. Pro
essing

one
hunk gives us �m
omponents of C. Sin
e we have n=(�m)
hunks and ea
h

hunk
an be
omputed in O((1 + �)m log((1 + �)m)) by FFT, the total time
om-

plexity is

n

�m

�O((1 + �)m log((1 + �)m)) = O

�

(1+�)

�

n log((1 + �)m)

�

= O(n logm)

by
hoosing � = O(m).

Theorem 1 For a binary alphabet, the s
ore ve
tor C
an be exa
tly
omputed in

O(n logm) time.

3.2 General Case

We now
onsider general
ase j�j > 2. Let 	

�

be the set of all mappings from � to

f�1; 1g. Remark that j	

�

j = 2

j�j

. We abbreviate 	

�

with 	 when � is
lear from

the
ontext. The next lemma is obvious.

Lemma 2 For any 2 	

�

and any a; b 2 �,

 (a) � (b) =

�

1 if (a) = (b),

-1 if (a) 6= (b).

Lemma 3 For any a; b 2 �,

1

j	j

X

 2	

 (a) � (b) = Æ(a; b):

Proof. In
ase of a = b, then (a) = (b) for any 2 	. Therefore (a) � (b) = 1

for any by Lemma 2, and the sum

P

 2	

 (a) � (b) equals to the
ardinality of 	.

Thus, the left side of the equation is unity.

To prove the lemma in
ase of a 6= b, we show a more general proposition:

X

 2	

 (d

1

) � � � � � (d

n

) � (b) = 0 if d

1

6= b; � � � ; d

n

6= b (n � 0):

By the assumption that b is distin
t from d

1

; � � � ; d

n

,

X

 2	

 (d

1

) � � � � � (d

n

) � (b)

=

X

 (b)=1; 2	

 (d

1

) � � � � � (d

n

) � 1 +

X

 (b)=�1; 2	

 (d

1

) � � � � � (d

n

) � (�1)

= 0:

Thus, by the proposition for n = 1, the left side of the equation is zero. 2

11

Pro
eedings of the Prague Stringology Conferen
e '02

Theorem 2 For any 1 � i � m� n+ 1,

i

=

1

j	j

X

 2	

a

i

: (1)

Proof. By the de�nition of a

i

and Lemma 3, the right side of the equation
an be

hanged as follows.

1

j	j

X

 2	

a

i

=

1

j	j

X

 2	

m

X

j=1

 (t

i+j�1

) � (p

j

)

=

m

X

j=1

1

j	j

X

 2	

 (t

i+j�1

) � (p

j

)

=

m

X

j=1

Æ(t

i+j�1

; p

j

):

Sin
e the last formula is the de�nition of

i

, the theorem is proved. 2

Theorem 3 C(T; P)
an be exa
tly
omputed in O(2

j�j

n logm) time.

Proof. By Theorem 2

i

is the mean of a

i

for every 2 	

�

, therefore C(T; P)

is obtained by
omputing all A

(T; P). Sin
e ea
h A

(T; P)
an be
omputed in

O(n logm) time, we
an
al
ulate C(T; P) in O(2

j�j

n logm) time. 2

We note that if the alphabet � is in�nite, by splitting the text in
hunks of length

O(m) to be dealt with independently ensures it will work with an alphabet size O(m),

so that C(T; P)
an be exa
tly
omputed in O(2

O(m)

n logm).

4 Randomized Algorithm

A short
oming of the deterministi
 algorithm in the last se
tion is that the running

time is exponential with respe
t to the size of alphabet. It is not pra
ti
al for large

alphabet. In this se
tion, we propose a randomized algorithm whi
h was inspired by

Atallah et al. [ACD01℄.

Let us noti
ed that Theorem 2
an be interpreted as follows. Ea
h

i

is the

mean of random variable X

i

=

P

m

j=1

 (t

i+j�1

) � (p

j

), assuming that is drawn

uniformly randomly from 	. The observation leads us to the following randomized

algorithm. Instead of
omputing all ve
tors A

(T; P) = (a

1

; a

2

; : : : ; a

n�m+1

) where

a

i

=

P

m

j=1

 (t

i+j�1

) � (p

j

) to average them, we
ompute only k samples of them

for randomly
hosen

1

; : : : ;

k

2 	. Sin
e the expe
ted value of X

i

equals to

i

, it

will give a good estimation for large enough k. We will give a formal proof of it, and

exa
tly analyze the varian
e of X

i

in the sequel. Fig. 2 illustrates the
ore part of the

algorithm for the basi

ase n = (1 + �)m.

We now analyze the mean and the varian
e of the estimator
̂

i

. Sin
e all the

random variable
̂

i

are de�ned in a similar way, we generi
ally
onsider the random

variable

ŝ =

1

k

k

X

`=1

m

X

j=1

 (t

j

) � (p

j

)

12

A Note on Randomized Algorithm for String Mat
hing with Mismat
hes

Pro
edure EstimateS
ore

Input: a text T = t

1

: : : t

(1+�)m

and a pattern P = p

1

: : : p

m

in �

�

.

Output: an estimate for the s
ore ve
tor C(T; P).

for ` := 1 to k do begin

randomly and uniformly sele
t a

`

from 	

�

.

Let T

`

=

`

(T). Note that T

`

is a sequen
e over f�1; 1g of length (1 + �)m.

Let P

`

be the
on
atenation of

`

(P) with trailing �m zeros.

ompute the ve
tor C

`

as the
onvolution of T

`

with the reverse of P

`

by FFT.

end

ompute the ve
tor

^

C =

1

k

k

X

`=1

C

`

and output it as an estimate of C(T; P).

Figure 2: Randomized Algorithm

where the t

j

's and the p

j

's are �xed and mapping 's are independently and uniformly

sele
ted from 	

�

. The de�nition implies that ŝ is the mean of k random variables

whi
h are drawn from independent and identi
al distribution. The random variable

an be de�ned by

s =

m

X

j=1

 (t

j

) � (p

j

);

and the mean E(ŝ) and varian
e V (ŝ) are

E(ŝ) = E(s) and V (ŝ) =

V (s)

k

:

The number
 of mat
hes between T = t

1

: : : t

m

and P = p

1

: : : p

m

is

 =

m

X

j=1

Æ(t

j

; p

j

):

Lemma 4 The mean of ŝ is equal to
.

Proof. By Lemma 3,

E(ŝ) = E(s) =

1

j	j

X

 2	

s

=

1

j	j

X

 2	

m

X

j=1

 (t

j

) � (p

j

)

=

m

X

j=1

1

j	j

X

 2	

 (t

j

) � (p

j

)

=

m

X

j=1

Æ(t

j

; p

j

):

Thus, the mean of ŝ is
. 2

13

Pro
eedings of the Prague Stringology Conferen
e '02

In order to analyze the varian
e of s a

urately, we introdu
e the following fun
tion

�

T;P

: � � �! N depending on text T = t

1

: : : t

m

and pattern P = p

1

: : : p

m

, whi
h

give a statisti
s of T and P .

�

T;P

(a; b) = #fj j t

j

= a and p

j

= b; 1 � j � mg

For example, let T = aaba
 and P = abbba. Then �

T;P

(a; b) = 2, �

T;P

(a; a) =

�

T;P

(b; b) = �

T;P

(
; a) = 1, and the others are zero. We omit the subs
ription T; P of

�

T;P

in the sequel. In addition, we use the following expression.

�(a; b) = �(a; b) + �(b; a):

The next lemma is obvious from the de�nition.

Lemma 5

X

(a;b)2���

�(a; b) =

1

2

X

(a;b)2���

�(a; b) = m.

The next lemma gives the exa
t varian
e of ŝ, in terms of �.

Lemma 6 The varian
e of ŝ is

V (ŝ) =

1

k

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

:

Proof. Sin
e the mean of s equals to
 by Lemma 4,

V (ŝ) =

1

k

V (s) =

1

k

1

j	j

X

 2	

(s�
)

2

:

By the de�nition of �,

s =

X

(a;b)2���

 (a) � (b) � �(a; b)

=

X

a=b

�(a; b) +

X

a6=b

 (a) � (b) � �(a; b); and

 =

X

a=b

�(a; b):

Therefore,

1

j	j

X

 2	

(s�
)

2

=

1

j	j

X

 2	

X

a=b

�(a; b) +

X

a6=b

 (a) � (b) � �(a; b)

!

�

X

a=b

�(a; b)

!

2

=

1

j	j

X

 2	

X

a6=b

 (a) � (b) � �(a; b)

!

2

=

1

j	j

X

 2	

X

a6=b

 (a) � (b) � �(a; b)

!

X

a

0

6=b

0

 (a

0

) � (b

0

) � �(a

0

; b

0

)

!

=

1

j	j

X

 2	

X

a6=b

X

a

0

6=b

0

 (a) � (b) � �(a; b) � (a

0

) � (b

0

) � �(a

0

; b

0

)

=

X

a6=b

�(a; b) �

X

a

0

6=b

0

�(a

0

; b

0

)

1

j	j

X

 2	

 (a) � (b) � (a

0

) � (b

0

)

!

:

14

A Note on Randomized Algorithm for String Mat
hing with Mismat
hes

Let us take �(a; b; a

0

; b

0

) =

1

j	j

X

 2	

 (a) � (b) � (a

0

) � (b

0

), and show that

�(a; b; a

0

; b

0

) =

�

1 if either a = a

0

and b = b

0

, or a = b

0

and a

0

= b,

0 otherwise,

by the
ase analysis whether there exists a distin
t
hara
ter from the others in

a; b; a

0

; b

0

. If there exists su
h a
hara
ter, then �(a; b; a

0

; b

0

) = 0 by the proof of

Lemma 3. If there does not exist su
h a
hara
ter, then we have either a = a

0

and

b = b

0

, or a = b

0

and b = a

0

by the assumption that both a 6= b and a

0

6= b

0

. Then,

by Lemma 3 and the fa
t that (a)

2

= 1 for any 2 	 and any a 2 � sin
e

 (a) 2 f�1; 1g,

�(a; b; a

0

; b

0

) =

1

j	j

X

 2	

 (a)

2

� (b)

2

= 1:

Thus,

V (ŝ) =

1

k

X

a6=b

�(a; b) (�(a; b) + �(b; a))

=

1

k

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

:

2

Moreover, by the de�nition of � , we have

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

=

1

2

X

a6=b

�

�(a; b)

2

+ 2�(a; b) � �(b; a) + �(b; a)

2

�

=

1

2

X

a6=b

(�(a; b) + �(b; a))

2

=

1

2

X

a6=b

�(a; b)

2

=

X

a<b

�(a; b)

2

:

Therefore, the varian
e
an be exa
tly restated in term of � as follows, whi
h might

be more intuitive.

Theorem 4 The varian
e of ŝ is

V (ŝ) =

1

k

X

a<b

�(a; b)

2

:

Remind that �(a; b) represented the number of positions j = 1; : : : ; m in T and

P , su
h that (t

j

; p

j

) is either (a; b) or (b; a). If T exa
tly mat
hes P , then V (ŝ) = 0,

whi
h implies that the estimation is always m, without any error. On the other hand,

sin
e

P

a<b

�(a; b) = m �
, the varian
e V (ŝ) is maximized for inputs whi
h have

no mat
h and are
onstru
ted by only two
hara
ters, for example, T = aaaaaa,

P = bbbbbb, and T = aaabba, P = bbbaab.

We now state the bound of the varian
e of ŝ in terms of m and
, that exa
tly �ts

to the one proved by Atallah et al. [ACD01℄.

15

Pro
eedings of the Prague Stringology Conferen
e '02

Lemma 7 The varian
e of ŝ is bounded as follows.

V (ŝ) �

(m�
)

2

k

:

Proof. By Lemma 5,

m�
 =

X

(a;b)2���

�(a; b)�

X

a=b

�(a; b)

=

X

a6=b

�(a; b)

=

1

2

X

a6=b

�(a; b)

=

X

a<b

�(a; b):

Therefore, by Theorem 4,

(m�
)

2

k

� V (ŝ) =

1

k

X

a<b

�(a; b)

!

2

�

1

k

X

a<b

�(a; b)

2

=

1

k

X

a<b

�(a; b) �

X

a

0

<b

0

�

�(a

0

; b

0

)

!

;

where

X

a

0

<b

0

�

�(a

0

; b

0

) expresses the sum of �(a

0

; b

0

) ex
ept for the two
ases a

0

= a; b

0

= b

and a

0

= b; b

0

= a. Sin
e �(a; b) � 0 for any a and b, the last formula is not less than

zero. 2

We now have the main theorem.

Theorem 5 Algorithm EstimateS
ore runs in O(kn logm) time. The mean of

the estimation equals to the s
ore ve
tor C, and the varian
e of ea
h entry is bounded

by (m�

i

)

2

=k.

5 Con
lusion

We gave a randomized algorithm for string mat
hing with mismat
hes, whi
h
an

be regarded as a slight simpli�
ation of the one due to Atallah et al. [ACD01℄. For

omparison, we give a brief des
ription of their algorithm. It treats the set 	

0

of all

mappings from � to f0; 1; : : : ; j�j � 1g, and the basi
 equation is

i

=

1

j	

0

j

X

 2	

0

m

X

j=1

!

 (t

i+j�1

)� (p

j

)

; (2)

where ! is a primitive j�jth root of unity. When j�j = 2, we know ! = �1, and that

the equation (2) dire
tly
orresponds to the equation (1) in ours. The di�eren
e is

how to treat general alphabet j�j > 2. In our algorithm, the
onverted sequen
e (T)

16

A Note on Randomized Algorithm for String Mat
hing with Mismat
hes

is simply over f�1; 1g, while in their algorithm (T) is over f1; !; !

2

; : : : ; !

j�j�1

g that

are
omplex numbers. When
omputing the
onvolution by FFT, the
omputation of

the former will be mu
h simpler (and possibly faster) than the latter. From the view

point of the pre
ision of the numeri
al
al
ulations, the former might be preferable to

the latter, although we have not yet studied expli
itly. Moreover, this simpli�
ation

enabled us to rea
h the exa
t estimation of the varian
e (Theorem 4), by fairly prim-

itive dis
ussion. An interesting point is that the varian
e is still independent from

the size of alphabet, although we map � into f�1; 1g, instead of f0; 1; : : : ; j�j � 1g.

In their paper [ACD01℄, they
onsidered various extensions, su
h as string mat
h-

ing with
lasses,
lass
omponents, \never mat
h" and \always mat
h" symbols,

weighted
ase, and higher dimension arrays. We think our simpli�
ation will be

valid without any diÆ
ulty for all those extensions, although we have not
ompletely

veri�ed them yet.

Referen
es

[Abr87℄ K. Abrahamson. Generalized string mat
hing. SIAM Journal on Comput-

ing, 16(6):1039{1051, 1987.

[ACD01℄ M. J. Atallah, F. Chyzak, and P. Dumas. A randomized algorithm for

approximate string mat
hing. Algorithmi
a, 29:468{486, 2001.

[BYG92℄ R. A. Baeza-Yates and G. H. Gonnet. A new approa
h to text sear
hing.

Communi
ations of the ACM, 35:74{82, 1992.

[BYP96℄ R. A. Baeza-Yates and C. H. Perleberg. Fast and pra
ti
al approximate

string mat
hing. Information Pro
essing Letters, 59(1):21{27, 1996.

[CR94℄ M. Cro
hemore and W. Rytter. Text Algorithms. Oxford University Press,

New York, 1994.

[FP74℄ M. J. Fis
her and M. S. Paterson. String-mat
hing and other prodeu
ts. In

Complexity of Computation (Pro
eedings of the SIAM-AMS Applied Math-

emati
s Symposium, New York, 1973), pages 113{125, 1974.

[Gus97℄ D. Gus�eld. Algorithms on Strings, Trees, and Sequen
es. Cambridge Uni-

versity Press, New York, 1997.

[Kar93℄ H. Karlo�. Fast algorithms for approximately
outing mismat
hes. Infor-

mation Pro
essing Letters, 48(2):53{60, 1993.

17

A Re
ursive Fun
tion for Cal
ulating the Number

of Legal Strings of Parentheses and for Cal
ulating

Catalan Numbers

Kirke Bent

Parallel Business Software

29 Pine Street

Chatham, NJ 07928, USA

e-mail: parbzsft�bellatlanti
.net

Abstra
t. This paper dis
usses the number of legal strings of n pairs of paren-

theses as well as a stru
ture of the set of these strings. As the number of su
h

strings is known to be the Catalan number, a stru
ture of Catalan numbers is

thereby developed. A re
ursive fun
tion is developed that
ounts the set and

al
ulates the Catalan number. The fun
tion uses two parameters and is thus

a generalization of Catalan numbers.

Key words: Parentheti
al strings, re
ursive fun
tions, stringology,
ombina-

tori
s, generalized Catalan numbers.

1 Introdu
tion

This paper
on
erns the problem of
al
ulating the number of legal strings of paren-

theses that
an be
onstru
ted from n pairs of parentheses. This number is known to

be the Catalan number. There is a large literature of Catalan number interpretations

and
onne
tions [2, 3, 4, 5, 6, 7℄. Stanton and White have a proof of the
orre-

sponden
e between Catalan numbers and legal parentheti
al strings[7℄. The Catalan

number is de�ned as

C

n

=

�

2n

n

�

� (n+ 1):

The ordinary meaning of \legal strings" of parentheses is intended here: 1) The

strings are
onventionally
onstru
ted from left to right. 2) At any point in the

string, the number of left parentheses is equal to or greater than the number of right

parentheses. 3) all of the 2n parentheses are used.

For example, C

3

= 5; the legal strings of 3 pairs of parentheses are

((())), (() ()), (())(), () (()), and () () ().

The paper o�ers a way to
al
ulate Catalan numbers with a re
ursive fun
tion

and a stru
ture of the strings and the number.

18

A Re
ursive Fun
tion for Cal
ulating the Number of Legal Strings of Parentheses ...

2 Outline

Four areas emerge from
onsideration of this fun
tion:

2.1 A Chart

This is a
hart of the
onstru
tion of the C

n

legal parentheti
al strings
omposed of

n pairs of parentheses. The number of su
h strings is an interpretation of Catalan

numbers. The
hart
an be interpreted as a rooted tree. Evaluation of the fun
tion

ounts the leaves of the tree.

2.2 A Fun
tion

The fun
tion, denoted here by B

n;m

, uses two parameters. The n

th

Catalan number,

C

n

, is produ
ed by B

n;0

. The domain of both parameters of B

n;m

is the non-negative

integers. In the re
ursive des
ent, m takes on values both higher and lower than n.

2.3 A Generalization

This generalization of Catalan numbers is based on the two parameters. It in
ludes

C

n

:

2.4 A Stru
ture

This stru
ture of Catalan numbers is suggested by the
hart but
an be expressed

algebrai
ally.

3 Elaboration

3.1 The Chart

The idea behind the
hart is simply writing the legal parentheti
al expressions a
-

ording to the de�nition above.

(

(

(

(

(

(

(

(

)

)

)

)

E.g. (()())

Figure 1: Forming all legal arrangements of 3 pairs of parentheses

19

Pro
eedings of the Prague Stringology Conferen
e '02

Consider this as a rooted tree. Ea
h edge represents adding a parenthesis. If there

are two edges des
ending from a vertex, then there is a
hoi
e of adding a left or right

parenthesis at that point. By following all paths from the root to a leaf, all legal

expressions have been written. Note that �nal right parentheses are not needed to

ount leaves.

The steps in drawing the
hart are:

1. Start at the top with n pairs of parentheses.

2. Stop if there are no more left parentheses.

3. Draw a verti
al line downwards. This represents a left parenthesis and \uses"

one. If the number of left parentheses used (before this one was drawn) ex
eeds

the number of right ones used, draw another line from the same starting point

but to the right and then
urving downwards. This represents a right parenthesis

and uses one.

4. Repeat steps 2, 3, and 4 for ea
h end point.

The vertex at the botton of ea
h line drawn represents the parentheti
al string as

onstru
ted so far.

These
onventions are somewhat arbitrary, as
onventions must be, but they result

in a pi
ture that is regular and easy to understand. The
hart was helpful in de�ning

the fun
tion and dis
overing the stru
ture.

3.2 The Fun
tion

B

n;m

=

8

<

:

B

n�1;m+1

+B

n;m�1

if (n > 0) ^ (m > 0)

B

n�1;m+1

if (n > 0) ^ (m = 0)

1 if (n = 0)

Ea
h part of the
hart
orresponds to a
ase of the fun
tion. Figure 2 relates the

parts of the
hart to the
ases of the fun
tion.

Where one line descends from a vertex
B(n,m)=B(n−1,m+1)

Where two lines descend from a vertex
B(n,m)=B(n−1,m+1)+B(n,m−1)

Where no lines descend from a veretx
B(n,m)=1

Figure 2: Relationship between the
hart and
ases of the fun
tion

20

A Re
ursive Fun
tion for Cal
ulating the Number of Legal Strings of Parentheses ...

(

(

(

(

(

(

(

(

)

)

)

)

 3,0

1,2

0,3

0,3

0,21,2

0,3

0,2

2,0

1,1

1,2

1,1

2,1

Figure 3: Parameters of B

3;0

at ea
h vertex

The parameters of the fun
tion B

n;m

take on di�erent values at di�erent points in

the re
ursive des
ent. Figure 3 shows the parameters at ea
h stage for B

3;0

.

Parameter n represents the number of left parentheses that
an be used from that

point onward. Parameter m represents the number of additional right parentheses

needed to balan
e the number of left parentheses already used. Considered
onstru
-

tively, m represents the number of right parentheses that may be written at that

point. When a left parenthesis is written, n is redu
ed and m is in
reased. When a

right parenthesis is written, m is redu
ed.

Of
ourse, on
e the fun
tion is de�ned, it is freed of any ne
essary tie to paren-

theses.

If we say it is possible for any re
ursive fun
tion to be simple, then this fun
tion

is simple and perhaps more fundamental than the
losed form. The
losed form is

simpler to write. However, while the notation for \2n
hoose n" is simple, it implies

more
omplex ideas. The
losed form has multipli
ation and division operations.

While the
omparisons in the re
ursive fun
tions are obvious and expli
itly shown,

there are also
omparisons implied in any evaluation of the
losed form.

Assuming that it is not possible to do algebra with the re
ursive fun
tion, it

seems less useful than the
losed form. However, it is possible to do substitutions.

For example, B

4;1

an be restated as B

3;2

+ B

4;0

, and vi
e versa. Substitution
ould

be used to de�ne the fun
tion di�erently, but the way the fun
tion was de�ned above

seems simple and it �ts well with the parentheses
hart.

B

n;0

is far less eÆ
ient
omputationally than the
losed form. This will be devel-

oped in the Appendix.

3.3 The Generalization

This fun
tion is a generalization of Catalan numbers. The standard Catalan number

C

n

= B

n;0

. Table 1 also in
ludes some of the others:

21

Pro
eedings of the Prague Stringology Conferen
e '02

M=0 1 2 3 4 5

N=0 1 1 1 1 1 1

1 1 2 3 4 5 6

2 2 5 9 14 20 27

3 5 14 28 48 75 110

4 14 42 90 165 275 429

5 42 132 297 572 1001 1638

6 132 429 1001 2002 3640 6188

7 429 1430 3432 7072 13260 23256

8 1430 4862 11934 25194 48450 87210

Table 1: Generalized Catalan Numbers B

n;m

for n 2 [0; 8℄, m 2 [0; 5℄.

3.4 The Stru
ture

The stru
ture
an be expressed as:

C

n

= B

n�3;3

+ 2C

n�1

or as

C

n

= B

n�3;3

+ 2B

n�1;0

The
hart for C

n

an be
hara
terized as having a left lobe and two equal right

lobes. The right lobes are equal both in stru
ture and value. They are also ea
h equal

to C

n�1

in stru
ture and value. Figures 4, 5, and 6 show the stru
ture.

(

(

(

(

(

(

(

(

)

)

)

)

 3,0

1,2

0,3

0,3

0,21,2

0,3

0,2

2,0

1,1

1,2

1,1

2,1

Right lobe Right lobe

Left lobe

Figure 4: Stru
ture of C

n

In Figure 5, the numeri
 parameters are repla
ed by symboli
 parameters in terms

of n and m. The
hart \grows" from the bottom as n in
reases. The three lobes will

always have the values B

n�3;3

, B

n�2;1

, and B

n�2;1

. These
an be put in
orresponden
e

to the ways legal strings of parentheses may start: (((, ((), () (. This is a basis

of a partition of any set of legal strings.

22

A Re
ursive Fun
tion for Cal
ulating the Number of Legal Strings of Parentheses ...

Left lobe

(

(

(

(

(

(

(

(

)

)

)

)

Right lobe Right lobe

n,0

n−1,1

n−2,2

n−3,3 n−2,1

n−1,0

n−2,1

Figure 5: Stru
ture of C

n

ontd.

Right lobeLeft lobe Right lobe

C

C2

3

Figure 6: Stru
ture of C

4

or B

4;0

Figure 6 emphasizes the nested repetitions of stru
ture. Note that C

3

(or C

n�1

)

is found twi
e and C

2

(or C

n�2

) is found four times.

The left lobe is di�erent. It starts out smaller than either right lobe and then

be
omes larger, perhaps approa
hing the sum of the two right lobes as n gets large.

The value of the left lobe is B

n�3;3

. Here's a table of the �rst few values:

n 3 4 5 6 7 8

B

n�3;3

1 4 14 48 165 572

Table 2: Values of the left lobe B

n�3;3

for n 2 [3; 8℄.

These values were re
ognized by the On-Line En
y
lopedia of Integer Sequen
es

as Sequen
e A002057, named the Fourth Convolution of Catalan Numbers [5℄. This

sequen
e is not pursued here.

23

Pro
eedings of the Prague Stringology Conferen
e '02

4 Further Work

1. What are appli
ations or interpretations of the generalized Catalan numbers?

2. There is doubtless something inherent in the problem that is re
e
ted in the

stru
ture, but it is not obvious what. The stru
ture looks natural in terms of

the
hart, but the
hart is just one pi
ture of one interpretation. Why not two

lobes? Four? Why any?

3. What is the pre
ise behavior of the size of the left lobe?

4. Is B

n�3;3

the Fourth Convolution of Catalan numbers?

5 Con
lusion

Consideration of the set of legal strings of n pairs of parentheses exposes a stru
ture

of this set and of Catalan numbers. The rules for
onstru
tion of legal strings of

parentheses
an be re
ast from a general statement of prin
iples to parti
ular state-

ments of all the
ases. This restatement
an be expressed as a
hart showing all of

the
ases.

Examination of the
hart shows the stru
ture of the sets of strings. Given that

the
ount of legal strings is known to be the Catalan number, the
hart exposes a

simple and easily understood stru
ture of Catalan numbers. Interpreting the
hart

as a graph, a re
ursive fun
tion B

n;m

ounts the leaves of the graph (a tree) and

therefore
al
ulates the Catalan number.

Taken together, the
hart and the fun
tion provide a useful tool for gaining an

intuitive understanding of an important
ombinatorial number. Developing the fun
-

tion would be a good problem for students studying re
ursive fun
tions.

The fun
tion B

n;m

is interesting in its own right. First, it is remarkably sim-

ple, using only addition, subtra
tion, and
omparison. It should probably should be

onsidered more fundamental than the
losed form whi
h additionally uses multipli-

ation, division, and fa
torials. Se
ond, the fun
tion B

n;m

has two parameters and is

thus a generalization of Catalan numbers.

6 Appendix. Computational Complexity and Ef-

�
ien
y.

The
losed form for
al
ulating C

n

is
learly more eÆ
ient than the re
ursive B

n;0

.

However, examining
omplexity and eÆ
ien
y
an further illuminate the stru
ture

of parentheti
al strings and Catalan numbers. The
omplexity of the
losed form is

linear in n while that of B

n;0

is exponential.

This se
tion will only treat B

n;0

to fa
ilitate
omparison with the
losed form.

The term \C

n

" is used here to denote the number, not the method of
al
ulating it.

24

A Re
ursive Fun
tion for Cal
ulating the Number of Legal Strings of Parentheses ...

6.1 Comparison with the
losed form.

Even without a pre
ise expression for the
omplexity of B

n;m

, it is possible to reason

about
omplexity and do some measurements of it. The reasoning goes like this: 1)

The
omplexity of B

n;0

is greater than the number C

n

. 2) C

n

is greater than the

omplexity of the
losed form. 3) Therefore the
omplexity of B

n;0

is greater than

that of the
losed form. (It is mu
h greater.)

The unit
ounted for the
losed form is the number of multipli
ations. After

an
eling
ommon fa
tors in the numerator and the denominator, the
losed form

an be expressed as (2n)(2n � 1):::(2n � (n + 2)),
alling for n � 2 multipli
ations,

here
alled f(n).

The unit
ounted for B

n;0

is the number of exe
utions of the fun
tion. In many

ar
hite
tures these two measures would not be
ommensurate. However, the sizes of

the
omplexity numbers dominate any di�eren
e. Using C

n

as a
omplexity number,

the expression (2n)(2n� 1):::(2n� (n+ 2)) expands to a degree n� 1 polynomial in

n, here
alled g(n).

It
an be seen that f(n) is little-oh of g(n) sin
e lim

n!1

f(n)=g(n) = 0. In other

words, f(n) grows more slowly than g(n). In this
ase it grows mu
h more slowly [8℄.

The fa
t that the
omplexity of B

n;0

is greater than the number C

n

is
lear from

the
hart. The
hart has C

n

leaves, ea
h
ontributing 1 to the number of exe
utions.

In addition there are many intermediate nodes above the leaves, so that the sum

of all exe
utions is greater than C

n

. All this demonstrates that the
omputational

omplexity of the
losed form is little-oh of the
omplexity of B

n;0

.

A numeri
 measurement of B

n;0

is shown in Table 3. (The algorithm based on

B

n;m

an be instrumented to
ount exe
utions by the appropriate pla
ement of \+1"

in the
ases of the fun
tion.)

n 3 4 5 6 7 8

n� 2 1 2 3 4 5 6

B

n;0

13 36 106 328 1034 3485

Table 3: Complexity of the
losed form vs. B

n;0

.

6.2 Complexity of di�erent implementations of B

n;m

.

6.2.1 \Bottom-up" implementation of a re
ursive fun
tion.

Due to the highly repetitive stru
ture of B

n;m

, results toward the bottom of the
hart

are re
al
ulated many times over. To justify this,
onsider that the tree gets mu
h

wider than it is high. For example, at n = 8 the number of leaves is C

n

= 1430.

The longest path from the root to a leaf is 2n � 1. This shows that many of the

omputations are towards the bottom.

Blass and Gurevi
h use the term \bottom-up" to des
ribe the use of pre
al
ulated

results to avoid many re
al
ulations [1℄. As an example, the following fragment of

pseudo-
ode expresses the B

n;m

as an algorithm. It avoids re
al
ulation of B

n;m

for

m;n 2 [0; 3℄.

25

Pro
eedings of the Prague Stringology Conferen
e '02

The values of T are from Table 1. Note that the
ases are not disjoint. The order

of exe
ution resolves ambiguity.

var T = new Array ([1,1,1,1℄, [1,2,3,4℄, [2,5,9,14℄, [5,14,28,48℄);

fun
tion B(n,m) f

if ((n<4)&&(m<4)) return (T[n℄[m℄);

if ((n>0)&&(m>0)) return (B(n-1, m+1) + B(n, m-1));

if ((n>0)&&(m==0)) return (B(n-1, m+1));

if (n==0) return (1);

g

Table 4 shows measured
omplexity for this version.

n 3 4 5 6 7 8

top-down 13 36 106 328 1054 3485

bottom-up 1 2 5 13 52 212

Table 4: Complexity of top-down vs. bottom up evaluation of B

n;0

.

6.2.2 Parallel Pro
essing.

The stru
ture of B

n;m

presents both obsta
les and opportunities for parallelization.

The word \exe
utions" will be used here the way \pro
esses" and \threads" are often

used.

Dividing the work.

It is easy to divide the fun
tion into parts to run on separate pro
essors. Consider

pla
ing a horizontal line on a drawing of the
hart su
h as Figure 4. Horizontal lines

an be drawn at various levels. The point at whi
h the new line interse
ts a verti
al

line marks a pla
e where a separate pro
ess
an
onsist of all the exe
utions below the

interse
tion. The level of the horizontal line would determine the number of parts.

This method would be suitable for a multi-pro
essor with few pro
essors.

Another approa
h uses the fa
t that the se
ond
ase
alls for two
hild evaluations

of the fun
tion. One of these
ould be sent to another pro
essor. This would lead to

many requests for pro
essors at large n.

Laten
y.

Laten
y is another important fa
tor in parallelization. \Laten
y" is used here to

mean the time to initiate and terminate an exe
ution, in
luding passing parameters

and returning results. Sin
e the amount of pro
essing in the fun
tion is small, laten
y

would be very important if the fun
tion were distributed over many pro
essors.

A Single Instru
tion Multiple Data (SIMD) ma
hine with many pro
essors and

low laten
y would be good here. It would also take advantage of the fa
t that ea
h

exe
ution of the algorithm would use the same small program. However, in general

the stru
ture of the fun
tion would limit its use on ma
hines with large numbers of

pro
essors unless laten
y was very small.

26

A Re
ursive Fun
tion for Cal
ulating the Number of Legal Strings of Parentheses ...

Inter-pro
ess
ommuni
ation.

Sin
e there would be no peer-to-peer
ommuni
ation among exe
utions, an exe
ution

would never be interrupted and suspended in the middle of pro
essing. Network

ontention and overhead would both bene�t from this
hara
teristi
 of B

n;m

. Of

ourse, there is mu
h passing of parameters and results. This
ontributes to laten
y,

as developed above, and would be a signi�
ant use of resour
es.

Referen
es

[1℄ A. Blass and Y. Gurevi
h, Algorithms vs. Ma
hines, Bulletin of the European As-

so
iation for Theoreti
al Computer S
ien
es, Number 77, pp.96-118, June 2002.

[2℄ R. Graham, D. Knuth, and O. Patashnik, Con
rete Mathemati
s: A foundation

for Computer S
ien
e, 1 ed., Reading, Mass.: Addison-Wesley, 1988.

[3℄ P. Hilton and J. Pedersen, Catalan Numbers, Their Generalization, and Their

Uses, The Mathemati
al Intellegen
er, Volume 13, Number 2, pp.64-75, 1991.

[4℄ P. Hilton, D. Holton, and J. Pedersen, Mathemati
al Vistas: From a Room with

Many Windows, New York, Springer-Verlag, 2002.

[5℄ N. Sloane, On-Line En
y
lopedia of Integer Sequen
es, published ele
troni
ally

at http://www.resear
h.att.
om/~njas/sequen
es/Seis.html, 2002.

[6℄ R. Stanley, Enumerative Combinatori
s Volume 2, New York, Cambridge Uni-

versity Press, 1999.

[7℄ D. Stanton and D. White, Constru
tive Combinatori
s, New York, Springer-

Verlag, 1986.

[8℄ G. Thomas and R. Finney, Cal
ulus and Analyti
 Geometry, 8 ed., Reading,

Mass., Addison-Wesley, 1992, Reprinted with
orre
tions, April 1993.

27

Border Array on Bounded Alphabet

1

Jean-Pierre Duval

2

, Thierry Le
roq

2

, Arnaud Lefebvre

3

2

LIFAR { ABISS, Universit�e de Rouen, 76821 Mont-Saint-Aignan Cedex, Fran
e

3

UMR 6037 { ABISS, Universit�e de Rouen, 76821 Mont-Saint-Aignan Cedex, Fran
e

e-mail:

Jean-Pierre.Duval

Thierry.Le
roq

Arnaud.Lefebvre

9

=

;

�univ-rouen.fr

Abstra
t. In this arti
le we present an on-line linear time algorithm, to
he
k

if an integer array f is a border array of some string x built on a bounded size

alphabet, whi
h is simplest that the one given in [2℄. Furthermore if f is a

border array we are able to build, on-line and in linear time, a string x on a

minimal size alphabet for whi
h f is the border array.

Key words: String algorithms, border array

1 Introdu
tion

A border u of a string x is a pre�x and a suÆx of x su
h that u 6= x. The
omputation

of the borders of ea
h pre�x of a string x is strongly related to the string mat
hing

problem: given a string x, �nd the �rst or, more generally, all its o

urren
es in a

longest string y. The border array of x is better known as the \failure fun
tion"

introdu
ed in [4℄ (see also [1℄). Re
ently, in [2℄ a method is presented to
he
k if an

integer array f is a border array for some string x. The authors �rst give an on-line

linear time algorithm to verify if f is a border array on an unbounded size alphabet.

Then they give a more
omplex algorithm that works on a bounded size alphabet.

Here we present a more simple algorithm for this
ase. Furthermore if f is a border

array we are able to build, on-line and in linear time, a string x on a minimal size

alphabet for whi
h f is the border array. The resulting algorithm is elegant and

integrates three parts: the
he
king on an unbounded alphabet, the
he
king on a

bounded size alphabet and the design of the
orresponding string if f is a border

array. The �rst two parts
an work independently.

The remaining of this arti
le is organized as follows. The next se
tion introdu
es

basi
 notions and notations on strings and results from [2℄. Se
tion 3 presents our

new algorithm together with its
orre
tness proof. Finally we give our
on
lusions in

Se
t. 4.

2 Ba
kground and basi
 string de�nitions

A string is a sequen
e of zero or more symbols from an alphabet �; the string with

zero symbols is denoted by ". The set of all strings over the alphabet � is denoted

1

This work was partially supported by a NATO grant PST.CLG.977017.

28

Border Array on Bounded Alphabet

by �

�

. We
onsider an alphabet of size s; for 1 � i � s, �[i℄ denotes the i-th symbol

of �. A string x of length n is represented by x[1::n℄, where x[i℄ 2 � for 1 � i � n.

A string u is a pre�x of x if x = uw for w 2 �

�

. Similarly, u is a suÆx of x if x = wu

for w 2 �

�

. A string u is a border of x if u is a pre�x and a suÆx of x and u 6= x.

Let f [1::n℄ be an integer array su
h that f [i℄ < i for 1 � i � n. For 1 � i � n, we

de�ne f

1

[i℄ = f [i℄ and for f [i℄ > 0, f

`

[i℄ = f [f

`�1

[i℄℄. We use the following notations:

� L(f; i� 1) = (f [i� 1℄; f

2

[i� 1℄; : : : ; f

m

[i� 1℄ = 0);

� C(f; i) = (1 + f [i� 1℄; 1 + f

2

[i� 1℄; : : : ; 1 + f

m

[i� 1℄) where f

m

[i� 1℄ = 0.

Note that L(f; 1) = (0) and that C(f; 1) is not de�ned.

A border u of x[1::i℄ with i > 0 has one of the two following forms:

� u = ";

� u = x[1::j℄x[j +1℄ with j +1 < i and where x[1::j℄ is a border of x[1::i� 1℄ and

x[i℄ = x[j + 1℄.

For 1 � i � n we denote by �

x

[i℄ the length of the longest border of x[1::i℄. The

array �

x

[1::n℄ is said to be the border array of the string x.

The lengths of the di�erent borders of x[1::i � 1℄ are given by the de
reasing

sequen
e

L(�

x

; i� 1) = (�

x

[i� 1℄; �

2

x

[i� 1℄; : : : ; �

m

x

[i� 1℄)

where �

m

x

[i� 1℄ = 0 i.e. it is the length of the longest border �

x

[i� 1℄ followed by the

lengths of the borders of this longest border L(�

x

; �

x

[i� 1℄).

For i � 2, we say that an integer j+1 is
andidate to be the length of the longest

border of x[1::i℄ if x[1::j℄ is a border of x[1::i � 1℄. In other words, for i � 2, saying

that j + 1 is
andidate means that j 2 L(�

x

; i � 1). The de
reasing sequen
e of

andidates for the length of the longest border of x[1::i℄ is

C(�

x

; i) = (1 + �

x

[i� 1℄; 1 + �

2

x

[i� 1℄; : : : ; 1 + �

m

x

[i� 1℄)

where �

m

x

[i� 1℄ = 0.

We say that an array f [1::n℄ is a valid border array, or simply that it is valid if

and only if it is the border array of at least one string x of length n.

The longest border of x[1℄ is ne
essarily the empty word, thus �

x

[1℄ = 0. The

length �

x

[i℄ of the longest border of x[1::i℄, if it is not empty, is taken among the

andidates C(�

x

; i). Thus we have a �rst ne
essary
ondition for an array f [1::n℄ to

be valid:

NC

1

: f [1℄ = 0 and for 2 � i � n; f [i℄ 2 f0g+ C(f; i) :

If x[1::i℄ has the empty word for only border then we have �

x

[i℄ = 0.

If x[1::i℄ has a non-empty border, the length of the longest border veri�es

� �

x

[i℄ = maxfj + 1 j j 2 L(�

x

; i� 1) and x[i℄ = x[j + 1℄g, or equivalently

� �

x

[i℄ = maxfj + 1 j j + 1 2 C(�

x

; i) and x[i℄ = x[j + 1℄g.

29

Pro
eedings of the Prague Stringology Conferen
e '02

The length j + 1 of the longest border of x[1::i℄ is the �rst
andidate in the list

C(�

x

; i) for whi
h x[j+1℄ = x[i℄ if it exists, otherwise the longest border has length 0.

This is the basis of the
omputation of the fun
tion �

x

known as a \failure fun
tion"

given in [4℄.

Saying that j+1 is the largest
andidate for whi
h x[j+1℄ = x[i℄ implies that this

is not true for any
andidate j

0

+ 1 larger than j + 1, whi
h imposes that x[1::j + 1℄

annot be a border of x[1::j

0

+ 1℄ for a
andidate j

0

+ 1 larger than j + 1. In other

words, �

x

[j

0

+ 1℄ is di�erent from j + 1 for any
andidate j

0

+ 1 larger than j + 1.

This is thus a se
ond ne
essary
ondition for an array f to be valid:

NC

2

: for i � 2 and for every j

0

+ 1 2 C(f; i) with j

0

+ 1 > f [i℄

we have f [j

0

+ 1℄ 6= f [i℄ :

Theorem 2.2 in [2℄ states that
onditions NC

1

and NC

2

form a suÆ
ient
ondition for

f to be a valid border array. The authors give, for any valid array f , thus satisfying

onditions NC

1

and NC

2

, the
omputation of a string x su
h that f = �

x

, without any

restri
tion on the alphabet size. They give a simple linear time algorithm (Theorem

2.3) to test if an array f satis�es
onditions NC

1

and NC

2

, on a unbounded size

alphabet. They give a more
omplex algorithm in the
ase of a bounded size alphabet.

Here we present a more simple algorithm whi
h determines in linear time, for a given

array f [1::n℄, for i from 1 to n, the minimum size of an alphabet ne
essary to build

a string x[1::i℄ whi
h border array is f [1::i℄.

3 New algorithm

We propose, in this se
tion, a linear time algorithm, whi
h determines, for an array

f [1::n℄ and an alphabet size s given as input:

1 { validity: if f [1::n℄ is a valid border array for at least one string z[1::n℄. This

point is essentially the same as in [2℄;

2 { alphabet: up to whi
h index it is possible to build a string whi
h border array

is f using an alphabet of size s;

3 { string: a string x, on a minimal size alphabet, whi
h border array is f .

Point 1 is independent from the other two points. Point 2
an work without the

other two points, in parti
ular when one assumes that the array f is valid and does

not want to build a
orresponding string. Point 3 uses point 2.

The algorithm BABA (for Border Array on Bounded Alphabet) is given �gure 1.

We now state our main result.

Theorem 1 When applied to an integer array f [1::n℄ and an alphabet size s:

� The algorithm BABA runs in time �(n).

� If the array f given as input of the algorithm BABA is a valid border array at

index i � 1 but not at index i, the algorithm stops and returns \f invalid at

index i". The lines falphabetg and fstringg
an be deleted without
hanging

this result.

30

Border Array on Bounded Alphabet

Figure 1: Algorithm BABA

� If there exists a string for whi
h f [1::i� 1℄ is the border array and there is none

at index i with an alphabet of size s, the algorithm BABA stops and returns \s

ex
eeded at index i". Lines fstringg
an be deleted without
hanging this result.

If the array f is valid, lines fvalidityg
an also be deleted.

� As long as f [i::1℄ is valid, the algorithm BABA builds a string x[1::i℄ on a

minimal size alphabet for the border array f [1::i℄. Lines fvalidityg
an be

deleted without
hanging the
onstru
tion of the string. It is
lear that if f is

invalid, it is not the border array of the string whi
h is built by the algorithm.

Before giving the proof of the previous theorem we �rst give a de�nition and

establish some intermediate results.

De�nition 1 Given a string x[1::n℄ and its border array �

x

, we denote by A(x; i)

the set of symbols that extend the pre�x x[1::i � 1℄ and its borders, in x: A(x; i) =

fx[i℄g [fx[j + 1℄ j j + 1 2 C(�

x

; i)g.

Figure 2 gives a des
ription of L(�

x

; i� 1), C(�

x

; i) and A(x; i).

Lemma 1 For every string x[1::i℄ we have

1. fx[j + 1℄ j j + 1 2 C(�

x

; i)g = A(x; �

x

[i℄ + 1) ;

2. If �

x

[i℄ 6= 0 then x[i℄ = x[�

x

[i℄℄, �

x

[i℄ 2 C(�

x

; i) and A(x; i) = A(x; �

x

[i�1℄+1).

3. If �

x

[i℄ = 0 then �

x

[i℄ 62 C(�

x

; i) and A(x; i) = fx[i℄g [A(x; �

x

[i� 1℄ + 1).

Proof:

1. Immediate;

31

Pro
eedings of the Prague Stringology Conferen
e '02

Figure 2: If for 1 � ` � 4, j

`

= �

`

x

[i � 1℄, j

4

= �

4

x

[i � 1℄ = 0, i

`

= 1 + �

`

[i � 1℄, then

L(�

x

; i � 1) = (j

1

; j

2

; j

3

; j

4

= 0), C(�

x

; i) = (i

1

; i

2

; i

3

; i

4

= 1) and A(x; i) is the set

whi
h is
omposed of the gray symbols.

2. If �

x

[i℄ 6= 0 then �

x

[i℄ is a
andidate of C(�

x

; i). Con
erning the index of the

longest border we have x[i℄ = x[�

x

[i℄℄, �

x

[i℄ is a
andidate in C(�

x

; i), x[i℄ is in

A(x; �

x

[i� 1℄ + 1);

3. �

x

[i℄ = 0 implies that there exists no
andidate j + 1 2 C(�

x

; i) su
h that

x[i℄ = x[j + 1℄.

2

Corollary 1 Let x[1::n℄ be a string and k[1::n℄ the array
omputed by the algorithm

BABA with the input f = �

x

ignoring the fvalidityg and fstringg lines. Then, for

1 � i � n we have k[i℄ =
ardA(x; i).

Proof: The proof of the
orollary immediately follows from the algorithm BABA and

properties 2 and 3 of lemma 1. 2

Corollary 2 For every string x whi
h border array is f , the minimal
ardinality of an

alphabet ne
essary to build ea
h pre�x x[1::i℄ is greater or equal to maxfk[1℄; k[2℄; : : :,

k[i℄g where k[1::n℄ is the array
omputed by the algorithm BABA with the input f =

�

x

, ignoring lines fvalidityg and fstringg.

Proof: All the symbols of A(x; j) for 1 � j � i are symbols of the string x[1::i℄. Thus

the
ardinality is greater or equal to the
ardinality of ea
h A(x; j). 2

Proposition 1 Assume that array f [1::n℄ is valid. The string x build by the algo-

rithm BABA satis�es the following properties:

1. For 1 � i � n, �

x[1::i℄

= f [1::i℄ and A(x; i) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g;

2. The
ardinality of the alphabet for ea
h pre�x x[1::i℄ is equal to

maxfk[1℄; k[2℄; : : : ; k[i℄g;

32

Border Array on Bounded Alphabet

3. The border array �

x

of the string x is equal to f .

Proof:

� We show the point 1 by indu
tion on i. For i = 1: f [1℄ = 0, �

x[1::1℄

= f [1::1℄

and A(x; 1) = fx[1℄g = f�[1℄g. The property holds at index 1.

Assume that the property holds up to index i�1, then we have A(x; f [i�1℄+1) =

f�[1℄; �[2℄; : : : ; �[k[f [i� 1℄+ 1℄℄g (sin
e f [i� 1℄ < i� 1 thus f [i� 1℄+ 1 � i� 1)

and �

x[1::i�1℄

= f [1::i� 1℄.

If f [i℄ 6= 0 then sin
e f [1::i� 1℄ = �

x[1::i�1℄

and f satis�es
onditions NC

1

and

NC

2

at index i, f [i℄ is the largest
andidate j of C(f; i) su
h that x[j℄ = x[f [i℄℄.

Thus, by setting x[i℄ x[f [i℄℄ we get �

x

[i℄ = f [i℄, k[i℄ = k[f [i � 1℄ + 1℄ and

A(x; i) = A(x; f [i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g.

If f [i℄ = 0 then k[i℄ = 1 + k[f [i � 1℄ + 1℄ and x[i℄ �[k[i℄℄ does not belong to

A(x; f [i� 1℄ + 1) thus �

x

[i℄ = 0, A(x; �

x

[i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[f [i�

1℄ + 1℄℄g, A(x; i) = f�[k[i℄℄g [A(x; �

x

[i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g.

The property holds for i in both
ases.

� Properties 2 and 3 are immediate
onsequen
es of property 1.

2

Proposition 2 Let f [1::n℄ be an integer array.

1. The algorithm BABA returns \f invalid at index i" if and only if f [1::i� 1℄ is

valid and f [1::i℄ is not;

2. The array f [1::i � 1℄ is the border array of the string x[1::i � 1℄ whi
h is built

by the algorithm BABA.

Proof: From proposition 1, as long as f [1::i℄ is valid, it is the border array of the

string x[1::i℄ whi
h is built by the algorithm BABA whi
h establishes the point 2.

If the algorithm BABA stops at index i = 1 and returns \f invalid at index 1", it

means that f [1℄ 6= 0 thus f [1::i℄ is invalid (note that this
ase
annot happen if the

ondition f [i℄ < i is ful�lled).

Now assume that at the beginning of iteration i we have: z[1::i � 1℄ is a string

whi
h border array is f [1::i� 1℄ and z
an be extended with a symbol z[i℄ for whi
h

�

z

[i℄ = f [i℄.

We have z[i℄ = z[f [i℄℄, and �

z

[i℄ = f [i℄ is the largest
andidate j

0

+ 1 2 C(�

z

; i) =

(1 + �

z

[i� 1℄; 1 + �

2

z

[i� 1℄; : : : ; 1 + �

m

z

[i� 1℄), su
h that z[j

0

+ 1℄ = z[i℄ thus it is the

largest for whi
h z[j

0

+ 1℄ = z[f [j℄℄.

The three lines fvalidityg of the algorithm BABA reviews in de
reasing order

the
andidates j + 1 of C(�

z

; i).

� If the algorithm exits the while loop with j + 1 > f [i℄ and f [j + 1℄ = f [i℄, it

means that j + 1 is a
andidate larger that f [i℄ for whi
h �

z

[j + 1℄ = f [i℄ thus

z[j + 1℄ = z[f [i℄℄ whi
h
ontradi
ts the fa
t that j

0

+ 1 is the largest
andidate

su
h that z[j

0

+ 1℄ = z[f [i℄℄. This
ontradi
ts the assumption that the string

z[1::i� 1℄
an be extended and that f [1::i℄ is valid.

33

Pro
eedings of the Prague Stringology Conferen
e '02

� If the algorithm exits the while loop with j+1 < f [i℄, it means that no
andidate

j

0

+ 1 equal to f [i℄ were found. This
ontradi
ts the fa
t that f [i℄ = �

z

[i℄ and

that f [1::i℄ is valid.

In both
ases, no string z[1::i� 1℄, whi
h border array is f [1::i� 1℄,
an be extended,

then the algorithm returns \f invalid at index i".

If f [1::i℄ is valid then the algorithm does not stop at this index.

Assume now that at the beginning of iteration i we have: z[1::i � 1℄ is a string

whi
h border array is f [1::i� 1℄ and the while loop exits at index i with j +1 = f [i℄.

Let us set z[i℄ = z[f [i℄℄. Then f [i℄ = j + 1 is a
andidate of C(�

z

; i) for whi
h

z[j + 1℄ = z[i℄ thus z[1::j + 1℄ is a border of z[1::i℄. Assume that z[1::j + 1℄ is not

the longest border of z[1::i℄. Let j

0

+1 be the smallest
andidate whi
h is larger than

j + 1 and su
h that z[1::j

0

+ 1℄ is a border of z[1::i℄. Then z[1::j + 1℄ is the longest

border of z[1::j

0

+ 1℄ and we have f [j

0

+ 1℄ = f [i℄ whi
h means that the loop should

have stop with this test and with j + 1 > f [i℄. This is a
ontradi
tion.

Thus the algorithm BABA runs as long as f [1::i℄ is valid, it stops at index i and

returns \f invalid at index i" if and only if f is valid up to index i� 1 and is not at

index i. 2

The proof of Theorem 1 be
omes then immediate.

Proof:[of Theorem 1℄ The point 1 (linearity of the algorithm BABA)
omes from [4℄.

The other two points follow from propositions 1 and 2. 2

Figures 3 and 4 show two examples.

i 1 2 3 4 5 6 7 8 9 10 11 12 symbols
andidates valid

x[i℄ a b a a b a b a a b a

f [i℄ 0 0 1 1 2 3 2 3 4 5 6 ?

k[i℄ 1 2 1 2 2 1 2 1 2 2 1

a b a a b a b 7 yes

a b a a 4 yes

a b 2 no

" a 1 no

 0 yes if s > 2

Figure 3: The array f [1::11℄ is a valid border array. The string x[1::11℄ is the smallest

string for whi
h f [1::11℄ is a valid border array. Then x[1::11℄ = abaababaaba has

borders abaaba, aba, a and " of respe
tive lengths 6, 3, 1 and 0 (L(f; 11) = (6; 3; 1; 0)).

Thus the
andidates for f [12℄ are 7, 4, 2 and 1 (C(f; 12) = (7; 4; 2; 1)) together with 0

whi
h is always a potential
andidate. The values 7 and 4 are valid
andidates. The

value 2 is not valid sin
e f [7℄ = 2 and 1 is not valid be
ause f [4℄ = 1. The value 0 is a

valid
andidate if s > 2 be
ause then k[12℄ would be equal to 1+k[f [12� 1℄+1℄ = 3.

4 Con
lusions

We presented in this arti
le an elegant algorithm that verify, on-line and in linear time,

if an integer array f is a border array of some string on a bounded size alphabet.

34

Border Array on Bounded Alphabet

i 1 2 3 4 5 6 7 8 9 10 11 12 symbols
andidates valid

x[i℄ a a b a a
 a a b a a

f [i℄ 0 1 0 1 2 0 1 2 3 4 5 ?

k[i℄ 1 1 2 1 1 3 1 1 2 1 1

a a b a a
 6 yes

a a b 3 yes

a a 2 yes

" a 1 no

d 0 yes if s > 3

Figure 4: The array f [1::11℄ is a valid border array. The string x[1::11℄ is the smallest

string for whi
h f [1::11℄ is a valid border array. Then x[1::11℄ = aabaa
aabaa has

borders aabaa, aa, a and " of respe
tive lengths 5, 2, 1 and 0 (L(f; 11) = (5; 2; 1; 0)).

Thus the
andidates for f [12℄ are 6, 3, 2 and 1 (C(f; 12) = (6; 3; 2; 1)) together with

0 whi
h is always a potential
andidate. The values 6, 3 and 2 are valid
andidates.

The value 1 is not valid sin
e f [2℄ = 1. The value 0 is a valid
andidate if s > 3

be
ause then k[12℄ would be equal to 1 + k[f [12� 1℄ + 1℄ = 4.

In the
ase where f is a border array, we are also
apable to build a string x, on a

minimal size alphabet for whi
h f is the border array.

After studying the
ase of the \failure fun
tion" of the Morris and Pratt string

mat
hing algorithm, it is natural to ask the question if this work
an be extended to

the \failure fun
tion" of the Knuth, Morris and Pratt string mat
hing algorithm [3℄.

Referen
es

[1℄ A. V. Aho, J. E. Hop
roft and J. D. Ullman, The design and analysis of
om-

puter algorithms, Addison-Wesley, 1974.

[2℄ F. Fran�ek, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun and L. Yang,

Verifying a border array in linear time, J. Comb. Math. Comb. Comput. 42

(2002) to appear.

[3℄ D. E. Knuth, J. H. Morris, Jr and V. R. Pratt, Fast pattern mat
hing in strings

SIAM J. Comput. 6(1) (1977) 323{350.

[4℄ J. H. Morris, Jr and V. R. Pratt, A linear pattern-mat
hing algorithm, Report

40, University of California, Berkeley, 1970.

35

A Note on Cro
hemore's Repetitions Algorithm

a Fast Spa
e-EÆ
ient Approa
h

1

Franti�sek Fran�ek

1

, W. F. Smyth

1;2

, and Xiangdong Xiao

1

1

Algorithms Resear
h Group, Department of Computing & Software

M
Master University, Hamilton, Ontario, Canada L8S 4K1

(www.
as.m
master.
a/
as/resear
h/groups.html)

2

S
hool of Computing, Curtin University, GPO Box U-1987

Perth WA 6845, Australia

e-mail: franek�m
master.
a, smyth�m
master.
a

Abstra
t. The spa
e requirement of Cro
hemore's repetitions algorithm is

generally estimated to be about 20MN bytes of memory, where N is the length

of the input string and M the number of bytes required to store the integer

N . The same algorithm
an also be used in other
ontexts, for instan
e to

ompute the suÆx tree of the input string in O(N logN) time for the purpose

of data
ompression. In su
h
ontexts the large spa
e requirement of the algo-

rithm is a signi�
ant drawba
k. There are of
ourse several newer spa
e-eÆ
ient

algorithms with the same time
omplexity that
an
ompute suÆx trees or ar-

rays. However, in a
tual implementations, these algorithms may not be faster

than Cro
hemore's. Therefore, we
onsider it interesting enough to des
ribe a

new approa
h based on the same mathemati
al prin
iples and observations that

were put forth in Cro
hemore's original paper, but whose spa
e requirement is

10MN bytes. Additional advantages of the approa
h are the ease with whi
h

it
an be implemented in C/C++ (as we have done) and the apparent speed of

su
h an implementation in
omparison to other implementations of the original

algorithm.

1 Introdu
tion

Cro
hemore's algorithm [C81℄
omputes all the repetitions in a �nite string x of length

N in O(N logN) time. The algorithm in fa
t
omputes rather more and
an be used,

for instan
e, to
ompute the suÆx tree of x, hen
e possibly as a tool for expressing x

in a
ompressed form. In su
h
ontexts the spa
e requirement be
omes as important

as the time
omplexity. It appears that known implementations of Cro
hemore's algo-

rithm require at least 20MN bytes of memory for the task of re�ning the equivalen
e

lasses alone, where M is the number of bytes required to store the integer N .

Here we present a di�erent implementation based on the mathemati
al properties

and observations of [C81℄ and thus having the same time
omplexity O(N logN) as

the original algorithm. However, the new data stru
tures used for the representation

1

Supported in part by grants from the Natural S
ien
es & Engineering Resear
h Coun
il of

Canada.

36

A Note on Cro
hemore's Repetitions Algorithm a Fast Spa
e-EÆ
ient Approa
h

of
lasses and for the exe
ution of the re�nement pro
ess allow the spa
e requirement

to be substantially redu
ed.

There are several newer spa
e-eÆ
ient algorithms to
ompute suÆx trees or arrays

(notably [U92℄, [MM93℄) of the same worst-
ase
omplexity as Cro
hemore's. The

motivation for our investigation of a spa
e-eÆ
ient implementation of the
lassi
al

Cro
hemore's algorithm that may be
ompetetive with these newer algorithms stems

from the fa
t that the a
tual implementations of these algorithms may not in fa
t be

any faster.

A large memory saving
omes from the fa
t that our algorithm requires storage

for only N
lasses at any given time, rather than 2N as in the original algorithm.

This alone brings the spa
e requirement down to 15MN . Of
ourse there is some

extra pro
essing related to this redu
tion in spa
e, but it does not a�e
t the time

omplexity, and in fa
t it appears that in pra
ti
e our implementation runs a good

deal faster than the standard implementation proposed in [C81℄. A further 5MN

spa
e redu
tion is a
hieved by smart utilization of the spa
e:

� allowing spa
e to be shared by data stru
tures, as in memory multiplexing |

for example, if a queue empties faster than a sta
k grows, then they
an share

the same memory segment;

� spreading one data stru
ture a
ross several others, as in memory virtualization.

Taken together, these \tri
ks" bring the spa
e requirement down to 10MN .

Additional advantages of this approa
h are the ease with whi
h it
an be imple-

mented in C/C++ (as we have done) and, as remarked above, its apparent speed in

omparison to other implementations of the original algorithm.

In this paper we do not due to spa
e limitations provide any detailed
omputer

instru
tions, but we try to give a high-level des
ription of our approa
h, so that the

reader
an understand how the spa
e savings are a
hieved.

In our dis
ussion below we assume that the reader is familiar with both

Cro
hemore's algorithm and its mathemati
al foundation. We make the usual as-

sumption required for Cro
hemore's algorithm that the alphabet is ordered; therefore

we are able to assume further that the
lasses
orresponding to the �rst level (p = 1)

an be
omputed in O(N logN) time.

For better
omprehension, we present the algorithm in two stages. The �rst stage,

FSX15 (with spa
e requirement 15MN bytes), exhibits all important pro
edural and

ontrol aspe
ts of our algorithm without the
ompli
ations of memory multiplex-

ing and virtualization. Then the se
ond stage, FSX10, in
orporates the
hanges

required by memory multiplexing and virtualization to redu
e the spa
e requirement

to 10MN . Finally, we present some rough results of
omputer runs that
ompare the

time and spa
e requirements of our approa
h with those of a standard implementation

of Cro
hemore's algorithm.

2 Data Stru
tures for FSX15

Re
all that for ea
h p = 1; 2; : : :, Cro
hemore's algorithm a
ts on a given string x =

x[1::N ℄ to
ompute equivalen
e
lasses fi

1

; i

2

; : : : ; i

r

g, where for every 1 � j < h � r,

x[i

j

::i

j

+p�1℄ = x[i

h

::i

h

+p�1℄:

37

Pro
eedings of the Prague Stringology Conferen
e '02

The positions i

j

in ea
h
lass are maintained in in
reasing sequen
e: i

j

< i

j+1

,

1 � j < r. At ea
h step of the algorithm, ea
h
lass C

p

that is not a singleton

is de
omposed into a family of sub
lasses C

p+1;s

; of these sub
lasses, the one of

largest
ardinality is
alled big, the others are small. A straightforward approa
h to

this de
omposition would require order N

2

time in the worst
ase, but Cro
hemore's

algorithm redu
es this time requirement by
arrying out the de
omposition from p

to p+1 only with respe
t to the small
lasses identi�ed at step p. Sin
e ea
h posi-

tion
an belong to a small
lass only O(logN) times, it follows that the total time

requirement is O(N logN). As remarked in the introdu
tion, we may assume that

the
lasses
orresponding to p = 1 have initially been
omputed in O(N logN) time.

Note that the version of Cro
hemore's algorithm dis
ussed here does not expli
itly

ompute repetitions; we will be interested only in redu
ing ea
h of the equivalen
e

lasses to a singleton.

We will use an integer array of size N to represent the
lasses
omputed at step

p. We have several requirements:

� we need to keep the elements of the
lasses in as
ending order;

� we need an eÆ
ient way to delete any element (so that we need to represent

ea
h
lass as a doubly-linked list);

� we need an eÆ
ient way to insert a new element at the end of a
lass (and hen
e

we need a link to the last element of the
lass);

� we need eÆ
ient a

ess to the size of a
lass;

� we need eÆ
ient a

ess to a
lass (and hen
e we need a link to the �rst element

of the
lass);

� last but not least, we need an eÆ
ient way to determine to whi
h
lass a given

element belongs.

To satisfy all these requirements, we use six integer arrays of size N :

� CNext[1..N℄ emulates forward links in the doubly-linked list. Thus CNext[i℄ =

j > i means that j is the next element (position) in the
lass that i belongs to.

If there is no position j > i in the
lass, then CNext[i℄ = null.

� CPrev[1..N℄ emulates ba
kward links in the doubly-linked list. Thus CPrev[i℄=

j < i means that j is the previous element (position) in the
lass that i belongs

to. If there is no position j < i in the
lass, then CPrev[i℄ = null.

� CMember[1..N℄ keeps tra
k of membership. Thus CMember[i℄ = k means that

element i belongs to the
lass with index k (i 2

k

), while CMember[i℄ = null

means that at this moment i is not member of any
lass.

� CStart[1..N℄ keeps links to the starting (smallest) element in ea
h
lass.

Thus CStart[k℄ = i means that the
lass

k

starts with the element i, while

CStart[k℄ = null means that at this moment the
lass

k

is empty.

38

A Note on Cro
hemore's Repetitions Algorithm a Fast Spa
e-EÆ
ient Approa
h

� CEnd[1..N℄ keeps links to the �nal (largest) element in ea
h
lass. Thus

CEnd[k℄ = i means that the
lass

k

ends with the element i; the value of

CEnd[k℄ is meaningful only when CStart[k℄ 6= null.

� CSize[1..N℄ re
ords the size of ea
h
lass. Thus CSize[k℄ = r means that

the
lass

k

ontains r elements; the value of CSize[k℄ is meaningful only when

CStart[k℄ 6= null.

Suppose that there exists a
lass

3

= f4; 5; 8; 12g, indi
ating that the substrings

of length 3 beginning at positions 4; 5; 8; 12 of x are all equal. Then

3

would be

represented as follows:

CNext[4℄ = 5; CNext[5℄ = 8; CNext[8℄ = 12; CNext[12℄ = null;

CPrev[12℄ = 8; CPrev[8℄ = 5; CPrev[5℄ = 4; CPrev[4℄ = null;

CMember[4℄ = CMember[5℄ = CMember[8℄ = CMember[12℄ = 3;

CStart[3℄ = 4; CEnd[3℄ = 12; CSize[3℄ = 4:

We need to tra
k the empty
lasses, and for that we need a simple integer sta
k

of size N , CEmptySta
k, that holds the indexes of the empty (and hen
e available)

lasses. This sta
k, as well as all other list stru
tures used by Cro
hemore's algorithm,

is implemented as an array that requires MN bytes of storage. Su
h an approa
h

saves time by allowing all spa
e allo
ation to take pla
e only on
e, as part of program

initialization. We introdu
e two operations on the sta
k, CEmptySta
kPop() that

removes the top element from the sta
k and returns it, andCEmptySta
kPush(i)

that inserts the element i at the top of the sta
k.

We shall pro
ess
lasses from one re�nement level p to the next level p+1 by

moving the elements from one
lass to another, one element at a time. We view the

lasses as permanent
ontainers and distribute the elements among them, so that at

any given moment we need at most N
lasses. This means that the
on�guration

of
lasses at level p is destroyed the moment we move a single element. But, as we

shall see, we do not really need to keep the old level inta
t if we preserve an essential

\snapshot" of it before we start tinkering with it.

What we need to know about level p will be preserved in two queues, SElQueue

and SCQueue. SElQueue
ontains all the elements in small
lasses in level p, organized

so that the elements from the same small
lass are grouped together in the queue and

stored in as
ending order. SCQueue
ontains the �rst element from ea
h small
lass,

thus enabling us to identify in SElQueue the start of ea
h new
lass. Therefore, when

these queues are
reated, we must be
areful to pro
ess the small
lasses of level p in

the same order for both of them. For instan
e, if level p had three small
lasses,

3

= f2; 4; 5; 8g;

0

= f3; 6; 7; 11g;

5

= f12; 15g;

SElQueue
ould
ontain 2; 4; 5; 8; 3; 6; 7; 11; 12; 15 in that order, while the
orrespond-

ing SCQueue would
ontain 2; 3; 12. The order of the
lasses (

3

followed by

0

followed

by

5

) is not important; what is important that the same order is used in order to

reate SElQueue and SCQueue. After the two queues have been
reated, we do not

need level p any more and we
an start modifying it. Of
ourse we suppose that we

have available the usual queue operations:

39

Pro
eedings of the Prague Stringology Conferen
e '02

� SElQueueHead() (remove the �rst element from the queue and return it);

� SElQueueInsert(i) (insert the element i at the end of the queue);

� SElQueueInit() (initialize the queue to empty).

Analogous operations are available also for SCQueue.

When re�ning
lass

k

in level p using an element i from
lass

k

0

, we might need

to move element i�1 from

k

to a new or an existing
lass. To manage this pro
essing,

we keep an auxiliary array of size N , Refine[1..N℄. Initially, when we start using the

lass

k

0

for re�nement, all entries in Refine[℄ are null. If a new
lass

h

is
reated

in level p+1 by moving i�1 out of
lass

k

and into

h

as its �rst element, we set

Refine[k℄ h. If later on we move another element from

k

as a result of re�nement

by the same
lass

k

0

, we use the value Refine[k℄ to tell us where to move it to. This

requires that when we start re�ning by a new
lass, we have to restore Refine[℄ to

its original null state. Sin
e we
annot a�ord to traverse the whole array Refine[℄

without destroying the O(N logN) time
omplexity, we need to store a re
ord of

whi
h positions in Refine[℄ were previously given a non-null value. For this we

make use of a simple sta
k, RefSta
k: every assignment to Refine[k℄
auses the

index k to be pushed onto the sta
k RefSta
k. As before, we assume that we have

available the usual sta
k operations RefSta
kPop() and RefSta
kPush(i).

Sin
e after
ompleting the re�nement of the
lasses in level p, we must determine

the small
lasses in level p+1, we therefore need to maintain throughout the re�nement

pro
ess
ertain families of
lasses (to be more pre
ise, families of
lass indexes). As

noted above, a family
onsists of the
lasses in level p + 1 that were formed by

re�nement of the same
lass in level p. A family may or may not in
lude the original

lass from level p itself (it may
ompletely disappear if we remove all its elements

during the re�nement). We need an eÆ
ient way to insert a new
lass in a family

(the order is not important), an eÆ
ient way to delete a
lass from a family, and

�nally an eÆ
ient way to determine to what family (if any) a
lass belongs. These

fa
ilities
an be made available by representing the families as doubly-linked lists

implemented using arrays, just as we did previously with the
lasses themselves. In

this
ase, however, the Size[℄ and End[℄ arrays are not required, so we
an get

by with only four arrays, as follows:

� FNext[1..N℄ emulates the forward links (as in CNext[℄).

� FPrev[1..N℄ emulates the ba
kward links (as in CPrev[℄).

� FMember[1..N℄ keeps tra
k of membership (as in CMember[℄). Whenever

FMember[i℄ = null, it means that

i

is not a member of any family.

� FStart[1..N℄ gives the �rst
lass in ea
h family (as in CStart[℄).

Note that
lasses in families do not need to be maintained in numeri
al order, as was

true earlier of positions in
lasses.

To summarize, in order to implement Cro
hemore's algorithm, it is suÆ
ient to

allo
ate 15 arrays, ea
h of whi
h provides storage spa
e for exa
tly N integers of

length M , thus altogether 15MN bytes of storage: CNext, CPrev, CMember, CStart,

CEnd, CSize, CEmptySta
k, SElQueue, SCQueue, RefSta
k, Refine, FStart, FNext,

FPrev, and FMember.

40

A Note on Cro
hemore's Repetitions Algorithm a Fast Spa
e-EÆ
ient Approa
h

3 Data Stru
tures for FSX10

As the �rst step in redu
ing the spa
e
omplexity further, we are going to eliminate

the CSize[℄ and CEnd[℄ arrays. For the very �rst element, say s, in a
lass,

CPrev[s℄= null, while for the very last element, say e, CNext[e℄= null. But we

have another way to dis
ern the beginning of the
lass (CStart[℄), so that CPrev[℄

be
omes super
uous. Thus we
an store CPrev[s℄ e, a dire
t link to the end of the

lass. This yields an eÆ
ient means to dis
ern the end of the
lass, and so we
an

store in CNext[e℄ the size of the
lass. Hen
e CPrev[CStart[j℄℄ takes on the role

of CEnd[j℄, while CNext[CPrev[CStart[j℄℄℄ takes on the role of CSize[j℄. This is

straightforward and the
ode need only be slightly modi�ed to a

ommodate it. All

we have to do is make sure that when inserting or deleting an element in or from a

lass, we update properly the end link and the size. When traversing a
lass, we have

to make sure that we properly re
ognize the end (we
annot rely on the null value

to stop us as in FSX15). We have in fa
t \virtualized" the memory for CEnd[℄ and

CSize[℄, and so redu
ed the spa
e
omplexity to 13MN .

When we take an element from SElQueue and use it for the purpose of re�nement,

at most one new
lass is
reated and thus at most one lo
ation of Refine[℄ is

updated. This simple observation allows RefSta
k and SElQueue to share the same

memory segment, as long as we make sure that RefSta
k grows from left to right,

while the queue is always right justi�ed in the memory segment. The
hanges in

the
ode required to a

ommodate this are not very great | all we have to do is to

determine before �lling SElQueue what position we have to start with. In essen
e,

we have \multiplexed" the same memory segment and brought the spa
e
omplexity

down to 12MN .

The number of elements in SCQueue is the same as the number of small
lasses,

whi
h is less than or equal to the number of non-empty
lasses; thus the size of

SCQueue plus the size of CEmptySta
k at any given moment is at most N . This simple

observation allows CEmptySta
k and SCQueue to share the same memory segment, as

long as we make sure that CEmptySta
k is growing from left to right, while the queue

is always right justi�ed in the memory segment. Again, as above, the
hanges in the

ode required to a

ommodate this are not major. We again have \multiplexed" the

same memory segment and brought the spa
e
omplexity down to 11MN .

The �nal memory saving
omes from the fa
t that FPrev[℄ for the very �rst

lass in a family and FNext[℄ for the very last
lass in the same family are set to

null and hen
e redundant for the same reasons as des
ribed above for CPrev[℄ and

CNext[℄. We
an thus \virtualize" the memory for the array Refine[℄. We will

have to index it in reverse and we will use all the unused slots in FStart[℄ (i.e. slots

with indexes > FStartTop) as well as the unne
essary FNext[℄ slots. The formula

is rather simple. Instead of storing r in Refine[i℄, we will use

SetRe�ne(i,r)

j N-(i+1)

if FStartTop = null OR j > FStartTop then

FStart[j℄ r

else

FNext[FPrev[FStart[j℄℄℄ r

end SetRe�ne

and instead of fet
hing a value from Refine[i℄ we will use

41

Pro
eedings of the Prague Stringology Conferen
e '02

integer GetRe�ne(i)

j N-(i+1)

if FStartTop = null OR j > FStartTop then

return FStart[j℄

else

return FNext[FPrev[FStart[j℄℄℄

end GetRe�ne

The modi�
ation of the
ode is more
omplex in this
ase, sin
e we have to tra
k the

ends of the family lists as we do for
lass lists; more importantly, when a new family

is
reated, we have to save the Refine[℄ value stored in that so-far-unused slot k

that now is going to be o

upied by the start link of the family list, and store k at

the end of the list instead. This \virtualization" of the memory for Refine[℄ brings

the spa
e
omplexity down to the �nal value of 10MN .

4 Informative Experimental Results

To estimate the e�e
t of our spa
e redu
tion on time requirement, we have imple-

mented two versions of Cro
hemore's algorithm:

� a na��ve array-based version, FSX20, that exe
utes Cro
hemore's algorithm using

20 arrays ea
h of length N words:

� a version of FSX10 that requires 10 arrays ea
h of length N words.

Thus both of these implementations are word-based: assuming a word-length of 32

bits, the value of M is a
tually �xed at 4.

We expe
t that FSX20 will exe
ute Cro
hemore's algorithm about as fast as it

an be exe
uted, but at the
ost of requiring exa
tly 20N words of storage. A version

that implemented standard list-pro
essing te
hniques rather than arrays to handle the

queues, sta
ks and lists required by Cro
hemore's algorithm would generally require

less storage: 11N words for arrays plus a variable amount up to 13N for the list

stru
tures. However, as a result of the time required for dynami
 spa
e allo
ation,

su
h a version would
ertainly run several times slower than FSX20.

We must remark at this point that the experiments performed have only an in-

formative value, for we
ondu
ted them without
ontrolling many aspe
ts depending

on the platform (as memory
a
hing, virtual memory system paging et
.), nor did we

perform a proper statisti
al evaluation to
ontrol for other fa
tors not depending on

the platform (load on the ma
hine, implementation biases et
.) Thus, we really do

not
laim any signi�
ant
on
lusions for the a
tual algorithms whose implementations

were tested.

We have run FSX20 and FSX10 against a variety of long strings (up to 3.8 million

bytes): long Fibona

i strings, �les from the Calgary
orpus, and others. The results

indi
ate that FSX10 seems to require 20-30% more time than FSX20, in most
ases

a small pri
e to pay for a 52% redu
tion in spa
e.

42

A Note on Cro
hemore's Repetitions Algorithm a Fast Spa
e-EÆ
ient Approa
h

Referen
es

[C01℄ Calgary Corpus

http://links.uwaterloo.
a/
algary.
orpus.html

[C81℄ Maxime Cro
hemore, An optimal algorithm for
omputing the rep-

etitions in a word, IPL 12-5 (1981) 244-250.

[MM93℄ Udi Manber & Gene W. Myers, SuÆx arrays: a new method for

on-line string sear
hes, SIAM J. Comput. 22-5 (1993) 935-948.

[U92℄ Esko Ukkonen, Constru
ting suÆx trees on-line in linear time,

Pro
. IFIP 92, vol. I (1992) 484-492.

43

A Bit-Ve
tor Algorithm for Computing

Levenshtein and Damerau Edit Distan
es

1

Heikki Hyyr�o

Department of Computer and Information S
ien
es

33014 University of Tampere

Finland

e-mail: Heikki.Hyyro�uta.fi

Abstra
t. The edit distan
e between strings A and B is de�ned as the min-

imum number of edit operations needed in
onverting A into B or vi
e versa.

The Levenshtein edit distan
e allows three types of operations: an insertion,

a deletion or a substitution of a
hara
ter. The Damerau edit distan
e allows

the previous three plus in addition a transposition between two adja
ent
hara
-

ters. To our best knowledge the best
urrent pra
ti
al algorithms for
omputing

these edit distan
es run in time O(dm) and O(�+ dm=wen), where d is the edit

distan
e between the two strings, m and n are their lengths (m � n), w is the

omputer word size and � is the size of the alphabet. In this paper we present an

algorithm that runs in time O(� + dd=wem). The stru
ture of the algorithm is

su
h, that in pra
ti
e it is mostly suitable for testing whether the edit distan
e

between two strings is within some pre-determined error threshold. We also

present some initial test results with thresholded edit distan
e
omputation. In

them our algorithm works faster than the original algorithm of Myers.

Key words: Levenshtein edit distan
e, Damerau edit distan
e, bit-parallelism,

approximate string mat
hing

1 Introdu
tion

The desire to measure the similarity between two strings may arise in many appli-

ations, like for example
omputational biology and spelling
orre
tion. A
ommon

way to a
hieve this is to
ompute the edit distan
e between the strings. Throughout

the paper we will assume that A is a string of length m and B is a string of length n,

and that m � n. The edit distan
e ed(A;B) between strings A and B is de�ned as

the minimum number of edit operations needed in
onverting A into B or vi
e versa.

In this paper we
on
entrate on two typi
al edit distan
es: the Levenshtein edit dis-

tan
e [Lev66℄ and the Damerau edit distan
e [Dam64℄. The Levenshtein edit distan
e

allows three edit operations, whi
h are inserting, deleting or substituting a
hara
ter

(Figures 1a, 1b and 1
). In addition to these three, the Damerau edit distan
e al-

lows also transposing two permanently adja
ent
hara
ters (Figure 1d). When edit

1

This work was supported by the A
ademy of Finland and Tampere Graduate S
hool in Infor-

mation S
ien
e and Engineering

44

A Bit-Ve
tor Algorithm for Computing Levenshtein and Damerau Edit Distan
es

distan
e is used, strings A and B are deemed similar i� their edit distan
e is small

enough, that is i� ed(A;B) � k, where k is some pre-determined error threshold. A

related problem is that of approximate string mat
hing, whi
h is typi
ally de�ned as

follows: let pat be a string of length m and text a (mu
h longer) string of length n.

The task of approximate string mat
hing is then to �nd all su
h indi
es j, for whi
h

exists su
h h � 0 that ed(pat; text[j � h::j℄) � k.

The oldest, but most
exible in terms of permitting di�erent edit operations

and/or edit operation
osts, algorithms for
omputing edit distan
e (for example

[WF74℄) are based on dynami
 programming and run in time O(mn). Ukkonen

[Ukk85a℄ has later proposed two O(dm) methods, and Myers [Mye86℄ an O(n + d

2

)

method. The latter is based on using a suÆx tree and is not viewed as being pra
ti-

al (e.g. [Ste94℄). With fairly little modi�
ations these methods
an also be used in

omputing the Damerau edit distan
e without a�e
ting the asymptoti
 run times.

The methodology of using so-
alled \bit-parallelism" in developing fast and pra
-

ti
al algorithms has re
ently be
ome popular in the �eld of string mat
hing. Wu and

Manber [WM92℄ presented an O(ddm=wen) bit-parallel algorithm for Levenshtein edit

distan
e -based approximate string mat
hing, and in [Nav01℄ it was modi�ed to
om-

pute both Levenshtein and Damerau edit distan
e. The run time remained the same.

Then Baeza-Yates and Navarro presented a method, whi
h enables an O(ddm=wen)

algorithm for the Levenshtein edit distan
e. Currently this algorithm has not been

extended for the Damerau edit distan
e. Finally Myers [Mye99℄ has presented an

O(dm=wen) algorithm for approximate string mat
hing under the Levenshtein edit

distan
e. In [Hyy01℄ the algorithm was extended for
omputing the Damerau edit

distan
e.

In this paper we will present an initial study on
ombining one of the O(dm)

edit distan
e algorithms of Ukkonen [Ukk85a℄ with the bit-parallel algorithm of My-

ers [Mye99℄ to obtain a faster algorithm. We begin by reviewing these underlying

algorithms in the next se
tion.

2 Preliminaries

In the following dis
ussion let A be a string of length m and B a string of length

n. We also use the notation A[u℄ to denote the uth
hara
ter of A and the notation

A[u::v℄ to denote the substring of A, whi
h begins from its uth
hara
ter and ends

at its vth
hara
ter. The supers
ript R denotes the reverse string: for example if A

= \ABC", then A

R

= \CBA". For bit operations we use the following notation: '&'

denotes bitwise\and", 'j' denotes bitwise \or", '^' denotes bitwise \xor", '�' denotes

bit
omplementation, and '<<' and '>>' denote shifting the bit-ve
tor left and right,

respe
tively, using zero �lling in both dire
tions. We refer to the ith bit of the bit

ve
tor V as V [i℄. Bit-positions are assumed to grow from right to left, and we use

supers
ript to denote bit-repetition. As en example let V = 1001110 be a bit ve
tor.

Then V [1℄ = V [5℄ = V [6℄ = 0, V [2℄ = V [3℄ = V [4℄ = V [7℄ = 1, and we
ould also

write V = 10

2

1

3

0.

45

Pro
eedings of the Prague Stringology Conferen
e '02

A B C A B C A B C A B C

A B D C A C A D C A C B

a) b) c) d)

Figure 1: Four di�erent edit operations. Figure a) shows inserting
hara
ter 'D'

between the last two
hara
ters of the string \ABC", whi
h results in the string

\ABCD". Figure b) shows deleting the
hara
ter \B", whi
h results in the string

\AC". Figure
) shows substituting the
hara
ter 'B' with the
hara
ter 'D', whi
h

results in the string \ADC". Figure d) shows transposing the
hara
ters 'B' and

'C', whi
h results in the string \ACB". Transposition is allowed only between su
h

hara
ters that were adja
ent already in the original string.

2.1 Dynami
 programming

Computing edit distan
e is a problem that seems to be most naturally solved with

dynami
 programming. The value ed(A;B)
an be
omputed by �lling an (m+ 1)�

(n + 1) dynami
 programming matrix D, in whi
h the
ell D[i; j℄
ontains the value

ed(A[1::i℄; B[1::j℄). The following well-known Re
urren
e 1 gives the rule for �lling

D when the Levenshtein edit distan
e is used.

Re
urren
e 1

D[i; 0℄ = i; D[0; j℄ = j:

D[i; j℄ =

�

D[i� 1; j � 1℄, if A[i℄ = B[j℄:

1 + min(D[i� 1; j � 1℄; D[i� 1; j℄; D[i; j � 1℄), if A[i℄ 6= B[j℄:

The re
urren
e allows the
ells with i > 0 and j > 0 to be �lled in any su
h order,

that the
ell values D[i�1; j℄, D[i�1; j�1℄ and D[i; j�1℄ are known at the time the

ell D[i; j℄ is �lled. A
ommon way is to use
olumn-wise �lling, where ea
h
olumn

is �lled from top to bottom (Figure 2). The Damerau edit distan
e
an be
omputed

otherwise identi
ally as the Levenshtein edit distan
e, but using Re
urren
e 2 [Hyy01℄

instead in �lling the dynami
 programming matrix.

Re
urren
e 2

D[i; 0℄ = i; D[0; j℄ = j:

D[i; j℄ =

8

>

>

<

>

>

:

D[i� 1; j � 1℄, if A[i℄ = B[j℄:

D[i� 1; j � 1℄, if A[i� 1::i℄ = B

R

[j � 1::j℄

and D[i� 1; j � 1℄ > D[i� 2; j � 2℄:

1 + min(D[i� 1; j � 1℄; D[i� 1; j℄; D[i; j � 1℄), otherwise:

As the basi
 dynami
 programming s
heme �lls (m + 1)(n + 1)
ells and �lling ea
h

ell takes a
onstant number of operations, the algorithm has a run time O(nm).

The following two properties hold in the dynami
 programming matrix [Ukk85a,

Ukk85b℄:

-The diagonal property:
D[i; j℄�D[i� 1; j � 1℄ = 0 or 1:

-The adja
en
y property: D[i; j℄�D[i; j � 1℄ = �1; 0; or 1, and

D[i; j℄D[i� 1; j℄ = �1; 0; or 1:

Even though these rules were initially presented with the Levenshtein edit distan
e,

they
an easily be seen to apply also with the Damerau edit distan
e.

46

A Bit-Ve
tor Algorithm for Computing Levenshtein and Damerau Edit Distan
es

T C T T G A A G G T C A

0 1 2 3 4 5 6 7 8 9 10 11 12

A 1

T 2

C 3

A 4

G 5

C 6

C 7

T 8

Figure 2: An example of the
olumn-wise �lling order for the dynami
 programming

table of strings \ATCAGCCT" and \TCTTGAAGGTCA".

2.2 Using bit-parallelism

Myers [Mye99℄ presented an O(dm=wen) algorithm for approximate string mat
hing

under the Levenshtein edit distan
e. Later in [Hyy01℄ the algorithm was slightly mod-

i�ed and extended for the Damerau edit distan
e. Originally these algorithms were

designed for approximate string mat
hing, but they
an easily be modi�ed to
ompute

edit distan
e. The algorithms pro
ess the jth
olumn of the dynami
 programming

matrix in O(dm=we) time by using bit-parallelism. This is done by using delta en-

oding in the matrix: instead of expli
itly
omputing the values D[i; j℄ for i = 1::m

and j = 1::n, the following length-m binary valued delta ve
tors are
omputed for

j = 1::n:

-The verti
al positive delta ve
tor: V P

j

[i℄ = 1 i� D[i; j℄�D[i� 1; j℄ = 1:

-The verti
al negative delta ve
tor: V N

j

[i℄ = 1 i� D[i; j℄�D[i� 1; j℄ = �1:

-The horizontal positive delta ve
tor: HP

j

[i℄ = 1 i� D[i; j℄�D[i; j � 1℄ = 1:

-The horizontal negative delta ve
tor: HN

j

[i℄ = 1 i� D[i; j℄�D[i; j � 1℄ = �1:

When the values for these delta ve
tors are known for the (j � 1)th
olumn, they

an be
omputed for the jth
olumn in an eÆ
ient manner when the following mat
h

ve
tor is available for ea
h
hara
ter �.

-The mat
h ve
tor PM

�

: PM

�

[i℄ = 1 i� A[i℄ = �:

For simpli
ity we use the notion PM

j

= PM

B[j℄

for the rest of the paper. It is

straightforward to
ompute the pattern mat
h ve
tors in O(� + m) time. In the

following we assume that these ve
tors have already been
omputed and are readily

available.

The delta ve
tors enable the value ed(A;B[1::j℄) to be expli
itly
al
ulated for

j = 1; 2; : : : ; n: ed(A;B[1::j℄) = ed(A;B[1::j�1℄)+1 i� HP

j

[m℄ = 1, ed(A;B[1::j℄) =

ed(A;B[1::j�1℄)�1 i�HN

j

[m℄ = 1, and ed(A;B[1::j℄) = ed(A;B[1::j�1℄) otherwise.

Thus after all n
olumns are pro
essed, the value ed(A;B[1::n℄) = ed(A;B) is known.

Figures 3 and 4 show the algorithms based on [Hyy01℄ for
omputing the jth
olumn

when m � w, that is, when ea
h ve
tor
an be represented by a single bit-ve
tor.

Both algorithms are modi�ed to
ompute edit distan
e. The algorithm in Figure 3 is

for the Levenshtein edit distan
e, and the algorithm in Figure 4 is for the Damerau

edit distan
e. Both algorithms involve a
onstant number of operations, and thus

47

Pro
eedings of the Prague Stringology Conferen
e '02

ompute the delta ve
tors for the jth
olumn in O(1) time. In this paper we do not

separately dis
uss the
ase m > w. As ea
h required operation for a length-m bit

ve
tor
an be simulated in O(dm=we) time using dm=we length-w bit ve
tors, the

general runtime of the algorithms is O(dm=we) for ea
h
olumn. This results in a

total time of O(dm=wen) over all n
olumns in
omputing ed(A;B).

Computing the jth
olumn (Levenshtein distan
e)

1. D0

j

 (((PM

j

& V P

j�1

) + V P

j�1

) ^ V P

j�1

) j PM

j

j V N

j�1

2. HP

j

 V N

j�1

j � (D0

j

j V P

j�1

)

3. HN

j

 D0

j

& V P

j�1

4. If HP

j

& 10

m�1

6= 0 Then D[m; j℄ D[m; j℄ + 1

5. If HN

j

& 10

m�1

6= 0 Then D[m; j℄ D[m; j℄� 1

6. V P

j

 (HN

j

<< 1) j � (D0

j

j (HP

j

<< 1)) j 1

7. V N D0

j

& (HP

j

<< 1)

Figure 3: Computation of the jth
olumn using a modi�
ation of the D0

j

-based

version of the algorithm of Myers (for the
ase m � w).

Computing the jth
olumn (Damerau distan
e)

1. D0

j

 (((� D0

j�1

) & PM

j

) << 1) & PM

j�1

2. D0

j

 D0

j

j (((PM

j

& V P

j�1

) + V P

j�1

) ^ V P

j�1

) j PM

j

j V N

j�1

3. HP

j

 V N

j�1

j � (D0

j

j V P

j�1

)

4. HN

j

 D0

j

& V P

j�1

5. If HP

j

& 10

m�1

6= 0 Then D[m; j℄ D[m; j℄ + 1

6. If HN

j

& 10

m�1

6= 0 Then D[m; j℄ D[m; j℄ � 1

7. V P

j

 (HN

j

<< 1) j � (D0

j

j (HP

j

<< 1)) j 1

8. V N D0

j

& (HP

j

<< 1)

Figure 4: Computation of the jth
olumn using a modi�
ation of the D0

j

-based

version of the algorithm of Myers with transposition (for the
ase m � w).

2.3 Filling only a ne
essary portion of the matrix

Ukkonen [Ukk85a℄ presented a method to try to
ut down the area of the dynami

programming matrix that is �lled. By a q-diagonal we refer to the diagonal, whi
h

onsists of the
ells D[i; j℄ for whi
h j � i = q. From the diagonal and adja
en
y

properties Ukkonen
on
luded that if ed(A;B) � t and m � n, then it is suÆ
ient to

�ll only the
ells in the diagonals �b(t� n+m)=2
;�b(t� n+m)=2
+ 1; : : : ; b(t+

n � m)=2
 of the dynami
 programming matrix. All the other
ell values
an be

assumed to have an in�nite value without a�e
ting
orre
t
omputation of the value

D[m;n℄ = ed(A;B). He used this rule by beginning with t = (n�m) + 1 and �lling

48

A Bit-Ve
tor Algorithm for Computing Levenshtein and Damerau Edit Distan
es

the above-mentioned diagonal interval of the dynami
 programming matrix. If the

result is D[m;n℄ > t, t is doubled. Eventually D[m;n℄ � t, and in this
ase it is

known that D[m;n℄ = ed(A;B). The run time of this pro
edure is dominated by the

omputation involving the last value of t. As this value is < 2 � ed(A;B) and with

ea
h value of t the
omputation takes O(t�min(m;n)) time, the overall run time is

O(ed(A;B)�min(m;n)).

In addition Ukkonen proposed a dynami
 "
uto�" method to improve the pra
ti
al

performan
e of the diagonal restri
tion method. Assume that
olumn-wise order is

used in �lling the
ells D[i; j℄ inside the required diagonals �b(t� n+m)=2
;�b(t�

n+m)=2
+ 1; : : : ; b(t+ n�m)=2
. Let r

u

hold the diagonal number of the upmost

and r

l

the diagonal number of the lowest
ell that was deemed to have to be �lled in

the jth
olumn. Then due to the diagonal property we
an try to shrink the diagonal

region by de
rementing r

u

as long as D[r

u

; j℄ > t and in
rementing r

l

as long as

D[r

l

; j℄ > t. Then at the (j+1)th
olumn it is enough to �ll the
ells in the diagonals

r

l

: : : r

u

. If r

l

> r

u

the diagonal region vanishes and it is known that ed(A;B) > t.

This method of "guessing" a starting limit t for the edit distan
e and then doubling

it if ne
essary is not really pra
ti
al for a
tual edit distan
e
omputation. Even

though the asymptoti
 run time is good, it involves large
onstant fa
tor whenever

ed(A;B) is large. But the method works well in pra
ti
e in thresholded edit distan
e

omputation, as then one
an immediately set t = k and only a single pass is needed.

3 Our Method

In this se
tion we present a bit-parallel version of the diagonal restri
tion s
heme of

Ukkonen, whi
h was brie
y dis
ussed in Se
tion 2. In the following we
on
entrate

on the
ase where the
omputer word size w is large enough to
over the required

diagonal region. Let l

v

denote the length of the delta ve
tors. Then our assumption

means that w � l

v

= min(m; b(t � n +m)=2
 + b(t + n �m)=2
 + 1). Note that in

this
ase ea
h of the pattern mat
h ve
tors PM

�

may have to be en
oded with more

than one bit ve
tor: If m > w, then PM

�

onsists of dm=we bit ve
tors.

3.1 Diagonal tiling

The basi
 idea is to mimi
 the diagonal restri
tion method of Ukkonen by tiling the

verti
al delta ve
tors diagonally instead of horizontally (Figure 5a). We a
hieve this

by modifying slightly the way the verti
al delta ve
tors V P

j

and V N

j

are used: Before

pro
essing the jth
olumn the verti
al ve
tors V P

j�1

and V N

j�1

are shifted one step

up (to the right in terms of the bit ve
tor) (Figure 5b). When the verti
al ve
tors are

shifted up, their new lowest bit-values V P

j

[l

v

℄ and V N

j

[l

v

℄ are not expli
itly known.

This turns out not to be a problem. From the diagonal and adja
en
y properties we

an see that the only situation whi
h
ould be troublesome is if we would in
orre
tly

have a value V N

j

[l

v

℄ = 1. This is impossible, be
ause it
an happen only if D0

j

has

an \extra" set bit at position l

v

+1 and HP

j

[l

v

℄ = 1, and these two
onditions
annot

simultaneously be true.

In addition to the obvious way of �rst
omputing V P

j

and V N

j

in normal fashion

and then shifting them up (to the right) when pro
essing the (j + 1)th
olumn, we

propose also a se
ond option. It
an be seen that essentially the same shifting e�e
t

49

Pro
eedings of the Prague Stringology Conferen
e '02

a) b) c)

j -1 j j -1 j j -1 j

Figure 5: a) Horizontal tiling (left) and diagonal tiling (right). b) The �gure shows

how the diagonal step aligns the (j � 1)th
olumn ve
tor one step above the jth

olumn ve
tor.
) The digure depi
ts in gray the region of diagonals, whi
h are �lled

a

ording to Ukkonen's rule. The
ells on the lower boundary are in darker tone.

an be a
hieved already when the ve
tors V P

j

and V N

j

are
omputed by making the

following
hanges on the last two lines of the algorithms in Figures 3 and 4:

-The diagonal zero delta ve
tor D0

j

is shifted one step to the right on the

se
ond last line.

-The left shifts of the horizontal delta ve
tors are removed.

-The OR-operation of V P

j

with 1 is removed.

This se
ond alternative uses less bit operations, but the
hoi
e between the two may

depend on other pra
ti
al issues. For example if several bit ve
tors have to be used

in en
oding D0

j

, the
olumn-wise top-to-bottom order may make it more diÆ
ult to

shift D0

j

up than shifting both V P

j

and V N

j

down.

We also modify the way some
ell values are expli
itly maintained. We
hoose

to
al
ulate the values along the lower boundary of the �lled area of the dynami

programming matrix (Figure 5
). For two diagonally
onse
utive
ells D[i� 1; j � 1℄

and D[i; j℄ along the diagonal part of the boundary this means setting D[i; j℄ =

D[i�1; j�1℄ if D0

j

[l

v

℄ = 1, and D[i; j℄ = D[i�1; j�1℄+1 otherwise. The horizontal

part of the boundary is handled in similar fashion as in the original algorithm of Myers:

For horizontally
onse
utive
ells D[i; j � 1℄ and D[i; j℄ along the horizontal part of

the boundary we set D[i; j℄ = D[i; j � 1℄ + 1 if HP

j

[l

v

℄ = 1; D[i; j℄ = D[i; j � 1℄� 1

if HN

j

[l

v

℄ = 1, and D[i; j℄ = D[i; j � 1℄ otherwise. Here we assume that the ve
tor

length l

v

is appropriately de
remented as the diagonally shifted ve
tors would start

to protrude below the lower boundary.

Another ne
essary modi�
ation is in the way the pattern mat
h ve
tor PM

j

is

used. Sin
e we are gradually moving the delta ve
tors down, the mat
h ve
tor has to

be aligned
orre
tly. This is easily a
hieved in O(1) time by shifting and OR-ing the

orresponding at most two mat
h ve
tors.

The last ne
essary modi�
ations
on
ern the �rst line of the algorithm for the

Damerau edit distan
e in Figure 4. First of all the diagonal delta ve
tor D0

j

is

shifted down (left), whi
h is not ne
essary when the ve
tors are tiled diagonally.

Be
ause of similar reason the ve
tor PM

j�1

has to be shifted one step up (to the

right). This means that also the value PM

j�1

[l

v

+ 1℄ will have to be present in the

mat
h ve
tor PM

j�1

. We do not deal with this separately, but assume for now on

that l

v

+1 � w when dealing with the Damerau edit distan
e. Another option would

be to set the last bit separately, whi
h
an be done in O(1) time.

Figures 6 and 7 show the algorithms for
omputing the ve
tors at the jth
olumn

50

A Bit-Ve
tor Algorithm for Computing Levenshtein and Damerau Edit Distan
es

when diagonal tiling is used. We do not show separate versions for the di�erent
ases

of updating the
ell value at the lower boundary. It is done using one of the previously

mentioned ways of using D0

j

(diagonal stage) or HP

j

and HN

j

(horizontal stage).

When l

v

� w, ea
h
olumn of the dynami
 programming matrix is
omputed in

O(1) time, whi
h results in the total time being O(� + n) in
luding also time for

prepro
essing the pattern mat
h ve
tors. In the general
ase, in whi
h l

v

> w, ea
h

length-l

v

ve
tor
an be simulated by using dl

v

=we length-w ve
tors. This
an be done

in O(dl

v

=we) time per operation, and therefore the algorithm has in general a run

time O(�+ dl

v

=wen), whi
h is O(�+ ed(A;B)�n) as l

v

= O(ed(A;B)). The slightly

more favourable time
omplexity of O(� + ed(A;B)�m) in the general
ase
an be

a
hieved by simply reversing the roles of the strings A and B: We still have that

l

v

= O(ed(A;B)), but now there is m
olumns instead of n. In this
ase the
ost of

prepro
essing the mat
h ve
tors is O(� + n), but the above
omplexities hold sin
e

n = O(ed(A;B)�m) when n > m.

Computing the jth
olumn in diagonal tiling (Levenshtein distan
e)

1. Build the
orre
t mat
h ve
tor into PM

j

2. D0

j

 (((PM

j

& V P

j�1

) + V P

j�1

) ^ V P

j�1

) j PM

j

j V N

j�1

3. HP

j

 V N

j�1

j � (D0

j

j V P

j�1

)

4. HN

j

 D0

j

& V P

j�1

5. Update the appropriate
ell value at the lower boundary.

6. V P

j

 HN

j

j � ((D0

j

>> 1) j HP

j

)

7. V N (D0

j

>> 1) & HP

j

Figure 6: Computation of the jth
olumn with the Levenshtein edit distan
e and

diagonal tiling (for the
ase l

v

� w).

Computing the jth
olumn in diagonal tiling (Damerau distan
e)

1. Build the
orre
t mat
h ve
tor into PM

j

2. D0

j

 (� D0

j�1

) & (PM

j

<< 1) & (PM

j�1

>> 1)

3. D0

j

 D0

j

j (((PM

j

& V P

j�1

) + V P

j�1

) ^ V P

j�1

) j PM

j

j V N

j�1

4. HP

j

 V N

j�1

j � (D0

j

j V P

j�1

)

5. HN

j

 D0

j

& V P

j�1

6. Update the appropriate
ell value at the lower boundary.

7. V P

j

 HN

j

j � ((D0

j

>> 1) j HP

j

)

8. V N (D0

j

>> 1) & HP

j

Figure 7: Computation of the jth
olumn with the Damerau edit distan
e and diag-

onal tiling (for the
ase l

v

� w).

51

Pro
eedings of the Prague Stringology Conferen
e '02

4 Test Results

In this se
tion we present initial test results for our algorithm in the
ase of
omputing

the Levenshtein edit distan
e. We
on
entrate only on the
ase where one wants to

he
k whether the edit distan
e between two strings A and B is below some pre-

determined error-threshold k. This is be
ause the prin
iple of the algorithm makes it

in pra
ti
e most suitable for this type of use. Therefore all tested algorithms used a

s
heme similar to the
uto� method brie
y dis
ussed in the end of Se
tion 2.3. As a

baseline we also show the runtime of using the O(dm=wen) bit-parallel algorithm of

Myers.

The test
onsisted of repeatedly sele
ting two substrings in pseudo-random fashion

from the DNA-sequen
e of the baker's yeast, and then testing whether their Leven-

shtein edit distan
e is at most k. The
omputer used in the tests was a 600Mhz

Pentium 3 with 256MB RAM and running Mi
rosoft Windows 2000. The
ode was

programmed in C and
ompiled with Mi
rosoft Visual C++ 6.0 with full optimization.

The tested algorithms were:

MYERS: The algorithm of Myers [Mye99℄ (Se
tion 2.2) modi�ed to
ompute edit

distan
e. The run time of the algorithm does not depend on the number of

errors allowed. The underlying implementation is from the original author.

MYERS(
uto�): The algorithm of Myers using
uto� modi�ed to
ompute edit

distan
e. The underlying implementation (in
luding the
uto�-me
hanism) is

from the original author.

UKKA(
uto�): The method of Ukkonen based on �lling only a restri
ted region

of diagonals in the dynami
 programming matrix and using the
uto� method

(Se
tion 2.3).

UKKB(
uto�): . The method of Ukkonen [Ukk85a℄ based on
omputing the values

in the dynami
 programming matrix in in
reasing order. That is, the method

�rst �lls in the
ells that get a value 0, then the
ells that get a value 1, and so

on until the
ell D[m;n℄ gets a value.

OURS(
uto�): Our method of
ombining the diagonal restri
tion s
heme of Ukko-

nen with the bit-parallel algorithm of Myers (Se
tion 3). We implemented a

similar
uto� method as was used by Hyyr�o and Navarro with edit distan
e

omputation in their version of the ABNDM algorithm [HN02℄.

The results ase shown in Figure 8. We tested sequen
e pairs with lengths 100,

1000 and 10000, and error thresholds of 10%, 20% and 50% of the sequen
e length

(for example k = 100, 200 and 500 for the sequen
e length m = n = 1000). It
an

be seen that in the
ase of k = 10 and m = 100 UKKB(
uto�) is the fastest, but in

all other tested
ases our method be
omes the fastest, being 8%-38% faster than the

original
uto� method of Myers that is modi�ed to
ompute edit distan
e. The good

performan
e of UKKB(
uto�) with a low value of k is not surprising as its expe
ted

run time has been shown to be O(m+ k

2

). [Mye86℄.

52

A Bit-Ve
tor Algorithm for Computing Levenshtein and Damerau Edit Distan
es

m = n = 100 m = n = 1000 m = n = 10000

error limit (%) 10 20 50 10 20 50 10 20 50

UKKA(
uto�) 1,92 5,93 32,6 13,5 52,7 322 13,1 54,9 351

UKKB(
uto�) 1,23 3,02 14,9 6,17 22,9 139 5,57 22,4 146

MYERS(
uto�) 2,46 3,23 4,07 2,47 4,48 15,9 0,71 2,35 13,4

OURS(
uto�) 2,27 2,47 3,32 1,96 3,08 10,5 0,48 1,47 9,03

MYERS 4,24 17,0 14,5

Figure 8: The results (in se
onds) for thresholded edit distan
e
omputation between

pairs of randomly
hosen DNA-sequen
es from the genome of the baker's yeast. The

error threshold is shown as the per
entage of the pattern length (tested pattern pairs

had equal length). The number of pro
essed sequen
e pairs was 100000 for m = n =

100, 10000 for m = n = 1000, and 100 for m = n = 10000.

Con
lusions and further
onsiderations

In this paper we dis
ussed how bit-parallelism and a diagonal restri
tion s
heme

an be
ombined to a
hieve an algorithm for
omputing edit distan
e, whi
h has an

asymtoti
 run time of O(� + dd=wem). In pra
ti
e the algorithm is mostly suitable

for
he
king whether ed(A;B) � k, where k is a pre-determined error threshold.

In this task the initial tests showed our algorithm to be
ompetitive against other

tested algorithms [Ukk85a, Mye99℄, whi
h have run times O(dm) and O(�+mn=w),

respe
tively.

During the preparation of this arti
le we noti
ed that there seems to be a la
k of

omprehensive experimental
omparison of the relative performan
e between di�erent

algorithms for
omputing edit distan
e. Thus we are planning to �ll this gap in the

near future by
omposing a fairly
omprehensive survey on algorithms for
omput-

ing edit distan
e. The survey will also in
lude a more
omprehensive test with our

algorithm.

We would also like to point out that the algorithm pseudo
odes we have shown

have not been optimized to remain more
lear. Pra
ti
al implementations
ould for

example avoid shifting the same variable twi
e and maintain only the needed delta

ve
tor values in the memory (the delta ve
tors in the jth
olumn are only needed

when pro
essing the (j + 1)th
olumn).

Referen
es

[Dam64℄ F. Damerau. A te
hnique for
omputer dete
tion and
orre
tion of spelling

errors. Comm. of the ACM, 7(3):171{176, 1964.

[HN02℄ H. Hyyr�o and G. Navarro. Faster bit-parallel approximate string mat
hing.

In Pro
. 13th Combinatorial Pattern Mat
hing (CPM'2002), LNCS 2373,

pages 203{224, 2002.

[Hyy01℄ H. Hyyr�o. Explaining and extending the bit-parallel algorithm of Myers.

Te
hni
al Report A-2001-10, University of Tampere, Finland, 2001.

53

Pro
eedings of the Prague Stringology Conferen
e '02

[Lev66℄ V. Levenshtein. Binary
odes
apable of
orre
ting deletions, insertions and

reversals. Soviet Physi
s Doklady, 10(8):707{710, 1966. Original in Russian

in Doklady Akademii Nauk SSSR, 163(4):845{848, 1965.

[Mye86℄ G. Myers. An O(ND) di�eren
e algorithm and its variations. Algorithmi
a,

1:251{266, 1986.

[Mye99℄ G. Myers. A fast bit-ve
tor algorithm for approximate string mat
hing

based on dynami
 progamming. Journal of the ACM, 46(3):395{415, 1999.

[Nav01℄ G. Navarro. NR-grep: a fast and
exible pattern mat
hing tool. Software

Pra
ti
e and Experien
e (SPE), 31:1265{1312, 2001.

[Ste94℄ G. A. Stephen. String Sear
hing Algorithms. World S
ienti�
, 1994.

[Ukk85a℄ E. Ukkonen. Algorithms for approximate string mat
hing. Information and

Control, 64:100{118, 1985.

[Ukk85b℄ E. Ukkonen. Finding approximate patterns in strings. Journal of Algo-

rithms, 6:132{137, 1985.

[WF74℄ R. Wagner and M. Fisher. The string to string
orre
tion problem. Journal

of the ACM, 21:168{178, 1974.

[WM92℄ S. Wu and U. Manber. Fast text sear
hing allowing errors. Comm. of the

ACM, 35(10):83{91, 1992.

54

String Mat
hing with Gaps for Musi
al Melodi

Re
ognition

Costas S. Iliopoulos

y

and Masahiro Kurokawa

z

y

Algorithm Design Group, Dept of Computer S
ien
e,

King's College London, Strand, England, and

S
hool of Computing, Curtin University of Te
hnology,

Perth, Australia

z

Algorithm Design Group, Dept of Computer S
ien
e,

King's College London, Strand, England

e-mail:
si�d
s.k
l.a
.uk, kurokawa�d
s.k
l.a
.uk

Abstra
t. Here, we have designed and implemented algorithms for string

mat
hing with gaps for musi
al melodi
 re
ognition on polyphoni
 musi
 using

bit-wise operations. Musi
 analysts are often
on
erned with �nding o

urren
es

of patterns (motifs), or repetitions of the same pattern, possibly with variations,

in a s
ore. An important example of
exibility required in s
ore sear
hing arises

from the nature of polyphoni
 musi
. Within a
ertain time span ea
h of the

simultaneously-performed voi
es in a musi
al
omposition does not, typi
ally,

ontain the same number of notes. So `melodi
 events' o

urring in one voi
e

may be separated from their neighbours in a s
ore by intervening events in

other voi
es. Sin
e we
annot generally rely on voi
e information being present

in the s
ore we need to allow for temporal `gaps' between events in the mat
hed

pattern.

Key words: exa
t string mat
hing, approximate string mat
hing, gaps, pat-

tern re
ognition,
omputer-assisted musi
 analysis, bit-wise operation

1 Introdu
tion

This paper fo
uses on a set of string pattern-mat
hing problems that arise in musi
al

analysis, and espe
ially in musi
al information retrieval. Musi
 analysts are often

on
erned with �nding o

urren
es of patterns, or repetitions of the same pattern,

possibly with variations, in a s
ore, while
omputer s
ientists often have to perform

similar tasks on strings (sequen
es of symbols from an alphabet). Many obje
ts
an

be viewed as strings: a text �le, for instan
e, is a sequen
e of
hara
ters from the

ASCII alphabet; a DNA
ode is a sequen
e of
hara
ters from the alphabet A,C,G,T

(representing the base proteins whi
h
onstitute DNA). Similarly, a musi
al s
ore
an

y

Partially supported by a Marie Curie fellowship, Well
ome and Royal So
iety grants.

55

Pro
eedings of the Prague Stringology Conferen
e '02

be viewed (at one level) as a string: at a very rudimentary level, the alphabet
ould

simply be the set of notes in the
hromati
 or diatoni
 notation, or the set of intervals

that appear between notes (e.g. pit
h may be represented as MIDI numbers and pit
h

intervals as number of semitones).

Monophoni
 musi
 (that is, musi
 in whi
h a single note only sounds at any

given time) lends itself well to a one-dimensional string mat
hing approa
h, and

eÆ
ient mat
hing algorithms for single-line melody-retrieval have been applied with

some su

ess. The polyphoni
 situation (where several voi
es or instruments may

be performing together, and any number of notes may be sounding at any given

time) is more
omplex, however, be
ause of the temporal intera
tion between non-

simultaneous events in di�erent voi
es. Where full knowledge about the voi
ing of the

musi
 data (in both the sear
h-pattern and the target) is available, mat
hing
ould be

done by su

essive sear
hes on ea
h voi
e in turn. In many musi
-retrieval or analysis

appli
ations, espe
ially where the data has been prepared by en
oding a printed s
ore

in
onventional musi
al notation, this is possible. But in the general
ase the data is

likely to be imperfe
tly-spe
i�ed in terms of its voi
ing, typi
ally depending on how

it is obtained: from audio, for example, even given perfe
t note-extra
tion, voi
ing

information is likely to be derivable only approximately, if at all. Therefore, we need

to allow for temporal gaps between musi
al events in the mat
hed pattern.

When we
onsider the approximate version of this problem we do not require a

perfe
t mat
hing but a mat
hing that is good enough to satisfy
ertain
riteria. The

problem of �nding substrings of a text similar to a given pattern has been extensively

studied in re
ent years be
ause it has a variety of appli
ations in
luding �le
om-

parison, spelling
orre
tion, information retrieval, sear
hing for similarities among

biosequen
es and
omputerized musi
 analysis. One of the most
ommon variants of

the approximate string mat
hing problem is that of �nding substrings that mat
h the

pattern with at most k-di�eren
es. In this
ase, k de�nes the approximation extent of

the mat
hing (the edit distan
e with respe
t to the three edit operations { mismat
h,

insert, delete). There is another type of approximate mat
hing; Æ-approximate mat
h-

ing. It is well known that a musi
al s
ore
an be represented as a string. This
an be

a

omplished by de�ning the alphabet to be the set of notes in the
hromati
 or dia-

toni
 notation or the set of intervals that appear between notes. These algorithms
an

be easily used in the analysis of musi
al works in order to dis
over similarities between

di�erent musi
al entities that may lead to establishing a \
hara
teristi
 signature"

[CIR98℄.

In addition, eÆ
ient algorithms for
omputing approximate mat
hing and repeti-

tions of substrings are also used in mole
ular biology [FLSS93, KMGL88, MJ93℄ and

parti
ularly in DNA sequen
ing by hybridization, re
onstru
tion of DNA sequen
es

from known DNA fragments, in human organ and bone marrow transplantation as

well as the determination of evolutionary trees among distin
t spe
ies.

Be
ause exa
t mat
hing may not help us to �nd o

urren
es of a parti
ular melody

in a musi
al work due to the transformation of the parti
ular melody throughout the

whole musi
al work we are
ompelled to use approximate mat
hing that
an absorb,

to some extent, this transformation and report the o

urren
es of this melody. The

transformation in di�erent o

urren
es of a parti
ular melody throughout a musi
al

play is translated into errors of di�erent o

urren
es of a substring with respe
t to

an initial pattern. Quantity Æ de�nes the error margins of su
h an approximation.

56

String Mat
hing with Gaps for Musi
al Melodi
 Re
ognition

In [CCIMP99℄, algorithms Shift-And and Shift-Plus were presented as eÆ
ient

solutions to �nd all Æ-o

urren
es of a given pattern in a text. The Shift-And algorithm

is based on the
onstant time
omputation of di�erent states for ea
h symbol in

the text by using bitwise te
hniques. Therefore, the overall
omplexity is linear

to the size of the text. In [IK02℄, approximate distributed mat
hing problem for

polyphoni
 musi
 is solved in linear time. We must also mention that it is possible to

adapt eÆ
ient exa
t pattern mat
hing algorithms to this kind of approximation. For

example, in [CILP01℄ adaptations of the Tuned-Boyer-Moore [HS91℄ and the Skip-

Sear
h [CLP98℄ algorithm were presented.

The organization of the paper is as follows. Some de�nitions are given in se
tion 2.

In se
tion 3, Æ-o

urren
e with �-bounded gaps for monophoni
 musi
 is
onsidered.

In se
tion 4 we
onsider the problem of
omputing exa
t mat
hing with �-bounded

gaps for polyphoni
 musi
. Finally, we give some
on
lusions and future work in

se
tion 5.

2 De�nitions

Let � be an alphabet. A string is de�ned as a sequen
e of zero or more symbols from

�. The empty string, that is the string with zero symbols, is denoted by ". The set of

all strings over an alphabet � is denoted as �

�

. A string x of length n is represented

by the sequen
e x

1

; x

2

; : : : ; x

n

, where x

i

2 � for 1 � i � n. We
all w a substring of

string x if x is of the form uwv for u; v 2 �

�

. We also say that substring w o

urs

at position juj+ 1 of string x. The starting position of w in x is the position juj+ 1

while position juj+ jwj is said to be the end position of w in x. A string w is a pre�x

of x if x is of the form wu and is a suÆx if x is of the form uw.

We de�ne as the
on
atenation of two strings x and y the string xy. The
on-

atenations of k
opies of a string x is denoted by x

k

. Note that self-
on
atenations

an result in strings of exponential size. For two strings x = x

1

; x

2

; : : : ; x

n

and

y = y

1

; y

2

; : : : ; y

m

su
h that x

n�i+1

; : : : ; x

n

= y

1

: : : y

i

for some i � 1, the string

x

1

; : : : ; x

n

; y

i

; : : : ; y

m

is the superposition of x and y. In this
ase we say that x and

y overlap.

At this point, we are going to give formally the notion of error introdu
ed in

approximate string mat
hing. Assume that Æ and
 are integers. Two symbols a, b of

alphabet � are said to be Æ-approximate, denoted as a =

Æ

b, if and only if ja� bj � Æ.

We say that two strings x, y are Æ-approximate, denoted as x

Æ

= y if and only if

jxj = jyj and x =

Æ

y.

Two strings x, y are said to be
-approximate, denoted as x =

y , if and only

if jxj = jyj and

P

jxj

i=1

jx

i

� y

i

j <
. Furthermore, we say that two strings x, y are

(Æ;
)-approximate if both
onditions are satis�ed.

The error in the �rst
ase (Æ-approximate) is de�ned lo
ally for ea
h symbol in a

string. In the se
ond
ase (
-approximate) the error is de�ned in a more global sense

and allows us to distribute the error on the symbols unevenly.

57

Pro
eedings of the Prague Stringology Conferen
e '02

3 Æ-o

urren
e with �-bounded gaps for monopho-

ni
 musi

The problem of
omputing Æ-o

urren
e with �-bounded gaps is formally de�ned as

follows: given a string t = t

1

; : : : ; t

n

, a pattern p = p

1

; : : : ; p

m

and integers �, Æ,

he
k whether there is a Æ-o

urren
e of p in t with gaps whose sizes are bounded by

onstant � (Fig. 1).

The basi
 idea of the algorithm des
ribed in [CIPR00℄ is the
omputation of

ontinuously in
reasing pre�xes of pattern p in text t so that �nally we
ompute

the Æ-o

urren
e of the whole pattern p. That is, the algorithm is an in
remental

pro
edure that is based on dynami
 programming. The algorithm is shown in Fig. 2.

Figure 1: Æ-o

urren
e with �-bounded gaps for Æ = 1; � = 2

begin

D[0℄[0℄ 1;

for i 1 to m do D[i℄[0℄ 0;

for j 1 to n do D[0℄[j℄ j;

for i 1 to m do

for j 1 to n do

if p[i℄ =

Æ

t[j℄ and j �D[i� 1℄[j � 1℄ � � + 1 and D[i� 1℄[j � 1℄ > 0

then D[i℄[j℄ j;

elseif p[i℄ 6=

Æ

t[j℄ and j �D[i℄[j � 1℄ < � + 1 then D[i℄[j℄ D[i℄[j � 1℄;

else D[i℄[j℄ 0;

for j 0 to n do

if D[m℄[j℄ > 0 then OUTPUT(j);

end

Figure 2: Algorithm for Æ-o

urren
e with �-bounded gaps

This algorithm will be adapted to the problem of �nding a singular pattern in a

singular text (monophoni
 musi
) without any major modi�
ations. Fig. 3 shows 2

bars from Mi
hael Niman's pie
e and a melody whi
h listeners
an easily
ognize.

If we set the value � = 3 (3 gaps allowed), the algorithm
an �nd this melody

in the s
ore, while we have to set a large number of k (at least k = 12) to �nd it

using k-di�eren
e approximate mat
hing algorithms. The time
omplexity of this

algorithm is O(nm), where n is the number of the musi
al events in the s
ore, whi
h

is equivalent to the number of notes in the s
ore sin
e this is monophoni
 musi
, and

m is the length of the pattern. The running time is shown in Fig. 4.

58

String Mat
hing with Gaps for Musi
al Melodi
 Re
ognition

Figure 3: 2 bars from Mi
hael Niman's pie
e and its melody. If � � 3, this melody

will be found.

Figure 4: Running time of the algorithm \Æ-o

urren
e with �-bounded gaps for

monophoni
 musi
". Using a SUN Ultra Enterprise 300MHz running Solaris Unix.

4 Exa
t mat
hing with �-bounded gaps for poly-

phoni
 musi

We need to modify the algorithm in order to solve the problem in polyphoni
 musi
.

Here, we will work on exa
t mat
hing with �-bounded gaps for polyphoni
 musi
, and

Æ-o

urren
e will not be
onsidered, as the adja
ent pit
h does not ne
essarily mean

the most relevant note for a melody. Also, we will suppress the MIDI pit
h numbers

by dividing by 12 in order to �nd o
tave-displa
ed mat
hes as well. Therefore, `C' is

`1', `C#' and `Db' are `2', `D' is `3', and so on, and the size of alphabet j�j will be

12.

We are going to use bit arrays and bit-wise operations to deal with several voi
es

at on
e. Let Tx[i℄ (1 � i � m, m is the length of a pattern) be a bit array of

size j�j for the position i of the pattern, and Ty[j℄ (1 � j � n, n is the number of

musi
al events in a plural text) be a bit array of size j�j for the j-th musi
al event

of the plural text. If x[i℄
ontains a note `8', then the 8th position of Tx[i℄ will be 0,

otherwise 1, where 0 represents `mat
h' and 1 represents `mismat
h'. Similarly, if y[j℄

ontains notes `3', `4' and `9', then the 3rd and 4th and 9th position of Ty[j℄ will be

0, otherwise 1. These bit arrays will be used in the sear
hing phase to
he
k whether

there is a mat
h or not.

Fig. 5 shows the modi�ed algorithm and the overall time
omplexity is O(N+nm),

where N is the total number of notes in the s
ore, and n is the number of the musi
al

events, and m is the length of the pattern, and Fig. 6 shows its running time. Fig. 7

59

Pro
eedings of the Prague Stringology Conferen
e '02

Prepro
essing

begin

for j 1 to m do Tx[j℄ 2

�

� 1� 2

x[j℄

;

for i 1 to n do

Ty[i℄ 2

�

� 1;

for ea
h suppressed pit
h p in y[i℄ do Ty[i℄ Ty[i℄ & (2

�

� 1� 2

p

);

end

Sear
hing

begin

D[0℄[0℄ 1;

for i 1 to m do D[i℄[0℄ 0;

for j 1 to n do D[0℄[j℄ j;

for i 1 to m do

for j 1 to n do

if (Tx[i℄ j Ty[j℄) = Tx[i℄ and j �D[i� 1℄[j � 1℄ � �+ 1

and D[i� 1℄[j � 1℄ > 0 then D[i℄[j℄ j;

elseif (Tx[i℄ j Ty[j℄) 6= Tx[i℄ and j �D[i℄[j � 1℄ < �+ 1

then D[i℄[j℄ D[i℄[j � 1℄;

else D[i℄[j℄ 0;

for j 0 to n do

if D[m℄[j℄ > 0 then OUTPUT(j);

end

Figure 5: Modi�ed algorithm for polyphoni
 musi

and Fig. 9 show examples of the prepro
essing phase for 1 bar from Mozart's piano

sonata and Debussy's Clair de Lune, respe
tively, and Fig. 8 and Fig. 10 show their

sear
hing phases.

Figure 6: Running time of the modi�ed algorithm for polyphoni
 musi
 (N = 4n).

Using a SUN Ultra Enterprise 300MHz running Solaris Unix.

5 Con
lusion and further work

Approximate (Æ-o

urren
e) string mat
hing with gaps for monophoni
 musi
 is solved

in O(nm) time, where n is the number of musi
al events (whi
h is equivalent to the

number of notes in a s
ore for monophoni
 musi
), and m is the length of a pattern.

Exa
t string mat
hing with gaps for polyphoni
 musi
 (a plural text and a singular

60

String Mat
hing with Gaps for Musi
al Melodi
 Re
ognition

Figure 7: Prepro
essing phase for 1 bar from a Mozart's piano sonata and a pattern.

(N = 11; n = 8; m = 3)

Figure 8: Sear
hing phase using bit-wise operations for 1 bar from the Mozart's piano

sonata and the patten. (� = 3)

61

Pro
eedings of the Prague Stringology Conferen
e '02

Figure 9: Prepro
essing phase for 1 bar from Clair de Lune and a pattern. (N =

30; n = 18; m = 4)

Figure 10: Sear
hing phase using bit-wise operations for 1 bar from Clair de Lune

and the patten. (� = 1)

62

String Mat
hing with Gaps for Musi
al Melodi
 Re
ognition

pattern) is solved in O(N + nm) time, where N is the total number of notes in a

s
ore, and n is the number of musi
al events (n � N), and m is the length of a

pattern. Using the same te
hnique, exa
t string mat
hing problem for a plural text

and a plural pattern will be solved in O(N +M + nm) time, where M is the total

number of notes in the plural pattern. However, we have not solved approximate

string mat
hing with gaps for polyphoni
 musi
, be
ause \small Æ" does not really

mean \more relevant" in musi
. In this parti
ular sense, k-di�eren
e algorithms
ould

be more useful, although it is inevitable to have large k and many false mat
hes. We

need to design an eÆ
ient algorithm for this problem.

Referen
es

[CCIMP99℄ Cambouropoulos, E., Cro
hemore, M., Iliopoulos, C.S., Mou
hard, L.,

Pinzon, Y.J.: Algorithms for
omputing approximate repetitions in mu-

si
al sequen
es. Pro
eedings of the 10

th

Australasian Workshop on Com-

binatorial Algorithms (AWOCA'99), R. Raman and J. Simpson (editors),

Curtin University of Te
hnology, Perth, Western Australia, 129-144.

[CILP01℄ Cro
hemore, M., Iliopoulos, C.S., Le
roq, T., Pinzon, Y.J.: Approximate

String Mat
hing in Musi
al Sequen
es. Pro
eedings of the Prague Stringol-

ogy Conferen
e (PSC'01), M. Balik and M. Simanek (editors), Cze
h Te
h-

ni
al University, Collaborative Report DC-2001-06, Prague, Cze
h Repub-

li
, 26-36.

[CIMRTT01℄ Cro
hemore, M., Iliopoulos, C.S., Makris, C., Rytter, W., Tsaka-

lidis, A., Tsi
hlas, K.: Approximate String Mat
hing with Gaps. Nordi

Journal of Computing 9, 54-65.

[CIPR00℄ Cro
hemore, M., Iliopoulos, C.S., Pinzon, Y.J., Rytter, W.: Finding Motifs

with Gaps. Pro
eedings of the International Symposium on Musi
 Infor-

mation Retrieval (ISMIR'00), Plymouth, USA, 306-317.

[CIR98℄ Crawford, T., Iliopoulos, C.S., Raman, R.: String Mat
hing Te
hniques

for Musi
al Similarity and Melodi
 Re
ognition. Computing in Musi
ology,

Vol.11, 73-100.

[CLP98℄ Charras, C., Le
roq, T., Pehoushek, J.D.: A very fast string mat
hing

algorithm for small alphabets and long patterns. Pro
eedings of the 9

th

Annual Symposium on Combinatorial Pattern Mat
hing (CPM'98), M.

Fara
h-Colton (editor), number 1448 in Le
ture Notes in Computer S
i-

en
e, Pis
ataway, NJ, Springer-Verlag, Berlin, 55-64.

[FLSS93℄ Fis
hetti, V., Landau, G., S
hmidt, J., Sellers, P.: Identifying periodi
 o
-

urren
es of a template with appli
ations to protein stru
ture. Information

Pro
essing Letters, 45, 11-18.

[HS91℄ Hume, A., Sunday, D.M.: Fast String Sear
hing. Software-Pra
ti
e and

Experien
e, 21(11), 1221-1248.

63

Pro
eedings of the Prague Stringology Conferen
e '02

[IK02℄ Iliopoulos, C.S., Kurokawa, M.: Distributed Mat
hing Problem for Musi-

al Melodi
 Re
ognition. Pro
eedings of the 2002 symposium on AI and

Creativity in Arts and S
ien
e (AISB'02), A. Cardoso and G. Wiggins

(editors), London, 49-56.

[KMGL88℄ Karlin, S., Morris, M., Ghandour, G., Leung, M.Y.: EÆ
ient Algorithms

for mole
ular sequen
es analysis. Pro
. Natl. A
ad. S
i., USA, 85, 841-845.

[LMW02℄ Lemstrm, K., Meredith, D., Wiggins, G.A.: A geometri
 approa
h to
om-

puting repeated patterns in polyphoni
 musi
. Do
ument submitted to UK

Patent oÆ
e, appli
ation number GB 0200203.8.

[MJ93℄ Milosavljevi
, A., Jurka, J.: Dis
overing simple DNA sequen
es by the

algorithmi
 signi�
an
e method. Comput. Appl. Bios
i., 9(4), 407-411.

64

String Regularities with Don't Cares

Costas S. Iliopoulos

1y

, Manal Mohamed

1z

, Laurent Mou
hard

2

,

Katerina G. Perdikuri

3

, W. F. Smyth

4

and

Athanasios K. Tsakalidis

3

1

Department of Computer S
ien
e, King's College London,

London WC2R 2LS, England

f
si,manalg�d
s.k
l.a
.uk

2

Department of Vegetal Physiology - ABISS, Universit�e de Rouen,

76821 Mont Saint Aignan Cedex, Fran
e

Laurent.Mou
hard�univ-rouen.fr

3

Computer Te
hnology Institute, Patras, Gree
e

perdikur�
eid.upatras.gr, tsak�
ti.gr

4

Algorithms Resear
h Group, Department of Computing & Software,

M
Master University, Hamilton, Ontario, Canada L8S 4K1 and

S
hool of Computing, Curtin University, Perth WA 6845, Australia

smyth�m
master.
a

Abstra
t. We des
ribe algorithms for
omputing typi
al regularities in strings

x = x[1::n℄ that
ontain don't
are symbols. For su
h strings on alphabet �, an

O(n log n log j�j) worst-
ase time algorithm for
omputing the period is known,

but the algorithm is impra
ti
al due to a large
onstant of proportionality. We

present instead two simple pra
ti
al algorithms that
ompute all the periods

of every pre�x of x; our algorithms require quadrati
 worst-
ase time but only

linear time in the average
ase. We then show how our algorithms
an be used

to
ompute other string regularities, spe
i�
ally the
overs of both ordinary and

ir
ular strings.

Key words: string algorithm, regularities, don't
are, period, border,
over.

1 Introdu
tion

Regularities in strings arise in many areas of s
ien
e:
ombinatori
s,
oding and au-

tomata theory, mole
ular biology, formal language theory, system theory, et
. | they

thus form the subje
t of extensive mathemati
al studies (see e.g. [L83℄,[P93℄,[P90℄).

Perhaps the most
onspi
uous regularities in strings are those that manifest them-

selves in the form of repeated subpatterns. A typi
al regularity, the period u of the

string x, grasps the repetitiveness of x, sin
e x is a pre�x of a string
onstru
ted by

y

Partially supported by a Marie Curie fellowship, Well
ome and Royal So
iety grants.

z

Supported by EPSRC studentship.

65

Pro
eedings of the Prague Stringology Conferen
e '02

on
atenations of u. Here we
onsider regularity problems that arise from having

\don't
are" symbols in the string. In parti
ular we study string problems fo
used

on �nding the repetitive stru
tures in DNA strings x.

In this paper we also
onsider a kind of generalized period
alled a
over; that is, a

proper substring u of x (if it exists) su
h that x
an be formed by
on
atenating and

overlapping o

urren
es of u. In the
omputation of
overs, two main problems have

been
onsidered in the literature: the shortest-
over problem (
omputing the shortest

over of a given string of length n), and the all-
overs problem (
omputing all the
ov-

ers of a given string). Apostoli
o, Fara
h and Iliopoulos [AFI91℄ introdu
ed the notion

of
overs and gave a linear-time algorithm for the shortest-
over problem. Breslauer

[B92℄ presented a linear-time on-line algorithm for the same problem. Moore and

Smyth [MS95℄ presented a linear-time algorithm for the all-
overs problem. Finally,

Li and Smyth [LS02℄ invented the
over array and des
ribed an on-line linear-time

algorithm that solves both the shortest-
over and all-
overs problems for every pre�x

of x. In parallel
omputation, Breslauer [B94℄ gave an optimal O(�(n) log logn)-time

algorithm for the shortest
over, where �(n) is the inverse A
kermann fun
tion; Il-

iopoulos and Park [IP94℄ gave an optimal O(log logn)-time (thus work-time optimal)

algorithm for the same problem.

The idea of a
over has been extended. Iliopoulos, Moore and Park [IMP96℄

introdu
ed the notion of seeds and gave anO(n logn)-time algorithm for
omputing all

the seeds of a given string of length n. For the same problem Ben-Amram, Berkman,

Iliopoulos and Park [BBIP94℄ presented a parallel algorithm that requires O(logn)

time and O(n logn) work. Apostoli
o and Ehrenfeu
ht [AE93℄
onsidered yet another

problem related to
overs.

An interesting extension of string-mat
hing problems with pra
ti
al appli
ations

in the area of DNA sequen
es results from the introdu
tion of \don't
are" symbols.

A don't
are symbol � has the property of mat
hing with any symbol in the given

alphabet. For example the string p = AC � C� mat
hes the pattern q = A � DCT .

Exa
t string mat
hing with \don't
are" symbols was studied by Fis
her and Pa-

terson [FP74℄. They developed an O(n logm log j�j) time algorithm for �nding a

pattern of length m in a text of size n over the alphabet � [f�g. Their method

is based on the theoreti
ally fast
omputation method of
onvolutions, but it is not

eÆ
ient in pra
ti
e. Pinter developed a linear time algorithm for a spe
ial
ase [P85℄,

while Abrahamson generalized Fis
her and Paterson's algorithm, using a divide-and-

onquer approa
h that runs in time O(n

p

m logm) [A87℄. See also [LV89℄.

In this paper we des
ribe two fast, pra
ti
al algorithms for
omputing all the

periods of every pre�x of a given string x[1::n℄ that
ontains \don't
are" symbols.

We prove that the expe
ted running time of these algorithms is linear, though they

have quadrati
 worst-
ase time
omplexity for pathologi
al inputs. Then we show

how our algorithms
an be used to eÆ
iently
ompute
overs of strings with don't

ares, both ordinary and
ir
ular. The motivation for the above problems
omes from

many appli
ations to the analysis of DNA sequen
es that reveal naturally o

urring

repeated segments within nu
leotide sequen
es. These segments
an be
on
atenated

only (periodi
) or both
on
atenated and overlapping (
overable).

66

String Regularities with Don't Cares

2 Ba
kground

A string is a sequen
e of zero or more symbols drawn from an alphabet �. The set

of all nonempty strings over the alphabet � is denoted by �

+

. A string x of length n

is represented by x[1::n℄ = x[1℄x[2℄ � � �x[n℄, where x[i℄ 2 � for 1 � i � n, and n = jxj

is the length of x. The empty string is the empty sequen
e (of zero length) and is

denoted by "; we write �

�

= �

+

[f"g The string xy is a
on
atenation of two strings

x and y. The
on
atenation of k
opies of x is denoted by x

k

and is
alled the k

th

power of x.

A string w is a substring of x if x = uwv for u; v 2 �

�

. A string w is a pre�x of x

if x = wu for u 2 �

�

, a proper pre�x if u 2 �

+

. Similarly, w is a suÆx of x if x = uw

for u 2 �

�

. A string u that is both a proper pre�x and a suÆx of x is
alled a border

of x.

If x has a nonempty border, it is
alled periodi
. Otherwise, x is is said to be

primitive. The empty string is a trivial border of x. Let u denote a border of x of

length ` where 1 � ` � n � 1; then p = n � ` is
alled a period of x. Clearly, p is

a period of x if x

i

= x

i+p

whenever 1 � i; i + p � n. Another equivalent de�nition

may be given as: p is a period of x if and only if x[1::p℄ = x[n� p+ 1::n℄. The latter

de�nition shows that ea
h word x has a minimum period
alled the period of x. For

example, the string x = ababab has two borders u

1

= ab and u

2

= abab; thus x has

two periods 4 and 2, where 2 is the period of x.

A substring u is said to be a
over of a given string x if every position of x lies

within an o

urren
e of a string u within x. If, in addition, juj < jxj, we
all u a

proper
over of x. For example, x is always a
over of x. and u = aba is a proper

over of x = abaababa.

An array �[1::n℄ is
alled the border array of x[1::n℄, where for i = 1; 2; : : : ; n, �[i℄

gives the length of the longest border of x[1::i℄. Furthermore, sin
e every border of a

border of x is itself a border of x, � a
tually des
ribes all the borders of every pre�x

of x. The border array
an be
omputed in linear time using the
lassi
al failure

fun
tion algorithm [AHU74℄.

Re
ently Li and Smyth [LS02℄ dis
overed the
over array
[1::n℄, where
[i℄ gives

the length of the longest
over of x[1::i℄. The
over array similarly en
apsulates all

the
overs of every pre�x of x and
an also be
omputed in linear time.

This paper deals with strings that
an
ontain o

urren
es of the don't
are sym-

bol, denoted by \�". This symbol mat
hes any other symbol of the alphabet. Two

symbols a and b mat
h (a � b) if they are equal, or if one of them is a don't
are

symbol. Noti
e that the relation � is not transitive (a � �; � � b; a � b).

3 Computing the Failure Fun
tion

A theoreti
al O(n logn log j�j) time algorithm for
omputing the period of a given

string x that
ontains don't
are symbols
an be a
hieved by using a \
onvolution"

pro
edure [FP74℄ between two strings x and X. Assuming that x is the given string

(of length n), we
reate a string X by adding n don't
are symbols, thus doubling

the length of x. We
ompute the
onvolution of x and X by shifting x to the right

by one
hara
ter. The produ
t u of the
onvolution is the period of the string x (for

67

Pro
eedings of the Prague Stringology Conferen
e '02

further information see [FP74℄). This algorithm is impra
ti
al as it has a very large

onstant hidden in its asymptoti
 time
omplexity.

In this se
tion we present two fast and pra
ti
al algorithms for
omputing the

border array �[1 : : : n℄ of a given string x that
ontains don't
are symbols.

As noted earlier, the standard failure fun
tion method, based on the fa
t that

\a border of a border of a string x is ne
essarily a border of x",
annot be used to

al
ulate the border array of a string
ontaining don't
are symbols. This follows

from the nontransitivity of the � relation. For example, if x = a � �
a, then we have

u

l

= a � � � u

r

= �
a;

where u

l

and u

r

are respe
tively the left and right borders of x of length 3; note that

v

l

= a� � �� is a border of u

l

, but a� 6=
a, whi
h means that v

l

is not a border of

u

r

, hen
e not of x.

Despite the fa
t that we
annot make use of the standard failure fun
tion method,

it is quite easy to noti
e that there is no nonempty border b of x[1::i+ 1℄ that is not

equal to some b

0

x[i+1℄, where b

0

is a border of x[1 : : : i℄. Moreover, let the borders of

x[1::i℄ be

�

1

[i℄; �

2

[i℄ : : : �

k

[i℄

where �

1

[i℄ is the the length of the border of x[1 : : : i℄ (the longest border) and �

k

[i℄ = 0

is the length of the empty border .Then ea
h border of x[1 : : : i+1℄ is equal to either

�

j

[i℄ + 1 for some 1 � j � k or 0.

The above states the rule used by algorithm FAILURE-FUNCTION-1() to
al
u-

late the value of the border array of a given string x that
ontains don't
are symbols.

FAILURE-FUNCTION-1(x)

1 S ; S is a singly-linked list of nonzero border lengths

2 �[1℄ 0

3 For i 1 To n� 1 Do

4 For ea
h b 2 S Do

5 If x[i + 1℄ � x[b + 1℄ Then

6 repla
e
urrent(S; b + 1)

7 Else delete
urrent(S)

8 If x[i℄ � x[1℄ Then add after
urrent(S,1)

9 If S 6= ; Then �[i+ 1℄ top(S)

10 Else �[i+ 1℄ 0

END FAILURE-FUNCTION-1

Figure 1: FAILURE-FUNCTION-1 algorithm.

The algorithm maintains a list S of all possible nonzero border lengths. At the

beginning of iteration i, S
ontains all possible nonzero border lengths of x[: : : i℄. The

algorithm tries to extend ea
h possible border b in S by
omparing the value of x[i+1℄

and the value of x[b + 1℄. If the two values are equal or one of them is a don't
are

symbol, the value b in S is repla
ed by b + 1. Otherwise, b is deleted from the list.

If x[i + 1℄ is equal to x[1℄ or �, a border of length 1 has to be added to S. Finally,

68

String Regularities with Don't Cares

ea
h iteration i terminates by assigning the value at the top of the list S that is the

length of the longest border of x[1 : : : i+1℄ to �[i+1℄. If the list S is empty, then the

length of the longest border is 0 (�[i + 1℄ = 0). Note that at this stage , S
ontains

the lengths of all possible nonzero borders of x[1 : : : i + 1℄ in des
ending order.

Ea
h position i su
h that x[i℄ = x[1℄ or � is a
andidate to start a new border.

Hen
e Algorithm FAILURE-FUNCTION-2() tries to speed up the
omputation of the

failure fun
tion by a simple linear prepro
essing of the input string x. For ea
h posi-

tion i we
ount the previous o

urren
es of x[1℄'s and �'s. And we introdu
e a pointer

that points to the previous o

urren
e. The algorithm then modi�es the standard

failure fun
tion method to
al
ulate the border array �. FAILURE-FUNCTION-2

starts by setting the value of �[0℄ to -1, a
onvention whi
h is
ompatible with the

algorithm. Then n � 1 iterations follow. In ea
h iteration i, the algorithm tries to

extend the
urrent border b by
omparing the value of x[i+1℄ and the value of x[b+1℄

where b is the length of the border of x[1 : : : i℄. If the two values are equal or one of

them is a don't
are symbol, the value of �[i℄ is set to b+1. Otherwise, the algorithm

tries to follow the basi
 failure fun
tion method by trying to extend the border of

the
urrent border. More work needs to be done in ea
h attempt to ensure the right

answer:

� The algorithm has to eliminate the possibility of having a border whose length

is greater than that of the border of the border. That is, having

x[1 : : : i� j + 2℄ � x[j : : : i+ 1℄

for some j su
h that �[b℄ < i� j + 1 < b. The algorithm uses the prepro
essed

informations to �nd ea
h position j su
h that x[j℄ = x[1℄ or �. Clearly, the

number and the positions of the j's
an be
al
ulated in
onstant time. The

algorithm examines ea
h j in as
ending order to �nd the �rst j that satis�es

the above
ondition. If su
h a j exists, then the iteration ends by assigning

i� j + 2 to �[i + 1℄.

� Re
all that the nontransitivity of the � relation means that the statement \the

border of the border is a border" may not be true. Observe that nontransitivity

an o

ur only if a don't
are symbol was part of the
omparison. Then only

in su
h
ases does the algorithm need to re
he
k the positions that
ould
ause

a nontransitivity. That is, if x[i + 1℄ � x[�[b℄℄, then the algorithm still needs

to
he
k all the solid
hara
ters in the right border; that have been
ompared

with the don't
are symbol during the
al
ulation; against the
oresponding

hara
ters in the left border. These positions are marked during the
al
ulations

and stored in a spe
ial sta
k S. Positions are popped from and pushed onto S

depending on the length of the
urrent border.

For example, let x = a � �
ab
dab
 � ab
a and the value of the border array be as

follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x[i℄ a � �
 a b
 d a b
 � a b
 a

�[i℄ 0 1 2 3 3 2 3 0 1 2 3 4 5 6 7 5

At step 7 (i = 7) we had failed to extend the
urrent border after
omparing x[4℄ = `
'

with x[8℄ = `d'. At the same time we
ould not �nd any j that satis�es the �rst

69

Pro
eedings of the Prague Stringology Conferen
e '02

FAILURE-FUNCTION-2(x)

1 �[0℄ �1

2 For i 0 To n� 1 Do

3 b �[i℄

4 If x(i + 1) � x(b + 1) Then �[i+ 1℄ b+ 1

5 Else

6 While b � 0 And [x(i + 1) 6= x(b + 1) Or
he
k sta
k fail()℄ Do

7 For ea
h j su
h that �[b℄ < i� j + 1 < b And x[j℄ � x[1℄ Do

8 If x[j::i + 1℄ � x[1::i� j + 2℄ Then

9 b i� j + 2

10 Quit The While Loop

11 b �[b℄

12 �[i+ 1℄ b

END FAILURE-FUNCTION-2

Figure 2: FAILURE-FUNCTION-2 algorithm.

ondition. So we tried to extend the border of the border whi
h equals 3 (�[7℄ = 3).

Sin
e x[8℄ 6= x[4℄, we tried to extend the border of the border of the border whi
h

equals 2 (�[3℄ = 2). Although x[8℄ � x[3℄, we still need to
he
k a

ording to the

algorithm the value at position 1 with the
orresponding value at position 6. Sin
e

they are not equal, the value of �[8℄
an not be 3 and so we have to
arry on . Note

that the value 1 had been inserted into the sta
k after
omparing the `�' at position

2 with the `a' at position 1 at step 1.

At step 15, where x[16℄ 6= x[8℄, we had failed again to extend the
urrent border.

A

ording to the algorithm we have to eliminate the possibility of having a longer

border than the border of the border; that is, �nding j that satis�es the �rst
ondition.

In our example, we found j = 12. Note that

�[b℄ = 3 < i� j + 1 = 15� 12 + 1 = 4 < b = 7

and x[12℄ = �. After �nding j we need to
ompare x[12 : : : 16℄ with x[1 : : : 5℄. Sin
e

they are equal the value of �[16℄ be
omes 5.

4 Expe
ted Running Time Analysis

Here we will show that the expe
ted number of borders of a string is bounded by

a
onstant. We suppose that the alphabet �
onsists of ordinary letters 1 : : : � � 1

together with the don't
are symbol �. First we
onsider the probability of two

symbols of a string being equal. Equality o

urs in the following
ases:

Symbol Equal to Number of
ases

� � 2 f1; : : : ; �� 1g �� 1

� 2 f�; 1; : : : ; �� 1g � �

� 2 f1; : : : ; �� 1g � 2 f1; : : : ; �� 1g �� 1

70

String Regularities with Don't Cares

Thus the total number of equality
ases is 3�� 2 and the number of overall
ases

is �

2

. Therefore the probability of two symbols of a string being equal is

3�� 2

�

2

Now let
onsider the probability of string x having a border of length k. One
an see

P [x

1

: : : x

k

= x

n�k�1

: : : x

n

℄ = P [x

1

= x

n�k�1

℄ : : : P [x

k

= x

n

℄ =

�

3�� 2

�

2

�

k

From this it follows that the expe
ted number of borders is

�

n�1

k=1

�

3�� 2

�

2

�

k

< 3:5

The algorithm, at iteration i, performs k

i

steps, where k

i

is the number of the borders

of x[1::i℄. Thus the overall expe
ted time
omplexity is

�

n�1

k=1

k

i

:

Sin
e the expe
ted value of ea
h k

i

is bounded by 3.5, therefore the expe
ted time of

the two border algorithms is O(n).

5 Experimental Results

Using random strings over various alphabet sizes (with the � symbol treated as

an additional random letter), we ran FAILURE-FUNCTION-1() and FAILURE-

FUNCTION-2(). The running time was
al
ulated for ea
h exe
ution. We used

a SUN Ultra Enterprise 300MHz running Solaris Unix. The reported times are the

al
ulation time in se
onds, measured by
alling the a
lo
k() routine (Figures 3

and 4).

Figure 3: Timing
urves for the FAILURE-FUNCTION-1 Pro
edure.

In general, it seems that the heuristi
 employed in FAILURE-FUNCTION-2 is

e�e
tive for random strings on small alphabets (therefore
ontaining a high proportion

71

Pro
eedings of the Prague Stringology Conferen
e '02

Figure 4: Timing
urves for the FAILURE-FUNCTION-2 Pro
edure.

FIND-COVERS(x)

1 Compute borders B = fb

1

; : : : ; b

k

g of x in as
ending order of length

2 For ea
h adja
ent pair of borders, b

i

and b

i+1

, Do

3 If b

i

overs b

i+1

Then
he
k whether it
overs x

4 Else i i + 1

END FIND-COVERS

Figure 5: FIND-COVERS algorithm.

of don't
are symbols), but makes little di�eren
e for larger alphabets that have a

orrespondingly low proportion of don't
ares.

Note that our experiments
on�rm Se
tion 4's theoreti
al result that the expe
ted

ase bahaviour of the algorithms is linear in string length.

6 Computing the Covers

In this se
tion we present an algorithm for
omputing all the
overs of a given string

x, bearing in mind that we allow possible overlaps. This means that in the example

p = AC �ACA�AA�ACA, the pattern q = ACA is an overlapping
over of the string

p. The algorithm we present
onsists of 2 stages. The �rst stage is a prepro
essing

phase where we
ompute the borders of the given string x. Suppose we �nd the

following nonempty borders b

1

; b

2

; : : : ; b

k

, listed in as
ending order.

In the se
ond stage we perform the following
he
k: for two borders b

i

and b

i+1

, if

b

i

overs b

i+1

we
he
k whether b

i

also
overs string x. If not we
ontinue this pro
ess

for the rest of the adja
ent pairs of borders.

In order to pre
ompute the borders we use Algorithm ALL-BORDERS(). Using

the previously
omputed borders, the pro
edure that �nds the
overs of a given string

x is as follows:

72

String Regularities with Don't Cares

Theorem 6.1 Given a string x that
ontains don't
are symbols, we
an �nd a longest

over u of x in linear expe
ted time.

7 Computing the Covers of Cir
ular DNA Strings

In some
omputational biology appli
ations (for example, DNA sequen
ing by hy-

bridization), it is
onvenient to regard the DNA sequen
e as a
ir
ular string (Fig. 6).

Given a
ir
ular DNA string and a window that limits the region of DNA that we are

able to study, the
omputation of
overs in the sequen
e be
omes a diÆ
ult task. In

that
ase the
omputation of seeds (see [BBIP94℄) does not work and we need a new

approa
h.

Bearing in mind the s
heme of a
ir
ular DNA string and the algorithms for the

omputation of the failure fun
tion that we have already des
ribed, it is easy to see

that the
omputation of the
overs in a
ir
ular DNA sequen
e
an be easily solved

using the failure fun
tion te
hnique. More pre
isely the problem of the
omputation

of
overs
an be solved if we
ompute the failure fun
tion two times, on
e forward

and on
e ba
kward.

Figure 6: A
ir
ular string x and three substrings S1, S2, S3, as seen from a window

of four
hara
ters length.

Con
lusions

We have presented two linear expe
ted-time algorithms for
omputing all the borders

(hen
e all the periods) of a given string
ontaining don't
are symbols. We have then

shown how to apply the border
al
ulation to
ompute the
overs of ordinary and

ir
ular strings, also
ontaining don't
are symbols.

An open problem is the
al
ulation of every border of every pre�x of x inO(n logn)

worst-
ase time.

Referen
es

[A87℄ Abrahamson, K.: Generalized string mat
hing, SIAM J.Computing, 16,

1039-1051.

[AE93℄ Apostoli
o, A., Ehrenfeu
ht, A.: EÆ
ient dete
tion of quasiperiodi
ities in

strings, Theo. Comp. S
i, 119, 247-265.

73

Pro
eedings of the Prague Stringology Conferen
e '02

[AFI91℄ Apostoli
o, A., Fara
h, M., Iliopoulos, C.S.: Optimal superprimitivity test-

ing for strings, Inform. Pro
ess. Lett., 39, 17-20.

[AHU74℄ Aho, Alfred V., Hop
roft, John E., Ullman, Je�ey D.: The Design & Anal-

ysis of Computer Algorithms, Addison-Wesley.

[B92℄ Breslauer, D.: An on-line string superprimitivity test, Inform. Pro
ess.

Lett., 44, 345-347.

[B94℄ Breslauer, D.: Testing string superprimitivity in parallel, Inform. Pro
ess.

Lett., 49, 235-241.

[BBIP94℄ Ben-Amram, A.M., Berkman, O.C.S., Iliopoulos, C.S., Park, K.: The sub-

tree max gap problem with appli
ation to parallel string
overing, Pro
.

5th ACM-SIAM Symp. Dis
rete Algorithms, 501-510.

[FP74℄ Fis
her, M., Paterson, M. : String mat
hing and other produ
ts, Com-

plexity of Computation, R.M. Karp (editor), SIAM-AMS Pro
eedings, 7,

113-125.

[IMP96℄ Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a string, Algorith-

mi
a, 16, 288-297.

[IP94℄ Iliopoulos, C.S., Park, K.: An optimal O(log logn) time algorithm for par-

allel superprimitivity testing, Journal of the Korean Information S
ien
e

So
iety, 21-8, 1400-1404.

[L83℄ Lothaire, M. : Combinatori
s on Words, Addison-Wesley, Reading, Mass.

[LS02℄ Yin Li, Smyth, W.F.: Computing the
over array in linear time, Algorith-

mi
a, 32-1, 95-106.

[LV89℄ Landau, G.M., Viskin, U.: Fast parallel and serial approximate string

mat
hing, Journal of Algorithms, 10, 157-169.

[MS95℄ Moore, D.W.G., Smyth, W.F.: A
orre
tion to \Computing the
overs of

a string in linear time", Inform. Pro
ess. Lett., 54,101-103.

[P85℄ Pinter, R.: EÆ
ient string mat
hing with don't-
are patterns, Combinato-

rial Algorithms on Words, NATO ASI Series, F12, Springer-Verlag, 11-29.

[P90℄ Pevzner, P.A.: Statisti
al analysis of geneti
s texts, Computer Analysis of

Geneti
s Texts, Chapter 2, Ed. M.D. Frank-Kamenetzkii, Nauka, Mos
ow,

36-80 (in Russian).

[P93℄ Pevzner, P.A.: Overlapping word paradox and Conway Equation, Super-

omputing, Bioinformati
s, and Complex Genome Analysis, World S
ien-

ti�
, Ed. C. Cantor, J. Fi
kett, R. Robbins, and H. Lim, 71-78.

74

Bidire
tional Constru
tion of SuÆx Trees

Shunsuke Inenaga

Department of Informati
s, Kyushu University 33, Fukuoka 812-8581, Japan

e-mail: s-ine�i.kyushu-u.a
.jp

Abstra
t. String mat
hing is
riti
al in information retrieval sin
e in many

ases information is stored and manipulated as strings. Constru
ting and uti-

lizing suitable data stru
tures for text strings, we
an solve the string mat
hing

problem eÆ
iently. Su
h stru
tures are
alled index stru
tures. The suÆx tree is

ertainly the most widely-known and extensively-studied stru
ture of this kind.

In this paper, we present a linear-time algorithm for bidire
tional
onstru
tion

of suÆx trees.

1 Introdu
tion

Pattern mat
hing on strings is of
entral importan
e to Theoreti
al Computer S
ien
e.

The pattern mat
hing problem is to examine whether a given pattern string pmat
hes

a text string w. This problem
an be solved in O(jpj) time, by using a suitable index

stru
ture.

The most basi
 index stru
ture seems to be the suÆx trie, by whose nodes all

substrings of a given string w are re
ognized. Probably the stru
ture is the easiest to

understand, but its only, however biggest drawba
k is that its spa
e requirement is

O(jwj

2

).

This fa
t led the introdu
tion of more spa
e-e
onomi
al (O(jwj)-spa
ed) stru
tures

su
h as the suÆx tree [23, 19, 22, 12℄, the dire
ted a
y
li
 word graph (DAWG) [3,

7, 2℄, the
ompa
t dire
ted a
y
li
 word graph (CDAWG) [4, 9, 15, 13, 16℄, the suÆx

array [18℄, and some other variants. Among those, suÆx trees are possibly most

widely-known and extensively-studied [8, 12℄, perhaps be
ause there are a `myriad' [1℄

of appli
ations for them.

Constru
tion of suÆx trees has been
onsidered in various
ontexts: Weiner [23℄

invented the �rst algorithm that
onstru
ts suÆx trees in linear time; M
Creight [19℄

proposed a more spa
e-e
onomi
al algorithm than Weiner's; Chen and Seiferas [6℄

showed an eÆ
ient modi�
ation of Weiner's algorithm; Ukkonen [22℄ introdu
ed an

on-line algorithm to
onstru
t suÆx trees, whi
h Giegeri
h and Kurtz [11℄ regarded

as \the most elegant"; Fara
h [10℄
onsidered optimal
onstru
tion of suÆx trees

with large alphabets; Breslauer [5℄ gave a linear-time algorithm for building the suÆx

tree of a given trie that stores a set of strings; Inenaga et al. [14℄ presented an on-

line algorithm that simultaneously
onstru
ts both the suÆx tree of a string and the

DAWG of the reversed string.

In this paper we explore bidire
tional
onstru
tion of suÆx trees. Namely, the

algorithm we propose allows us to update the suÆx tree of a string w to the suÆx

tree of a string xwy, where x; y are any strings. We also show that our algorithm

runs in linear time and spa
e with respe
t to the length of a given string.

75

Pro
eedings of the Prague Stringology Conferen
e '02

Some related work
an be seen in literature: Stoye [20, 21℄ invented variant of suÆx

trees,
alled aÆx trees. He proposed an algorithm for bidire
tional
onstru
tion of

aÆx trees, and Maa� [17℄ improved the time
omplexity of the algorithm to O(jwj).

2 SuÆx Trees

Let � be a �nite alphabet. An element of �

�

is
alled a string. Strings x, y, and z

are said to be a pre�x, fa
tor, and suÆx of string w = xyz, respe
tively. The sets of

pre�xes, fa
tors, and suÆxes of a string w are denoted by Pre�x (w), Fa
tor(w), and

SuÆx (w), respe
tively. The length of a string w is denoted by jwj. The empty string

is denoted by ", that is, j"j = 0. Let �

+

= �

�

� f"g. The i-th
hara
ter of a string

w is denoted by w[i℄ for 1� i� jwj. Let S � �

�

. The
ardinality of S is denoted by

jSj. For any string u 2 �

�

, Su

�1

= fx j xu 2 Sg.

Let w 2 �

�

. We de�ne an equivalen
e relation �

L

w

on �

�

by

x �

L

w

y , Pre�x(w)x

�1

= Pre�x (w)y

�1

:

The equivalen
e
lass of a string x 2 �

�

with respe
t to �

L

w

is denoted by [x℄

L

w

. Note

that all strings not belonging to Fa
tor(w) form one equivalen
e
lass under �

L

w

.

This equivalen
e
lass is
alled the degenerate
lass. All other
lasses are said to be

non-degenerate.

Proposition 1 ([14℄) Let w 2 �

�

and x; y 2 Fa
tor(w). If x �

L

w

y, then either x is

a pre�x of y, or vi
e versa.

Proof. By the de�nition of �

L

w

, we have Pre�x (w)x

�1

= Pre�x (w)y

�1

. There are

three
ases to
onsider:

(1) When jxj = jyj. Obviously, x = y in this
ase. Thus x 2 Pre�x (y) and

y 2 Pre�x (x).

(2) When jxj > jyj. Let u be an arbitrary string in Pre�x (w). Assume u = sx with

s 2 �

�

. Then s 2 Pre�x(w)x

�1

, whi
h results in s 2 Pre�x(w)y

�1

. Hen
e,

there must exist a string v 2 Pre�x(w) su
h that v = sy. By the assumption

that jxj > jyj, we have juj > jvj. From the fa
t that both u and v are in

Pre�x (w), it is derived that v 2 Pre�x(u). Consequently, y 2 Pre�x (x).

(3) When jxj < jyj. By a similar argument to the one in Case (2), we have x 2

Pre�x (y).

2

For any string x 2 Fa
tor(w), the longest member in [x℄

L

w

is denoted by

w

�!

x .

Proposition 2 ([14℄) Let w 2 �

�

. For any x 2 Fa
tor(w), there uniquely exists a

string � 2 �

�

su
h that

w

�!

x = x�.

76

Bidire
tional Constru
tion of SuÆx Trees

Proof. Let

w

�!

x= x� with � 2 �

�

. For the
ontrary, assume there exists a string

� 2 �

�

su
h that

w

�!

x = x� and � 6= �. By Proposition 1, either x� 2 Pre�x(x�) or

x� 2 Pre�x (x�) must stand, sin
e x� �

L

w

x�. However, neither of them a
tually

holds sin
e j�j = j�j and � 6= �, whi
h yields a
ontradi
tion. Hen
e, � is the only

string satisfying

w

�!

x= x�. 2

Proposition 3 Let w 2 �

�

and x 2 Fa
tor(w). Assume

w

�!

x= x. Then, for any

y 2 SuÆx (x),

w

�!

y = y.

Proof. Assume
ontrarily that there uniquely exists a string � 2 �

+

su
h that

w

�!

y = y�.

Sin
e y 2 SuÆx (x), x is always followed by � in w. It implies that Pre�x (w)x

�1

=

Pre�x(w)(x�)

�1

, and therefore we have x �

L

w

x�. That j�j > 0 means that

w

�!

x is not

the longest in [x℄

L

w

; a
ontradi
tion. Hen
e,

w

�!

y = y. 2

Proposition 4 Let w 2 �

�

. For any string x 2 SuÆx (w),

w

�!

x= x.

Proof. Let y 2 �

�

be an arbitrary string su
h that x �

L

w

y and x 6= y. Then, we have

Pre�x(w)x

�1

= Pre�x (w)y

�1

. Be
ause x 2 SuÆx (w), y 2 Pre�x(x)� fxg and thus

jxj > jyj. Hen
e,

w

�!

x= x. 2

The number of strings in Fa
tor(w) is O(jwj

2

). For example,
onsider string a

n

b

n

.

However, for any string w 2 �

�

, the number of strings x su
h that x =

w

�!

x is O(jwj).

The following lemma gives a tighter upperbound.

Lemma 1 ([3, 4℄) Assume that jwj > 1. The number of the non-degenerate equiva-

len
e
lasses in �

L

w

is at most 2jwj � 1.

In the following, we de�ne the suÆx tree of a string w 2 �

�

, denoted by STree(w),

on the basis of the above-mentioned equivalen
e
lasses. We de�ne it as an edge-

labeled tree (V;E) with E � V � �

+

� V where the se
ond
omponent of ea
h

edge represents its label. We also give a de�nition of the suÆx links, kinds of failure

fun
tions, frequently utilized for time-eÆ
ient
onstru
tion of suÆx trees [23, 19, 22℄.

De�nition 1 STree(w) is the tree (V;E) su
h that

V = f

w

�!

x j x 2 Fa
tor(w)g;

E = f(

w

�!

x ; a�;

w

�!

xa) j x; xa 2 Fa
tor(w), a 2 �, � 2 �

�

,

w

�!

xa= xa�, and

w

�!

x 6=

w

�!

xag;

and its suÆx links are the set

F = f(

w

�!

ax;

w

�!

x) j x; xa 2 Fa
tor(w); a 2 � ; and

w

�!

ax= a�

w

�!

x g:

The node

w

�!

" = " is
alled the root node of STree(w). When a node

w

�!

x is of out-degree

zero, it is said to be a leaf node. Ea
h leaf node
orresponds to a string in SuÆx(w).

If x 2 Fa
tor(w) satis�es x =

w

�!

x , x is said to be represented on expli
it node

w

�!

x .

If x 6=

w

�!

x , x is said to be on an impli
it node. STree(
o
o) and STree(
o
oa) are

displayed in Figure 1.

It derives from Lemma 1 that:

77

Pro
eedings of the Prague Stringology Conferen
e '02

Figure 1: STree(
o
o) on the left, and STree(
o
oa) on the right. Solid arrows

represent edges, while dotted arrows denote suÆx links.

Theorem 1 ([19℄) Let w 2 �

�

. Let STree(w) = (V ;E). Assume jwj > 1. Then

jV j � 2jwj � 1 and jEj � 2jwj � 2.

Weiner's algorithm [23℄ and M
Creight's algorithm [19℄
onstru
t the suÆx tree de-

�ned above, STree(w). On the other hand, Ukkonen's algorithm
onstru
ts a slightly

di�erent version, whi
h is suitable for his algorithm.

As a preliminary to de�ne the modi�ed suÆx tree, we �rstly introdu
e a relation

X

w

over �

�

su
h that

X

w

= f(x; xa) j x 2 Fa
tor(w) and a 2 � is unique su
h that xa 2 Fa
tor(w)g:

Let �

0

L

w

be the equivalen
e
losure of X

w

, i.e., the smallest superset of X

w

that is

symmetri
, re
exive, and transitive.

Proposition 5 ([14℄) For any string w 2 �

�

, �

L

w

is a re�nement of �

0

L

w

.

Proof. Let x; y be any strings in Fa
tor(w) and assume x �

L

w

y. A

ording to

Proposition 1, we �rstly assume that x 2 Pre�x (y). It follows from Proposition 2

that there uniquely exist strings �; � 2 �

�

su
h that

w

�!

x = x� and

w

�!

y = y�. Note that

� 2 SuÆx (�). Let
 2 �

�

be the string satisfying � =
�. Then
 is the sole string

su
h that x
 = y. By the de�nition of �

0

L

w

, we have x �

0

L

w

y. A similar argument

holds in
ase that y 2 Pre�x (x). 2

Corollary 1 ([14℄) For any string w 2 �

�

, every equivalen
e
lass under �

0

L

w

is a

union of one or more equivalen
e
lasses under �

L

w

.

For a string x 2 Fa
tor(w), the longest string in the equivalen
e
lass with respe
t

to x under �

0

L

w

is denoted by

w

=)

x

.

The next proposition
orresponds to Proposition 3

Proposition 6 Let w 2 �

�

and x 2 Fa
tor(w)� SuÆx (w). Assume

w

=)

x

= x. Then,

for any y 2 SuÆx(x),

w

=)

y

= y.

78

Bidire
tional Constru
tion of SuÆx Trees

Proof. Sin
e

w

=)

x

= x and x =2 SuÆx(w), there are at least two
hara
ters a; b 2 � su
h

that xa; xb 2 Fa
tor(w) and a 6= b. Sin
e y 2 SuÆx (x), y is also followed by both a

and b in the string w. Thus

w

=)

y

= y. 2

Remark that the pre
ondition of the above proposition slightly di�ers from that of

Proposition 3. Namely, when x is a suÆx of w, this proposition does not always hold.

From here on, we explore some relationship between

w

�!

(�) and

w

=)

(�).

Lemma 2 ([14℄) Let w 2 �

�

. For any string x 2 Fa
tor(w),

w

�!

x is a pre�x of

w

=)

x

.

If

w

�!

x 6=

w

=)

x

, then

w

�!

x 2 SuÆx(w).

Proof. We
an prove that

w

�!

x 2 Pre�x (

w

=)

x

) by Proposition 1 and Corollary 1. Now

suppose

w

�!

x 6=

w

=)

x

. Let

w

�!

x= x� with � 2 �

+

. Supposing

w

=)

x

= x� with � 2 �

+

, we

have � 2 Pre�x (�). Let �
 = � with
 2 �

�

. By the assumption

w

�!

x 6=

w

=)

x

, we have

x� 6�

L

w

x�, although
 is the sole string that follows x� in w sin
e

w

=)

x

= x�. Therefore,

x must be a suÆx of w, whi
h is followed by no
hara
ter. 2

For example,
onsider string w =
o
o. Then,

w

�!

o=
o but

w

=)

o=
o
o, where
o is a

suÆx of
o
o.

Lemma 3 Let w 2 �

�

and x 2 SuÆx (w). If x =2 Pre�x (y) for any string y 2

Fa
tor(w)� fxg, then

w

�!

x=

w

=)

x

.

Proof. The pre
ondition implies that there is no
hara
ter a 2 � satisfying xa 2

Fa
tor(w). Thus we have

w

=)

x

= x. On the other hand, we obtain

w

�!

x= x by Proposi-

tion 4, be
ause x 2 SuÆx (w). Hen
e

w

�!

x=

w

=)

x

. 2

Lemma 4 Let w 2 �

�

with jwj = n. Assume that the last
hara
ter w[n℄ is unique

in w, that is, w[n℄ 6= w[i℄ for any 1 � i � n� 1. Then, for any string x 2 Fa
tor(w),

w

�!

x=

w

=)

x

.

Proof. By the
ontraposition of the se
ond statement of Lemma 2, if x =2 SuÆx(w),

then

w

�!

x =

w

=)

x

. Be
ause of the unique
hara
ter w[n℄, any suÆx z of w satis�es the

pre
ondition of Lemma 3, and thus

w

�!

z =

w

=)

z

. 2

We are now ready to de�ne STree

0

(w), whi
h is a modi�ed version of STree(w).

De�nition 2 STree

0

(w) is the tree (V;E) su
h that

V = f

w

=)

x

j x 2 Fa
tor(w)g;

E = f(

w

=)

x

; a�;

w

=)

xa) j x; xa 2 Fa
tor(w), a 2 �, � 2 �

�

,

w

=)

xa= xa�, and

w

=)

x

6=

w

=)

xag;

and its suÆx links are the set

F = f(

w

=)

ax;

w

=)

x

) j x; xa 2 Fa
tor(w); a 2 � ; and

w

=)

ax= a�

w

=)

x

g:

79

Pro
eedings of the Prague Stringology Conferen
e '02

Remark that STree

0

(w)
an be obtained by repla
ing

w

�!

(�) in STree(w) with

w

=)

(�).

We have the next lemma deriving from Lemma 4.

Lemma 5 Let w 2 �

�

with jwj = n. Assume that the last
hara
ter w[n℄ is unique

in w, that is, w[n℄ 6= w[i℄ for any 1 � i � n� 1. Then, STree(w) = STree

0

(w).

For
omparing STree(w) and STree

0

(w), see Figure 1 and Figure 2. As shown in

Proposition 3, any suÆxes of a string represented by an expli
it node are also expli
it.

Figure 2: STree

0

(
o
o) on the left, and STree

0

(
o
oa) on the right. Solid arrows

represent the edges, while dotted arrows denote suÆx links.

A

ording to Lemma 5, using a delimiter $ that o

urs nowhere in w, we have

STree(w$) = STree

0

(w$) for any w 2 �

�

.

3 Bidire
tional Constru
tion of SuÆx Trees

3.1 Right Extension

Assume that we have STree

0

(w) with some w 2 �

�

. Now we
onsider updating it into

STree

0

(wa) with a 2 �, by inserting the suÆxes of wa into STree

0

(w). Ukkonen [22℄

a
hieved the following result.

Theorem 2 ([22℄) For any a 2 � and w 2 �

�

, STree

0

(w)
an be updated to

STree

0

(wa) in amortized
onstant time.

Here we only re
all essen
e of Ukkonen's algorithm together with some supporting

lemmas and propositions.

Let y be the longest string in Fa
tor(w)\SuÆx (wa). Then y is
alled the longest

repeated suÆx of wa and denoted by LRS (wa). Sin
e every string x 2 SuÆx(y)

belongs to Fa
tor(w), we do not need to newly insert any x into STree

0

(w).

Lemma 6 Let a 2 � and w 2 �

�

. Let y = LRS (w). For any string x 2 SuÆx (w)�

SuÆx (y),

wa

=)

x

=

w

=)

x

�a.

80

Bidire
tional Constru
tion of SuÆx Trees

Proof. Sin
e y = LRS (w), any string x 2 SuÆx (w)� SuÆx (y) appears only on
e in

w as a suÆx of w, and is therefore

w

=)

x

= x. Also, x is followed only by a in wa, and

thus

wa

=)

x

= xa. 2

This lemma implies that a leaf node of STree

0

(w) is also a leaf node in STree

0

(wa).

Thus we need no expli
it maintenan
e for leaf nodes. Namely, we
an insert all strings

of SuÆx (w)� SuÆx (y) into STree

0

(w) automati
ally (for more detail, see [22℄).

Proposition 7 Let a 2 � and w 2 �

�

. Let y = LRS (w) and z = LRS (wa). For

any string x 2 SuÆx(y)� SuÆx (z)a

�1

,

wa

=)

x

= x.

Proof. Firstly, we
onsider the empty string ". It always belongs to SuÆx (y) �

SuÆx (z)a

�1

, sin
e " 2 SuÆx (y) and " =2 SuÆx (z)a

�1

. It is now obvious that

wa

=)

"

= ".

Now we
onsider other strings. That xa =2 SuÆx (z) implies the existen
e of b 2 �

su
h that xb 2 Fa
tor(w) and b 6= a. Therefore, we have

wa

=)

x

= x. 2

We start from the lo
ation
orresponding to LRS (w) and
onvert STree

0

(w) to

STree

0

(wa), while
reating new expli
it nodes if ne
essary to insert new suÆxes into

STree

0

(w), a

ording to the above proposition. Now the next question is how to

dete
t the lo
ations where new expli
it nodes should be
reated.

We here de�ne the eliminator � for any
hara
ter a 2 � by

a� = �a = "

and j�j = �1. Moreover, we de�ne that � 2 Pre�x (") and � 2 SuÆx ("), but � =2

Pre�x(x) and � =2 SuÆx (x) for any x 2 �

+

. The symbol �
orresponds to the

auxiliary node ? introdu
ed by Ukkonen [22℄. Owing to the introdu
tion of �, we

an establish the following lemma.

Lemma 7 Let a 2 � and w 2 �

�

. Let y = LRS (w) and z = LRS (wa). Let

x 2 SuÆx (y) � SuÆx (z)a

�1

. Suppose t is the longest string in Pre�x (x) su
h that

w

=)

t

= t. Let x

0

= SuÆx (x) with jx

0

j+1 = jxj and t

0

= SuÆx (t) with jt

0

j+1 = jtj. For

string � 2 �

�

su
h that t� = x, t

0

� = x

0

.

Noti
e that we
an rea
h string x

0

via the suÆx link of the node for t in STree

0

(w)

and along the path spelling out � from the node for t

0

(re
all De�nition 2). Moreover,

Proposition 6 guarantees that t

0

is an expli
it node in STree

0

(w). Ukkonen proved

that x

0

an be found in amortized
onstant time by using the suÆx link of node

w

=)

t

.

3.2 Left Extension

Weiner [23℄ proposed an algorithm to
onstru
t STree(aw) by updating STree(w)

with a 2 � in amortized
onstant time. On the other hand, this se
tion is devoted to

the exposition of the
onversion from STree

0

(w) to STree

0

(aw). In so doing, we insert

pre�xes of aw into STree

0

(w).

81

Pro
eedings of the Prague Stringology Conferen
e '02

Lemma 8 Let a 2 � and w 2 �

�

. For any string x 2 Fa
tor(w) � Pre�x(aw),

w

=)

x

=

aw

=)

x

.

Proof. Let b be the unique
hara
ter that follows x in w. (When

w

=)

x

= x, then b = ".)

Sin
e x =2 Pre�x (aw), there is no new o

urren
e of x in aw. Therefore, b is also the

only
hara
ter following x in aw. Hen
e

w

=)

x

=

aw

=)

x

. 2

The above lemma ensures that any impli
it node of STree

0

(w) does not be
ome ex-

pli
it in STree

0

(aw) if it is not asso
iated with any pre�x of aw.

Now we turn our attention to the strings in Pre�x (aw). Let x be the longest

string in set Fa
tor(w) \ Pre�x(aw). Then x is
alled the longest repeated pre�x of

aw and denoted by LRP(aw). Sin
e all pre�xes of x belong to Fa
tor(w), we need

not newly insert any of them into STree

0

(w).

Proposition 8 Let a 2 � and w 2 �

�

. Let x = LRP(aw) and y = LRS (w). If

x =2 SuÆx (w)� SuÆx (y), then

aw

=)

x

= x. Otherwise,

aw

=)

x

= aw.

Proof. We �rst
onsider the
ase that x =2 SuÆx (w) � SuÆx (y). Re
all that x is

the longest string in Fa
tor(w) \ Pre�x (aw). Moreover, x =2 SuÆx (w) � SuÆx (y).

Hen
e, there exist two
hara
ters b;
 2 � su
h that xb; x
 2 Fa
tor(aw) and b 6=
.

Thus we have

aw

=)

x

= x.

Now we
onsider the se
ond
ase, x 2 SuÆx (w)� SuÆx (y). Here, x o

urs only

on
e in w as its suÆx. Thus

w

=)

x

= x. On the other hand, by the de�nition of LRP(aw),

we obtain x 2 Pre�x (aw)�fawg. Therefore, there uniquely exists a
hara
ter d 2 �

whi
h follows x in aw. Hen
e we have

aw

=)

x

= aw. 2

The above proposition implies that if LRP(aw) is not on a leaf node in STree

0

(w), it

is represented by an expli
it node in STree

0

(aw), and otherwise it be
omes impli
it

in STree

0

(aw). We stress that this
hara
terizes a di�eren
e between STree

0

(w) and

STree(w). More
on
retely, Weiner's original algorithm
onstru
ts STree(aw) on the

basis of the next proposition.

Proposition 9 For any a 2 � and w 2 �

�

, if x = LRP(aw), then

aw

�!

x = x.

Now the next question is how to lo
ate LRP(aw) in STree

0

(w). Our idea is similar

to Weiner's strategy for
onstru
ting STree(w) [23℄. Let y be the longest element in

set Pre�x(w) [f�g su
h that ay 2 Fa
tor(w). Then y is
alled the base of aw

and denoted by Base(aw). On the other hand, let z be the longest element in set

Pre�x (w) [f�g su
h that

w

=)

az= az. Then z is
alled the bridge of aw and denoted by

Bridge(aw).

Lemma 9 ([23℄) Let a 2 � and w 2 �

�

. If y = Base(aw), then ay = LRP(aw).

Proof. Assume
ontrarily that y

0

is the string su
h that ay

0

= LRP(aw) and jy

0

j > jyj.

By the de�nition of LRP(aw), we have ay

0

2 Pre�x (aw), whi
h yields y

0

2 Pre�x (w).

It, however,
ontradi
ts the pre
ondition that y = Base(aw) sin
e jy

0

j > jyj. 2

82

Bidire
tional Constru
tion of SuÆx Trees

A

ording to the above lemma, we
an utilize Base(aw) for �nding LRP(aw) in

STree

0

(w).

Lemma 10 Let a 2 � and w 2 �

�

. If x = LRP(w), y = Base(aw) and z =

Bridge(aw), then y 2 Pre�x(x) and z 2 Pre�x(y).

Proof. By Lemma 9 we have ay = LRP(aw). It is easy to see that jLRP(w)j+ 1 �

jLRP(aw)j, whi
h implies jxj � jyj. Sin
e x; y 2 Pre�x(w), we obtain y 2 Pre�x (x).

It
an be readily shown that az 2 Pre�x(ay), sin
e ay = LRP(aw). Thus we have

z 2 Pre�x (y). 2

The above lemma ensures that we
an �nd both Base(aw) and Bridge(aw) by going

up along the path from the node of LRP(w) in STree

0

(w).

Lemma 11 Let a 2 � and w 2 �

�

. Let y = Base(aw) and z = Bridge(aw). Assume

 2 �

�

is the string satisfying z
 = y. Then, az
 = LRP(aw).

Proof. By Lemma 9 and Lemma 10. 2

A

ording to the above lemma, we
an lo
ate LRP(aw) in STree

0

(w) by going down

from the node

w

=)

az . The only thing not
lari�ed yet is how to move from node

w

=)

z

to

node

w

=)

az . If we maintain the set F

0

below, we
an dete
t LRP(aw) in
onstant time,

where

F

0

= f(

w

=)

x

; a;

w

=)

ax) j x; ax 2 Fa
tor(w); a 2 � ; and

w

=)

ax= a�

w

=)

x

g:

Comparing F

0

and F in De�nition 2, one
an see that F

0

is the set of the labeled

reversed suÆx links of STree

0

(w).

We now have the following theorem.

Theorem 3 For any a 2 � and w 2 �

�

, STree

0

(w)
an be updated to STree

0

(aw) in

amortized
onstant time.

3.3 Mutual In
uen
es

Here, we
onsider mutual in
uen
es between Left Extension and Right Extension.

The next lemma shows what happens to LRP(w) when STree

0

(w) is updated to

STree

0

(wa).

Lemma 12 Let a 2 � and w 2 �

�

. Assume LRP(w) = LRS (w). Let x = LRS (w).

If xa 2 Pre�x(w), then LRP(wa) = xa.

Proof. Sin
e xa 2 Pre�x (w), LRS (wa) = xa. Thus xa = LRP(wa). 2

This lemma shows when and where LRP(wa) moves from the lo
ation of LRP(w)

a

ording to the
hara
ter a newly added to the right of w. Examining the pre
ondi-

tion, \if xa 2 Pre�x(w)", is feasible in O(j�j) time, whi
h regarded as O(1) if � is a

�xed alphabet.

The following lemma stands in
ontrast to Lemma 12.

83

Pro
eedings of the Prague Stringology Conferen
e '02

Lemma 13 Let a 2 � and w 2 �

�

. Assume LRP(w) = LRS (w). Let x = LRP(w).

If ax 2 SuÆx (w), then LRS (aw) = ax .

This lemma shows when and where LRS (aw) moves from the lo
ation of LRS (w)

a

ording to the
hara
ter a newly added to the left of w. Examining the pre
ondition,

\if ax 2 SuÆx (w)", is also feasible in O(j�j) time, and moving from the lo
ation of

LRS (w) to that of LRS (aw)
an be done in
onstant time by the use of the labeled

reversed suÆx link of LRP(w).

As a result of dis
ussion, we �nally obtain the following:

Theorem 4 For any string w 2 �

�

, STree

0

(w)
an be
onstru
ted in bidire
tional

manner and in O(jwj) time.

A bidire
tional
onstru
tion of STree

0

(w) with w =
o
oon is displayed in Fig-

ure 3.

4 Con
luding Remarks

We introdu
ed an algorithm for bidire
tional
onstru
tion of suÆx trees, whi
h per-

forms in linear time. It should be noted that the proposed algorithm
an
onstru
t

an index of w

rev

at the same time, where w

rev

is the reversal of a given string w.

In [14℄, we improved Ukkonen's algorithm so as to
onstru
t not only STree

0

(w) but

also DAWG(w

rev

) in right-to-left on-line manner. The algorithm of this paper leads

bidire
tional
onstru
tion of STree

0

(w) and DAWG(w

rev

), although theoreti
al details

are omitted in this draft.

A
knowledgment

The author wishes to thank Prof. Ayumi Shinohara and Prof. Masayuki Takeda.

Daily fruitful and enthusiasti
 dis
ussion with them led the author to the inspiration

for this work.

Referen
es

[1℄ A. Apostoli
o. The myriad virtues of subword trees. In A. Apostoli
o and

Z. Galil, editors, Combinatorial Algorithm on Words, volume 12 of NATO Ad-

van
ed S
ien
e Institutes, Series F, pages 85{96. Springer-Verlag, 1985.

[2℄ M. Bal��k. Implementation of dawg. In Pro
. The Prague Stringology Club Work-

shop '98 (PSCW'98). Cze
h Te
hni
al University, 1998.

[3℄ A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeu
ht, M. T. Chen, and J. Seiferas.

The smallest automaton re
ognizing the subwords of a text. Theoreti
al Com-

puter S
ien
e, 40:31{55, 1985.

84

Bidire
tional Constru
tion of SuÆx Trees

[4℄ A. Blumer, J. Blumer, D. Haussler, R. M
Connell, and A. Ehrenfeu
ht. Complete

inverted �les for eÆ
ient text retrieval and analysis. J. ACM, 34(3):578{595,

1987.

[5℄ D. Breslauer. The suÆx tree of a tree and minimizing sequential transdu
ers.

Theoreti
al Computer S
ien
e, 191:131{144, 1998.

[6℄ M. T. Chen and J. Seiferas. EÆ
ient and elegant subword tree
onstru
tion.

In A. Apostoli
o and Z. Galil, editors, Combinatorial Algorithm on Words, vol-

ume 12 of NATO Advan
ed S
ien
e Institutes, Series F, pages 97{107. Springer-

Verlag, 1985.

[7℄ M. Cro
hemore. Transdu
ers and repetitions. Theoreti
al Computer S
ien
e,

45:63{86, 1986.

[8℄ M. Cro
hemore and W. Rytter. Text Algorithms. Oxford University Press, New

York, 1994.

[9℄ M. Cro
hemore and R. V�erin. On
ompa
t dire
ted a
y
li
 word graphs. In

J. My
ielski, G. Rozenberg, and A. Salomaa, editors, Stru
tures in Logi
 and

Computer S
ien
e, volume 1261 of Le
ture Notes in Computer S
ien
e, pages

192{211. Springer-Verlag, 1997.

[10℄ M. Fara
h. Optimal suÆx tree
onstru
tion with large alphabets. In Pro
. The

38th Annual Symposium on Foundations of Computer S
ien
e (FOCS '97). IEEE

Computer So
iety, 1997.

[11℄ R. Giegeri
h and S. Kurtz. From Ukkonen to M
Creight and Weiner: A unifying

view of linear-time suÆx tree
onstru
tion. Algorithmi
a, 19(3):331{353, 1997.

[12℄ D. Gus�eld. Algorithms on Strings, Trees, and Sequen
es. Cambridge University

Press, New York, 1997.

[13℄ S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. Constru
tion

of the CDAWG for a trie. In Pro
. The Prague Stringology Conferen
e '01

(PSC'01). Cze
h Te
hni
al University, 2001.

[14℄ S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. On-line

onstru
tion of symmetri

ompa
t dire
ted a
y
li
 word graphs. In Pro
. of

8th International Symposium on String Pro
essing and Information Retrieval

(SPIRE'01), pages 96{110. IEEE Computer So
iety, 2001.

[15℄ S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, and

G. Pavesi. On-line
onstru
tion of
ompa
t dire
ted a
y
li
 word graphs. In

A. Amir and G. M. Landau, editors, Pro
. 12th Annual Symposium on Combi-

natorial Pattern Mat
hing (CPM'01), volume 2089 of Le
ture Notes in Computer

S
ien
e, pages 169{180. Springer-Verlag, 2001.

[16℄ S. Inenaga, A. Shinohara, M. Takeda, and S. Arikawa. Compa
t dire
ted a
y
li

graphs for a sliding window. In Pro
. of 9th International Symposium on String

Pro
essing and Information Retrieval (SPIRE'02), Le
ture Notes in Computer

S
ien
e. Springer-Verlag, 2002. (to appear).

85

Pro
eedings of the Prague Stringology Conferen
e '02

[17℄ M. G. Maa�. Linear bidire
tional on-line
onstru
tion of aÆx trees. In R. Gian-

arlo and D. Sanko�, editors, Pro
. 11th Annual Symposium on Combinatorial

Pattern Mat
hing (CPM'00), volume 1848 of Le
ture Notes in Computer S
ien
e,

pages 320{334. Springer-Verlag, 2000.

[18℄ U. Manber and G. Myers. SuÆx arrays: A new method for on-line string sear
hes.

SIAM J. Compt., 22(5):935{948, 1993.

[19℄ E. M. M
Creight. A spa
e-e
onomi
al suÆx tree
onstru
tion algorithm.

J. ACM, 23(2):262{272, 1976.

[20℄ J. Stoye. AÆxb�aume. Master's thesis, Universit�at Bielefeld, 1995. (in German).

[21℄ J. Stoye. AÆx trees. Te
hni
al Report 2000{4, Universit�at Bielefeld, Te
hnis
he

Fakult�at, 2000.

[22℄ E. Ukkonen. On-line
onstru
tion of suÆx trees. Algorithmi
a, 14(3):249{260,

1995.

[23℄ P. Weiner. Linear pattern mat
hing algorithms. In Pro
. 14th Annual Symposium

on Swit
hing and Automata Theory, pages 1{11, 1973.

86

Bidire
tional Constru
tion of SuÆx Trees

Figure 3: A bidire
tional
onstru
tion of STree

0

(w) with w = ababa
. Solid arrows

represent edges while dotted arrows denote labeled reversed suÆx links. On Right

Extension, labeled reversed suÆx links are used for the reversed dire
tion, that is,

as \normal" suÆx links. In ea
h phase, a gray triangle (star, respe
tively) indi
ates

the lo
ation of the longest repeated pre�x (suÆx, respe
tively). The newly added

hara
ter is underlined in ea
h phase. When STree

0

(ab) is updated to STree

0

(bab),

the node for string b be
omes impli
it (Proposition 8). Due to the
onversion of

STree

0

(bab) into STree

0

(abab), LRP(abab) moves via the labeled reversed suÆx link,

and LRS (abab) also moves to the same position a

ording to Lemma 13. Then,

the suÆx tree is updated to STree

0

(ababa) where LRS (ababa) moves while spelling

out the new
hara
ter a along the edge. Note that LRP(ababa) also moves due to

Lemma 12. Sin
e the pre
ondition of Lemma 12 is not satis�ed in the string ababa
,

LRP(ababa
) does not move in STree

0

(ababa
). For smart
onstru
tion, we also

maintain the labeled reversed suÆx link of the longest repeated suÆx even if it is not

on an expli
it node (see STree

0

(bab), for instan
e). This labeled reversed suÆx link

is the only suÆx link that would be \modi�ed" after it is
reated. For example, the

labeled reversed suÆx link of the node for string a in STree

0

(a) is deleted in STree

0

(ab)

sin
e it no longer satis�es the de�nition of labeled reversed suÆx links. On the other

hand, that of the node for string ab in STree

0

(abab) still exists in STree

0

(ababa) as

that of the node for string aba.

87

Image Re
ognition Using Finite Automata

Tom�a�s Skopal, V�a
lav Sn�a�sel, Mi
hal Kr�atk�y

Department of Computer S
ien
e

V

�

SB-Te
hni
al University Ostrava

17. listopadu 15, 708 33 Ostrava

Cze
h Republi

e-mail: ftomas.skopal, va
lav.snasel, mi
hal.kratkyg�vsb.
z

Abstra
t. In this paper we introdu
e an idea of image re
ognition using
on-

ventional (single-dimensional) �nite automata. This approa
h
ould be an el-

egant alternative to
ompli
ated solutions based on two-dimensional languages

and two-dimensional automata. In
onsequen
e, this method
ould be generally

extended to the
ontext of higher-dimensional languages beyond the s
ope of

image re
ognition.

1 Introdu
tion

Image re
ognition re
ently be
ame an obje
t of interest for theory of automata. The

pi
ture, a re
tangular raster,
an be
onsidered as a senten
e of a two-dimensional

language where the pixels of pi
ture are
hara
ters of a �nite alphabet.

It is obvious that senten
es of two or more-dimensional language
annot be re
-

ognized by \
onventional" automata. Conventional automaton takes the
hara
ters

from the input one by one as they appear in a single-dimension senten
e. On the

other side, two-dimensional senten
e pro
essing (e.g. pi
ture) is not so unambiguous,

there exist four dire
tions in whi
h the senten
e
an be pro
essed in ea
h step { left,

right, upwards, downwards. There were several two-dimensional automata designed,

e.g. 4-way �nite-state automata [BH67℄.

Our solution tries to exploit the existing well-established area of \
onventional"

automata together with the transformation of the two-dimensional language into a

single-dimensional one. The transformation of a pi
ture (or two-dimensional sen-

ten
e)
onsists of spa
e linearization. This means that the pixels of a pi
ture are

linearly ordered and the resultant ordering along with the original pi
ture de�ne the

appropriate single-dimensional senten
e. The linear order is performed using a spa
e

�lling
urve. In this paper we propose
ertain
urves whi
h were proved to be the

good spa
e-des
ribing
urves in many appli
ations (espe
ially in data storage and

retrieval). However, the quality of the
urves may di�er in our
ase and therefore we

refer to [SKS02℄ where we dis
uss some general properties of spa
e �lling
urves.

On
e we have
hosen the
urve for language des
ription we must
onstru
t an

automaton that re
ognizes a given pi
ture in its \
at shape". However, none of the

spa
e �lling
urves des
ribe the spa
e (and pi
ture) perfe
tly, some distortion of the

pi
ture re
ognition must be taken into a

ount. This seeming drawba
k
an turn over

88

Image Re
ognition Using Finite Automata

to an advantage if we realize that the measure of re
ognition distortion may represent

similarity of the re
ognized pi
ture to the prospe
tive pattern.

Automaton
onstru
tion for re
ognition of the linearized pi
ture is based on the

Levenshtein DFA where the Levenshtein metri
 (edit distan
e) serves as the measure

for the allowed pi
ture distortion.

2 Two-dimensional Languages

Informally, a two-dimensional string is
alled a pi
ture and is de�ned as a re
tangular

array of symbols taken from �nite alphabet �. A two-dimensional language (e.g.

pi
ture language) is then a set of pi
tures.

A generalization of formal languages to two dimensions is possible in di�erent

ways, and several formal models to re
ognize or generate two-dimensional obje
ts

have been proposed in the literature (see [KM1, KM2, LMN98℄). These approa
hes

were initially motivated by problems arising in the framework of pattern re
ognition

and image pro
essing.

De�nition [RS97℄ A two-dimensional string (e.g. pi
ture) over � is a two-

dimensional re
tangular array of elements from �. The set of all two-dimensional

strings over � is denoted as �

��

. A two-dimensional language over � is a subset of

�

��

.

Given a pi
ture p 2 �

��

, l

1

(p) denotes the number of rows and l

2

(p) denotes the

number of
olumns of p.

The pair (l

1

(p); l

2

(p)) is
alled the size of the pi
ture p. The set of all pi
tures over �

of size (m;n), with m;n > 0 will be indi
ated as �

m�n

. Furthermore, if 1 � i � l

1

(p)

and 1 � j � l

2

(p), then p(i; j) (or equivalently p

i;j

) denotes the symbol in pi
ture p

on
oordinates (i; j).

Two-dimensional languages, or pi
ture languages, are an interesting generalization

of the standard languages of
omputer s
ien
e. Rather than one-dimensional strings,

we
onsider two-dimensional arrays of symbols over a �nite alphabet. These arrays

an then be a

epted or reje
ted by various types of automata. The introdu
tion of

two-dimensional automata brought a new sort of automata on the stage, with its own

huge theoreti
al ba
kground.

3 Another Approa
h

Our approa
h is to reuse the existing traditional (single-dimensional) automata (lan-

guages respe
tively) and simplify the automaton
onstru
tion problem. The most

important thing is to transform the two-dimensional language (pi
tures) into one-

dimensional strings. This
an be done using spa
e �lling
urves. The
onse
utive

automaton
onstru
tion depends on the properties of spa
e �lling
urve we have
ho-

sen.

89

Pro
eedings of the Prague Stringology Conferen
e '02

3.1 Spa
e Filling Curves

We want to transform the two-dimensional string over � into the one-dimensional

string over �. The two-dimensional string over � is a two-dimensional re
tangle array

of elements of �. We
an look at the array as a two dimensional spa
e
 = D

1

�D

2

,

where the
ardinality of domain D

1

(jD

1

j) is equal to the rows
ount of the array and

jD

2

j is equal to the
olumns
ount. The tuple (point) with
oordinates (
olumn; row)

within the spa
e will have a value in �.

Many spa
e �lling
urves have been developed, for example C-
urve, Z-
urve or

Hilbert
urve ([Ma99℄). For deeper a
quaintan
e with the topi
 of general spa
e �lling

urves we refer to the
omprehensive monography by Hans Sagan [Sa94℄.

The usage of the
urves isn't in two-dimensional spa
e only, but the
urves �ll any

ve
tor spa
e with arbitrary dimension. It is possible to use the
urves for transforma-

tion of the n-dimensional string over � into the one-dimensional string over �. We

an see C-
urve, Hilbert
urve, and Z-
urve �lling the two dimensional spa
e 8� 8 in

Figure 1.

Figure 1: The spa
e �lling
urves. a) C-
urve, b) Hilbert
urve, and
) Z-
urve.

We
an
onsider several
urves, but it is
onvenient to
hoose the
urve that

is highly self-similar ([Ma99℄, [SKS02℄) { informally, it means that points that are

geometri
ally
lose, would have to lie
lose on the
urve. For example, the Z-
urve is

used for indexing of multidimensional data with UB-trees ([Ba97℄). In the following

se
tion we will des
ribe the Z-
urve as an example of spa
e �lling
urve.

3.2 Z-address

De�nition 1 (Z-address)

Let
 be an n-dimensional spa
e. For tuple O 2
 with n attributes and binary

representation attribute value A

i

= A

i;s�1

A

i;s�2

: : : A

i;0

, where 1 � i � n. Then

Z(O) =

s�1

X

j=0

n

X

i=1

A

i;j

2

jn+i�1

is the Z-address fun
tion for spa
e
.

90

Image Re
ognition Using Finite Automata

The attributes of tuple de�ne the
oordinates of point representing tuple in the

spa
e
. If we are
al
ulating the Z-address for all points of n-dimensional spa
e

and order the points a

ording their Z-address value, we get the Z-
urve �lling the

entire spa
e
 (see Figure 2a). For
al
ulation of tuple Z-address exists algorithm

with linear
omplexity - so
alled bit interleaving algorithm (see bellow).

Figure 2: a) The two-dimensional spa
e (image) 8 � 8 �lled by Z-
urve. b) Pi
ture

in image interleaved by the Z-
urve.

Z-address
al
ulation example

We see the
al
ulation of Z-address a

ording bit interleaving algorithm for point

(6,13) in two-dimensional spa
e in Figure 3. Numbers 6 and 13 have the binary

form 0110 and 1101 respe
tively. We obtain the
oordinate values as four pla
es bit

strings. Maximal values for four pla
es binary number is 16. The domains D

i

of both

attribute are sets f0,1, : : :, 14,15g, point lies in two-dimensional spa
e 16� 16. The

result point Z-address is then 10110110 (182 de
imal).

1

1 1 0 1 0 1 1 0

a)

1 1 0 1 0 1 1 0

1 0

b)

1 1 0 1 0 1 1 0

1 0 1

c)

1

1

0 1 0 1 1 0

1 0 1 1

d)

1

1

1

0 1 0 1 1 0

1 0 1 1 0

e)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1

f)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1 1

g)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1 1 0

h)

1

Figure 3: The Z-address
al
ulation a

ording to bit interleaving algorithm for point

(6; 13) in two-dimensional spa
e 16� 16.

91

Pro
eedings of the Prague Stringology Conferen
e '02

It is possible to go through the entire spa
e passing upon Z-
urve. We interleave a

pi
ture (the two-dimensional string) over � by Z-
urve and we re
ognize the pi
ture

by the \
lassi
al" one-dimensional �nite automata (e.g. see Figure 2b). The automata

onstru
tion of the pi
ture re
ognition is outlined in the next se
tion.

3.3 Automaton Constru
tion

The automaton will re
ognize a square pi
ture of size x � y within an image of a

greater size (see Figure 2b).

Constru
tion

The automaton type is well-known NDFA for mat
hing patterns with k di�eren
es

{ in other words, it is an automaton for approximate string mat
hing using Leven-

shtein metri
. The
onstru
tion takes as a parameter the pattern senten
e (pi
ture

to be re
ognized) and a Levenshtein distan
e threshold whi
h de�nes the maximal

toleran
e value of the above mentioned pi
ture distortion. For detailed information

on
onstru
tion of the Levenshtein automata see [Ho96℄.

The Levenshtein distan
e threshold is
omputed as the minimal distan
e of the

pattern pi
ture to an input pi
ture when the
orre
t input is still re
ognizable. More

learly, the
orre
t input pi
ture may appear on any position in the image and the

automaton must re
ognize the pi
ture on this position. However, the threshold value

may
ause that they
an be re
ognized also in
orre
t pi
tures. This impre
ise be-

haviour
ould serve as a similarity re
ognition be
ause the re
ognized pi
ture is always

within the Levenshtein distan
e threshold whi
h guarantees only a limited number of

di�eren
es between the pattern pi
ture and the input pi
ture. Pi
tures that are
lose

(in terms of Levenshtein distan
e)
ould be
onsidered as similar to ea
h other.

In following we will fo
us on measuring of the pattern pi
ture and input pi
ture

using Levenshtein metri
.

3.3.1 What is the Levenshtein Distan
e?

Levenshtein distan
e (LD) is a measure of the similarity between two strings, whi
h

we will refer to as the sour
e string (s) and the target string (t). The distan
e is the

number of deletions, insertions, or substitutions required to transform s into t. For

example,

If s is "test" and t is "test", then LD(s,t) = 0, be
ause no transformations are

needed. The strings are already identi
al.

If s is "test" and t is "tent", then LD(s,t) = 1, be
ause one substitution (
hange

\s" to \n") is suÆ
ient to transform s into t. The greater the Levenshtein distan
e,

the more di�erent the strings are.

Levenshtein distan
e is named after the Russian s
ientist Vladimir Levenshtein,

who devised the algorithm in 1965 [Le66℄. If you
an't spell or pronoun
e Levenshtein,

the metri
 is also sometimes
alled edit distan
e.

The Levenshtein distan
e algorithm (based on dynami
 programming) has been

used in:

� Spell
he
king

� Spee
h re
ognition

92

Image Re
ognition Using Finite Automata

� DNA analysis

� Plagiarism dete
tion

The Algorithm { step des
ription

1. Set n to be the length of s.

Set m to be the length of t.

If n = 0, return m and exit.

If m = 0, return n and exit.

Constru
t a matrix
ontaining 0 : : :m rows and 0 : : : n
olumns.

2. Initialize the �rst row to 0 : : : n.

Initialize the �rst
olumn to 0 : : :m.

3. Examine ea
h
hara
ter of s (i from 1 to n).

4. Examine ea
h
hara
ter of t (j from 1 to m).

5. If s[i℄ equals t[j℄, the
ost is 0.

If s[i℄ doesn't equal t[j℄, the
ost is 1.

6. Set
ell d[i,j℄ of the matrix equal to the minimum of: a. The
ell immediately

above plus 1: d[i� 1; j℄ + 1.

b. The
ell immediately to the left plus 1: d[i; j � 1℄ + 1.

. The
ell diagonally above and to the left plus the
ost: d[i� 1; j � 1℄ +
ost.

7. After the iteration steps (3, 4, 5, 6) are
omplete, the distan
e is found in
ell

d[n;m℄.

3.4 Examples

As we have said earlier, the Levenshtein threshold value is
omputed as a maximum

distan
e of the pattern pi
ture and the
orre
t input pi
ture on any position in the

image being re
ognized. In Figure 4 are depi
ted three examples of pi
tures (sized

3� 3) in images (sized 8� 8) and its distan
es to pattern pi
tures.

Note that the pixel values are
hara
ters from a �nite alphabet. The numbers

next to the pixels are the
hara
ter identi�ers. The gaps denoting those pixels of

image that are not pixels of the pi
ture are represented with appropriate
hara
ters

but in our examples, for simpli
ity and
larity, the gap is represented with a spe
ial

hara
ter that is not
ontained in the alphabet �. This spe
ial
hara
ter ensures the

worst mat
hing
ase, thus the real distan
e
omputations will be always smaller or

equal.

3.5 Extension to Multidimensional Languages

Be
ause the spa
e �lling
urve remains single-dimensional even for multidimensional

spa
es, we
an extend the s
ope of two-dimensional languages to the multidimen-

sional languages without the need of
hanging the automaton
onstru
tion. Then,

multidimensional senten
es
an be
onstru
ted simply by extending the language with

additional
oordinates.

93

Pro
eedings of the Prague Stringology Conferen
e '02

Figure 4: Measuring the Levenshtein distan
e on pi
tures.

In general, we
an say that the impre
ision
aused by the Levenshtein distan
e

threshold will in
rease with in
reasing dimension. This fa
t arises from the behaviour

of the spa
e �lling
urves in high-dimensional ve
tor spa
es. The other fa
tor is the

relation of senten
e size to spa
e size. The longer senten
es and smaller senten
e/spa
e

size ratio, the lower impre
ision.

4 Con
lusions

In this paper we have proposed an alternative solution of image re
ognition and even

multidimensional language re
ognition. This method is based on spa
e �lling
urves

and Levenshtein automaton
onstru
tion. The interesting property of this approa
h

is an ability of similarity re
ognition.

94

Image Re
ognition Using Finite Automata

Referen
es

[Ba97℄ Bayer R. The Universal B-Tree for multidimensional indexing: General

Con
epts. In: Pro
. Of World-Wide Computing and its Appli
ations 97

(WWCA 97). Tsukuba, Japan, 1997.

[BH67℄ M.Blum, C.Hewitt. Automata on a 2-dimensional tape, 8th IEEE Symp.

on Swit
hing and Automata Theory, 1967, pp. 155-160

[Ho96℄ J.Holub. Redu
ed Nondeterministi
 Finite Automata for Approximate

String Mat
hing, Pro
eedings of the Prague Stringologi
 Club Workshop,

1996

[KM1℄ J.Kari, C.Moore. Re
tangles and Squares Re
ognized by Two-dimensio-

nal Automata, submitted, 2002

[KM2℄ J.Kari, C.Moore. New results on alternating and non-deterministi
 two-

dimensional �nite-state automata, In: Pro
. of the Symposium on Theo-

reti
al Aspe
ts of Computer S
ien
e (STACS), LNCS, 2001.

[LMN98℄ K.Lindgren, C.Moore, M.Nordahl. Complexity of Two-dimensional Pat-

terns, In: Journal of Statisti
al Physi
s 91(5-6) (1998) 909-951.

[RS97℄ D. Giammarresi, A. Restivo. Two-Dimensional Languages, In: Hand-

book of Formal Languages, vol 3, G. Rowzenberg and A. Salomaa eds,

Springer-Verlag, 1997,
hapter 4, 215{267.

[Le66℄ V.I.Levenshtein. Binary
odes
apable of
orre
ting deletions, insertions

and reversals, Soviet Physi
s-Doklady 10 (1966), 707-710.

[Ma99℄ Markl, V.: Mistral: Pro
essing Relational Queries using a Multidimen-

sional A

ess Te
hnique, Ph.D. thesis, Te
hni
al University Mun
hen,

http://mistral.in.tum.de/results/publi
ations/Mar99.pdf, 1999

[Sa94℄ Sagan H. Spa
e-Filling Curves, Springer-Verlag, 1994

[SKS02℄ Skopal T., Kr�atk�y M., Sn�a�sel V.: Properties of Spa
e Filling Curves And

Usage With UB-trees. Submitted to MIS 2002.

95

Split and join for minimizing: Brzozowski's

algorithm

J.-M. Champarnaud

1

, A. Khorsi

2

, T. Parantho�en

1

1

LIFAR, University of Rouen, Fran
e

f
hamparnaud,paranthoeng�dir.univ-rouen.fr

2

CSD, University of Djilali Liabes, Sidi-Bel-Abbes, Algeria

ahmed khorsi�ly
os.
om

Abstra
t. Brzozowski's minimization algorithm is based on two su

essive de-

terminization operations. There is a paradox between its (worst
ase) expo-

nential
omplexity and its ex
eptionally good performan
e in pra
ti
e. Our

aim is to analyze the way the twofold determinization performs the minimiza-

tion of a deterministi
 automaton. We give a
hara
terization of the equiva-

len
e
lasses of A w.r.t. the set of states of the automaton
omputed by the

�rst determinization. The se
ond determinization is expe
ted to
ompute these

equivalen
e
lasses. We show that it
an be repla
ed by a spe
i�
 pro
edure

based on the
lasses
hara
terization, whi
h leads to a more eÆ
ient variant of

Brzozowski's algorithm.

Key words: Finite automata, DFA minimization, Brzozowski's algorithm.

1 Introdu
tion

It is well known that given a regular language L over an alphabet � there exists a

anoni
al deterministi
 automaton whi
h re
ognizes L, namely the minimal (deter-

ministi
) automaton of L, whose states are the left quotients of L w.r.t. the words of

�

�

. This automaton, denoted by A

L

, is unique (up to an isomorphism) and it has a

minimal number of states [13℄. Moreover, it
an be
omputed from any determinis-

ti
 automaton re
ognizing L by merging states whi
h have identi
al right languages.

There exist numerous algorithms to minimize a deterministi
 automaton. Watson

published a taxonomy on this topi
 [18℄.

Among the various possible
onstru
tions, Brzozowski's minimization algorithm [3℄

is of a spe
i�
 interest, regarding to several
riteria whi
h are dis
ussed below. Let us

�rst re
all how it works. Let A be a (non ne
essarily deterministi
) automaton, d(A)

be the subset automaton of A and r(A) be the reverse automaton of A. Brzozowski's

algorithm is based on the following theorem:

A

L

= d(r(d(r(A))))

This is a deep result sin
e it relates DFA minimization to a basi
 operation, the de-

terminization one. Let us mention that it has been generalized by Mohri to the
ase of

96

Split and join for minimizing: Brzozowski's algorithm

bideterminizable transdu
ers de�ned on the tropi
al semiring [12℄. Brzozowski's the-

orem is also a fundamental tool for the
omputation of the nondeterministi
 minimal

automata of a regular language. Let us
ite the implementation [6℄ of the
anoni-

al automaton C

L

de�ned by Carrez [4, 1℄ and the
onstru
tion of the fundamental

automaton F

L

by Matz and Pottho� [11℄.

We are here espe
ially interested by algorithmi
 and
omplexity features. Watson

used the fa
t that Brzozowski's algorithm
an take a nondeterministi
 automaton

as input to design an algorithm whi
h dire
tly
onstru
ts a minimal deterministi

automaton from a regular expression [19℄. Sin
e our aim is to study the way Br-

zozowski's algorithm performs a minimization, we will essentially
onsider the
ase

when the initial automaton is a deterministi
 one. The paradox is the following: sin
e

Brzozowski's algorithm performs two determinizations, its (worst
ase)
omplexity is

exponential w.r.t. the number of states of the initial automaton; nevertheless, as

reported by Watson [18℄, Brzozowski's algorithm has proved to be ex
eptionally good

in pra
ti
e, usually out-performing Hop
roft's algorithm [7℄ signi�
antly. Let us add

that the average
omplexity of the algorithm has been proved to be exponential for

group automata, although they likely are a favourable
ase sin
e they are both de-

terministi
 and
odeterministi
 [14℄.

Our
ontribution is the following. Let A be a deterministi
 automaton. We give a

hara
terization of the equivalen
e
lasses of A w.r.t. the set of states of dr(A), that

is after the �rst determinization. The se
ond determinization is expe
ted to
ompute

these equivalen
e
lasses. We show it
an be repla
ed by a spe
i�
 pro
edure based

on the
lasses
hara
terization, whi
h leads to a more eÆ
ient variant of Brzozowski's

algorithm.

Next se
tion re
alls some useful notations and de�nitions of automata theory.

Se
tion 3 is espe
ially devoted to determinization and minimization operations. Se
-

tion 4 presents Brzozowski's minimization algorithm and its proof. Se
tion 5 provides

an original analysis of the algorithm and the variant it leads to.

2 Preliminaries

Let us �rst review basi
 notions and terminology
on
erning �nite automata and

regular languages. For further details,
lassi
al books [2, 8℄ or handbooks [20℄ are

ex
ellent referen
es.

Let � be a non-empty �nite set of symbols,
alled the alphabet. Symbols are

denoted by x

1

; x

2

; : : : ; x

m

. A word u over � is a �nite sequen
e (y

1

; y

2

; :::; y

n

) of

symbols, usually written y

1

y

2

:::y

n

. The length of a word u, denoted juj is the number

of symbols in u. The empty word denoted by " has a zero length. If u = y

1

y

2

:::y

n

and

v = z

1

z

2

:::z

p

are two words over �, their
on
atenation u �v, usually written uv, is the

word y

1

y

2

:::y

n

z

1

z

2

:::z

p

. The set of all the words over � is denoted �

�

. A language over

� is a subset of �

�

. The operations of union,
on
atenation and star over the subsets

of �

�

are
alled regular operations. The regular languages over � are the languages

obtained from the �nite subsets of �

�

by using a �nite number of regular operations.

A (�nite) automaton is a 5-tupleM = (Q;�; Æ; I; F) where Q is a (�nite) set of

states, � is a �nite alphabet, I � Q is the set of initial states, F � Q is the set of

�nal states, and Æ is the transition fun
tion. The automatonM is deterministi
 (M

is a DFA) if and only if jIj = 1 and Æ is a mapping from Q� � to Q. OtherwiseM

97

Pro
eedings of the Prague Stringology Conferen
e '02

is a NFA and Æ is a mapping from Q � � to 2

Q

. The automaton M is
omplete if

and only if Æ is a full mapping. A path ofM is a sequen
e (q

i

; a

i

; q

i+1

), i = 1; : : : ; n,

of
onse
utive edges. Its label is the word w = a

1

a

2

: : : a

n

. A word w = a

1

a

2

: : : a

n

is re
ognized by the automaton M if there is a path with label w su
h that q

1

2 I

and q

n+1

2 F . The language L(M) re
ognized by the automaton M is the set of

words whi
h it re
ognizes. Two automata M and M

0

are equivalent if and only if

they re
ognize the same language. A state is a

essible (resp.
oa

essible) if and

only if there is a path from an initial state to this state (resp. from this state to a

�nal state). An automaton is trim if and only if all its states are both a

essible and

oa

essible.

Kleene's theorem [10℄ states that a language is regular if and only if it is re
ognized

by a �nite automaton.

Let q be a state ofA = (Q;�; Æ; i; F). The right language of q is the language L

A

d

(q)

(written L

d

(q) if not ambiguous) re
ognized by the automaton A

d

(q) = (Q;�; Æ; q; F)

obtained from A by making q the unique initial state. The left language of q is

the language L

A

g

(q) (written L

g

(q) if not ambiguous) re
ognized by the automaton

A

g

(q) = (Q;�; Æ; i; q) obtained from A by making q the unique �nal state. We will

use the following proposition:

Proposition 1 An automaton is deterministi
 if and only if the left languages of its

states are pairwise disjoint.

The reverse r(u) of the word u is de�ned as follows: r(") = " and, if u = u

1

u

2

:::u

p

,

then r(u) = v

1

v

2

:::v

p

, with v

i

= u

p�i+1

, for all i from 1 to p. The reverse of the

language L is the language r(L) = fu j r(u) 2 Lg. The reverse of the automaton

A = (Q;�; Æ; I; F) is the automaton r(A) = (Q;�; r(Æ); F; I), obtained from A by

swapping the role of initial and �nal states and by reversing the transitions.

We will use the following propositions, where A is a trim automaton:

Proposition 2 If A re
ognizes the language L then r(A) re
ognizes the language

r(L).

Proposition 3 If the left (resp. right) language of the state q in A is L

g

(q) (resp.

L

d

(q)), then its left (resp. right) language in r(A) is L

d

(q) (resp. L

g

(q)).

3 Determinization and minimization operations

3.1 Determinization

De�nition 1 Let A = (Q;�; Æ; I; F) be a NFA. The subset-automaton of A is the

automaton d(A) = (Q

0

;�; Æ

0

; fi

0

g; F

0

) de�ned as follows [8, 20℄:

� Set of states: A deterministi
 state is a set of nondeterministi
 states; for all

q

0

in Q

0

, we have q

0

� Q.

� Initial state: The initial state in d(A) is the set I of initial states in A.

98

Split and join for minimizing: Brzozowski's algorithm

� Set of transitions: Let q

0

be a deterministi
 state and a be a symbol in �. If the

transition from q

0

on symbol a is de�ned, then, by
onstru
tion, its target is the

state Æ

0

(q

0

; a) su
h that:

Æ

0

(q

0

; a) =

[

q2q

0

Æ(q; a): (3)

� Set of �nal states: A deterministi
 state is �nal if and only if it
ontains at

least one �nal nondeterministi
 state: q

0

2 F

0

, q

0

\ F 6= ;.

We will use the following proposition:

Proposition 4 The right language of a state q

0

of d(A) is equal to the union of the

right languages of the states q of A belonging to the subset q

0

.

Let n (resp. n') be the number of states in A (resp. in d(A)). As stated by Rabin

and S
ott [16℄, the upper bound n

0

� 2

n

�1
an be rea
hed. Moreover, the automaton

d(A)
an be
omputed with the following
omplexity [15, 5℄: O(

p

n2

2n

) when using

lists, and O(n

2

(logn)2

n

) when using balan
ed sear
h trees.

3.2 Minimization

The (left) quotient of a regular language L w.r.t. a word u of �

�

is the language

u

�1

L = fv 2 X

�

j uv 2 Lg. The minimal automaton A

L

of a regular language L is

de�ned as follows:

� the set of states is the set of quotients of L,

� the initial state is L,

� the �nal states are the quotients whi
h
ontain the empty word,

� the transition fun
tion is su
h that Æ(u

�1

L; x) = (ux)

�1

L.

The automaton A

L

is unique up to an isomorphism and it has a minimal number of

states [13℄. We will use the following proposition:

Proposition 5 A (deterministi
,
omplete, a

essible) automaton is minimal if and

only if the right languages of its states are all di�erent.

The automaton A

L

an be
omputed from any deterministi
 automaton re
ogniz-

ing L by merging states whi
h are equivalent w.r.t. Nerode equivalen
e:

s � t, [s � u 2 F , t � u 2 F , 8u 2 �

�

℄

Computing Nerode equivalen
e
an be realized with a O(n

2

)
omplexity [13℄.

Using the notion of
oarsest partition leads to a
omplexity of O(nlog(n)) [7℄.

99

Pro
eedings of the Prague Stringology Conferen
e '02

4 Brzozowski's minimization algorithm

Let A be an automaton. Let d(A) (resp. r(A)) be the subset automaton (resp. the

reverse automaton) of A. We will write dr(A) for d(r(A)), rdr(A) for r(d(r(A))) and

drdr(A) for d(r(d(r(A)))).

Brzozowski's algorithm is based on the following theorem [3℄:

Theorem 1 (Brzozowski, 1962) Given a (non ne
essarily deterministi
) automaton

A re
ognizing a regular language L, the minimal deterministi
 automaton A

L

of L

an be
omputed by the formula:

A

L

= drdr(A)

Proof. The proof is based on Propositions (1){(5). By
onstru
tion, the automaton

drdr(A) is deterministi
,
omplete and a

essible. From Proposition (2) it re
ognizes

the language L. Let us show that the right languages of drdr(A) are all distin
t. From

Proposition (1) the left languages of dr(A) are pairwise disjoint. From Proposition

(3) the right languages of rdr(A) are the left languages of dr(A). Therefore they are

pairwise disjoint. From Proposition (4) a right language of drdr(A) is a union of right

languages of rdr(A). Sin
e the right languages of rdr(A) are pairwise disjoint, the

right languages of drdr(A) are all distin
t. Thus, by Proposition (5) the automaton

drdr(A) is minimal.

5 Analysis of Brzozowski's algorithm

5.1 Split and join for minimizing

Let A be an automaton whi
h re
ognizes a regular language L. We study the trans-

formation of the sequen
e S

d

= (L

A

d

(q))

q2Q

of the right languages of the states of A,

when the twofold determinization is performed:

S

d

!

rdr

S

1

d

!

drdr

S

2

d

Noti
e that sin
e the languages of S

1

d

are pairwise disjoint and the languages of S

2

d

are all distin
t, S

1

d

and S

2

d

are sets. Let us remind that the right language of a state

is a (left) quotient of L if A is deterministi
 and a subset of the interse
tion of some

(left) quotients of L ifA is nondeterministi
. The �rst determinization splits the right

languages of A into disjoint pie
es, whereas the se
ond one joins the pie
es in order to

re
ombine the set of (left) quotients of L. The e�e
t of the twofold determinization

is illustrated by the Example 1. This example is intentionally simple: the initial

automaton is deterministi
 and even minimal.

Example 1

Let q

1

and q

2

be two states of A. We suppose that there exist three distin
t words,

u, v and w su
h that: L

A

d

(q

1

) = fu; vg, L

A

d

(q

2

) = fv; wg, fq j u 2 L

A

d

(q)g = fq

1

g,

fq j w 2 L

A

d

(q)g = fq

2

g and fq j v 2 L

A

d

(q)g = fq

1

; q

2

g. We suppose that there exist

100

Split and join for minimizing: Brzozowski's algorithm

two distin
t words, s and t su
h that: L

A

g

(q

1

) = fsg, L

A

g

(q

2

) = ftg, fq j s 2 L

A

g

(q)g =

fq

1

g and fq j t 2 L

A

g

(q)g = fq

2

g.

The determinization of r(A) produ
es the three states q

0

1

, q

0

2

and q

0

3

of dr(A) su
h

that: q

0

1

= fq

1

g, q

0

2

= fq

2

g and q

0

3

= fq

1

; q

2

g. The right languages of q

0

1

, q

0

2

and q

0

3

in

rdr(A) are pairwise disjoint (they are respe
tively equal to fug, fwg and fvg).

The e�e
t of the �rst determinization is that the two right languages fu; vg and

fv; wg of A have been split into three right languages in rdr(A): fug, fwg and fvg.

Noti
e that the left languages of q

0

1

, q

0

2

and q

0

3

in rdr(A) are respe
tively equal to

fsg, ftg and fs; tg and thus all distin
t. This is due to the fa
t that A is deterministi

(see Proposition (6)).

The determinization of rdr(A) produ
es the two states q

00

1

and q

00

2

of drdr(A) su
h

that: q

00

1

= fq

0

1

; q

0

3

g and q

00

2

= fq

0

2

; q

0

3

g. The right languages of q

00

1

and q

00

2

in drdr(A)

are distin
t (they are respe
tively equal to fu; vg and fv; wg).

The e�e
t of the se
ond determinization is that the three right languages fug, fwg

and fvg of rdr(A) have been joined into two right languages in drdr(A): fu; vg and

fv; wg.

5.2 The deterministi

ase

Brzozowski's algorithm
an be applied to a nondeterministi
 automaton. Here we

fo
us on the
ase when A is deterministi
. Proposition (6) is due to Brzozowski [3℄.

Proposition (7) and Corollary (1) are very likely not original. These propositions are

gathered in this se
tion for sake of
ompleteness.

Proposition 6 If A is deterministi
, then dr(A) is the minimal automaton of r(L).

Proof. Sin
e A is deterministi
, its left languages are pairwise disjoint, and so are

the right languages of r(A). The right languages of dr(A), whi
h are unions of right

languages of r(A), are therefore all distin
t.

Proposition 7 If A is deterministi
, then a state of rdr(A) is a union of Nerode

equivalen
e
lasses of the automaton A.

Proof. The transition fun
tion of r(A) is denoted by Æ

r

. Let q

1

and q

2

be two states

of A = (Q;�; Æ; i; F). We have:

q

1

� q

2

, [L

A

d

(q

1

) = L

A

d

(q

2

), L

r(A)

g

(q

1

) = L

r(A)

g

(q

2

)℄

Let q

0

be a state of dr(A). By
onstru
tion, there exists a word u of �

�

su
h that

q

0

= Æ

r

(F; u). We have: q 2 Æ

r

(F; u) , u 2 L

r(A)

g

(q). Therefore, q

1

and q

2

are

equivalent if and only if they are su
h that: q

1

2 Æ

r

(F; u) , q

2

2 Æ

r

(F; u). Thus, a

state of rdr(A) is a union of equivalen
e
lasses of states in A.

Corollary 1 Let A be a deterministi
 automaton re
ognizing a regular language L.

Let n be the number of states of A. Let r be the number of (left) quotients of L. Then

the deterministi

omplexity of r(A) is 2

r

� 2

n

.

101

Pro
eedings of the Prague Stringology Conferen
e '02

The following proposition leads to a
hara
terization of the equivalen
e
lasses of

A. It says that two states p and q of A are equivalent if and only if they belong to

the same states of dr(A). This property
an be seen as a
orollary of Proposition (8).

Proposition 8 Let p and q be two states of A. It holds:

p � q , [p 2 P , q 2 P , 8P 2 Q

dr(A)

℄

Proof. We have: p � q , [u 2 L

d

(p) , u 2 L

d

(q), 8u 2 �

�

℄. Moreover L

d

(p) =

S

p2P

r(L

g

(P)), with P 2 Q

dr(A)

. Hen
e the result.

6 A variant of Brzozowski's minimization algorithm

We still assume that A is deterministi
. We show that the Proposition (8) leads

to an original
omputation of the equivalen
e
lasses of the states of A after the

determinization of r(A) is a
hieved. On the one hand this result allows us to have

a better understanding of how Brzozowski's algorithm performs the minimization:

the se
ond determinization a
tually is a state-equivalen
e-based pro
edure. On the

other hand it yields a variant of Brzozowski's minimization algorithm, where the

se
ond determinization is repla
ed by a more eÆ
ient
omputation of the equivalen
e

lasses.

The Algorithm 1
omputes the equivalen
e
lasses of A. The partition of Q

initially
ontains two sets: Q � F and F . At ea
h step of the algorithm, a set Y of

1. Begin

2. Partition fQ� F; Fg

3. Waiting fFg

4. While Waiting 6= ; do begin

5. X First(Waiting)

6. Waiting Waiting � fXg

7. Pro
essed Pro
essed [fXg

8. for all a 2 � do begin

9. Z Æ

r

(X; a); if Z 62 Pro
essed then Waiting Waiting [Z

10. end

11. for all Y 2 Partition do begin

12. K X \ Y

13. if K 6= ; then Partition Partition [K

14. if X 6� Y then Partition Partition [(X �K)

15. if Y 6� Xthen Partition Partition [(Y �K)

16. end

17. end

18. end

Algorithm 1: Algorithm to extra
t equivalen
e
lasses of A.

102

Split and join for minimizing: Brzozowski's algorithm

the
urrent partition
ontains possibly equivalent states, in the sense that so far they

belong to the same states of dr(A). Every time a new state X of dr(A) is pro
essed,

it is
he
ked w.r.t. every set of the partition in order to dete
t sets
ontaining non-

equivalent states of A. The
omplexity of the Algorithm 1 is exponential sin
e it

ontains the determinization of r(A). However it is likely more eÆ
ient to extra
t

equivalen
e
lasses on the
y than performing a se
ond determinization.

7 Con
lusion

Brzozowski's minimization algorithm is both simple and mysterious. It is based on two

basi
 and easily understandable operations. However the behaviour of the algorithm

is not so obvious. Its average
omplexity and experimental performan
e are still

unknown or unexplained. This short analysis is intended to
ontribute to a better

understanding of how this algorithm performs the minimization. In parti
ular it

shows that the pla
e of Brzozowski's algorithm, in a taxonomy su
h as Watson's one,

is among minimization algorithms based on the
omputation of a state equivalen
e.

Referen
es

[1℄ A. Arnold, A. Di
ky and M. Nivat, A note about minimal non-deterministi
 automata,

EATCS Bulletin, 47, 166{169, 1992.

[2℄ D. Beauquier, J. Berstel, and P. Chr�etienne.

�

El�ements d'Algorithmique. Masson, Paris,

1992.

[3℄ J. A. Brzozowski, Canoni
al regular expressions and minimal state graphs for de�nite

events, Mathemati
al Theory of Automata, MRI Symposia Series, Polyte
hni
 Press,

Polyte
hni
 Institute of Brooklyn, NY,12(1962), 529{561.

[4℄ C. Carrez, On the Minimalization of Non-deterministi
 Automaton, Resear
h Report,

Laboratoire de Cal
ul de la Fa
ult�e des S
ien
es de l'Universit�e de Lille, 1970.

[5℄ J.-M. Champarnaud, Subset Constru
tion Complexity for Homogeneous Automata,

Position Automata and ZPC-Stru
tures, Theoret. Comp. S
., 267(2001), 17{34.

[6℄ F. Coulon, Constru
tion de l'automate
anonique d'un langage rationnel, M�emoire de

DEA, sous la dire
tion de J.-M. Champarnaud, Universit�e de Rouen, 2002.

[7℄ J. E. Hop
roft, An n logn algorithm for minimizing states in a �nite automaton, in:

Kohavi and Paz, eds, Theory of Ma
hines and Computation, A
ademi
 Press, New

York, 189{196, 1971.

[8℄ J. E. Hop
roft and J. D. Ullman. Introdu
tion to Automata Theory, Languages and

Computation. Addison-Wesley, Reading, MA, 1979.

[9℄ A. Khorsi, Minimisation des automates �nis d�eterministes, Master thesis, sous la di-

re
tion de D. Ziadi, Universit�e de Sidi-Bel-Abb�es, 2002.

[10℄ S.C. Kleene, Representation of events in nerve nets and �nite automata, Automata

Studies, Prin
eton Univ. Press (1956) 3{42.

103

Pro
eedings of the Prague Stringology Conferen
e '02

[11℄ O. Matz and A. Pottho�, Computing Small Nondeterministi
 Finite Automata,

TACAS'95, BRICS Note Series NS-95-2, 74{88, 1995.

[12℄ M. Mohri, Finite-State Transdu
ers in Language and Spee
h Pro
essing, Computa-

tional Linguisti
s, 23:2, 1997.

[13℄ A. Nerode, Linear Automata Transformation, Pro
eedings of AMS, 9(1958), 541{544.

[14℄ C. Ni
aud, Etude du
omportement en moyenne des automates �nis et des langages

rationnels, Th�ese, Universit�e Paris 7, Fran
e, 2000.

[15℄ J.-L. Ponty. Algorithmique et impl�ementation des automates. Th�ese, Universit�e de

Rouen, Fran
e, 1997.

[16℄ M. O. Rabin and D. S
ott. Finite automata and their de
ision problems. IBM J. Res.,

3(2):115{125, 1959.

[17℄ D. Revuz, Minimization of A
y
li
 Deterministi
 Automata in Linear Time, Theoret.

Comput. S
i. 92(1992), 181{189.

[18℄ B. Watson, Taxonomies and Toolkits of Regular Languages Algorithms, PhD thesis,

Eindhoven University of Te
hnology, The Nederlands, 1995.

[19℄ B. Watson, Dire
tly Constru
ting Minimal DFAs: Combining Two Algorithms by

Brzozowski, in S. Yu and A. Paun, eds, CIAA 2000, London, Ontario, Le
ture Notes

in Computer S
ien
e, 2088(2001), 311{317, Springer.

[20℄ S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of

Formal Languages, volume I, Words, Languages, Grammars, pages 41{110. Springer-

Verlag, Berlin, 1997.

104

