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Preface

The Prague Stringology Conference 2002 (PSC’02) was held at the Department of
Computer Science and Engineering of the Czech Technical University in Prague,
Czech Republic, on September 23-24, 2002. The conference focused on stringology
and related topics. Stringology is a discipline concerned with algorithmic processing
of strings and sequences.

The papers submitted were reviewed by the programme committee and eleven
were selected for presentation at the conference, based on originality and quality.
This volume contains these selected papers.

In years 19962000 the Prague Stringology Club Workshops (PSCW’s) and the
Prague Stringology Conference in 2001 preceded this conference. The proceedings of
these workshops and the conference had been published by Czech Technical University
and are available on WWW pages of PSC. Selected contributions were published in
a special issue of the journal Kybernetika.

The Prague Stringology Club (PSC) was founded in 1996 as a research group at the
Department of Computer Science and Engineering of the Czech Technical University
in Prague. The goal of PSC is to study algorithms on strings and sequences with a
special emphasis on the finite automata theory. The first event PSC organized was
the workshop PSCW’96 consisting only of invited talks. However, since PSCW’97 the
papers are selected based on peer reviews. The aim is not only to present new results
in stringology, but also to have people working on these topics meeting in person.

I would like to thank all those who had submitted papers for PSC’02 as well as
the reviewers. A special thank goes to all the members of the programme committee,
without whose efforts it would not have been possible to put together such a stimu-
lating program of PSC’02. Last, but not least, my thanks go to the members of the
organizing committee for ensuring such a smooth running of the conference.

In Hamilton, Ontario, Canada
on August 2002
Jan Holub
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A Work-Optimal Parallel Implementation of
Lossless Image Compression by Block Matching

Sergio De Agostino

School of Computing
Armstrong Atlantic State University
11935 Abercorn Street
Savannah, Georgia 31419
USA

e-mail: agosQarmstrong.edu

Abstract. Storer suggested that fast encoders are possible for two-dimensional
lossless compression by showing a square greedy matching LZ1 heuristic for bi-
level images, which can be implemented by a simple hashing scheme [S96]. In
this paper, we show a work-optimal parallel algorithm using a rectangle greedy
matching technique requiring O(log M logn) time on the PRAM EREW model,
where n is the size of the image and M the maximum size of a rectangle.

Key words: lossless image compression, sliding dictionary, parallel algorithm,
PRAM EREW

1 Introduction

Textual substitution compression methods (often called “LZ” methods due to the
work of Lempel and Ziv [LZ76]) have been designed by Lempel and Ziv [LZ77, ZL78]
and Storer and Szymanski [SS82]. These methods parse a string in phrases and
replace them with pointers to copies, called targets of the pointers, that are stored in a
dictionary. The encoded string is a sequence of pointers (some of which may represent
single characters). Static methods are when the dictionary is known in advance. By
contrast, with dynamic methods (LZ1 [LZ77] and LZ2 [ZL78]) the dictionary may be
constantly changing as the data is processed (see [BCW90, St88] for references).

Storer [S96] and Storer and Helfgott [SH97] generalized the LZ1 method to lossless
image compression and suggested that very fast encoders are possible by showing a
square greedy matching LZ1 compression heuristic, which can be implemented by a
simple hashing scheme and achieves 60 to 70 percent of the compression of JBIG1 on
the CCITT bi-level image test set.

With LZ1 text compression, one simply proceeds from left to right making matches
in greedy fashion between a substring in the current position and a copy in the part
of the string already seen. A key advantage of 1.Z1 compression is that decoding is
always simple and fast. Another advantage is that it is relatively easy to implement.
The two key issues for practical implementations are how the encoder searches for
matches and how pointers are encoded.
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An image has to be scanned in some linear order. In order to achieve a good
compression performance, bidimensional matches have to be computed. In [SHI7], a
square-match encoding algorithm is proposed using a simple hashing scheme directed
to bi-level images. A 64K table with one position for each possible 4x4 subarray is the
only data structure used. All-zero and all-one squares are handled differently. The
encoding scheme is to precede each item with a flag field indicating whether there is
a monochromatic square, a match or raw data. When there is a match, the 4 x 4
subarray in the current position is hashed to yield a pointer to a copy. This pointer
is used for the current square greedy match and then replaced in the hash table by a
pointer to the current position.

To improve the compression performance, it was also introduced a slower rectangle
greedy matching technique requiring O(M log M) time where M is the size of the
match [SH97]. Therefore, O(nlog M) is the best sequential time for an image of size
n if we compress by rectangle matching with M the maximum size of a rectangle.

Both heuristics work with an unrestricted window. In [CDGO01] a rectangle greedy
matching heuristic using a finite window and a bound to the match size was pre-
sented. The heuristic is suitable for a fast implementation similar to the one in [S96]
and achieves 75 to 90 percent of the compression of JBIG1 on the CCITT bi-level
image test set. In this paper, we show a work-optimal PRAM EREW implementation
of lossless image compression by block matching requiring O(log M logn) time which
uses a rectangle greedy matching technique similar to the one in [CDGO1]. The par-
allel heuristic achieves 95 to 97 percent of the compression of the sequential heuristic
mentioned above [CDL02]. In section 2, we show how the sequential heuristic works.
In section 3, we explain the parallel algorithm. In section 4, conclusions and future
work are given.

2 The Rectangle Greedy Matching Technique

The compression heuristic scans an image n x m row by row (raster scan) (the greedy
matching technique could work with any other scan described in [SH97]). We denote
with p; ; the pixel in position (7,7). The procedure for finding the largest rectangle
with left upper corner (i, j) that matches a rectangle with left upper corner (k,h) is
described in Fig. 1.

At the first step, the procedure computes the longest possible width for a rectangle
match in (4, j) with respect to the position (k,h). The rectangle 1 x ¢ computed at
the first step is the current rectangle match and the sizes of its sides are stored in
stdel and side2. In order to check whether there is a better match than the current
one, the longest one-dimensional match on the next row and column j, not exceeding
the current width, is computed with respect to the row next to the current copy and
to column h. Its length is stored in the temporary variable width and the temporary
variable length is increased by one. If the rectangle R whose sides have size width
and length is greater than the current match, the current match is replaced by R.
We iterate this operation on each row until the area of the current match is greater
or equal to the area of the longest feasible width-wide rectangle, since no further
improvement would be possible at that point. For example, in Fig. 2 we apply the
procedure to find the largest rectangle match between position (0,0) and (6, 6).
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w=k;
r=1;
width = m;
length = 0;

stdel = side2 = area = 0;
repeat
Let py j - -Pr,j4+e—1 be the longest match in (w, h) with £ < width;
length = length + 1;
width = £;
r=r+1;
w=w-+1;
if (length x width > area) {
area = length x width;
sidel = length;
side2 = width;

}

until area > width* (i —k+ 1) orw=1+1

Figure 1: Computing the largest rectangle match in (7, j) and (k, h).

A one-dimensional match of width 6 is found at step 1. Then, at step 2 a better
match is obtained which is 2 x 4. At step 3 and step 4 the current match is still 2 x 4
since the longest match on row 3 and 9 has width 2. At step 5, another match of width
2 provides a better rectangle match which is 5 x 2. At step 6, the procedure stops since
the longest match has width 1 and the rectangle match can cover at most 7 rows. It
follows that 5 x 2 is the greedy match since a rectangle of width 1 cannot have a larger
area. Obviously, this procedure can be used for computing the largest monochromatic
rectangle in a given position (i,7) as well. If the 4 x 4 subarray in position (3, j)
is monochromatic, then we compute the largest monochromatic rectangle in that
position. Otherwise, we compute the largest rectangle match in the position provided
by the hash table and update the table with the current position. If the subarray
is not hashed to a pointer, then it is left uncompressed and added to the hash table
with its current position. The positions covered by matches are skipped in the linear
scan of the image.

As pointed out in [SH97], for typical bi-level images this scheme is extremely
fast for square matches and there is no significant slowdown over simply reading and
writing the image. As mentioned in the introduction, in [SH97] it is shown that the
rectangle greedy matching technique requires O(M log M) time where M is the size
of the match. Therefore, O(nlog M) is the best sequential time for an image of size n
if we compress by rectangle matching with M the maximum size of a rectangle. The
encoding scheme is to precede each item with a flag field indicating whether there
is a monochromatic square (0 for white, 10 for black), a match (110) or raw data
(111). Pointers are encoded with the straightforward encoding with three integers
for z, y and size while a simple variable-length code is used to specify the size of a
monochromatic square. We also mentioned in the introduction that a key issue for
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o 0 1 0 1 1 0 1 0O O O O 1 1 1 stepl

o 0 1 1 1 0O O 1 O O O O O 1 0 step2

10 1 1 1 0 O 1 0 1 0 O0 1 1 1 step3

0 1 1 0 1 1 0 O O O O O O 1 1 step4d

o 1 1 0 1 0 O 1 O O O O O O 1 stepd

o 0 0 0 1.1 0 1 1 O O O 1 1 1 stepb6

o 0 1.0 1 1 0 O 1 O 1 1 1 1 1 stepl

o o 1 0 1 1 O O 1 1 O O 1 1 1 step2

o 0 1.0 1 1 1 0 O O O O 1 1 1 step3

o 0 1.0 1 1 0 1 O O O O 1 1 1 step4

o 0 1. 0 1.1 0 1 0 O O O 1 1 1 stepb

o 0 1.0 1 1 0 1 O O O O 1 1 1 stepb6

o 0 0 0 1.1 0 1 1 O O O 1 1 1

Figure 2: The largest match in (0,0) and (6,6) is computed at step 5.

practical implementations is how pointers are encoded. As pointed out in [SH97], good
pointer coding schemes are important for text compression and become even more
important for images since the number of matches that are used is typically less than
the number found and the straightforward coding uses many more bits per pointer.
With rectangular matches this issue becomes even more significant. The encoding of
monochromatic rectangles is a dominant factor of the compression performance and
the efficiency of the method increases with large images.

In [CDGO1] we experimented our rectangle greedy matching algorithm with a
bounded size dictionary defined by a window comprising the last 64K pixels read. We
bounded by twelve the number of bits to encode either the width or the length of a
rectangle match. We use either four or eight or twelve bits to encode one rectangle
side. Therefore, nine different kinds of rectangle are defined. A pointer is encoded in
the following way:

e the flag field indicating the type of item;

e if the item is not monochromatic, sixteen bits which are raw or indicating the
position of the match in the window;

e three or four bits encoding one of the nine kinds of rectangle;
e bits for the length and the width.

Larger rectangles are less frequent but still relevant for the compression performance.
Then, four bits are used to indicate when twelve bits or eight and twelve bits are
needed for the length and the width. This way of encoding rectangles plays a relevant
role for the compression performance. In fact, it wastes four bits when twelve bits are
required for the sides but saves four to twelve bits when four or eight bits suffice. On

4
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the CCITT bi-level image test set, we achieved 75 to 90 percent of the compression
of JBIGI.

3 The Parallel Algorithm

To achieve logarithmic time we partition an m x n image I in x x y rectangular
areas where x and y are @(logl/2 mn). In parallel for each area, one processor applies
the sequential parsing algorithm so that in logarithmic time each area will be parsed
in rectangles, some of which are monochromatic. We do not allow overlapping of
the monochromatic rectangles when we apply the sequential algorithm to each area.
Each processor could work with a sliding window of size 64K and bounded matches,
using the same pointer encoding scheme described in the previous section. However,
before encoding we wish to compute larger monochromatic rectangles. If we compute
unbounded monochromatic rectangles, the coding for them could be the flag field, log
m bits for the length and log n bits for the width.

In the description of the algorithm, we use four m x n matrices RC, C'C', W and
L which are determined by the parsing procedure on each area. RC([i, j] and CCi, j]
are equal to zero if I[i, j] is not covered by a monochromatic rectangle, otherwise
they are equal to the row and column coordinate of the left upper corner of the
monochromatic rectangle. Wi, j] and L[i, j] are equal to zero if I[i, j] is not covered
by a monochromatic rectangle, otherwise they are equal to the width and length of
the monochromatic rectangle. We also use four matrices TRC, TCC, TW and TR
to store temporary values needed for the computation of the final parsing, which are
initially set to RC', C'C', W and L. The procedure to compute larger monochromatic
rectangles works as in Fig. 3.

Basically, we try to merge monochromatic rectangles adjacent on the horizontal
boundaries and then on the vertical boundaries, doubling in this way the length and
width of each area at each step. It is always the rectangle of an area in odd position
with respect either to the vertical or horizontal order which tries to merge with the
adjacent rectangle in the next area. Generally, this merging operation causes that the
rectangles split into two or three subrectangles. The rectangle from which we start
the merging is split in at most two subrectangles since we want to preserve the upper
left corner. The merging is realized by updating the temporary matrices storing the
information on the monochromatic rectangles computed on the image. If we obtain a
larger rectangle then we update the original matrices, otherwise we continue merging
by working with the temporary values to see if we can get a larger rectangle later.

We describe the procedure more in details. At the first line internal to the main
loop (Figure 3), we consider in parallel the left lower corners of monochromatic rect-
angles of the areas in odd positions which are adjacent to a monochromatic rectangle
with the same color in the next area below. Then, at line 3 we change the width and
length of the rectangle considered, where the length is the sum of the lengths of the
two adjacent rectangles and the width changes if the right corners of the rectangle in
the next area are to the left of the right corners of the other rectangle. At line 4 and
5 the values in the temporary matrices are changed also for the pixels in the next
area since they merged. Obviously, these changes can be made with optimal work in
logarithmic time. As mentioned above, the merging causes a splitting of rectangles
into subrectangles and the values in the temporary matrices must be redefined also
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until > m/2 or y > n/2 do {

1 in parallel for i and j: i = az, a odd, j = TCCJi,j], TRC[i + 1,j] <> 0 and I[i,j] = I[i + 1,5] {

2 in parallel for TRC[:,j] < k<14, <h < min{TCC[i+ 1,j]+ TW[i+1,5]— 1,5 + TW]i,j] — 1} {
3 TWlk,h] = min {TCC[i+ 1,51+ TW[i+1,5] — 1, + TW[i,j] — 1} —j+ 1;

3 TL[k,h] =TL[k,h]+TL[i+ 1,5]; }

4  inparallel fori+1 < k <i+TL[i+1,j],5 < h <min{TCC[i+1,j]+TW[i+1,j]-1,5+TW]|i,j]—1}
5 {TCC[k,h] = j;TRC[k,h] = TRC[i,j|; TW|k,h] = TW|i,j|;TL[k,h] = TL[i,j]; } }

6 in parallel for ¢ and j: TCC[i,j — 1]+ TW{i,j — 1] = 5, TCCJi, j] <> j,TCCJ[i,j] <>= 0 or

7 TCCli, 5] =7 {

8 compute the smallest k with k > j: TCC(4,k) + TW (i, k] > k+ 1,TCC[i,k+1]=k+ 1 or

9 TCC(i, k) + TW[i,k]=k+1

10 in parallel for j < h <k { TCC[i,h] =j; TW][i,h]=k—j+1; } }

11 in parallel for ¢, j: TRCJi,j] = ¢ and TCCJ[i,j] = j

12 if TWTi,j]« TL[i,5] > Wi, j] % L[i, j] in parallel for i < k < i+ TL[3,j],j <h<j+TWI[i,j]{
13 RCli,j] = TRC[i, j]; CC[4, 5] = TCCIi, jl; Wi, j] = TWI[i, j]; L[i, j] = TL[3, j]; }

14 in parallel for i and j: j = ay, a odd, i = TRC[i, j|, TRC[i,j + 1] <> 0 and I[i,5] = I[i,5 + 1] {

15  in parallel for TCC[i,j] < h < j, ¢ < k < min{TRC[i,j + 1]+ TL[i,j+ 1] — 1, + TL[i,j] — 1)} {

16 TL[k,h] = min{TRC[4,5 + 1] + TL[i,j + 1] — 1,i + TL[i, 5] — 1))};

16 TL[k,h] = TL[k,h] + TL[i + 1,5]; }

17 in parallel for j+1 < h < j+TW/[i,j+1],i < k < min{T RC[i, j+1]+TL[i, j+1]—1,i+TL[, j]—1)}
18 { TRC[k,h] = i; TLC[k,h] = TLC[i, j}; TW[k,h] = TW[i,j]; TL[k,h] = TL = [i,5]; } }

19 in parallel for ¢ and j: TRC[i — 1,5]+ TL[: — 1,5] =4 — 1,TRCI[i, j] <> %, TRC[i,j] <>= 0 or

20 TRC[i,j] =i {

21  compute the smallest k with k > 4: TRC(k,j) + TLlk,j] > k+ 1,TRC[k+1,j]=k+1or

22 TRC(k,5) + TL[k,j] = k + 1

23 in parallel for i <h <k { TRC[h,j] =4 TWh,j]=k—i+1; } }

24 in parallel for i, j: ¢ = TRCJi, j] and j = TRCi, j]

25 if TWTi,j] = TL[i, 5] > Wi, j] * L[i,j] in parallel for i < k < i+ TL[i,5], ] <h < j+TWI[i,j] {
2 RCli, j] = TRCli, j); CCli, j] = TCCli, ); Wli, j) = TW i, 1; Lli, j] = TL[i, j]; }

27T ¢ =2x;y =2y; }

Figure 3: How to compute monochromatic rectangles in parallel.

for the pixels covered by the other rectangles produced by the merging. This is done
from line 6 to 10. In parallel we consider all the pixels for which, according to the
temporary values, either they are not on the leftmost column of a rectangle and the
adjacent pixels in front of them result to be on the rightest column of a rectangle
(line 6) or they are on the leftmost column (line 7). For each of them, we compute
the closest pixel to the right for which, according to the temporary values, either it
is not on the rightmost column of a rectangle and the next pixel results to be on the
leftmost column of a rectangle (line 8) or it is on the rightmost column of a rectan-
gle (line 9). Being this pixel the closest to the one computed in lines 6 and 7, they
must be on the rightmost and leftmost column of the same monochromatic rectangle
respectively. This is redefined in the temporary matrices at line 10. At this point,
for each left upper corner of a monochromatic rectangle (line 11) if we obtained a
larger rectangle after the merging (line 12) we can ovewrite the information on the

6
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new rectangle on the original matrices (line 13). Observe that this way of updating
the matrices may introduce overlapping of the monochromatic rectangles. Then, we
repeat the same procedure trying to merge rectangles horizontally (line 14-26).

To analize the complexity of the algorithm, it is enough to consider that at each
iteration of the main loop we double the sides of the areas and to recall the classical
parallel prefix computation technique. All the statements inside the loop require
logarithmic time with optimal parallel work (lines 8-9 and 21-22 by parallel prefix).
Since no operation is executed if there is nothing to merge, the total running time
with optimal parallel work is O(log nlog M), where M is the maximum size of a
monochromatic rectangle. Then, from the matrices we can easily derive the sequence
of pointers with optimal parallel work and logarithmic time by parallel prefix.

4 Conclusions

In this paper, we showed a work-optimal parallel algorithm for lossless image compres-
sion by block matching using a rectangle greedy matching technique which requires
O(log M logn) time. The algorithm is suitable for an implementation on practical
parallel architectures as meshes of trees, multigrids and pyramids.

As future work, a detailed study on how the algorithm must be implemented on
these architectures could be provided. Also, practical parallel algorithms for decom-
pression should be designed.

References
[BCW90] Bell T.C., Cleary J.G., Witten I.H: Text Compression. Prentice Hall.

[CDGO1] Cinque L., De Agostino S., Grande E: LZ1 Compression of Binary Im-
ages using a Simple Rectangle Greedy Matching Technique. IEEE Data
Compression Conference, 492.

[CDL02] Cinque L., De Agostino S., Liberati F.: A Parallel Algorithm for Lossless
Image Compression by Block Matching. IEEE Data Compression Confer-
ence, 450.

[LZ76]  Lempel A., Ziv J: On the Complexity of Finite Sequences. IEEE Trans-
actions on Information Theory, 22, 75-81.

[LZ77]  Lempel A., Ziv J: A Universal Algorithm for Sequential Data Compres-
sion. IEEE Transactions on Information Theory, 23, 337-343.

[St88] Storer J.A.: Data Compression: Methods and Theory. Computer Science
Press.

[S96] Storer J. A.: Lossless Image Compression using Generalized LZ1-Type
Methods. IEEE Data Compression Conference, 290-299.

[SHO7]  Storer J. A., Helfgott H.: Lossless Image Compression by Block Matching.
The Computer Journal, 40, 137-145.

7



Proceedings of the Prague Stringology Conference 02

[SS82] Storer J. A., Szymanski T. G.: Data Compression via Textual Substitu-
tion. Journal of ACM, 29, 928-951.

[ZL78]  Ziv J., Lempel A.;: Compression of Individual Sequences via Variable
Rate Coding. Transactions on Information Theory, 24, 530-536.



A Note on Randomized Algorithm for String
Matching with Mismatches
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Abstract. Atallah et al. [ACDO01] introduced a randomized algorithm for string
matching with mismatches, which utilized fast Fourier transformation (FFT)
to compute convolution. It estimates the score vector of matches between text
string and a pattern string, i.e. the vector obtained when the pattern is slid
along the text, and the number of matches is counted for each position. In this
paper, we simplify the algorithm and give an exact analysis of the variance of
the estimator.

Key words: Pattern matching, mismatch, FFT, convolution, randomized al-
gorithm

1 Introduction

Let T = ty,...,t, be a text string and P = py,...,p, be a pattern string over
an alphabet Y. String matching problem is to find all occurrences of the pattern
P in the text T. Approximate string matching problem is to find all occurrences
of small variations of the original pattern P in the text 7. Substitution, inser-
tion, and deletion operations are often allowed to introduce the variations. In this
paper, we allow the substitution operation only. The derived problem is usually
called string matching with mismatches. It is essentially to compute the score vec-
tor C(T,P) = (¢1,...,¢n_my1) between T and P, where each ¢; counts the number
of matches between the substring ¢;,...,%;1,, 1 of the text T and the pattern P.
If ¢; = m, the pattern exactly occurs at position ¢ in the text. Fig. 1 shows an
example of the score vector. A reasonable amount of effort has been paid for this
problem [Abr87, BYG92, BYP96, FP74, Kar93]. Refer the textbooks [CR94, Gus97]
to know the history and various results.

Recently, Atallah et al. [ACDO1] introduced a randomized algorithm of Monte-
Carlo type which returns an estimation of the score vector C'(T, P). The estimation
is performed by averaging independent equally distributed estimates. Let k& be the
number of ramdomly sampled estimations, then the time complexity is O(knlogm)
by utilizing a fast Fourier transformation (FFT). They showed that the expected
value of the estimation is equal to the score vector, and that the variance is bounded
by (m — ¢;)*/k.

In this paper, we give a slight simplification of their algorithm. Moreover, we
analyze the variance of the estimator exactly.
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1 1 2 3 4 5 6 7 8 10
text a ¢ b a b b a c ¢ b
pattern a b b a c
a b b a c
a b b a c
a b b a ¢
a b b a ¢
a b b C
C; 31 1 5 2 0

Figure 1: Score vector between the text acbabbaccb and the pattern abbac.

2 Preliminaries

Let NV be the set of non-negative integers. Let ¥ be a finite alphabet. An element of

¥* is called a string. The length of a string w is denoted by |w|. The empty string is

denoted by e, that is, || = 0. We denote the cardinality of a set S by |S| or #5S.
We define a function ¢ from ¥ x ¥ to {0,1} by

1 if a =0,
5(“’b):{ 0 ifa#b.

For a text string T' = t,t5...%, and a pattern string P = pips...pm, the score
vector of matches between T and P is defined as C(T, P) = (¢1, ¢, .. ., Cnmy1), Where
¢i = Y52y 0(tiyj—1,pj). That is, ¢; is the number of matches between the text and
the pattern when the first letter of the pattern in positioned in front of the ith letter
of the string.

3 Deterministic Algorithm

In this section, we introduce a deterministic algorithm to compute the score vector
for given text 7" and pattern P. Although it might not be practical for large alphabet,
it will be a base for the randomized algorithm explored in the next section.

3.1 Binary Alphabet Case

We first consider a binary alphabet ¥ = {a,b}. We define a function ¢ : ¥ — {—1,1}
by ¢(a) = 1 and 9(b) = —1. By using 1), we convert the strings 7" and P into the
sequences of integers as follows.
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Lemma 1 Forany1<i<n—m+1, ¢; = (a +m)/2.

Proof. Since ¢; = #{j | tixj—1 = p;, 1 < j < m}, we have al = #{j | tivjo1 =
pi, 1 <j<m}—#{j|tixj-1 #pj, 1 <j<m}=c¢—(m—¢)=2¢—m. Thus
¢ = (a¥ +m)/2. O

The above lemma implies that we have only to compute AY(T, P) to get the score
vector C'(T, P). Since the sequence AY(T, P) is the convolution of ¢(T) with the
reverse of ¢(P), we can calculate all the a;’s simultaneously by the use of fast Fourier
transform (FFT) in O(nlogm) time as follows. As is stated in [ACDO01], we addition-
ally apply the standard technique [CR94] of partitioning the text into overlapping
chunks of size (1 4+ a)m each, and then processing each chunk separately. Processing
one chunk gives us awm components of C'. Since we have n/(am) chunks and each

chunk can be computed in O((1 + a)mlog((1 + a)m)) by FFT, the total time com-
plexity is 2~ - O((1 4+ a)mlog((1 + a)m)) = O (%nlog((l + a)m)) = O(nlogm)

by choosing o = O(m).

Theorem 1 For a binary alphabet, the score vector C' can be exactly computed in
O(nlogm) time.

3.2 General Case

We now consider general case |X| > 2. Let Uy be the set of all mappings from ¥ to
{—1,1}. Remark that |Us| = 2/*/. We abbreviate Uy, with ¥ when ¥ is clear from
the context. The next lemma is obvious.

Lemma 2 For any ¢ € Uy, and any a,b € ¥,
_ [ 1 ifgla) =(b),
sw-vo =1 TS0
Lemma 3 For any a,b € X,
7 2 vl vlb) = 8(e.b)

Proof. In case of a = b, then t(a) = 1(b) for any ) € W. Therefore 1(a) - (b)) =1
for any 1) by Lemma 2, and the sum Zw@p Y (a) - 1(b) equals to the cardinality of W.
Thus, the left side of the equation is unity.

To prove the lemma in case of a # b, we show a more general proposition:

o) (da) - 0(b) =0 if di# by dn # b (0> 0).

PeE
By the assumption that b is distinct from dy,-- -, d,,
D W(dy) - p(dy) - (b)

= D wd) e w(da) 1+ Y () (da) - (1)

1/)(17):1’1/)6\1; w(b)zfla"/)elp

Thus, by the proposition for n = 1, the left side of the equation is zero. O

11
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Theorem 2 Forany 1 <i<m-—n-+1,
1
G = |—Z : (1)
YEW

Proof. By the definition of a;/’ and Lemma 3, the right side of the equation can be
changed as follows.

S B B) SRR

PYeW 1[16\117 1
= Z PIEICERIR)
Jj=1 wE‘I’

= Zé(tﬂrjflapj)-
=1

Since the last formula is the definition of ¢;, the theorem is proved. O

Theorem 3 C(T, P) can be ezactly computed in O(2"nlogm) time.

Proof. By Theorem 2 ¢; is the mean of a! for every ¢ € Uy, therefore C(T, P)
is obtained by computing all AY(T, P). Since each A¥(T,P) can be computed in
O(nlogm) time, we can calculate C(T, P) in O(2*Inlogm) time. O

We note that if the alphabet X is infinite, by splitting the text in chunks of length
O(m) to be dealt with independently ensures it will work with an alphabet size O(m),
so that C(T, P) can be exactly computed in O(2°™nlogm).

4 Randomized Algorithm

A shortcoming of the deterministic algorithm in the last section is that the running
time is exponential with respect to the size of alphabet. It is not practical for large
alphabet. In this section, we propose a randomized algorithm which was inspired by
Atallah et al. [ACDO1].

Let us noticed that Theorem 2 can be interpreted as follows. FEach ¢; is the
mean of random variable X; = Y™, 9(ti1j1) - ¢(p;), assuming that ¢ is drawn
uniformly randomly from W. The observation leads us to the following randomized
algorithm. Tnstead of computing all vectors Ay (T, P) = (a¥,ay,...,a"_,, ;) where
al = >y ¥(tivj—1) - ¥(p;) to average them, we compute only & samples of them
for randomly chosen vy, ..., € ¥. Since the expected value of X; equals to ¢;, it
will give a good estimation for large enough k. We will give a formal proof of it, and
exactly analyze the variance of X; in the sequel. Fig. 2 illustrates the core part of the
algorithm for the basic case n = (1 4+ a)m

We now analyze the mean and the variance of the estimator ¢;. Since all the

random variable ¢; are defined in a similar way, we generically consider the random

variable .
=222 vl

=1 j=1

P?‘Il—‘

12
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Procedure ESTIMATESCORE
Input: a text T'=1t; ...%14+a)m and a pattern P =p;...p,, in X7,
Output: an estimate for the score vector C(T, P).
for / :=1 to k do begin
randomly and uniformly select a v, from Uy.
Let Ty = 1»(T). Note that T} is a sequence over {—1,1} of length (1 + a)m.
Let P, be the concatenation of ¢,(P) with trailing am zeros.
compute the vector Cy as the convolution of T, with the reverse of P, by FFT.

end
k

.1
compute the vector C' = z E Cy and output it as an estimate of C(T, P).
=1

Figure 2: Randomized Algorithm

where the ¢;’s and the p;’s are fixed and mapping 1’s are independently and uniformly
selected from Wy,. The definition implies that $ is the mean of £ random variables

which are drawn from independent and identical distribution. The random variable
can be defined by

s =Y e(t) - (py),

1

j:
and the mean F($) and variance V(3) are

V(s)
o

The number ¢ of matches between T'=1%,...t,, and P =py...p,, is

Cc = Zé(tj’pj)'
j=1

Lemma 4 The mean of s is equal to c.

BE(3) = E(s) and V(3) =

Proof. By Lemma 3,

B(3) = E(s) = ﬁ S s

pew

- ﬁ S wlt) - vlpy)

pew j=1

- Zﬁzwm (p)

=1 1 pew
m
= ) 4(ty,p))
=1

Thus, the mean of s is ¢. O
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In order to analyze the variance of s accurately, we introduce the following function
pr.p: Y x ¥ — N depending on text T =t ...t, and pattern P = p; ...py,,, which
give a statistics of T" and P.

pr.p(a,b) =#{j [ t; =aand p; =b, 1 <j <m}

For example, let 7" = aabac and P = abbba. Then prp(a,b) = 2, prp(a,a) =
pr.p(b,b) = pr.p(c,a) =1, and the others are zero. We omit the subscription T, P of
pr,p in the sequel. In addition, we use the following expression.

7(a,b) = p(a,b) + p(b, a).
The next lemma is obvious from the definition.
1
Lemma 5 Z pla,b) = 5 Z 7(a,b) = m.
(a,b)eX XX (a,h)eX XX
The next lemma gives the exact variance of s, in terms of p.

Lemma 6 The variance of § is

. 1
V(8) = 2> (p(a, )’ + pla,b) - plb,a)).
aFb
Proof. Since the mean of s equals to ¢ by Lemma 4,
o1 11 )
V() = V) = g e =0

By the definition of p,

s = ) dla)-v(b)-pla,b)

(a,b)ETXT

= Zp(av b) + ZWG) 'Qb(b) -p(a, b)a and

= aFb
c = Zp(a,b).
Therefore,
ﬁDs 0 = @ﬂz (Zp<a,b>+2¢(a>-w<b>-p(a,b>>—me,b))
Yev e a=b ab a—b
= LS () wd) - pland)
| |¢E\IJ a#b
= |—1|Z > w(a) w(b>-p(a,b>) (Z w(a'>-¢(b'>-p(agy)>
Yew \ azb o' 7Y
= X wa) ) plab) - vle) ) -l
VEV a#b o AV
= S (o, by 3 o V)= 3 (@) - (b)) - (b) |
v
a#b a' £V Yew

14
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Let us take a(a,b,a’,b') = ] Z W(a W(a') - (1), and show that

pew

1 ifeithera=a" and b="¥V,0r a =10 and o' = b,
0 otherwise,

a(a,b,a b)) = {

by the case analysis whether there exists a distinct character from the others in
a,b,a’,b'. If there exists such a character, then «(a,b,a’,b') = 0 by the proof of
Lemma 3. If there does not exist such a character, then we have either a = o’ and
b=10,0ra=10 and b = a' by the assumption that both a # b and @’ # '. Then,
by Lemma 3 and the fact that ¢ (a)®> = 1 for any ¢y € ¥ and any a € ¥ since

¥(a) € {-1,1},
ala,b,a' V') = ] Zw =1.

YeT
Thus,
V(s = —Zpab (a,b) + p(b,a))
a#b
= —Z )2+ p(a,b) - p(b,a)) .
a#b
O

Moreover, by the definition of 7, we have

Z (p(a, b)2 + p(a, b) ’ p(b, a)) = 5 (p(a, b)2 + 2/)(@1 b) ) p(b, a) + p(b, a)Z)

a#b a#b

Therefore, the variance can be exactly restated in term of 7 as follows, which might
be more intuitive.

Theorem 4 The variance of § is

V(s) = %ZT(a, b2,

a<b
Remind that 7(a,b) represented the number of positions j = 1,...,m in T and
P, such that (t;,p;) is either (a,b) or (b,a). If T" exactly matches P, then V(§) =0,
which implies that the estimation is always m, without any error. On the other hand,
since )., 7(a,b) = m — ¢, the variance V() is maximized for inputs which have
no match and are constructed by only two characters, for example, T = aaaaaa,

P = bbbbbb, and 7" = aaabba, P = bbbaab.

We now state the bound of the variance of s in terms of m and ¢, that exactly fits
to the one proved by Atallah et al. [ACDO1].

15
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Lemma 7 The variance of § is bounded as follows.

(m —c)?

V($) < —

Proof. By Lemma 5,

mec = 3 pab) - pab)

(a,b)EX XX

Therefore, by Theorem 4,

(m —¢)? L1 C )
V() = E(Zm,m) - ()

a<b a<b
1 *
-3 (e ),
a<b a'<b

where Z 7(a',b") expresses the sum of 7(a', b'") except for the two cases a' = a,b' = b

a' <b’
and o' = b,b' = a. Since 7(a,b) > 0 for any a and b, the last formula is not less than

zero. U

We now have the main theorem.

Theorem 5 Algorithm ESTIMATESCORE runs in O(knlogm) time. The mean of
the estimation equals to the score vector C, and the variance of each entry is bounded

by (m —¢;)?/k.

5 Conclusion

We gave a randomized algorithm for string matching with mismatches, which can
be regarded as a slight simplification of the one due to Atallah et al. [ACDO01]. For
comparison, we give a brief description of their algorithm. It treats the set U’ of all

mappings from ¥ to {0,1,...,|3| — 1}, and the basic equation is
- ti P;)
S ) e g
PYew j=1
where w is a primitive |X|th root of unity. When |X| = 2, we know w = —1, and that

the equation (2) directly corresponds to the equation (1) in ours. The difference is
how to treat general alphabet |X| > 2. In our algorithm, the converted sequence ¢ (7T')

16
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is simply over {—1, 1}, while in their algorithm +(T") is over {1,w,w?,...,w™=1} that
are complex numbers. When computing the convolution by FFT, the computation of
the former will be much simpler (and possibly faster) than the latter. From the view
point of the precision of the numerical calculations, the former might be preferable to
the latter, although we have not yet studied explicitly. Moreover, this simplification
enabled us to reach the exact estimation of the variance (Theorem 4), by fairly prim-
itive discussion. An interesting point is that the variance is still independent from
the size of alphabet, although we map ¥ into {—1, 1}, instead of {0,1,...,|Z| —1}.

In their paper [ACDO01], they considered various extensions, such as string match-
ing with classes, class components, “never match” and “always match” symbols,
weighted case, and higher dimension arrays. We think our simplification will be
valid without any difficulty for all those extensions, although we have not completely
verified them yet.

References

[Abr87] K. Abrahamson. Generalized string matching. SIAM Journal on Comput-
ing, 16(6):1039-1051, 1987.

[ACDO1] M. J. Atallah, F. Chyzak, and P. Dumas. A randomized algorithm for
approximate string matching. Algorithmica, 29:468-486, 2001.

[BYG92] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
Communications of the ACM, 35:74-82, 1992.

[BYP96] R. A. Baeza-Yates and C. H. Perleberg. Fast and practical approximate
string matching. Information Processing Letters, 59(1):21-27, 1996.

[CR94] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press,
New York, 1994.

[FP74] M. J. Fischer and M. S. Paterson. String-matching and other prodeucts. In
Complezity of Computation (Proceedings of the SIAM-AMS Applied Math-
ematics Symposium, New York, 1973), pages 113-125, 1974.

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge Uni-
versity Press, New York, 1997.

[Kar93] H. Karloff. Fast algorithms for approximately couting mismatches. Infor-
mation Processing Letters, 48(2):53-60, 1993.

17



A Recursive Function for Calculating the Number
of Legal Strings of Parentheses and for Calculating
Catalan Numbers

Kirke Bent

Parallel Business Software
29 Pine Street
Chatham, NJ 07928, USA

e-mail: parbzsft@bellatlantic.net

Abstract. This paper discusses the number of legal strings of n pairs of paren-
theses as well as a structure of the set of these strings. As the number of such
strings is known to be the Catalan number, a structure of Catalan numbers is
thereby developed. A recursive function is developed that counts the set and
calculates the Catalan number. The function uses two parameters and is thus
a generalization of Catalan numbers.

Key words: Parenthetical strings, recursive functions, stringology, combina-
torics, generalized Catalan numbers.

1 Introduction

This paper concerns the problem of calculating the number of legal strings of paren-
theses that can be constructed from n pairs of parentheses. This number is known to
be the Catalan number. There is a large literature of Catalan number interpretations
and connections [2, 3, 4, 5, 6, 7]. Stanton and White have a proof of the corre-
spondence between Catalan numbers and legal parenthetical strings[7]. The Catalan

number is defined as
2
C, = < n) + (n+1).

n

The ordinary meaning of “legal strings” of parentheses is intended here: 1) The
strings are conventionally constructed from left to right. 2) At any point in the
string, the number of left parentheses is equal to or greater than the number of right
parentheses. 3) all of the 2n parentheses are used.

For example, C3 = 5; the legal strings of 3 pairs of parentheses are

CCO) ) COO ) (OO O CO) ) aa () ) ().

The paper offers a way to calculate Catalan numbers with a recursive function
and a structure of the strings and the number.

18
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2 Outline

Four areas emerge from consideration of this function:

2.1 A Chart

This is a chart of the construction of the C), legal parenthetical strings composed of
n pairs of parentheses. The number of such strings is an interpretation of Catalan
numbers. The chart can be interpreted as a rooted tree. Evaluation of the function
counts the leaves of the tree.

2.2 A Function

The function, denoted here by B, ,, uses two parameters. The n'" Catalan number,
Ch, is produced by By, 5. The domain of both parameters of B, ,, is the non-negative
integers. In the recursive descent, m takes on values both higher and lower than n.

2.3 A Generalization

This generalization of Catalan numbers is based on the two parameters. It includes
Ch.

2.4 A Structure

This structure of Catalan numbers is suggested by the chart but can be expressed
algebraically.

3 Elaboration

3.1 The Chart

The idea behind the chart is simply writing the legal parenthetical expressions ac-
cording to the definition above.

E.g. (00)

Figure 1: Forming all legal arrangements of 3 pairs of parentheses

19
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Consider this as a rooted tree. Each edge represents adding a parenthesis. If there
are two edges descending from a vertex, then there is a choice of adding a left or right
parenthesis at that point. By following all paths from the root to a leaf, all legal
expressions have been written. Note that final right parentheses are not needed to
count leaves.

The steps in drawing the chart are:

1. Start at the top with n pairs of parentheses.
2. Stop if there are no more left parentheses.

3. Draw a vertical line downwards. This represents a left parenthesis and “uses”
one. If the number of left parentheses used (before this one was drawn) exceeds
the number of right ones used, draw another line from the same starting point
but to the right and then curving downwards. This represents a right parenthesis
and uses one.

4. Repeat steps 2, 3, and 4 for each end point.

The vertex at the botton of each line drawn represents the parenthetical string as
constructed so far.

These conventions are somewhat arbitrary, as conventions must be, but they result
in a picture that is regular and easy to understand. The chart was helpful in defining
the function and discovering the structure.

3.2 The Function

anl,m+1 + Bn,mfl Zf (n > 0) VAN (m > 0)
Bn,m = Bn—l,m+1 Zf (TL > 0) VAN (m = 0)
1 if (n=0)

Each part of the chart corresponds to a case of the function. Figure 2 relates the
parts of the chart to the cases of the function.

Where two lines descend from a ver
B(n,m)=B(n-1,m+1)+B(n,m-1)
o

Where one line descends from a vel
B(n,m)=B(n-1,m+1)

Where no lines descend from a vere
B(n,m)=1

Figure 2: Relationship between the chart and cases of the function

20
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30

(.21

(1,2 )
©20

Figure 3: Parameters of B3, at each vertex

The parameters of the function B, ,, take on different values at different points in
the recursive descent. Figure 3 shows the parameters at each stage for Bs.

Parameter n represents the number of left parentheses that can be used from that
point onward. Parameter m represents the number of additional right parentheses
needed to balance the number of left parentheses already used. Considered construc-
tively, m represents the number of right parentheses that may be written at that
point. When a left parenthesis is written, n is reduced and m is increased. When a
right parenthesis is written, m is reduced.

Of course, once the function is defined, it is freed of any necessary tie to paren-
theses.

If we say it is possible for any recursive function to be simple, then this function
is simple and perhaps more fundamental than the closed form. The closed form is
simpler to write. However, while the notation for “2n choose n” is simple, it implies
more complex ideas. The closed form has multiplication and division operations.
While the comparisons in the recursive functions are obvious and explicitly shown,
there are also comparisons implied in any evaluation of the closed form.

Assuming that it is not possible to do algebra with the recursive function, it
seems less useful than the closed form. However, it is possible to do substitutions.
For example, B,; can be restated as Bss + By, and vice versa. Substitution could
be used to define the function differently, but the way the function was defined above
seems simple and it fits well with the parentheses chart.

B, is far less efficient computationally than the closed form. This will be devel-
oped in the Appendix.

3.3 The Generalization

This function is a generalization of Catalan numbers. The standard Catalan number
Cy, = B, . Table 1 also includes some of the others:
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[M=0] 1] 2] 3] 4[ 5]

N= 1] 1 1 1 1 1
e 351 14 5 6

S E o[ 14| 20| 27

5 14 28 48 75 110
14 42 90 165 275 429
42 | 132 297 572 | 1001 | 1638
132 | 429 | 1001 | 2002 | 3640 | 6188
429 | 1430 | 3432 | 7072 | 13260 | 23256
1430 | 4862 | 11934 | 25194 | 48450 | 87210

NSO |WN=O

Table 1: Generalized Catalan Numbers By, ,, for n € [0, 8], m € [0, 5].

3.4 The Structure

The structure can be expressed as:
C1n = Bn—3,3 + 2Cn—1

or as
Cn=DB,_33+2B, 19

The chart for C), can be characterized as having a left lobe and two equal right
lobes. The right lobes are equal both in structure and value. They are also each equal
to C,,_1 in structure and value. Figures 4, 5, and 6 show the structure.

° 3,0
(
o 21
(12 )
: 2,0
0,2 )1,2
Left lobe ( 0,3 ( 0,3
~ ~
Right lobe Right lobe

Figure 4: Structure of C,

In Figure 5, the numeric parameters are replaced by symbolic parameters in terms
of n and m. The chart “grows” from the bottom as n increases. The three lobes will
always have the values B, _33, B, 21, and B,,_2;. These can be put in correspondence
to the ways legal strings of parentheses may start: ( ( (, ( (), () (.- This is a basis
of a partition of any set of legal strings.
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*n0
( o n-1,1
(| n-2,2 I )n—l .
( n-2,1
( )

~—
Right lobe Right lob

Figure 5: Structure of C), contd.

Ics
-~ N

\Hr—/ -
Left lobe Right lobe Right lobe

Figure 6: Structure of Cy or By

Figure 6 emphasizes the nested repetitions of structure. Note that C3 (or Cy_1)
is found twice and Cy (or Cy,_2) is found four times.

The left lobe is different. It starts out smaller than either right lobe and then
becomes larger, perhaps approaching the sum of the two right lobes as n gets large.
The value of the left lobe is B,,_3 3. Here’s a table of the first few values:

n 314 5| 6 7 8
Bhoss| 1| 4|14]48] 165 | 572

Table 2: Values of the left lobe B,_33 for n € [3,8].

These values were recognized by the On-Line Encyclopedia of Integer Sequences
as Sequence A002057, named the Fourth Convolution of Catalan Numbers [5]. This
sequence is not pursued here.
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4 Further Work

1. What are applications or interpretations of the generalized Catalan numbers?

2. There is doubtless something inherent in the problem that is reflected in the
structure, but it is not obvious what. The structure looks natural in terms of
the chart, but the chart is just one picture of one interpretation. Why not two
lobes? Four? Why any?

3. What is the precise behavior of the size of the left lobe?

4. Is B,,_33 the Fourth Convolution of Catalan numbers?

5 Conclusion

Consideration of the set of legal strings of n pairs of parentheses exposes a structure
of this set and of Catalan numbers. The rules for construction of legal strings of
parentheses can be recast from a general statement of principles to particular state-
ments of all the cases. This restatement can be expressed as a chart showing all of
the cases.

Examination of the chart shows the structure of the sets of strings. Given that
the count of legal strings is known to be the Catalan number, the chart exposes a
simple and easily understood structure of Catalan numbers. Interpreting the chart
as a graph, a recursive function B, ,, counts the leaves of the graph (a tree) and
therefore calculates the Catalan number.

Taken together, the chart and the function provide a useful tool for gaining an
intuitive understanding of an important combinatorial number. Developing the func-
tion would be a good problem for students studying recursive functions.

The function B, ,, is interesting in its own right. First, it is remarkably sim-
ple, using only addition, subtraction, and comparison. It should probably should be
considered more fundamental than the closed form which additionally uses multipli-
cation, division, and factorials. Second, the function B, ,, has two parameters and is
thus a generalization of Catalan numbers.

6 Appendix. Computational Complexity and Ef-
ficiency.

The closed form for calculating C), is clearly more efficient than the recursive B, .
However, examining complexity and efficiency can further illuminate the structure
of parenthetical strings and Catalan numbers. The complexity of the closed form is
linear in n while that of B, is exponential.

This section will only treat B, to facilitate comparison with the closed form.
The term “C},” is used here to denote the number, not the method of calculating it.
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6.1 Comparison with the closed form.

Even without a precise expression for the complexity of B,, ,,, it is possible to reason
about complexity and do some measurements of it. The reasoning goes like this: 1)
The complexity of B, is greater than the number C,. 2) C, is greater than the
complexity of the closed form. 3) Therefore the complexity of B, is greater than
that of the closed form. (It is much greater.)

The unit counted for the closed form is the number of multiplications. After
canceling common factors in the numerator and the denominator, the closed form
can be expressed as (2n)(2n — 1)...(2n — (n + 2)), calling for n — 2 multiplications,
here called f(n).

The unit counted for B, is the number of executions of the function. In many
architectures these two measures would not be commensurate. However, the sizes of
the complexity numbers dominate any difference. Using C), as a complexity number,
the expression (2n)(2n — 1)...(2n — (n + 2)) expands to a degree n — 1 polynomial in
n, here called g(n).

It can be seen that f(n) is little-oh of g(n) since lim,,_,», f(n)/g(n) = 0. In other
words, f(n) grows more slowly than g(n). In this case it grows much more slowly [8].

The fact that the complexity of B, is greater than the number C), is clear from
the chart. The chart has C), leaves, each contributing 1 to the number of executions.
In addition there are many intermediate nodes above the leaves, so that the sum
of all executions is greater than C,. All this demonstrates that the computational
complexity of the closed form is little-oh of the complexity of B,, .

A numeric measurement of B, is shown in Table 3. (The algorithm based on
B, ;» can be instrumented to count executions by the appropriate placement of “+1”
in the cases of the function.)

n 31 4 5 6 7 8
n—2| 1| 2 3 4 5 6
Bno || 13|36 | 106 | 328 | 1034 | 3485

Table 3: Complexity of the closed form vs. B,, .

6.2 Complexity of different implementations of B, ,,.
6.2.1 “Bottom-up” implementation of a recursive function.

Due to the highly repetitive structure of B, ,,,, results toward the bottom of the chart
are recalculated many times over. To justify this, consider that the tree gets much
wider than it is high. For example, at n = 8 the number of leaves is C),, = 1430.
The longest path from the root to a leaf is 2n — 1. This shows that many of the
computations are towards the bottom.

Blass and Gurevich use the term “bottom-up” to describe the use of precalculated
results to avoid many recalculations [1]. As an example, the following fragment of
pseudo-code expresses the B, ,,, as an algorithm. It avoids recalculation of B, ,, for
m,n € [0, 3].
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The values of T are from Table 1. Note that the cases are not disjoint. The order
of execution resolves ambiguity.
var T = new Array ([1,1,1,1], [1,2,3,4], [2,5,9,14], [5,14,28,48]);
function B(n,m) {

if ((n<4)&&(m<4))  return (T[n][m]);
if (n>0)&&(m>0))  return (B(n-1, m+1) + B(n, m-1));
if (n>0)&&(m==0)) return (B(n-1, m+1));
if (n==0) return (1);

}

Table 4 shows measured complexity for this version.

n 3 4 5 6 7 8
top-down 131 36| 106 | 328 | 1054 | 3485
bottom-up 1 2 5| 13 02 | 212

Table 4: Complexity of top-down vs. bottom up evaluation of By, .

6.2.2 Parallel Processing.

The structure of B, ,, presents both obstacles and opportunities for parallelization.
The word “executions” will be used here the way “processes” and “threads” are often
used.

Dividing the work.

It is easy to divide the function into parts to run on separate processors. Consider
placing a horizontal line on a drawing of the chart such as Figure 4. Horizontal lines
can be drawn at various levels. The point at which the new line intersects a vertical
line marks a place where a separate process can consist of all the executions below the
intersection. The level of the horizontal line would determine the number of parts.
This method would be suitable for a multi-processor with few processors.

Another approach uses the fact that the second case calls for two child evaluations
of the function. One of these could be sent to another processor. This would lead to
many requests for processors at large n.

Latency.

Latency is another important factor in parallelization. “Latency” is used here to
mean the time to initiate and terminate an execution, including passing parameters
and returning results. Since the amount of processing in the function is small, latency
would be very important if the function were distributed over many processors.

A Single Instruction Multiple Data (SIMD) machine with many processors and
low latency would be good here. It would also take advantage of the fact that each
execution of the algorithm would use the same small program. However, in general
the structure of the function would limit its use on machines with large numbers of
processors unless latency was very small.
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Inter-process communication.

Since there would be no peer-to-peer communication among executions, an execution
would never be interrupted and suspended in the middle of processing. Network
contention and overhead would both benefit from this characteristic of B, ,. Of
course, there is much passing of parameters and results. This contributes to latency,
as developed above, and would be a significant use of resources.
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Abstract. In this article we present an on-line linear time algorithm, to check
if an integer array f is a border array of some string x built on a bounded size
alphabet, which is simplest that the one given in [2]. Furthermore if f is a
border array we are able to build, on-line and in linear time, a string z on a
minimal size alphabet for which f is the border array.

Key words: String algorithms, border array

1 Introduction

A border u of a string « is a prefix and a suffix of x such that u # x. The computation
of the borders of each prefix of a string x is strongly related to the string matching
problem: given a string x, find the first or, more generally, all its occurrences in a
longest string y. The border array of x is better known as the “failure function”
introduced in [4] (see also [1]). Recently, in [2] a method is presented to check if an
integer array f is a border array for some string . The authors first give an on-line
linear time algorithm to verify if f is a border array on an unbounded size alphabet.
Then they give a more complex algorithm that works on a bounded size alphabet.
Here we present a more simple algorithm for this case. Furthermore if f is a border
array we are able to build, on-line and in linear time, a string x on a minimal size
alphabet for which f is the border array. The resulting algorithm is elegant and
integrates three parts: the checking on an unbounded alphabet, the checking on a
bounded size alphabet and the design of the corresponding string if f is a border
array. The first two parts can work independently.

The remaining of this article is organized as follows. The next section introduces
basic notions and notations on strings and results from [2]. Section 3 presents our

new algorithm together with its correctness proof. Finally we give our conclusions in
Sect. 4.

2 Background and basic string definitions

A string is a sequence of zero or more symbols from an alphabet 3; the string with
zero symbols is denoted by €. The set of all strings over the alphabet ¥ is denoted

! This work was partially supported by a NATO grant PST.CLG.977017.
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by ¥*. We consider an alphabet of size s; for 1 <i < s, o[i] denotes the i-th symbol
of 3. A string = of length n is represented by z[1..n], where z[i] € ¥ for 1 < i < n.
A string u is a prefiz of x if x = uw for w € ¥*. Similarly, u is a suffiz of x if x = wu
for w € X*. A string u is a border of z if u is a prefix and a suffix of = and u # =.
Let f[1..n] be an integer array such that f[i] <ifor 1 <i<n. For 1 <i<n, we
define f'[i] = f[i] and for f[i] > 0, f*[i] = f[f*~'[i]]. We use the following notations:

o L(f,i—1)=(fli 1], f[i —1],..., f"[i = 1] = 0);
o C(f,i)=(1+ fli— 1,1+ f2[i —1],...,1+ f™[i — 1]) where f™[i — 1] = 0.

Note that L(f,1) = (0) and that C'(f,1) is not defined.
A border u of z[1..7] with ¢ > 0 has one of the two following forms:

® U =c¢g,

e u=x[l..j|z[j + 1] with j + 1 < i and where z[1..j] is a border of z[1..i — 1] and
x[i] = z[j + 1].

For 1 <i < n we denote by 3,[i] the length of the longest border of z[1..7]. The
array [;[1..n] is said to be the border array of the string z.

The lengths of the different borders of z[1..i — 1] are given by the decreasing
sequence

L(ﬁzaz - 1) = (ﬁz[z - 1]163[2 - 1]7 s JB;R[Z - 1])

where '[i — 1] = 0 i.e. it is the length of the longest border 3,[i — 1] followed by the
lengths of the borders of this longest border L(3,, 8.[i — 1]).

For ¢ > 2, we say that an integer j + 1 is candidate to be the length of the longest
border of x[1..7] if z[1..j] is a border of z[1..i — 1]. In other words, for i > 2, saying
that 7 + 1 is candidate means that j € L(8;,i — 1). The decreasing sequence of
candidates for the length of the longest border of z[1..7] is

C(ﬁxai):(1+5x[i_1]71+5§[i_1]7"'71+ﬂ?[i_1])

where 7'[i — 1] = 0.

We say that an array f[1..n] is a valid border array, or simply that it is valid if
and only if it is the border array of at least one string = of length n.

The longest border of z[1] is necessarily the empty word, thus 3,[1] = 0. The
length f,[i] of the longest border of x[1..i], if it is not empty, is taken among the
candidates C'(f;,7). Thus we have a first necessary condition for an array f[1..n] to
be valid:

NCy: f[1] =0 and for 2 <i < n, f[i] € {0} + C(f,i).

If 2[1..7] has the empty word for only border then we have j3,[i] = 0.
If z[1..i] has a non-empty border, the length of the longest border verifies

o [.lil =max{j+1|j€ L(B:,i—1) and z[i] = z[j + 1]}, or equivalently
o fylil =max{j+1]|j+1¢€C(By i) and z[i] = z[j + 1]}.
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The length j + 1 of the longest border of x[1..7] is the first candidate in the list
C(By, ) for which z[j+ 1] = z[i] if it exists, otherwise the longest border has length 0.
This is the basis of the computation of the function 5, known as a “failure function”
given in [4].

Saying that j+1 is the largest candidate for which x[j + 1] = z[i] implies that this
is not true for any candidate j' + 1 larger than j + 1, which imposes that x[1..5 4 1]
cannot be a border of z[1..j" + 1] for a candidate j' + 1 larger than j + 1. In other
words, (,[j + 1] is different from j + 1 for any candidate j' + 1 larger than j + 1.

This is thus a second necessary condition for an array f to be valid:

NCy: fori > 2 and for every j' + 1 € C(f,i) with j' +1 > f[i]
we have f[j' + 1] # f[i].

Theorem 2.2 in [2] states that conditions NC| and NCy form a sufficient condition for
f to be a valid border array. The authors give, for any valid array f, thus satisfying
conditions NC'{ and NC, the computation of a string x such that f = (., without any
restriction on the alphabet size. They give a simple linear time algorithm (Theorem
2.3) to test if an array f satisfies conditions NC; and NCy, on a unbounded size
alphabet. They give a more complex algorithm in the case of a bounded size alphabet.
Here we present a more simple algorithm which determines in linear time, for a given
array f[l..n], for i from 1 to n, the minimum size of an alphabet necessary to build
a string x[1..i] which border array is f[1..i].

3 New algorithm

We propose, in this section, a linear time algorithm, which determines, for an array
f[1..n] and an alphabet size s given as input:

1 — validity: if f[1..n] is a valid border array for at least one string z[1..n]. This
point is essentially the same as in [2];

2 — alphabet: up to which index it is possible to build a string which border array
is f using an alphabet of size s;

3 — string: a string =, on a minimal size alphabet, which border array is f.

Point 1 is independent from the other two points. Point 2 can work without the
other two points, in particular when one assumes that the array f is valid and does
not want to build a corresponding string. Point 3 uses point 2.

The algorithm BABA (for Border Array on Bounded Alphabet) is given figure 1.

We now state our main result.

Theorem 1 When applied to an integer array f[1..n] and an alphabet size s:
e The algorithm BABA runs in time ©(n).

e If the array [ given as input of the algorithm BABA is a valid border array at
index © — 1 but not at index i, the algorithm stops and returns “f invalid at
index i”. The lines {alphabet} and {string} can be deleted without changing
this result.
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BABA(f,n,s)
1 if fl1]#0 & validity
2 then return [ invalid at index 1 & validity
3 K1) +1 i alphabet
4 z[1] + o[1] o string
5 fori+ 2ton
6 do if f[i]=0
7 then k[i] « 14+ k[f[i — 1]+ 1] & alphabet
8 if kfi] > = v alphabet
9 then return ¢ exceeded at index ¢ © alphabet
10 z[i] + o[k[i]] & string
11 else j+ f[i—1] & validity
12 while j + 1> f[i] and f[j+ 1] # f[i] v validity
13 do j + f[i] & validity
14 if j+1+# f[i] e validity
15 then return f invalid at index { & validity
16 ki) « k[fli—1]+1] v alphabet
17 x[i] « z[f[]] o string

18 return z
Figure 1: Algorithm BABA

e [f there exists a string for which f[1..i — 1] is the border array and there is none
at index i with an alphabet of size s, the algorithm BABA stops and returns “s
exceeded at indexi”. Lines {string} can be deleted without changing this result.
If the array f is valid, lines {validity} can also be deleted.

o As long as f[i..1] is wvalid, the algorithm BABA builds a string xz[1..i] on a
minimal size alphabet for the border array f[1..i]. Lines {validity} can be
deleted without changing the construction of the string. It is clear that if [ is
invalid, it is not the border array of the string which is built by the algorithm.

Before giving the proof of the previous theorem we first give a definition and
establish some intermediate results.

Definition 1 Given a string x[1..n] and its border array 5., we denote by A(zx,1)
the set of symbols that extend the prefirx x[1..i — 1] and its borders, in x: A(x,i) =

{z]} U{zlj +1] | j +1 € C(Bs, )}
Figure 2 gives a description of L(83,,i — 1), C(8,,1) and A(z,1).
Lemma 1 For every string x[1..i] we have
1 A{z[j+1]|j+1€ C(Bsi)} = Az, Be[i] + 1) ;
2. If Ba[1] # 0 then x[1] = =[B,i]], Bali] € C(Ba, 1) and A(z,i) = A(z, B-[i—1]+1).
3. If Bu[i] = 0 then B,[i] & C(By,i) and A(x,i) = {z[i]} U A(z, Buli — 1] + 1).
Proof:

1. Immediate;
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ja =
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Figure 2: If for 1 < ¢ < 4, j, = BLli — 1], ja = Bi — 1] = 0, iy = 1 + B[i — 1], then
L(Beyi — 1) = (j1,J2,J3,Ja = 0), C(B,i) = (i1,i2,43,74 = 1) and A(z,i) is the set
which is composed of the gray symbols.

2. If B,[i] # 0 then f,[7] is a candidate of C'(f;,7). Concerning the index of the
longest border we have z[i] = z[8,[i]], 5.]7] is a candidate in C'(f,,1), x[i] is in
A(x, Beli — 1] + 1);

3. B.[i] = 0 implies that there exists no candidate j + 1 € C(f,,i) such that
x[i] = z[j + 1].

O

Corollary 1 Let z[1..n] be a string and k[1..n] the array computed by the algorithm
BABA with the input f = B, ignoring the {validity} and {string} lines. Then, for
1 <1 < n we have k[i| = card A(x,1).

Proof: The proof of the corollary immediately follows from the algorithm BABA and
properties 2 and 3 of lemma 1. O

Corollary 2 For every string x which border array is f, the minimal cardinality of an
alphabet necessary to build each prefiz x[1..i] is greater or equal to max{k[1], k[2],...,
k[i]} where k[1..n] is the array computed by the algorithm BABA with the input f =
Bz, ignoring lines {validity} and {string}.

Proof: All the symbols of A(z,j) for 1 < j < i are symbols of the string x[1..7]. Thus
the cardinality is greater or equal to the cardinality of each A(x, 7). O

Proposition 1 Assume that array f[1..n] is valid. The string x build by the algo-
rithm BABA satisfies the following properties:

1. For1 <i<mn, fBuu.q = f[1..4] and A(z,i) = {o[1],0[2],...,0lk[i]]};
2. The cardinality of the alphabet for each prefix z[1..i] is equal to
max{k[1), k2], . .. k[i]}:
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3. The border array [, of the string x is equal to f.
Proof:

e We show the point 1 by induction on . For i = 1: f[1] =0, fypn.1) = f[1..1]
and A(z,1) = {z[1]} = {o[1]}. The property holds at index 1.

Assume that the property holds up to index i—1, then we have A(z, f[i—1]+1) =
{o[1],02],...,0[k[f[i —1] +1]]} (since f[i—1] <i—1thus fli—1]+1<i—1)
and ﬁ:r[l..ifl] = f[ll — 1].

If f[i] # 0 then since f[l1..i — 1] = Byn1.,-1) and f satisfies conditions NC'; and
NCs at index i, f[i] is the largest candidate j of C'(f, i) such that z[j] = z[f[i]].
Thus, by setting z[i] « x[f[i]] we get B.[i]] = f[i], k[i] = k[f[i — 1] + 1] and
A(x,i) = Az, fli — 1]+ 1) = {o[1],0]2], ..., o[k[i]]}.

If f[{] = 0 then k[:] = 1+ k[f[i — 1] + 1] and z[i] < o[k[i]] does not belong to
Az, fli — 1] + 1) thus 8,[i] = 0, A(z, B,[i — 1] + 1) = {o][1],0[2 ] o olk[fli —
1+ 101}, A, 1) = {olk{l} U A, Boli — 1]+ 1) = {o[1],0[2], ..., o[k []}-

The property holds for 7 in both cases.

e Properties 2 and 3 are immediate consequences of property 1.

Proposition 2 Let f[1..n] be an integer array.

1. The algorithm BABA returns “f invalid at index i” if and only if f[1..i — 1] is
valid and f[1..i] is not;

2. The array f[1..i — 1] is the border array of the string x[1..i — 1] which is built
by the algorithm BABA.

Proof: From proposition 1, as long as f[1..i] is valid, it is the border array of the
string x[1..i] which is built by the algorithm BABA which establishes the point 2.

If the algorithm BABA stops at index ¢ = 1 and returns “f invalid at index 17, it
means that f[1] # 0 thus f[1..7] is invalid (note that this case cannot happen if the
condition f[i] < i is fulfilled).

Now assume that at the beginning of iteration i we have: z[1..i — 1] is a string
which border array is f[1..i — 1] and z can be extended with a symbol z[i] for which
B:li] = flil-

We have z[i] = z[f[i]], and f,[i] = f[i] is the largest candidate j'+1 € C(f,,i) =
(I+B.[i—1], 14+ B2[i = 1],..., 1+ p[i — 1]), such that z[j" + 1] = z[s] thus it is the
largest for which z[j’ + 1] = z[f[j]].

The three lines {validity} of the algorithm BABA reviews in decreasing order
the candidates j + 1 of C(/3,,1).

e If the algorithm exits the while loop with j +1 > f[i] and f[j + 1] = f[i], it
means that j + 1 is a candidate larger that f[i] for which 5,7 + 1] = f[i] thus
z[j + 1] = z[f]i]] which contradicts the fact that j' + 1 is the largest candidate
such that z[j" + 1] = z[f[{]]. This contradicts the assumption that the string
z[1..i — 1] can be extended and that f[1..7] is valid.
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e If the algorithm exits the while loop with j+1 < f[i], it means that no candidate
7'+ 1 equal to f[i] were found. This contradicts the fact that f[i] = /,[i] and
that f[1..7] is valid.

In both cases, no string z[1..i — 1], which border array is f[1..i — 1], can be extended,
then the algorithm returns “f invalid at index 7”.

If f[1..7] is valid then the algorithm does not stop at this index.

Assume now that at the beginning of iteration i we have: z[1..; — 1] is a string
which border array is f[1..i — 1] and the while loop exits at index i with j +1 = f[i].

Let us set z[i] = z[f[i]]. Then f[i] = j + 1 is a candidate of C(,,i) for which
z[j + 1] = z[i] thus 2[1..j + 1] is a border of z[1..7]. Assume that z[1..j + 1] is not
the longest border of z[1..i]. Let j'+ 1 be the smallest candidate which is larger than
J + 1 and such that z[1..; 4+ 1] is a border of z[1..i]. Then z[1..j + 1] is the longest
border of z[1..;" + 1] and we have f[j' + 1] = f[i] which means that the loop should
have stop with this test and with j + 1 > f[7]. This is a contradiction.

Thus the algorithm BABA runs as long as f[1..i] is valid, it stops at index i and
returns “f invalid at index ¢” if and only if f is valid up to index ¢ — 1 and is not at
index 7. a

The proof of Theorem 1 becomes then immediate.

Proof:[of Theorem 1] The point 1 (linearity of the algorithm BABA) comes from [4].
The other two points follow from propositions 1 and 2. O
Figures 3 and 4 show two examples.

t 1234567891011 12 symbols candidates valid
z[ilabaababaab a

fl]0011232345 6 7
kli)] 121221212 2 1
abaab a b 7 YES
ab a a 4 YES
a b 2 NO
€ a 1 NO
C 0 YES IF s > 2

Figure 3: The array f[1..11] is a valid border array. The string z[1..11] is the smallest
string for which f[1..11] is a valid border array. Then x[1..11] = abaababaaba has
borders abaaba, aba, a and £ of respective lengths 6, 3, 1 and 0 (L(f,11) = (6,3,1,0)).
Thus the candidates for f[12] are 7, 4, 2 and 1 (C(f,12) = (7,4,2,1)) together with 0
which is always a potential candidate. The values 7 and 4 are valid candidates. The
value 2 is not valid since f[7] = 2 and 1 is not valid because f[4] = 1. The value 0 is a
valid candidate if s > 2 because then k[12] would be equal to 1+ k[f[12—1]+1] = 3.

4 Conclusions

We presented in this article an elegant algorithm that verify, on-line and in linear time,
if an integer array f is a border array of some string on a bounded size alphabet.
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t 12345678910 11 12 symbols candidates valid
z[ilaabaacaaba a

flijo10120123 4 5 7
kli)] 1121131121 1
aab a a C 6 YES
a a b 3 YES
a a 2 YES
€ a 1 NO
d 0 YES IF s > 3

Figure 4: The array f[1..11] is a valid border array. The string z[1..11] is the smallest
string for which f[1..11] is a valid border array. Then z[1..11] = aabaacaabaa has
borders aabaa, aa, a and ¢ of respective lengths 5, 2, 1 and 0 (L(f,11) = (5,2,1,0)).
Thus the candidates for f[12] are 6, 3, 2 and 1 (C'(f,12) = (6, 3,2,1)) together with
0 which is always a potential candidate. The values 6, 3 and 2 are valid candidates.
The value 1 is not valid since f[2] = 1. The value 0 is a valid candidate if s > 3
because then k[12] would be equal to 1 + k[f[12 — 1] + 1] = 4.

In the case where f is a border array, we are also capable to build a string =, on a
minimal size alphabet for which f is the border array.

After studying the case of the “failure function” of the Morris and Pratt string
matching algorithm, it is natural to ask the question if this work can be extended to
the “failure function” of the Knuth, Morris and Pratt string matching algorithm [3].
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Abstract. The space requirement of Crochemore’s repetitions algorithm is
generally estimated to be about 20M N bytes of memory, where N is the length
of the input string and M the number of bytes required to store the integer
N. The same algorithm can also be used in other contexts, for instance to
compute the suffix tree of the input string in O(N log N) time for the purpose
of data compression. In such contexts the large space requirement of the algo-
rithm is a significant drawback. There are of course several newer space-efficient
algorithms with the same time complexity that can compute suffix trees or ar-
rays. However, in actual implementations, these algorithms may not be faster
than Crochemore’s. Therefore, we consider it interesting enough to describe a
new approach based on the same mathematical principles and observations that
were put forth in Crochemore’s original paper, but whose space requirement is
10M N bytes. Additional advantages of the approach are the ease with which
it can be implemented in C/C++ (as we have done) and the apparent speed of
such an implementation in comparison to other implementations of the original
algorithm.

1 Introduction

Crochemore’s algorithm [C81] computes all the repetitions in a finite string @ of length
N in O(Nlog N) time. The algorithm in fact computes rather more and can be used,
for instance, to compute the suffix tree of &, hence possibly as a tool for expressing x
in a compressed form. In such contexts the space requirement becomes as important
as the time complexity. It appears that known implementations of Crochemore’s algo-
rithm require at least 20M N bytes of memory for the task of refining the equivalence
classes alone, where M is the number of bytes required to store the integer N.

Here we present a different implementation based on the mathematical properties
and observations of [C81] and thus having the same time complexity O(N log N) as
the original algorithm. However, the new data structures used for the representation

!Supported in part by grants from the Natural Sciences & Engineering Research Council of
Canada.
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of classes and for the execution of the refinement process allow the space requirement
to be substantially reduced.

There are several newer space-efficient algorithms to compute suffix trees or arrays
(notably [U92], [MM93]) of the same worst-case complexity as Crochemore’s. The
motivation for our investigation of a space-efficient implementation of the classical
Crochemore’s algorithm that may be competetive with these newer algorithms stems
from the fact that the actual implementations of these algorithms may not in fact be
any faster.

A large memory saving comes from the fact that our algorithm requires storage
for only N classes at any given time, rather than 2N as in the original algorithm.
This alone brings the space requirement down to 15M N. Of course there is some
extra processing related to this reduction in space, but it does not affect the time
complexity, and in fact it appears that in practice our implementation runs a good
deal faster than the standard implementation proposed in [C81]. A further 5M N
space reduction is achieved by smart utilization of the space:

e allowing space to be shared by data structures, as in memory multiplexing —
for example, if a queue empties faster than a stack grows, then they can share
the same memory segment;

e spreading one data structure across several others, as in memory virtualization.

Taken together, these “tricks” bring the space requirement down to 10M N.

Additional advantages of this approach are the ease with which it can be imple-
mented in C/C++ (as we have done) and, as remarked above, its apparent speed in
comparison to other implementations of the original algorithm.

In this paper we do not due to space limitations provide any detailed computer
instructions, but we try to give a high-level description of our approach, so that the
reader can understand how the space savings are achieved.

In our discussion below we assume that the reader is familiar with both
Crochemore’s algorithm and its mathematical foundation. We make the usual as-
sumption required for Crochemore’s algorithm that the alphabet is ordered; therefore
we are able to assume further that the classes corresponding to the first level (p = 1)
can be computed in O(N log N) time.

For better comprehension, we present the algorithm in two stages. The first stage,
FSX15 (with space requirement 15M N bytes), exhibits all important procedural and
control aspects of our algorithm without the complications of memory multiplex-
ing and virtualization. Then the second stage, FSX10, incorporates the changes
required by memory multiplexing and virtualization to reduce the space requirement,
to 1I0M N. Finally, we present some rough results of computer runs that compare the
time and space requirements of our approach with those of a standard implementation
of Crochemore’s algorithm.

2 Data Structures for FSX15

Recall that for each p = 1,2, ..., Crochemore’s algorithm acts on a given string * =
x[1..N] to compute equivalence classes {iy, is, ..., .}, where for every 1 < j < h <,

13[2]2] +p—1] = m[ih..ih—i-p—l].
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The positions 4; in each class are maintained in increasing sequence: @; < i1,
1 < j < r. At each step of the algorithm, each class C, that is not a singleton
is decomposed into a family of subclasses Cpy1; of these subclasses, the one of
largest cardinality is called bzg, the others are small. A straightforward approach to
this decomposition would require order N2 time in the worst case, but Crochemore’s
algorithm reduces this time requirement by carrying out the decomposition from p
to p+1 only with respect to the small classes identified at step p. Since each posi-
tion can belong to a small class only O(log N) times, it follows that the total time
requirement is O(N log N). As remarked in the introduction, we may assume that
the classes corresponding to p = 1 have initially been computed in O(N log N) time.
Note that the version of Crochemore’s algorithm discussed here does not explicitly
compute repetitions; we will be interested only in reducing each of the equivalence
classes to a singleton.

We will use an integer array of size N to represent the classes computed at step
p. We have several requirements:

e we need to keep the elements of the classes in ascending order;

e we need an efficient way to delete any element (so that we need to represent
each class as a doubly-linked list);

e we need an efficient way to insert a new element at the end of a class (and hence
we need a link to the last element of the class);

e we need efficient access to the size of a class;

e we need efficient access to a class (and hence we need a link to the first element
of the class);

e last but not least, we need an efficient way to determine to which class a given
element belongs.

To satisfy all these requirements, we use six integer arrays of size N:

e CNext[1..N] emulates forward links in the doubly-linked list. Thus CNext[i] =
J > i means that j is the next element (position) in the class that i belongs to.
If there is no position j > 7 in the class, then CNext[i] = null.

e CPrev[1..N] emulates backward links in the doubly-linked list. Thus CPrev[i|=
J < i means that j is the previous element (position) in the class that ¢ belongs
to. If there is no position j < i in the class, then CPrev[i] = null.

e CMember[1..N] keeps track of membership. Thus CMember[i] = k& means that
element i belongs to the class with index & (i € ¢;), while CMember[i] = null
means that at this moment 7 is not member of any class.

e CStart[1..N] keeps links to the starting (smallest) element in each class.
Thus CStart[k] = i means that the class ¢, starts with the element i, while
CStart[k] = null means that at this moment the class ¢; is empty.
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e CEnd[1..N] keeps links to the final (largest) element in each class. Thus
CEnd[k] = i means that the class ¢ ends with the element i; the value of
CEnd[k] is meaningful only when CStart[k] # null.

e CSize[1..N] records the size of each class. Thus CSize[k] = r means that
the class ¢, contains r elements; the value of CSize[k] is meaningful only when
CStart[k] # null.

Suppose that there exists a class ¢ = {4,5,8,12}, indicating that the substrings
of length 3 beginning at positions 4,5,8,12 of x are all equal. Then c¢3 would be
represented as follows:

CNext[4] = 5, CNext[5] = 8, CNext[8] = 12,CNext[12] = null;

CPrev[12] =8, CPrev[8] =5, CPrev[5] = 4, CPrev[4] = null;

CMember[4] = CMember[5] = CMember[8] = CMember[12] = 3;
CStart[3] = 4; CEnd[3] = 12; CSize[3] = 4.

We need to track the empty classes, and for that we need a simple integer stack
of size N, CEmptyStack, that holds the indexes of the empty (and hence available)
classes. This stack, as well as all other list structures used by Crochemore’s algorithm,
is implemented as an array that requires M N bytes of storage. Such an approach
saves time by allowing all space allocation to take place only once, as part of program
initialization. We introduce two operations on the stack, C EmptyStackPop() that
removes the top element from the stack and returns it, and C EmptyStack Push(1)
that inserts the element i at the top of the stack.

We shall process classes from one refinement level p to the next level p+1 by
moving the elements from one class to another, one element at a time. We view the
classes as permanent containers and distribute the elements among them, so that at
any given moment we need at most N classes. This means that the configuration
of classes at level p is destroyed the moment we move a single element. But, as we
shall see, we do not really need to keep the old level intact if we preserve an essential
“snapshot” of it before we start tinkering with it.

What we need to know about level p will be preserved in two queues, SE1Queue
and SCQueue. SE1Queue contains all the elements in small classes in level p, organized
so that the elements from the same small class are grouped together in the queue and
stored in ascending order. SCQueue contains the first element from each small class,
thus enabling us to identify in SE1Queue the start of each new class. Therefore, when
these queues are created, we must be careful to process the small classes of level p in
the same order for both of them. For instance, if level p had three small classes,

c3 =1{2,4,5,8}, ¢o ={3,6,7,11}, ¢5 = {12,15},

SE1Queue could contain 2,4,5,8,3,6,7,11,12,15 in that order, while the correspond-
ing SCQueue would contain 2, 3,12. The order of the classes (c3 followed by ¢, followed
by ¢5) is not important; what is important that the same order is used in order to
create SE1Queue and SCQueue. After the two queues have been created, we do not
need level p any more and we can start modifying it. Of course we suppose that we
have available the usual queue operations:
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e SElQueueHead() (remove the first element from the queue and return it);
e SElQueuelnsert(t) (insert the element i at the end of the queue);

e SElQueuelnit() (initialize the queue to empty).

Analogous operations are available also for SCQueue.

When refining class ¢, in level p using an element ¢ from class ¢/, we might need
to move element —1 from ¢, to a new or an existing class. To manage this processing,
we keep an auxiliary array of size N, Refine[1..N]. Initially, when we start using the
class ¢ for refinement, all entries in Refine[ ] are null. If a new class ¢, is created
in level p4+1 by moving i—1 out of class ¢; and into ¢, as its first element, we set
Refine[k] <— h. If later on we move another element from ¢ as a result of refinement
by the same class ¢, we use the value Refine[k] to tell us where to move it to. This
requires that when we start refining by a new class, we have to restore Refine[ ] to
its original null state. Since we cannot afford to traverse the whole array Refine[ ]
without destroying the O(Nlog N) time complexity, we need to store a record of
which positions in Refine[ ] were previously given a non-null value. For this we
make use of a simple stack, RefStack: every assignment to Refine[k] causes the
index k to be pushed onto the stack RefStack. As before, we assume that we have
available the usual stack operations RefStackPop() and RefStackPush(i).

Since after completing the refinement of the classes in level p, we must determine
the small classes in level p+1, we therefore need to maintain throughout the refinement
process certain families of classes (to be more precise, families of class indexes). As
noted above, a family consists of the classes in level p + 1 that were formed by
refinement of the same class in level p. A family may or may not include the original
class from level p itself (it may completely disappear if we remove all its elements
during the refinement). We need an efficient way to insert a new class in a family
(the order is not important), an efficient way to delete a class from a family, and
finally an efficient way to determine to what family (if any) a class belongs. These
facilities can be made available by representing the families as doubly-linked lists
implemented using arrays, just as we did previously with the classes themselves. In
this case, however, the Size[ ] and End[ ] arrays are not required, so we can get
by with only four arrays, as follows:

e FNext[1..N] emulates the forward links (as in CNext[ 1J).
e FPrev[1..N] emulates the backward links (as in CPrev[ 1]).

e FMember[1..N] keeps track of membership (as in CMember[ 1). Whenever
FMember[i] = null, it means that ¢; is not a member of any family.

e FStart[1..N] gives the first class in each family (as in CStart[ 1).

Note that classes in families do not need to be maintained in numerical order, as was
true earlier of positions in classes.

To summarize, in order to implement Crochemore’s algorithm, it is sufficient to
allocate 15 arrays, each of which provides storage space for exactly N integers of
length M, thus altogether 15M N bytes of storage: CNext, CPrev, CMember, CStart,
CEnd, CSize, CEmptyStack, SE1Queue, SCQueue, RefStack, Refine, FStart, FNext,
FPrev, and FMember.
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3 Data Structures for FSX10

As the first step in reducing the space complexity further, we are going to eliminate
the CSize[ 1 and CEnd[ ] arrays. For the very first element, say s, in a class,
CPrev[s]= null, while for the very last element, say e, CNext[e]= null. But we
have another way to discern the beginning of the class (CStart[ 1), so that CPrev[ ]
becomes superfluous. Thus we can store CPrev[s]< e, a direct link to the end of the
class. This yields an efficient means to discern the end of the class, and so we can
store in CNext[e] the size of the class. Hence CPrev[CStart[j]] takes on the role
of CEnd[j], while CNext [CPrev[CStart[;j]1]] takes on the role of CSize[j]. This is
straightforward and the code need only be slightly modified to accommodate it. All
we have to do is make sure that when inserting or deleting an element in or from a
class, we update properly the end link and the size. When traversing a class, we have
to make sure that we properly recognize the end (we cannot rely on the null value
to stop us as in FSX15). We have in fact “virtualized” the memory for CEnd[ ] and
CSize[ 1, and so reduced the space complexity to 13M N.

When we take an element from SE1Queue and use it for the purpose of refinement,
at most one new class is created and thus at most one location of Refine[ ] is
updated. This simple observation allows RefStack and SE1Queue to share the same
memory segment, as long as we make sure that RefStack grows from left to right,
while the queue is always right justified in the memory segment. The changes in
the code required to accommodate this are not very great — all we have to do is to
determine before filling SE1Queue what position we have to start with. In essence,
we have “multiplexed” the same memory segment and brought the space complexity
down to 12MN.

The number of elements in SCQueue is the same as the number of small classes,
which is less than or equal to the number of non-empty classes; thus the size of
SCQueue plus the size of CEmptyStack at any given moment is at most /N. This simple
observation allows CEmptyStack and SCQueue to share the same memory segment, as
long as we make sure that CEmptyStack is growing from left to right, while the queue
is always right justified in the memory segment. Again, as above, the changes in the
code required to accommodate this are not major. We again have “multiplexed” the
same memory segment and brought the space complexity down to 11M N.

The final memory saving comes from the fact that FPrev[ ] for the very first
class in a family and FNext[ ] for the very last class in the same family are set to
null and hence redundant for the same reasons as described above for CPrev[ ] and
CNext[ 1. We can thus “virtualize” the memory for the array Refine[ ]. We will
have to index it in reverse and we will use all the unused slots in FStart[ ] (i.e. slots
with indexes > FStartTop) as well as the unnecessary FNext[ ] slots. The formula
is rather simple. Instead of storing r in Refine[i|, we will use

SetRefine(i,r)

jN-(i+1)

if FStartTop = null OR j > FStartTop then
FStart[j]<r

else
FNext[FPrev[FStart[j]]]«r
end SetRefine

and instead of fetching a value from Refine[i] we will use
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integer GetRefine(i)

jN-(i+1)

if FStartTop = null OR j > FStartTop then
return FStart[j]

else
return FNext[FPrev[FStart[j]]]

end GetRefine

The modification of the code is more complex in this case, since we have to track the
ends of the family lists as we do for class lists; more importantly, when a new family
is created, we have to save the Refine[ ] value stored in that so-far-unused slot &
that now is going to be occupied by the start link of the family list, and store k at
the end of the list instead. This “virtualization” of the memory for Refine[ ] brings
the space complexity down to the final value of 10M N.

4 Informative Experimental Results

To estimate the effect of our space reduction on time requirement, we have imple-
mented two versions of Crochemore’s algorithm:

e anaive array-based version, FSX20, that executes Crochemore’s algorithm using
20 arrays each of length N words:

e a version of FSX10 that requires 10 arrays each of length N words.

Thus both of these implementations are word-based: assuming a word-length of 32
bits, the value of M is actually fixed at 4.

We expect that FSX20 will execute Crochemore’s algorithm about as fast as it
can be executed, but at the cost of requiring exactly 20N words of storage. A version
that implemented standard list-processing techniques rather than arrays to handle the
queues, stacks and lists required by Crochemore’s algorithm would generally require
less storage: 11N words for arrays plus a variable amount up to 13N for the list
structures. However, as a result of the time required for dynamic space allocation,
such a version would certainly run several times slower than FSX20.

We must remark at this point that the experiments performed have only an in-
formative value, for we conducted them without controlling many aspects depending
on the platform (as memory caching, virtual memory system paging etc.), nor did we
perform a proper statistical evaluation to control for other factors not depending on
the platform (load on the machine, implementation biases etc.) Thus, we really do
not claim any significant conclusions for the actual algorithms whose implementations
were tested.

We have run FSX20 and FSX10 against a variety of long strings (up to 3.8 million
bytes): long Fibonacci strings, files from the Calgary corpus, and others. The results
indicate that FSX10 seems to require 20-30% more time than FSX20, in most cases
a small price to pay for a 52% reduction in space.
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Abstract. The edit distance between strings A and B is defined as the min-
imum number of edit operations needed in converting A into B or vice versa.
The Levenshtein edit distance allows three types of operations: an insertion,
a deletion or a substitution of a character. The Damerau edit distance allows
the previous three plus in addition a transposition between two adjacent charac-
ters. To our best knowledge the best current practical algorithms for computing
these edit distances run in time O(dm) and O(o + [m/w]n), where d is the edit
distance between the two strings, m and n are their lengths (m < n), w is the
computer word size and o is the size of the alphabet. In this paper we present an
algorithm that runs in time O(o + [d/w]m). The structure of the algorithm is
such, that in practice it is mostly suitable for testing whether the edit distance
between two strings is within some pre-determined error threshold. We also
present some initial test results with thresholded edit distance computation. In
them our algorithm works faster than the original algorithm of Myers.

Key words: Levenshtein edit distance, Damerau edit distance, bit-parallelism,
approximate string matching

1 Introduction

The desire to measure the similarity between two strings may arise in many appli-
cations, like for example computational biology and spelling correction. A common
way to achieve this is to compute the edit distance between the strings. Throughout
the paper we will assume that A is a string of length m and B is a string of length n,
and that m < n. The edit distance ed(A, B) between strings A and B is defined as
the minimum number of edit operations needed in converting A into B or vice versa.
In this paper we concentrate on two typical edit distances: the Levenshtein edit dis-
tance [Lev66] and the Damerau edit distance [Dam64]. The Levenshtein edit distance
allows three edit operations, which are inserting, deleting or substituting a character
(Figures 1a, 1b and 1c). In addition to these three, the Damerau edit distance al-
lows also transposing two permanently adjacent characters (Figure 1d). When edit

! This work was supported by the Academy of Finland and Tampere Graduate School in Infor-
mation Science and Engineering
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distance is used, strings A and B are deemed similar iff their edit distance is small
enough, that is iff ed(A, B) < k, where k is some pre-determined error threshold. A
related problem is that of approximate string matching, which is typically defined as
follows: let pat be a string of length m and text a (much longer) string of length n.
The task of approximate string matching is then to find all such indices j, for which
exists such h > 0 that ed(pat, text[j — h..j]) < k.

The oldest, but most flexible in terms of permitting different edit operations
and/or edit operation costs, algorithms for computing edit distance (for example
[WE74]) are based on dynamic programming and run in time O(mn). Ukkonen
[Ukk85a] has later proposed two O(dm) methods, and Myers [Mye86] an O(n + d?)
method. The latter is based on using a suffix tree and is not viewed as being practi-
cal (e.g. [Ste94]). With fairly little modifications these methods can also be used in
computing the Damerau edit distance without affecting the asymptotic run times.

The methodology of using so-called “bit-parallelism” in developing fast and prac-
tical algorithms has recently become popular in the field of string matching. Wu and
Manber [WM92| presented an O(d[m/w]n) bit-parallel algorithm for Levenshtein edit
distance -based approximate string matching, and in [Nav01] it was modified to com-
pute both Levenshtein and Damerau edit distance. The run time remained the same.
Then Baeza-Yates and Navarro presented a method, which enables an O([dm/w]n)
algorithm for the Levenshtein edit distance. Currently this algorithm has not been
extended for the Damerau edit distance. Finally Myers [Mye99] has presented an
O([m/w]n) algorithm for approximate string matching under the Levenshtein edit
distance. In [HyyO1] the algorithm was extended for computing the Damerau edit
distance.

In this paper we will present an initial study on combining one of the O(dm)
edit distance algorithms of Ukkonen [Ukk85a] with the bit-parallel algorithm of My-
ers [Mye99] to obtain a faster algorithm. We begin by reviewing these underlying
algorithms in the next section.

2 Preliminaries

In the following discussion let A be a string of length m and B a string of length
n. We also use the notation Afu] to denote the uth character of A and the notation
Alu..v] to denote the substring of A, which begins from its uth character and ends
at its vth character. The superscript R denotes the reverse string: for example if A
= “ABC”, then A" = “CBA”. For bit operations we use the following notation: ‘&’
denotes bitwise“and”, ’|” denotes bitwise “or”, ’A’ denotes bitwise “xor”, '~ denotes
bit complementation, and <<’ and ">>" denote shifting the bit-vector left and right,
respectively, using zero filling in both directions. We refer to the ith bit of the bit
vector V' as V[i]. Bit-positions are assumed to grow from right to left, and we use
superscript to denote bit-repetition. As en example let V' = 1001110 be a bit vector.
Then V(1] = V[5] = V[6] = 0, V[2] = V[3] = V[4] = V[7] = 1, and we could also
write V = 10%1°0.
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Figure 1: Four different edit operations. Figure a) shows inserting character "D’
between the last two characters of the string “ABC”, which results in the string
“ABCD”. Figure b) shows deleting the character “B”, which results in the string
“AC”. Figure c) shows substituting the character B’ with the character 'D’, which
results in the string “ADC”. Figure d) shows transposing the characters 'B’ and
’C’, which results in the string “ACB”. Transposition is allowed only between such
characters that were adjacent already in the original string.

2.1 Dynamic programming

Computing edit distance is a problem that seems to be most naturally solved with
dynamic programming. The value ed(A, B) can be computed by filling an (m + 1) X
(n + 1) dynamic programming matrix D, in which the cell DJ[i, j] contains the value
ed(A[l..i], B[1..7]). The following well-known Recurrence 1 gives the rule for filling
D when the Levenshtein edit distance is used.

Recurrence 1

D[i,0] = i, D[0, j] = j.

[ Dli—1,j—1],if A[i] = B[j].
Dli. j] _{ 1+ min(D[i — 1,5 — 1], D[i — 1, j], D[i, j — 1), if A[i] # B[j].

The recurrence allows the cells with ¢ > 0 and 7 > 0 to be filled in any such order,
that the cell values D[i— 1, j], D[i—1,j —1] and DJi, j — 1] are known at the time the
cell DIi, j] is filled. A common way is to use column-wise filling, where each column
is filled from top to bottom (Figure 2). The Damerau edit distance can be computed
otherwise identically as the Levenshtein edit distance, but using Recurrence 2 [Hyy01]
instead in filling the dynamic programming matrix.

Recurrence 2

D[i— 1,5 —1], if A[i] = BJ[j].
Dli—1,j—1], if Ali — 1..i] = BE[j — 1..j]

and D[i — 1,5 —1] > D[i — 2,7 — 2.
1+ min(D[i — 1,7 — 1], D[i — 1, ], D[i, j — 1]), otherwise.

D[Za]] =

As the basic dynamic programming scheme fills (m + 1)(n + 1) cells and filling each
cell takes a constant number of operations, the algorithm has a run time O(nm).
The following two properties hold in the dynamic programming matrix [Ukk85a,
Ukk85b]:

-The diagonal property: Dli,j]—D[i—1,j—1]=0or 1.
-The adjacency property:  DJ[i, j] — D[i,j — 1] = —1,0, or 1, and
D[i,j]DJi — 1,j] = —1,0, or 1.

Even though these rules were initially presented with the Levenshtein edit distance,
they can easily be seen to apply also with the Damerau edit distance.
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Figure 2: An example of the column-wise filling order for the dynamic programming
table of strings “ATCAGCCT” and “TCTTGAAGGTCA”.

2.2 Using bit-parallelism

Myers [Mye99] presented an O(]m/w]|n) algorithm for approximate string matching
under the Levenshtein edit distance. Later in [Hyy01] the algorithm was slightly mod-
ified and extended for the Damerau edit distance. Originally these algorithms were
designed for approximate string matching, but they can easily be modified to compute
edit distance. The algorithms process the jth column of the dynamic programming
matrix in O([m/w]) time by using bit-parallelism. This is done by using delta en-
coding in the matrix: instead of explicitly computing the values DJi, j] for i = 1..m
and j = 1..n, the following length-m binary valued delta vectors are computed for

j=1.n:

VP[i] =1iff D[i,j]— D[i —1,j] = 1.
-The vertical negative delta vector: VN;[i] = 1iff D[i,j] — D[i — 1, j] = —1.
-The horizontal positive delta vector: HP;[i] =1 iff D[i,j] — D[i,j — 1] = 1.
-The horizontal negative delta vector: HN,[i| =1 iff D[i, j| — D[i,j — 1] = —1.

-The vertical positive delta vector:

When the values for these delta vectors are known for the (j — 1)th column, they
can be computed for the jth column in an efficient manner when the following match

vector is available for each character \.

-The match vector PM, : PM,[i] =1 iff Afi] = .

For simplicity we use the notion PM; = PMpy; for the rest of the paper. It is
straightforward to compute the pattern match vectors in O(c + m) time. In the
following we assume that these vectors have already been computed and are readily
available.

The delta vectors enable the value ed(A, B[1..j]) to be explicitly calculated for
j=1,2,...,n: ed(A,B[l..j]) = ed(A, B[1..j —1])+ 1 iff HP;[m] =1, ed(A, B[1..j]) =
ed(A, B[l..j—1])—1iff HN,;[m] =1, and ed(A, B[1..j]) = ed(A, B[1..j—1]) otherwise.
Thus after all n columns are processed, the value ed(A, B[1..n]) = ed(A, B) is known.
Figures 3 and 4 show the algorithms based on [Hyy01] for computing the jth column
when m < w, that is, when each vector can be represented by a single bit-vector.
Both algorithms are modified to compute edit distance. The algorithm in Figure 3 is
for the Levenshtein edit distance, and the algorithm in Figure 4 is for the Damerau
edit distance. Both algorithms involve a constant number of operations, and thus
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compute the delta vectors for the jth column in O(1) time. In this paper we do not
separately discuss the case m > w. As each required operation for a length-m bit
vector can be simulated in O([m/w]) time using [m/w]| length-w bit vectors, the
general runtime of the algorithms is O([m/w]) for each column. This results in a
total time of O([m/w]n) over all n columns in computing ed(A, B).

Computing the jth column (Levenshtein distance)

DOj — (((PM] & Vijl) -I-Vijl) A Vijl) | PMj | VNj,I
HP; + VN | ~(D0; | VP;_y)

HNj — DOj & VPj_l

If HP; & 10™~! # 0 Then D[m, j] < D[m, j] + 1

If HN; & 10™" ! # 0 Then D[m, j] + Dim,j] — 1

VPj <+ (HN; <<1)| ~(D0; | (HP; << 1)) |1

VN < D0; & (HP; << 1)

N Utk N

Figure 3: Computation of the jth column using a modification of the DO0;-based
version of the algorithm of Myers (for the case m < w).

Computing the jth column (Damerau distance)

DOj — (((N DOjfl) & PMj) << 1) & PMj,1

DOj — DOj | (((PMJ & VPj_l) + Vljj_l) A VPj_l) | PMj | VNj_l
HPj  VNj_1 | ~(D0; | VPjy)

HN]' — DOj & Vljj_l

If HP; & 10™~! # 0 Then D[m, j] < D[m,j] + 1

If HN; & 10™~! # 0 Then D[m,j] + D[m,j] — 1

VPj <+ (HN; <<1)| ~(D0j | (HP; <<1)) |1

VN « DOj & (Hpj << 1)

® N O Utk W=

Figure 4: Computation of the jth column using a modification of the DO0;-based
version of the algorithm of Myers with transposition (for the case m < w).

2.3 Filling only a necessary portion of the matrix

Ukkonen [Ukk85a] presented a method to try to cut down the area of the dynamic
programming matrix that is filled. By a ¢-diagonal we refer to the diagonal, which
consists of the cells DJi, j] for which j —i = ¢. From the diagonal and adjacency
properties Ukkonen concluded that if ed(A, B) < ¢t and m < n, then it is sufficient to
fill only the cells in the diagonals —|(t —n+m)/2|,—[(t —n+m)/2] +1,..., | (t+
n —m)/2] of the dynamic programming matrix. All the other cell values can be
assumed to have an infinite value without affecting correct computation of the value
D[m,n] = ed(A, B). He used this rule by beginning with ¢ = (n — m) + 1 and filling
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the above-mentioned diagonal interval of the dynamic programming matrix. If the
result is D[m,n] > ¢, t is doubled. Eventually D[m,n| < ¢, and in this case it is
known that D[m,n| = ed(A, B). The run time of this procedure is dominated by the
computation involving the last value of ¢. As this value is < 2 x ed(A, B) and with
each value of ¢ the computation takes O(¢ x min(m,n)) time, the overall run time is
O(ed(A, B) x min(m,n)).

In addition Ukkonen proposed a dynamic ” cutoff” method to improve the practical
performance of the diagonal restriction method. Assume that column-wise order is
used in filling the cells DJi, j] inside the required diagonals —|(t —n+m)/2], —|(t —
n+m)/2|+1,...,[(t+n—m)/2]. Let r, hold the diagonal number of the upmost
and r; the diagonal number of the lowest cell that was deemed to have to be filled in
the jth column. Then due to the diagonal property we can try to shrink the diagonal
region by decrementing r, as long as Dlr,,j] > t and incrementing r; as long as
Diry, j] > t. Then at the (j+ 1)th column it is enough to fill the cells in the diagonals
ry...ry. If 7 > r, the diagonal region vanishes and it is known that ed(A, B) > t.

This method of ”guessing” a starting limit ¢ for the edit distance and then doubling
it if necessary is not really practical for actual edit distance computation. Even
though the asymptotic run time is good, it involves large constant factor whenever
ed(A, B) is large. But the method works well in practice in thresholded edit distance
computation, as then one can immediately set ¢t = k£ and only a single pass is needed.

3 Our Method

In this section we present a bit-parallel version of the diagonal restriction scheme of
Ukkonen, which was briefly discussed in Section 2. In the following we concentrate
on the case where the computer word size w is large enough to cover the required
diagonal region. Let [, denote the length of the delta vectors. Then our assumption
means that w > [, = min(m, | (t — n+ m)/2] + [ (¢t +n —m)/2] + 1). Note that in
this case each of the pattern match vectors PM, may have to be encoded with more
than one bit vector: If m > w, then PM), consists of [m/w] bit vectors.

3.1 Diagonal tiling

The basic idea is to mimic the diagonal restriction method of Ukkonen by tiling the
vertical delta vectors diagonally instead of horizontally (Figure 5a). We achieve this
by modifying slightly the way the vertical delta vectors V P; and V N; are used: Before
processing the jth column the vertical vectors V' P;_; and V N,_; are shifted one step
up (to the right in terms of the bit vector) (Figure 5b). When the vertical vectors are
shifted up, their new lowest bit-values V P;[l,] and V' N;][l,] are not explicitly known.
This turns out not to be a problem. From the diagonal and adjacency properties we
can see that the only situation which could be troublesome is if we would incorrectly
have a value V N;[l,] = 1. This is impossible, because it can happen only if D0, has
an “extra” set bit at position [, +1 and HP;[l,] = 1, and these two conditions cannot
simultaneously be true.

In addition to the obvious way of first computing V' P; and V' N; in normal fashion
and then shifting them up (to the right) when processing the (j + 1)th column, we
propose also a second option. It can be seen that essentially the same shifting effect
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Figure 5: a) Horizontal tiling (left) and diagonal tiling (right). b) The figure shows
how the diagonal step aligns the (j — 1)th column vector one step above the jth
column vector. ¢) The digure depicts in gray the region of diagonals, which are filled
according to Ukkonen’s rule. The cells on the lower boundary are in darker tone.

can be achieved already when the vectors V P; and V' N; are computed by making the
following changes on the last two lines of the algorithms in Figures 3 and 4:

-The diagonal zero delta vector DO0; is shifted one step to the right on the

second last line.

-The left shifts of the horizontal delta vectors are removed.

-The OR-operation of V P; with 1 is removed.

This second alternative uses less bit operations, but the choice between the two may
depend on other practical issues. For example if several bit vectors have to be used
in encoding D0;, the column-wise top-to-bottom order may make it more difficult to
shift D0; up than shifting both V P; and V' N; down.

We also modify the way some cell values are explicitly maintained. We choose
to calculate the values along the lower boundary of the filled area of the dynamic
programming matrix (Figure 5¢). For two diagonally consecutive cells D[i — 1, j — 1]
and DJi, j] along the diagonal part of the boundary this means setting DIi, j| =
Dli—1,j—1]if D0[l,] =1, and D[i, j] = D[i—1,j—1]+1 otherwise. The horizontal
part of the boundary is handled in similar fashion as in the original algorithm of Myers:
For horizontally consecutive cells D[i, j — 1] and D[i, j] along the horizontal part of
the boundary we set D[i,j] = D[i,j — 1]+ 1 if HF;[l,] = 1,DJi,j] = D[i,j — 1] —1
if HN;[l,] =1, and D[i, j| = DJi,j — 1] otherwise. Here we assume that the vector
length [, is appropriately decremented as the diagonally shifted vectors would start
to protrude below the lower boundary.

Another necessary modification is in the way the pattern match vector PM; is
used. Since we are gradually moving the delta vectors down, the match vector has to
be aligned correctly. This is easily achieved in O(1) time by shifting and OR-ing the
corresponding at most two match vectors.

The last necessary modifications concern the first line of the algorithm for the
Damerau edit distance in Figure 4. First of all the diagonal delta vector DO, is
shifted down (left), which is not necessary when the vectors are tiled diagonally.
Because of similar reason the vector PM;_; has to be shifted one step up (to the
right). This means that also the value PM;_4[l, + 1] will have to be present in the
match vector PM;_;. We do not deal with this separately, but assume for now on
that [, + 1 < w when dealing with the Damerau edit distance. Another option would
be to set the last bit separately, which can be done in O(1) time.

Figures 6 and 7 show the algorithms for computing the vectors at the jth column
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when diagonal tiling is used. We do not show separate versions for the different cases
of updating the cell value at the lower boundary. It is done using one of the previously
mentioned ways of using D0; (diagonal stage) or HP; and HN; (horizontal stage).

When [, < w, each column of the dynamic programming matrix is computed in
O(1) time, which results in the total time being O(o + n) including also time for
preprocessing the pattern match vectors. In the general case, in which [, > w, each
length-1, vector can be simulated by using [[,/w] length-w vectors. This can be done
in O([l,/w]) time per operation, and therefore the algorithm has in general a run
time O(o + [l,/w]n), which is O(c +ed(A, B) x n) as I, = O(ed(A, B)). The slightly
more favourable time complexity of O(c + ed(A, B) x m) in the general case can be
achieved by simply reversing the roles of the strings A and B: We still have that
l, = O(ed(A, B)), but now there is m columns instead of n. In this case the cost of
preprocessing the match vectors is O(o + n), but the above complexities hold since
n = O(ed(A, B) x m) when n > m.

Computing the jth column in diagonal tiling (Levenshtein distance)
Build the correct match vector into PM;

DOj — (((PM] & Vijl) —I-Vijl) A Vijl) | PMj | VNj,I
HPj < VNj_1 | ~(D0; [ VPj1)

HNj — DOj & Vijl

Update the appropriate cell value at the lower boundary.
VP« HN;j | ~((D0; >> 1) | HP))

VN « (D0 >> 1) & HP;

N Uk N

Figure 6: Computation of the jth column with the Levenshtein edit distance and
diagonal tiling (for the case [, < w).

Computing the jth column in diagonal tiling (Damerau distance)
Build the correct match vector into PM;

DOj — (N DOj_l) & (PMj << 1) & (PMj_l >> 1)

DOj — DOj | (((PM] & Vijl) —I-Vijl) A Vijl) | PMj | VNj,I
HP]' — VNj_l | ~ (DOJ | VPj_l)

HNj — DOj & Vijl

Update the appropriate cell value at the lower boundary.
VPj — HNj | ~ ((DOJ >> 1) | HPj)

VN < (D0 >> 1) & HP;

® N O Utk W=

Figure 7: Computation of the jth column with the Damerau edit distance and diag-
onal tiling (for the case [, < w).
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4 Test Results

In this section we present initial test results for our algorithm in the case of computing
the Levenshtein edit distance. We concentrate only on the case where one wants to
check whether the edit distance between two strings A and B is below some pre-
determined error-threshold k. This is because the principle of the algorithm makes it
in practice most suitable for this type of use. Therefore all tested algorithms used a
scheme similar to the cutoff method briefly discussed in the end of Section 2.3. As a
baseline we also show the runtime of using the O([m/w]|n) bit-parallel algorithm of
Myers.

The test consisted of repeatedly selecting two substrings in pseudo-random fashion
from the DNA-sequence of the baker’s yeast, and then testing whether their Leven-
shtein edit distance is at most k. The computer used in the tests was a 600Mhz
Pentium 3 with 256 MB RAM and running Microsoft Windows 2000. The code was
programmed in C and compiled with Microsoft Visual C++ 6.0 with full optimization.
The tested algorithms were:

MYERS: The algorithm of Myers [Mye99] (Section 2.2) modified to compute edit
distance. The run time of the algorithm does not depend on the number of
errors allowed. The underlying implementation is from the original author.

MYERS(cutoff): The algorithm of Myers using cutoff modified to compute edit
distance. The underlying implementation (including the cutoff-mechanism) is
from the original author.

UKKA (cutoff): The method of Ukkonen based on filling only a restricted region
of diagonals in the dynamic programming matrix and using the cutoff method
(Section 2.3).

UKKB(cutoff): . The method of Ukkonen [Ukk85a] based on computing the values
in the dynamic programming matrix in increasing order. That is, the method
first fills in the cells that get a value 0, then the cells that get a value 1, and so
on until the cell D[m, n] gets a value.

OURS(cutoff): Our method of combining the diagonal restriction scheme of Ukko-
nen with the bit-parallel algorithm of Myers (Section 3). We implemented a
similar cutoff method as was used by Hyyrd and Navarro with edit distance
computation in their version of the ABNDM algorithm [HN02].

The results ase shown in Figure 8. We tested sequence pairs with lengths 100,
1000 and 10000, and error thresholds of 10%, 20% and 50% of the sequence length
(for example & = 100, 200 and 500 for the sequence length m = n = 1000). It can
be seen that in the case of £ = 10 and m = 100 UKKB(cutoff) is the fastest, but in
all other tested cases our method becomes the fastest, being 8%-38% faster than the
original cutoff method of Myers that is modified to compute edit distance. The good
performance of UKKB(cutoff) with a low value of & is not surprising as its expected
run time has been shown to be O(m + k2?). [Mye86].
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m =mn = 100 m =n = 1000 m =n = 10000
error limit (%) | 10 20 50 10 20 50 10 20 50
UKKA (cutoff) 1,92 | 5,93 | 32,6 | 13,5 | 52,7 | 322 | 13,1 | 54,9 | 351
UKKB(cutoff) 1,23 13,02 | 14,9 | 6,17 | 22,9 | 139 | 5,57 | 22,4 | 146
MYERS(cutoff) | 2,46 | 3,23 | 4,07 | 2,47 | 4,48 | 15,9 | 0,71 | 2,35 | 13,4
OURS(cutoff) 2,27 12,47 13,32 1,96 | 3,08 |10,5| 0,48 | 1,47 | 9,03
MYERS 4,24 17,0 14,5

Figure 8: The results (in seconds) for thresholded edit distance computation between
pairs of randomly chosen DNA-sequences from the genome of the baker’s yeast. The
error threshold is shown as the percentage of the pattern length (tested pattern pairs
had equal length). The number of processed sequence pairs was 100000 for m =n =
100, 10000 for m = n = 1000, and 100 for m = n = 10000.

Conclusions and further considerations

In this paper we discussed how bit-parallelism and a diagonal restriction scheme
can be combined to achieve an algorithm for computing edit distance, which has an
asymtotic run time of O(o + [d/w]m). In practice the algorithm is mostly suitable
for checking whether ed(A, B) < k, where k is a pre-determined error threshold.
In this task the initial tests showed our algorithm to be competitive against other
tested algorithms [Ukk85a, Mye99], which have run times O(dm) and O(c +mn/w),
respectively.

During the preparation of this article we noticed that there seems to be a lack of
comprehensive experimental comparison of the relative performance between different
algorithms for computing edit distance. Thus we are planning to fill this gap in the
near future by composing a fairly comprehensive survey on algorithms for comput-
ing edit distance. The survey will also include a more comprehensive test with our
algorithm.

We would also like to point out that the algorithm pseudocodes we have shown
have not been optimized to remain more clear. Practical implementations could for
example avoid shifting the same variable twice and maintain only the needed delta
vector values in the memory (the delta vectors in the jth column are only needed
when processing the (j + 1)th column).

References

[Dam64] F. Damerau. A technique for computer detection and correction of spelling
errors. Comm. of the ACM, 7(3):171-176, 1964.

[HN02] H. Hyyré and G. Navarro. Faster bit-parallel approximate string matching.
In Proc. 13th Combinatorial Pattern Matching (CPM’2002), LNCS 2373,
pages 203-224, 2002.

[Hyy01] H. Hyyr6. Explaining and extending the bit-parallel algorithm of Myers.
Technical Report A-2001-10, University of Tampere, Finland, 2001.

53



Proceedings of the Prague Stringology Conference 02

[Lev66]

[Mye86]

[Mye99]

[Nav01]

[Ste94]
[Ukk85a]

[UKkS5b]

[WE74]

[WM92]

V. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10(8):707-710, 1966. Original in Russian
in Doklady Akademii Nauk SSSR, 163(/):845-848, 1965.

G. Myers. An O(N D) difference algorithm and its variations. Algorithmica,
1:251-266, 1986.

G. Myers. A fast bit-vector algorithm for approximate string matching
based on dynamic progamming. Journal of the ACM, 46(3):395-415, 1999.

G. Navarro. NR-grep: a fast and flexible pattern matching tool. Software
Practice and Experience (SPE), 31:1265-1312, 2001.

G. A. Stephen. String Searching Algorithms. World Scientific, 1994.

E. Ukkonen. Algorithms for approximate string matching. Information and
Control, 64:100-118, 1985.

E. Ukkonen. Finding approximate patterns in strings. Journal of Algo-
rithms, 6:132—-137, 1985.

R. Wagner and M. Fisher. The string to string correction problem. Journal
of the ACM, 21:168-178, 1974.

S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the
ACM, 35(10):83-91, 1992.

04



String Matching with Gaps for Musical Melodic
Recognition

Costas S. Iliopoulos! and Masahiro Kurokawa'

- Algorithm Design Group, Dept of Computer Science,
King’s College London, Strand, England, and
School of Computing, Curtin University of Technology,
Perth, Australia
I Algorithm Design Group, Dept of Computer Science,
King’s College London, Strand, England

e-mail: csi@dcs.kcl.ac.uk, kurokawa@dcs.kcl.ac.uk

Abstract. Here, we have designed and implemented algorithms for string
matching with gaps for musical melodic recognition on polyphonic music using
bit-wise operations. Music analysts are often concerned with finding occurrences
of patterns (motifs), or repetitions of the same pattern, possibly with variations,
in a score. An important example of flexibility required in score searching arises
from the nature of polyphonic music. Within a certain time span each of the
simultaneously-performed voices in a musical composition does not, typically,
contain the same number of notes. So ‘melodic events’ occurring in one voice
may be separated from their neighbours in a score by intervening events in
other voices. Since we cannot generally rely on voice information being present
in the score we need to allow for temporal ‘gaps’ between events in the matched
pattern.

Key words: exact string matching, approximate string matching, gaps, pat-
tern recognition, computer-assisted music analysis, bit-wise operation

1 Introduction

This paper focuses on a set of string pattern-matching problems that arise in musical
analysis, and especially in musical information retrieval. Music analysts are often
concerned with finding occurrences of patterns, or repetitions of the same pattern,
possibly with variations, in a score, while computer scientists often have to perform
similar tasks on strings (sequences of symbols from an alphabet). Many objects can
be viewed as strings: a text file, for instance, is a sequence of characters from the
ASCIT alphabet; a DNA code is a sequence of characters from the alphabet A,C,G,T
(representing the base proteins which constitute DNA). Similarly, a musical score can

t Partially supported by a Marie Curie fellowship, Wellcome and Royal Society grants.
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be viewed (at one level) as a string: at a very rudimentary level, the alphabet could
simply be the set of notes in the chromatic or diatonic notation, or the set of intervals
that appear between notes (e.g. pitch may be represented as MIDI numbers and pitch
intervals as number of semitones).

Monophonic music (that is, music in which a single note only sounds at any
given time) lends itself well to a one-dimensional string matching approach, and
efficient matching algorithms for single-line melody-retrieval have been applied with
some success. The polyphonic situation (where several voices or instruments may
be performing together, and any number of notes may be sounding at any given
time) is more complex, however, because of the temporal interaction between non-
simultaneous events in different voices. Where full knowledge about the voicing of the
music data (in both the search-pattern and the target) is available, matching could be
done by successive searches on each voice in turn. In many music-retrieval or analysis
applications, especially where the data has been prepared by encoding a printed score
in conventional musical notation, this is possible. But in the general case the data is
likely to be imperfectly-specified in terms of its voicing, typically depending on how
it is obtained: from audio, for example, even given perfect note-extraction, voicing
information is likely to be derivable only approximately, if at all. Therefore, we need
to allow for temporal gaps between musical events in the matched pattern.

When we consider the approximate version of this problem we do not require a
perfect matching but a matching that is good enough to satisfy certain criteria. The
problem of finding substrings of a text similar to a given pattern has been extensively
studied in recent years because it has a variety of applications including file com-
parison, spelling correction, information retrieval, searching for similarities among
biosequences and computerized music analysis. One of the most common variants of
the approximate string matching problem is that of finding substrings that match the
pattern with at most k-differences. In this case, k defines the approximation extent of
the matching (the edit distance with respect to the three edit operations — mismatch,
insert, delete). There is another type of approximate matching; d-approximate match-
ing. It is well known that a musical score can be represented as a string. This can be
accomplished by defining the alphabet to be the set of notes in the chromatic or dia-
tonic notation or the set of intervals that appear between notes. These algorithms can
be easily used in the analysis of musical works in order to discover similarities between
different musical entities that may lead to establishing a “characteristic signature”
[CIR9S].

In addition, efficient algorithms for computing approximate matching and repeti-
tions of substrings are also used in molecular biology [FLSS93, KMGLS88, MJ93] and
particularly in DNA sequencing by hybridization, reconstruction of DNA sequences
from known DNA fragments, in human organ and bone marrow transplantation as
well as the determination of evolutionary trees among distinct species.

Because exact matching may not help us to find occurrences of a particular melody
in a musical work due to the transformation of the particular melody throughout the
whole musical work we are compelled to use approximate matching that can absorb,
to some extent, this transformation and report the occurrences of this melody. The
transformation in different occurrences of a particular melody throughout a musical
play is translated into errors of different occurrences of a substring with respect to
an initial pattern. Quantity ¢ defines the error margins of such an approximation.
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In [CCIMP99], algorithms Shift-And and Shift-Plus were presented as efficient
solutions to find all j-occurrences of a given pattern in a text. The Shift-And algorithm
is based on the constant time computation of different states for each symbol in
the text by using bitwise techniques. Therefore, the overall complexity is linear
to the size of the text. In [IK02], approximate distributed matching problem for
polyphonic music is solved in linear time. We must also mention that it is possible to
adapt efficient exact pattern matching algorithms to this kind of approximation. For
example, in [CILP01] adaptations of the Tuned-Boyer-Moore [HS91] and the Skip-
Search [CLP98] algorithm were presented.

The organization of the paper is as follows. Some definitions are given in section 2.
In section 3, d-occurrence with a-bounded gaps for monophonic music is considered.
In section 4 we consider the problem of computing exact matching with a-bounded
gaps for polyphonic music. Finally, we give some conclusions and future work in
section 5.

2 Definitions

Let X be an alphabet. A string is defined as a sequence of zero or more symbols from
Y. The empty string, that is the string with zero symbols, is denoted by . The set of
all strings over an alphabet X is denoted as ¥*. A string z of length n is represented
by the sequence x,xs,...,x,, where x; € 3 for 1 <14 <n. We call w a substring of
string x if x is of the form wwv for u,v € ¥*. We also say that substring w occurs
at position |u| + 1 of string z. The starting position of w in z is the position |u|+ 1
while position |u|+ |w]| is said to be the end position of w in z. A string w is a prefix
of x if x is of the form wu and is a suffix if z is of the form uw.

We define as the concatenation of two strings x and y the string xy. The con-
catenations of k copies of a string  is denoted by z*. Note that self-concatenations

can result in strings of exponential size. For two strings * = xy,2,...,2, and
Y = Y1,Y2,.--,Ym such that =z, _;1q,...,2, = yy...y; for some ¢ > 1, the string
L1y yTnyVYiy- .-, Ym 1S the superposition of x and y. In this case we say that x and
y overlap.

At this point, we are going to give formally the notion of error introduced in
approximate string matching. Assume that ¢ and v are integers. Two symbols a, b of

alphabet X are said to be d-approzimate, denoted as a =; b, if and only if |a — b| < .

We say that two strings x, y are d-approximate, denoted as x L y if and only if

|z| = |y| and = =5 y.

Two strings z, y are said to be vy-approzimate, denoted as x =, vy , if and only
if |z| = |y| and Z‘fz‘l |z; — y;| < 7. Furthermore, we say that two strings z, y are
(0, v)-approzimate if both conditions are satisfied.

The error in the first case (d-approximate) is defined locally for each symbol in a
string. In the second case (y-approximate) the error is defined in a more global sense
and allows us to distribute the error on the symbols unevenly.
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3 J-occurrence with a-bounded gaps for monopho-
nic music

The problem of computing d-occurrence with a-bounded gaps is formally defined as
follows: given a string t = ¢;,...,%,, a pattern p = pq,...,p, and integers a, 0,
check whether there is a d-occurrence of p in ¢ with gaps whose sizes are bounded by
constant « (Fig. 1).

The basic idea of the algorithm described in [CIPRO0] is the computation of
continuously increasing prefixes of pattern p in text ¢ so that finally we compute
the d-occurrence of the whole pattern p. That is, the algorithm is an incremental
procedure that is based on dynamic programming. The algorithm is shown in Fig. 2.

Pattern: |5 /8/2]4]9]

report

Text: 12]/9]6]1[8]|6]5[1]4]2]8]1]

Figure 1: §-occurrence with a-bounded gaps for 6 = 1,0 = 2

begin
DI0][0] ¢ 1;
for i + 1 to m do D[i][0] < 0;
for j «+ 1 to n do DI[0][j] < j;
for i <+ 1 tom do
for j < 1ton do
if pli]| =st[j]and j — D[i —1][j — 1] <a+1land D[i —1][j —1] >0
then D[i][j] < j;
elseif p[i] #5 t[j] and j — D[i][j — 1] < @+ 1 then DIi][j] + DI[i][j — 1};
else DJi][j] < 0;
for j < 0 ton do
if D[m][j] > 0 then OUTPUT(j);
end

Figure 2: Algorithm for d-occurrence with a-bounded gaps

This algorithm will be adapted to the problem of finding a singular pattern in a
singular text (monophonic music) without any major modifications. Fig. 3 shows 2
bars from Michael Niman’s piece and a melody which listeners can easily cognize.

If we set the value @ = 3 (3 gaps allowed), the algorithm can find this melody
in the score, while we have to set a large number of k£ (at least £ = 12) to find it
using k-difference approximate matching algorithms. The time complexity of this
algorithm is O(nm), where n is the number of the musical events in the score, which
is equivalent to the number of notes in the score since this is monophonic music, and
m is the length of the pattern. The running time is shown in Fig. 4.
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Score
[69,59,60,64,69,59,69,59,60,64,71,59,
69,59,60,64,67,59,64,59,60,64,59,60]
91- 1/\}\ Mﬁ\— T 1/_\#. ]
Me]ody: M‘ﬁﬁ:‘
] = |4 = = =

[69,69,69,71,69,67,64]

Figure 3: 2 bars from Michael Niman’s piece and its melody. If a > 3, this melody
will be found.

0.14

——m=20
—- m=40
—A— m=60

Time (sec)

T T T T
=] e 2 2 2
S 2 2 2 2 2 © © 2
= a & §F A" & & o &

1000 -

The number of the events (n)

Figure 4: Running time of the algorithm “d-occurrence with a-bounded gaps for
monophonic music”. Using a SUN Ultra Enterprise 300MHz running Solaris Unix.

4 Exact matching with a-bounded gaps for poly-
phonic music

We need to modify the algorithm in order to solve the problem in polyphonic music.
Here, we will work on exact matching with a-bounded gaps for polyphonic music, and
d-occurrence will not be considered, as the adjacent pitch does not necessarily mean
the most relevant note for a melody. Also, we will suppress the MIDI pitch numbers
by dividing by 12 in order to find octave-displaced matches as well. Therefore, ‘C’ is
‘1’, ‘C#’ and ‘Db’ are ‘2’, ‘D’ is ‘3’, and so on, and the size of alphabet |X| will be
12.

We are going to use bit arrays and bit-wise operations to deal with several voices
at once. Let Tz[i] (1 < i < m, m is the length of a pattern) be a bit array of
size |3| for the position i of the pattern, and Ty[j] (1 < j < n, n is the number of
musical events in a plural text) be a bit array of size |X| for the j-th musical event
of the plural text. If x[i] contains a note ‘8, then the 8th position of Tx[i] will be 0,
otherwise 1, where 0 represents ‘match’ and 1 represents ‘mismatch’. Similarly, if y[7]
contains notes ‘3’, ‘4" and ‘9’, then the 3rd and 4th and 9th position of T'y[j] will be
0, otherwise 1. These bit arrays will be used in the searching phase to check whether
there is a match or not.

Fig. 5 shows the modified algorithm and the overall time complexity is O (N +nm),
where N is the total number of notes in the score, and n is the number of the musical
events, and m is the length of the pattern, and Fig. 6 shows its running time. Fig. 7
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Preprocessing
begin
for j < 1 to m do Tz[j] + 27 — 1 — 27Ul
for i < 1 ton do
Tyli] + 27 —1;
for each suppressed pitch p in y[i] do Ty[i] < Ty[i] & (27 — 1 — 2P);
end
Searching
begin
D[0][0] « 1;
for i < 1 to m do DJi][0] < 0;
for j «+ 1 to n do DI[0][j] « 7;
for s <1 tom do
for j < 1tondo
if (Tx[i] | Ty[j]) =Tzl and j — D[i —1][j — 1] < a+1
and D[i — 1][j — 1] > 0 then D[i][j] < 7;
elseif (Tz[i] | Ty[j]) # Tz[i] and j — D[i][j —1] < a +1
then D[i][j] < DIi[j — 1]
else DJi][j] < 0;
for j «+ 0 ton do
if D[m][j] > 0 then OUTPUT(j);
end

Figure 5: Modified algorithm for polyphonic music

and Fig. 9 show examples of the preprocessing phase for 1 bar from Mozart’s piano
sonata and Debussy’s Clair de Lune, respectively, and Fig. 8 and Fig. 10 show their
searching phases.

—@— m=20
—— m=40
—A— m=60

0
0
0
0
0
0
00
900
1000

The number of the events (n)

Figure 6: Running time of the modified algorithm for polyphonic music (N = 4n).
Using a SUN Ultra Enterprise 300MHz running Solaris Unix.

5 Conclusion and further work

Approximate (d-occurrence) string matching with gaps for monophonic music is solved
in O(nm) time, where n is the number of musical events (which is equivalent to the
number of notes in a score for monophonic music), and m is the length of a pattern.
Exact string matching with gaps for polyphonic music (a plural text and a singular
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Score Pattern
)P -
A — t t
@ T
B @
,9 e e e e s
== 35 5
D -

Event| 1 |2 |3 |4 |5|6]| 7|38
81 79 84 S
Pitch | 60 | 69 | 65 | 69 | 60 | 67 | 64 | 67 uppress

Suppress s
v [Pitch [10]8]1]
Event| 1 | 2 (3|4 5[6]7|8
10 3 1 i Preprocess
Pitch | 1 [10]6/10]|1[8|5]|8 O 11213
Preprocess 1(C) 111]0
A 4 2 1111
TyG) | 1]2]3]4]5|/6[7]8 3D) |1]1]1
1(C) |oj1]1|1|O[1]O]1 4 1(1]1
2 L)1 11|11 5(E) 111]1
3D) |11 ]1{1]L]1]1 6F) |1]1]1
4 IERER NN RN AR 7 1{1]1
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7 111111 ]1]1 10A) O] 11
8G) |1 |1 [1]1]0]O|1]O 11 1]1]1
9 L1111 |1]1 12B) |1 [1]1
10A) OO 1 |O|1[1]I]1
11 11111 ]1]1
12B) 1|11 |1]1[1]1]1

Figure 7: Preprocessing phase for 1 bar from a Mozart’s piano sonata and a pattern.
(N=11,n=8,m = 3)

Pattern:

Score: ‘ 10

Figure 8: Searching phase using bit-wise operations for 1 bar from the Mozart’s piano
sonata and the patten. (o = 3)
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Score Pattern
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Figure 9: Preprocessing phase for 1 bar from Clair de Lune and a pattern. (N =
30,n =18, m = 4)

Score: 6 2 2
2 11 11 6 2 11
1148|1148 [4][11]8 114 ]11[4]8 4|11

v v

Report Report

FNFNE
NS

Figure 10: Searching phase using bit-wise operations for 1 bar from Clair de Lune
and the patten. (o =1)
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pattern) is solved in O(N + nm) time, where N is the total number of notes in a
score, and n is the number of musical events (n < N), and m is the length of a
pattern. Using the same technique, exact string matching problem for a plural text
and a plural pattern will be solved in O(N 4+ M + nm) time, where M is the total
number of notes in the plural pattern. However, we have not solved approximate
string matching with gaps for polyphonic music, because “small §” does not really
mean “more relevant” in music. In this particular sense, k-difference algorithms could
be more useful, although it is inevitable to have large k£ and many false matches. We
need to design an efficient algorithm for this problem.
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1

Regularities in strings arise in many areas of science: combinatorics, coding and au-
tomata theory, molecular biology, formal language theory, system theory, etc. — they
thus form the subject of extensive mathematical studies (see e.g. [L83],[P93],[P90]).
Perhaps the most conspicuous regularities in strings are those that manifest them-
selves in the form of repeated subpatterns. A typical regularity, the period u of the
string x, grasps the repetitiveness of x, since x is a prefix of a string constructed by

String Regularities with Don’t Cares
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Abstract. We describe algorithms for computing typical regularities in strings
x = z[l..n] that contain don’t care symbols. For such strings on alphabet ¥, an
O(nlognlog|X|) worst-case time algorithm for computing the period is known,
but the algorithm is impractical due to a large constant of proportionality. We
present instead two simple practical algorithms that compute all the periods
of every prefix of x; our algorithms require quadratic worst-case time but only
linear time in the average case. We then show how our algorithms can be used
to compute other string regularities, specifically the covers of both ordinary and
circular strings.
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concatenations of u. Here we consider regularity problems that arise from having
“don’t care” symbols in the string. In particular we study string problems focused
on finding the repetitive structures in DNA strings z.

In this paper we also consider a kind of generalized period called a cover; that is, a
proper substring u of x (if it exists) such that = can be formed by concatenating and
overlapping occurrences of u. In the computation of covers, two main problems have
been considered in the literature: the shortest-cover problem (computing the shortest
cover of a given string of length n), and the all-covers problem (computing all the cov-
ers of a given string). Apostolico, Farach and Iliopoulos [AFI91] introduced the notion
of covers and gave a linear-time algorithm for the shortest-cover problem. Breslauer
[B92| presented a linear-time on-line algorithm for the same problem. Moore and
Smyth [MS95] presented a linear-time algorithm for the all-covers problem. Finally,
Li and Smyth [LS02] invented the cover array and described an on-line linear-time
algorithm that solves both the shortest-cover and all-covers problems for every prefix
of 2. In parallel computation, Breslauer [B94] gave an optimal O(«(n) loglogn)-time
algorithm for the shortest cover, where a(n) is the inverse Ackermann function; Il-
iopoulos and Park [IP94] gave an optimal O(loglogn)-time (thus work-time optimal)
algorithm for the same problem.

The idea of a cover has been extended. Iliopoulos, Moore and Park [IMP96]
introduced the notion of seeds and gave an O(n logn)-time algorithm for computing all
the seeds of a given string of length n. For the same problem Ben-Amram, Berkman,
[liopoulos and Park [BBIP94] presented a parallel algorithm that requires O(logn)
time and O(nlogn) work. Apostolico and Ehrenfeucht [AE93] considered yet another
problem related to covers.

An interesting extension of string-matching problems with practical applications
in the area of DNA sequences results from the introduction of “don’t care” symbols.
A don’t care symbol x has the property of matching with any symbol in the given
alphabet. For example the string p = AC % C'x matches the pattern ¢ = A x DCT.
Exact string matching with “don’t care” symbols was studied by Fischer and Pa-
terson [FP74]. They developed an O(nlogmlog|X|) time algorithm for finding a
pattern of length m in a text of size n over the alphabet ¥ U {x}. Their method
is based on the theoretically fast computation method of convolutions, but it is not
efficient in practice. Pinter developed a linear time algorithm for a special case [P85],
while Abrahamson generalized Fischer and Paterson’s algorithm, using a divide-and-
conquer approach that runs in time O(ny/mlogm) [A87]. See also [LV89].

In this paper we describe two fast, practical algorithms for computing all the
periods of every prefix of a given string z[1..n] that contains “don’t care” symbols.
We prove that the expected running time of these algorithms is linear, though they
have quadratic worst-case time complexity for pathological inputs. Then we show
how our algorithms can be used to efficiently compute covers of strings with don’t
cares, both ordinary and circular. The motivation for the above problems comes from
many applications to the analysis of DNA sequences that reveal naturally occurring
repeated segments within nucleotide sequences. These segments can be concatenated
only (periodic) or both concatenated and overlapping (coverable).
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2 Background

A string is a sequence of zero or more symbols drawn from an alphabet Y. The set
of all nonempty strings over the alphabet X is denoted by X*. A string x of length n
is represented by z[1..n] = x[1]z[2] - - - z[n], where z[i] € ¥ for 1 < i < n, and n = |z
is the length of x. The empty string is the empty sequence (of zero length) and is
denoted by ¢; we write ©* = ¥ U{e} The string xy is a concatenation of two strings
x and y. The concatenation of k copies of x is denoted by z* and is called the k'
power of x.

A string w is a substring of x if x = vwwv for u,v € ¥*. A string w is a prefiz of
if x = wu for u € *, a proper prefiz if u € 7. Similarly, w is a suffiz of x if x = uw
for u € ¥*. A string u that is both a proper prefix and a suffix of x is called a border
of x.

If x has a nonempty border, it is called periodic. Otherwise, x is is said to be
primitive. The empty string is a trivial border of x. Let u denote a border of x of
length ¢ where 1 < ¢ < n — 1; then p = n — ( is called a period of x. Clearly, p is
a period of z if z; = z;4, whenever 1 < 4,7+ p < n. Another equivalent definition
may be given as: p is a period of x if and only if [1..p] = z[n — p+ 1..n]. The latter
definition shows that each word x has a minimum period called the period of x. For
example, the string x = ababab has two borders u; = ab and us = abab; thus x has
two periods 4 and 2, where 2 is the period of .

A substring u is said to be a cover of a given string z if every position of z lies
within an occurrence of a string v within z. If, in addition, |u| < |z|, we call u a
proper cover of x. For example, x is always a cover of z. and u = aba is a proper
cover of x = abaababa.

An array S[1..n] is called the border array of z[1..n], where for i = 1,2,...,n, B[i]
gives the length of the longest border of z[1..i]. Furthermore, since every border of a
border of x is itself a border of x, § actually describes all the borders of every prefix
of . The border array can be computed in linear time using the classical failure
function algorithm [AHUT74].

Recently Li and Smyth [L.S02] discovered the cover array [1..n], where v[i] gives
the length of the longest cover of x[1..7]. The cover array similarly encapsulates all
the covers of every prefix of x and can also be computed in linear time.

This paper deals with strings that can contain occurrences of the don’t care sym-
bol, denoted by “x”. This symbol matches any other symbol of the alphabet. Two
symbols a and b match (a = b) if they are equal, or if one of them is a don’t care
symbol. Notice that the relation =~ is not transitive (a & *,* ~ b % a = b).

3 Computing the Failure Function

A theoretical O(nlognlog |X]) time algorithm for computing the period of a given
string x that contains don’t care symbols can be achieved by using a “convolution”
procedure [FP74] between two strings x and X. Assuming that z is the given string
(of length n), we create a string X by adding n don’t care symbols, thus doubling
the length of z. We compute the convolution of x and X by shifting = to the right
by one character. The product u of the convolution is the period of the string x (for
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further information see [FP74]). This algorithm is impractical as it has a very large
constant hidden in its asymptotic time complexity.

In this section we present two fast and practical algorithms for computing the
border array f[1...n] of a given string x that contains don’t care symbols.

As noted earlier, the standard failure function method, based on the fact that
“a border of a border of a string x is necessarily a border of 2”7, cannot be used to
calculate the border array of a string containing don’t care symbols. This follows
from the nontransitivity of the = relation. For example, if © = a * xca, then we have

U = ax x X U, = *ca,

where u; and u, are respectively the left and right borders of x of length 3; note that
vy = ax & *x is a border of u;, but a*x # ca, which means that v; is not a border of
u,, hence not of z.

Despite the fact that we cannot make use of the standard failure function method,
it is quite easy to notice that there is no nonempty border b of z[1..i + 1] that is not
equal to some 0'z[i + 1], where b’ is a border of z[1...i]. Moreover, let the borders of
x[1..1] be

B, B%la] ... B[]
where 3'[i] is the the length of the border of z[1 . .. ] (the longest border) and 8¥[i] = 0
is the length of the empty border .Then each border of z[1...i+ 1] is equal to either
B7[i] + 1 for some 1 < j < k or 0.

The above states the rule used by algorithm FAILURE-FUNCTION-1() to calcu-
late the value of the border array of a given string x that contains don’t care symbols.

FAILURE-FUNCTION-1(x)
1S« 0 S is a singly-linked list of nonzero border lengths
2 B[]+ 0
3 For i+ 1Ton—-1Do
For each b € S Do
If z[i + 1] ~ 2[b + 1] Then
replace_current(S, b + 1)
Else delete_current(S)
If z[i] ~ x[1] Then add_after_current(S,1)
9 If S#( Then S[i + 1] «+top(S)
10 Else f[i+ 1]+ 0
END FAILURE-FUNCTION-1

00 ~ O Ut =

Figure 1: FAILURE-FUNCTION-1 algorithm.

The algorithm maintains a list S of all possible nonzero border lengths. At the
beginning of iteration ¢, S contains all possible nonzero border lengths of z[...4]. The
algorithm tries to extend each possible border b in S by comparing the value of x[i+1]
and the value of z[b + 1]. If the two values are equal or one of them is a don’t care
symbol, the value b in S is replaced by b + 1. Otherwise, b is deleted from the list.
If z[i + 1] is equal to z[1] or *, a border of length 1 has to be added to S. Finally,
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each iteration i terminates by assigning the value at the top of the list S that is the
length of the longest border of x[1...7+4 1] to B[i + 1]. If the list S is empty, then the
length of the longest border is 0 (5[i + 1] = 0). Note that at this stage , S contains
the lengths of all possible nonzero borders of z[1...i + 1] in descending order.

Each position i such that z[i] = z[1] or % is a candidate to start a new border.
Hence Algorithm FAILURE-FUNCTION-2() tries to speed up the computation of the
failure function by a simple linear preprocessing of the input string x. For each posi-
tion 7 we count the previous occurrences of z[1]’s and x’s. And we introduce a pointer
that points to the previous occurrence. The algorithm then modifies the standard
failure function method to calculate the border array §. FAILURE-FUNCTION-2
starts by setting the value of 5[0] to -1, a convention which is compatible with the
algorithm. Then n — 1 iterations follow. In each iteration ¢, the algorithm tries to
extend the current border b by comparing the value of z[i+1] and the value of z:[b+1]
where b is the length of the border of x[1...i]. If the two values are equal or one of
them is a don’t care symbol, the value of /3[i] is set to b+ 1. Otherwise, the algorithm
tries to follow the basic failure function method by trying to extend the border of
the current border. More work needs to be done in each attempt to ensure the right
answer:

e The algorithm has to eliminate the possibility of having a border whose length
is greater than that of the border of the border. That is, having

zll..i—j+2=~zfj...i+1]

for some j such that B[b] < i —j+ 1 < b. The algorithm uses the preprocessed
informations to find each position j such that z[j] = z[1] or *. Clearly, the
number and the positions of the j’s can be calculated in constant time. The
algorithm examines each j in ascending order to find the first j that satisfies
the above condition. If such a j exists, then the iteration ends by assigning
i—j+2to pli+1].

e Recall that the nontransitivity of the & relation means that the statement “the
border of the border is a border” may not be true. Observe that nontransitivity
can occur only if a don’t care symbol was part of the comparison. Then only
in such cases does the algorithm need to recheck the positions that could cause
a nontransitivity. That is, if z[i + 1] ~ x[5[b]], then the algorithm still needs
to check all the solid characters in the right border; that have been compared
with the don’t care symbol during the calculation; against the coresponding
characters in the left border. These positions are marked during the calculations
and stored in a special stack S. Positions are popped from and pushed onto S
depending on the length of the current border.

For example, let x = a x xcabcdabe x abca and the value of the border array be as
follows:

¢ 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

zi] a ¥ * ¢ a b ¢ d a b ¢ * a b ¢ a

i o1 2 332301 2 3 4 5 6 7 5
At step 7 (i = 7) we had failed to extend the current border after comparing z[4] = ‘¢’
with z[8] = ‘d’. At the same time we could not find any j that satisfies the first
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FAILURE-FUNCTION-2(z)

1 B[0] « —1

2 For ¢ <~ 0 Ton —1 Do

3 b+ pli]

4 Ifz(i+1)~xz(b+1) Then fli + 1]+ b+1

5 Else

6 While b > 0 And [z(i 4+ 1) # z(b+ 1) Or check_stack_fail()] Do
7 For each j such that f[b] <i—j+1 < b And z[j] = z[1] Do
8 If 2[j.i + 1] ~ 2[1..i — j + 2] Then

9 b1i—7+2

10 Quit The While Loop

11 b« B[b]

12 pli+1]«b
END FAILURE-FUNCTION-2

Figure 2: FAILURE-FUNCTION-2 algorithm.

condition. So we tried to extend the border of the border which equals 3 (3[7] = 3).
Since z[8] # x[4], we tried to extend the border of the border of the border which
equals 2 (5[3] = 2). Although z[8] ~ x[3], we still need to check according to the
algorithm the value at position 1 with the corresponding value at position 6. Since
they are not equal, the value of 3[8] can not be 3 and so we have to carry on . Note
that the value 1 had been inserted into the stack after comparing the ‘x’ at position
2 with the ‘a’ at position 1 at step 1.

At step 15, where z[16] # z[8], we had failed again to extend the current border.
According to the algorithm we have to eliminate the possibility of having a longer
border than the border of the border; that is, finding 7 that satisfies the first condition.
In our example, we found 7 = 12. Note that

Bhl=3<i—j+1=15—-12+1=4d<b=7

and z[12] = . After finding j we need to compare z[12...16] with x[1...5]. Since
they are equal the value of 3[16] becomes 5.

4 Expected Running Time Analysis

Here we will show that the expected number of borders of a string is bounded by
a constant. We suppose that the alphabet ¥ consists of ordinary letters 1...0 — 1
together with the don’t care symbol *. First we consider the probability of two
symbols of a string being equal. Equality occurs in the following cases:

Symbol Equal to Number of cases
* oce{l,...,a—1} a—1
oe{x1,...,a—1} * a
ce{l,...,a—1} |oe{l,...,a—1} a—1
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Thus the total number of equality cases is 3a. — 2 and the number of overall cases
is a?. Therefore the probability of two symbols of a string being equal is

30— 2
o2

Now let consider the probability of string x having a border of length k. One can see

3a—2\"
Ply...cp =2y g 1...2,) = Pty =25 g 1] ... Pl =2, = < > )

From this it follows that the expected number of borders is

30— 2\"
z;;:}(o‘ ><3.5

a2

The algorithm, at iteration ¢, performs k; steps, where k; is the number of the borders
of z[1..7]. Thus the overall expected time complexity is

DI

Since the expected value of each k; is bounded by 3.5, therefore the expected time of
the two border algorithms is O(n).

5 Experimental Results

Using random strings over various alphabet sizes (with the x symbol treated as
an additional random letter), we ran FAILURE-FUNCTION-1() and FAILURE-
FUNCTION-2(). The running time was calculated for each execution. We used
a SUN Ultra Enterprise 300MHz running Solaris Unix. The reported times are the
calculation time in seconds, measured by calling the a clock() routine (Figures 3
and 4).

0.001 —<— Alphabet Size =2
—— Alphabet Size = 6

Alphabet Size =10
0.0008 Alphabet Size =14
—k— Alphabet Size =18
—@— Alphabet Size =22
0.0006 —F— Alphabet Size =26
—=— Alphabet Size =30

0.0009

0.0007

Running Time (sec.)

0 100 200 300 400 500 600 700 800 900

Input Size

Figure 3: Timing curves for the FAILURE-FUNCTION-1 Procedure.

In general, it seems that the heuristic employed in FAILURE-FUNCTION-2 is
effective for random strings on small alphabets (therefore containing a high proportion
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—— Alphabet Size =2
—— Alphabet Size = 6
00009 Alphabet Size =10

Alphabet Size =14
—K— Alphabet Size =18
—®— Alphabet Size =22
0.0006 —+— Alphabet Size =26
—=— Alphabet Size =30

0.001

0.0008

0.0007

0.0005

0.0004

Running Time (sec.)

0.0003

0.0002

0.0001

900

Input Size

Figure 4: Timing curves for the FAILURE-FUNCTION-2 Procedure.

FIND-COVERS(x)

1 Compute borders B = {by,...,b;} of x in ascending order of length
2 For each adjacent pair of borders, b; and b;,, Do

3 If b; covers b;y; Then check whether it covers x

4 Elsei<+i+1

END FIND-COVERS

Figure 5: FIND-COVERS algorithm.

of don’t care symbols), but makes little difference for larger alphabets that have a
correspondingly low proportion of don’t cares.

Note that our experiments confirm Section 4’s theoretical result that the expected
case bahaviour of the algorithms is linear in string length.

6 Computing the Covers

In this section we present an algorithm for computing all the covers of a given string
x, bearing in mind that we allow possible overlaps. This means that in the example
p=AC*x ACAx AAx AC A, the pattern ¢ = AC'A is an overlapping cover of the string
p. The algorithm we present consists of 2 stages. The first stage is a preprocessing
phase where we compute the borders of the given string z. Suppose we find the
following nonempty borders by, by, ..., by, listed in ascending order.

In the second stage we perform the following check: for two borders b; and b; i1, if
b; covers b; 1 we check whether b; also covers string x. If not we continue this process
for the rest of the adjacent pairs of borders.

In order to precompute the borders we use Algorithm ALL-BORDERS(). Using
the previously computed borders, the procedure that finds the covers of a given string
x is as follows:
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Theorem 6.1 Given a string x that contains don’t care symbols, we can find a longest
cover u of x in linear expected time.

7 Computing the Covers of Circular DNA Strings

In some computational biology applications (for example, DNA sequencing by hy-
bridization), it is convenient to regard the DNA sequence as a circular string (Fig. 6).
Given a circular DNA string and a window that limits the region of DNA that we are
able to study, the computation of covers in the sequence becomes a difficult task. In
that case the computation of seeds (see [BBIP94]) does not work and we need a new
approach.

Bearing in mind the scheme of a circular DNA string and the algorithms for the
computation of the failure function that we have already described, it is easy to see
that the computation of the covers in a circular DNA sequence can be easily solved
using the failure function technique. More precisely the problem of the computation
of covers can be solved if we compute the failure function two times, once forward
and once backward.

Sl:acag S2:*ta g S3:¢c * *a

Figure 6: A circular string x and three substrings S1, S2, S3, as seen from a window
of four characters length.

Conclusions

We have presented two linear expected-time algorithms for computing all the borders
(hence all the periods) of a given string containing don’t care symbols. We have then
shown how to apply the border calculation to compute the covers of ordinary and
circular strings, also containing don’t care symbols.

An open problem is the calculation of every border of every prefix of x in O(nlogn)
worst-case time.
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Abstract. String matching is critical in information retrieval since in many
cases information is stored and manipulated as strings. Constructing and uti-
lizing suitable data structures for text strings, we can solve the string matching
problem efficiently. Such structures are called index structures. The suffiz tree is
certainly the most widely-known and extensively-studied structure of this kind.
In this paper, we present a linear-time algorithm for bidirectional construction
of suffix trees.

1 Introduction

Pattern matching on strings is of central importance to Theoretical Computer Science.
The pattern matching problem is to examine whether a given pattern string p matches
a text string w. This problem can be solved in O(|p|) time, by using a suitable indez
structure.

The most basic index structure seems to be the suffix trie, by whose nodes all
substrings of a given string w are recognized. Probably the structure is the easiest to
understand, but its only, however biggest drawback is that its space requirement is
O(Jw]?).

This fact led the introduction of more space-economical (O(|w|)-spaced) structures
such as the suffix tree [23, 19, 22, 12|, the directed acyclic word graph (DAWG) |3,
7, 2], the compact directed acyclic word graph (CDAWG) [4, 9, 15, 13, 16], the suffix
array [18], and some other variants. Among those, suffix trees are possibly most
widely-known and extensively-studied [8, 12], perhaps because there are a ‘myriad’ [1]
of applications for them.

Construction of suffix trees has been considered in various contexts: Weiner [23]
invented the first algorithm that constructs suffix trees in linear time; McCreight [19]
proposed a more space-economical algorithm than Weiner’s; Chen and Seiferas [6]
showed an efficient modification of Weiner’s algorithm; Ukkonen [22] introduced an
on-line algorithm to construct suffix trees, which Giegerich and Kurtz [11] regarded
as “the most elegant”; Farach [10] considered optimal construction of suffix trees
with large alphabets; Breslauer [5] gave a linear-time algorithm for building the suffix
tree of a given trie that stores a set of strings; Inenaga et al. [14] presented an on-
line algorithm that simultaneously constructs both the suffix tree of a string and the
DAWG of the reversed string.

In this paper we explore bidirectional construction of suffix trees. Namely, the
algorithm we propose allows us to update the suffix tree of a string w to the suffix
tree of a string xwy, where x,y are any strings. We also show that our algorithm
runs in linear time and space with respect to the length of a given string.
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Some related work can be seen in literature: Stoye [20, 21] invented variant of suffix
trees, called affix trees. He proposed an algorithm for bidirectional construction of
affix trees, and Maaf [17] improved the time complexity of the algorithm to O(|w]).

2 Suffix Trees

Let ¥ be a finite alphabet. An element of ¥* is called a string. Strings x, y, and z
are said to be a prefir, factor, and suffiz of string w = xyz, respectively. The sets of
prefixes, factors, and suffixes of a string w are denoted by Prefiz(w), Factor(w), and
Suffiz (w), respectively. The length of a string w is denoted by |w|. The empty string
is denoted by e, that is, || = 0. Let ¥7 = ¥* — {e}. The i-th character of a string
w is denoted by w(i] for 1< i< |w|. Let S C ¥*. The cardinality of S is denoted by
|S|. For any string u € ¥*, Su™" = {z | zu € S}.
Let w € ¥*. We define an equivalence relation =L on ©* by

r =ty & Prefir(w)r™" = Prefir(w)y™".

The equivalence class of a string x € X* with respect to =L is denoted by [z]:. Note

that all strings not belonging to Factor(w) form one equivalence class under =Z.

This equivalence class is called the degenerate class. All other classes are said to be
non-degenerate.

Proposition 1 ([14]) Let w € ¥* and z,y € Factor(w). If x =L vy, then either z is
a prefix of y, or vice versa.

Proof. By the definition of =L we have Prefiz(w)z~! = Prefizr(w)y . There are
three cases to consider:

(1) When |z| = |y|. Obviously, x = y in this case. Thus z € Prefiz(y) and
y € Prefiz(z).

(2) When |z| > |y|. Let u be an arbitrary string in Prefiz(w). Assume u = sx with
s € ¥*. Then s € Prefir(w)z !, which results in s € Prefiz(w)y!. Hence,
there must exist a string v € Prefir(w) such that v = sy. By the assumption
that |z| > |y|, we have |u| > |v|. From the fact that both u and v are in
Prefiz(w), it is derived that v € Prefiz(u). Consequently, y € Prefiz(z).

(3) When |z| < |y|. By a similar argument to the one in Case (2), we have = €

Prefiz(y).

For any string z € Factor(w), the longest member in [2]” is denoted by 7.

Proposition 2 ([14]) Let w € ¥*. For any x € Factor(w), there uniquely exists a
string o € ¥* such that 7= za.
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Proof. Let 7= ra with a € ¥*. For the contrary, assume there exists a string

B € ©* such that @= 2 and 8 # a. By Proposition 1, either za € Prefiz(z3) or
xf € Prefir(za) must stand, since o =L 3. However, neither of them actually
holds since |«| = || and « # 3, which yields a contradiction. Hence, « is the only

string satisfying 7= za. O

Proposition 3 Let w € ¥* and x € Factor(w). Assume 7= xz. Then, for any
ye SU]%ZL’(&U), 7: Y.

Proof. Assume contrarily that there uniquely exists a string o € X such that 7: ya.

Since y € Suffiz(z), x is always followed by « in w. Tt implies that Prefiz(w)z~' =

Prefir(w)(za)~', and therefore we have z =% za. That |a| > 0 means that 2’ is not

the longest in [z]”; a contradiction. Hence, /= y. O

w

Proposition 4 Let w € ¥*. For any string x € Suffiz(w), 7=z

Proof. Let y € ¥* be an arbitrary string such that x =L y and 2 # y. Then, we have

Prefiz(w)z ! = Prefiz(w)y . Because = € Suffiz(w), y € Prefiz(z) — {z} and thus

|z| > |y|. Hence, 7= O
The number of strings in Factor(w) is O(|w|?). For example, considerwstring ab".

However, for any string w € £*, the number of strings z such that z =2 is O(|w]).
The following lemma gives a tighter upperbound.

Lemma 1 ([3, 4]) Assume that |w| > 1. The number of the non-degenerate equiva-

lence classes in =L is at most 2|w| — 1.

In the following, we define the suffix tree of a string w € ¥*, denoted by STree(w),
on the basis of the above-mentioned equivalence classes. We define it as an edge-
labeled tree (V,E) with E C V x ¥ x V where the second component of each
edge represents its label. We also give a definition of the suffiz links, kinds of failure
functions, frequently utilized for time-efficient construction of suffix trees [23, 19, 22].

Definition 1 STree(w) is the tree (V, E) such that

V = {%| x € Factor(w)},

E = {(%,aﬁ,ﬁ) | z, za € Factor(w), a € X, f € ¥*, :%: xaf, and %7&%},
and its suffir links are the set

F = {((ﬁ,%) | ,za € Factor(w), a € X, and = a- %}

The node 2= ¢ is called the root node of STree(w). When a node 7 is of out-degree
zero, it is said to be a leaf node. Each leaf node corresponds to a string in Suffiz(w).
If x € Factor(w) satisfies x =7, z is said to be represented on ezplicit node 7.
If + #7, x is said to be on an implicit node. STree(coco) and STree(cocoa) are
displayed in Figure 1.

It derives from Lemma 1 that:
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Figure 1: STree(coco) on the left, and STree(cocoa) on the right. Solid arrows
represent edges, while dotted arrows denote suffix links.

Theorem 1 ([19]) Let w € ¥*. Let STree(w) = (V,E). Assume |w| > 1. Then
V| <2lw|—1 and |F| < 2|w| — 2.

Weiner’s algorithm [23] and McCreight’s algorithm [19] construct the suffix tree de-
fined above, STree(w). On the other hand, Ukkonen’s algorithm constructs a slightly
different version, which is suitable for his algorithm.

As a preliminary to define the modified suffix tree, we firstly introduce a relation
X, over X* such that

Xy = {(z,za) | x € Factor(w) and a € X is unique such that za € Factor(w)}.

Let E'i be the equivalence closure of X, i.e., the smallest superset of X, that is
symmetric, reflexive, and transitive.

Proposition 5 ([14]) For any string w € ©*, =L is a refinement of E'i.
Proof. Let x,y be any strings in Factor(w) and assume z =, y. According to

Proposition 1, we firstly assume that = € Prefiz(y). It follows from Proposition 2

that there uniquely exist strings a, f € ¥* such that 7= za and 7: yB. Note that
[ € Suffiz(a). Let v € ¥* be the string satisfying a = yf. Then v is the sole string

such that xy = y. By the definition of E'i, we have x E'i y. A similar argument
holds in case that y € Prefiz(z). O
Corollary 1 ([14]) For any string w € ¥*, every equivalence class under E’i is a

union of one or more equivalence classes under =L.

For a string = € Factor(w), the longest string in the equivalence class with respect

to z under =" is denoted by s
The next proposition corresponds to Proposition 3

w

Proposition 6 Let w € ¥* and © € Factor(w) — Suffiz(w). Assume 7 =x. Then,

—
for any y € Suffiz(z), ¥ =y.
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Proof. Since z = z and x ¢ Suffiz(w), there are at least two characters a,b € 3 such
that xza,zb € Factor(w) and a # b. Since y € Suffiz(z), y is also followed by both a

S
and b in the string w. Thus ¥ =y. O

Remark that the precondition of the above proposition slightly differs from that of
Proposition 3. Namely, when z is a suffix of w, this proposition does not always hold.

—
From here on, we explore some relationship between 8 and (-).

w.

Lemma 2 ([14]) Let w € ¥*. For any string x € Factor(w), 7 is a prefit of
If 77&?, then '€ Suffiz(w).

w
=
T .

)

Proof. We can prove that Ze Prefiz( by Proposition 1 and Corollary 1. Now

suppose ?7&? Let 7= z/3 with 8 € ©*. Supposing T = za with a € Y, we
have 5 € Prefiz(«). Let fy = a with v € ¥*. By the assumption 77&?, we have

183 #L za, although 7 is the sole string that follows /3 in w since T = za. Therefore,
x must be a suffix of w, which is followed by no character. O

w

w
For example, consider string w = coco. Then, cé= co but co= coco, where co is a
suffix of coco.

Lemma 3 Let w € ¥* and v € Suffic(w). If v ¢ Prefiz(y) for any string y €
Factor(w) — {z}, then %::}

Proof. The precondition irfulplies that there is no character a € ¥ satisfying za €
Factor(w). Thus we have 7 = z. On the other hand, we obtain %: x by Proposi-
tion 4, because x € Suffiz(w). Hence %::;} O
Lemma 4 Let w € ¥* with |{w| = n. Assume that the last character wn] is unique
in w, that is, w[n] # wli] for any 1 <i <n—1. Then, for any string x € Factor(w),
=7

Proof. By the contraposition of the second statement of Lemma 2, if ¢ Suffiz(w),

then 7= . Because of the unique character w(n], any suffix z of w satisfies the

w

precondition of Lemma 3, and thus Z=z. O

We are now ready to define STree'(w), which is a modified version of STree(w).

Definition 2 STree'(w) is the tree (V, E) such that

V o= {?| x € Factor(w)},
E = {(?,aﬁ,ﬁ) | z, xa € Factor(w), a € &, f € X%, Ta= xaf, and ?7&%},

and its suffiz links are the set

w w w w

F = {(a:f,?) | z,za € Factor(w), a € X, and W= a ?}
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w

=

Remark that STree’(w) can be obtained by replacing (S in STree(w) with (-).
We have the next lemma deriving from Lemma 4.

w

Lemma 5 Let w € ¥* with |w| = n. Assume that the last character win] is unique
in w, that is, w[n] # wli] for any 1 <i <n —1. Then, STree(w) = STree'(w).

For comparing STree(w) and STree'(w), see Figure 1 and Figure 2. As shown in
Proposition 3, any suffixes of a string represented by an explicit node are also explicit.

Figure 2: STree'(coco) on the left, and STree’(cocoa) on the right. Solid arrows
represent the edges, while dotted arrows denote suffix links.

According to Lemma 5, using a delimiter $ that occurs nowhere in w, we have
STree(w$) = STree' (w$) for any w € X*.

3 Bidirectional Construction of Suffix Trees

3.1 Right Extension

Assume that we have STree'(w) with some w € ¥*. Now we consider updating it into
STree'(wa) with a € X, by inserting the suffixes of wa into STree’(w). Ukkonen [22]
achieved the following result.

Theorem 2 ([22]) For any a € ¥ and w € ¥*, STree'(w) can be updated to
STree'(wa) in amortized constant time.

Here we only recall essence of Ukkonen’s algorithm together with some supporting
lemmas and propositions.

Let y be the longest string in Factor(w) N Suffiz(wa). Then y is called the longest
repeated suffiz of wa and denoted by LRS(wa). Since every string z € Suffiz(y)
belongs to Factor(w), we do not need to newly insert any x into STree’(w).

Lemma 6 Leta € ¥ and w € ¥*. Let y = LRS(w). For any string x € Suffiz(w) —

wa w

Suffiz(y), T=17 -a.
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Proof. Since y = LRS(w), any string x € Suffiz(w) — Suffiz(y) appears only once in

w as a suffix of w, and is therefore T =z Also, z is followed only by a in wa, and

wa

—
thus = = za. O

This lemma implies that a leaf node of STree'(w) is also a leaf node in STree’(wa).
Thus we need no explicit maintenance for leaf nodes. Namely, we can insert all strings
of Suffiz(w) — Suffiz(y) into STree’(w) automatically (for more detail, see [22]).

Proposition 7 Let a € ¥ and w € ¥*. Let y = LRS(w) and z = LRS(wa). For
any string x € Suffiz(y) — Suffiz(2)a™", T =1

Proof. Firstly, we consider the empty string . It always belongs to Suffiz(y) —

Suffiz(z)a~!, since ¢ € Suffiz(y) and £ ¢ Suffiz(z)a~!. It is now obvious that & = ¢.
Now we consider other strings. That za ¢ Suffiz(z) implies the existence of b € ¥

such that zb € Factor(w) and b # a. Therefore, we have T =z 0

We start from the location corresponding to LRS(w) and convert STree'(w) to
STree'(wa), while creating new explicit nodes if necessary to insert new suffixes into
STree'(w), according to the above proposition. Now the next question is how to
detect the locations where new explicit nodes should be created.

We here define the eliminator £ for any character a € ¥ by

a =Ea=¢

and |£] = —1. Moreover, we define that £ € Prefir(e) and £ € Suffiz(e), but & ¢
Prefix(z) and & ¢ Suffiz(z) for any z € ¥*. The symbol £ corresponds to the
auxiliary node L introduced by Ukkonen [22]. Owing to the introduction of £, we
can establish the following lemma.

Lemma 7 Let a € ¥ and w € ¥*. Let y = LRS(w) and z = LRS(wa). Let
r € Suffiz(y) — Suffiz(z)a™". Suppose t is the longest string in Prefiz(z) such that

: . .
t =t. Let &' = Suffiz(z) with |2'|+1 = |z| and t' = Suffiz(t) with |t'|+1 = [t|. For
string o € X* such that ta =z, oo = 2.

Notice that we can reach string x’ via the suffix link of the node for ¢ in STree’(w)
and along the path spelling out « from the node for ¢’ (recall Definition 2). Moreover,
Proposition 6 guarantees that t' is an explicit node in STree’(w). Ukkonen proved

—
that 2’ can be found in amortized constant time by using the suffix link of node ¢ .

3.2 Left Extension

Weiner [23] proposed an algorithm to construct STree(aw) by updating STree(w)
with @ € ¥ in amortized constant time. On the other hand, this section is devoted to
the exposition of the conversion from STree'(w) to STree'(aw). In so doing, we insert
prefixes of aw into STree’ (w).
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Lemma 8 Let a € ¥ and w € ¥*. For any string x € Factor(w) — Prefiz(aw),
- =
r=x.
Proof. Let b be the unique character that follows z in w. (When 7 =z, then b= £.)
Since z ¢ Prefiz(aw), there is no new occurrence of z in aw. Therefore, b is also the

. . - =
only character following x in aw. Hence x =z . a

The above lemma ensures that any implicit node of STree’(w) does not become ex-
plicit in STree'(aw) if it is not associated with any prefix of aw.

Now we turn our attention to the strings in Prefiz(aw). Let z be the longest
string in set Factor(w) N Prefizr(aw). Then z is called the longest repeated prefiz of
aw and denoted by LRP(aw). Since all prefixes of = belong to Factor(w), we need
not newly insert any of them into STree'(w).

Proposition 8 Let a € ¥ and w € ¥*. Let v = LRP(aw) and y = LRS(w). If

aw

x ¢ Suffix(w) — Suffix(y), then T'= . Otherwise, = = aw.

Proof. We first consider the case that x ¢ Suffiz(w) — Suffiz(y). Recall that z is
the longest string in Factor(w) N Prefiz(aw). Moreover, = ¢ Suffiz(w) — Suffiz(y).
Hence, there exist two characters b, ¢ € ¥ such that zb, zc € Factor(aw) and b # c.

aw

=
Thus we have z = z.
Now we consider the second case, x € Suffiz(w) — Suffiz(y). Here, x occurs only

once in w as its suffix. Thus # = x. On the other hand, by the definition of LRP (aw),
we obtain x € Prefiz(aw) — {aw}. Therefore, there uniquely exists a character d € ¥

) ) =
which follows x in aw. Hence we have = = aqw. O

The above proposition implies that if LRP(aw) is not on a leaf node in STree'(w), it
is represented by an explicit node in STree'(aw), and otherwise it becomes implicit
in STree'(aw). We stress that this characterizes a difference between STree’(w) and
STree(w). More concretely, Weiner’s original algorithm constructs STree(aw) on the
basis of the next proposition.

Proposition 9 For any a € ¥ and w € ¥*, if t = LRP(aw), then T=1.

Now the next question is how to locate LRP(aw) in STree’(w). Our idea is similar
to Weiner’s strategy for constructing STree(w) [23]. Let y be the longest element in
set Prefiz(w) U {{} such that ay € Factor(w). Then y is called the base of aw
and denoted by Base(aw). On the other hand, let z be the longest element in set

Prefiz(w) U {¢} such that az= az. Then z is called the bridge of aw and denoted by
Bridge(aw).

Lemma 9 ([23]) Let a € ¥ and w € ¥*. If y = Base(aw), then ay = LRP(aw).

Proof. Assume contrarily that ' is the string such that ay’ = LRP(aw) and |y| > |y|.
By the definition of LRP (aw), we have ay’ € Prefiz(aw), which yields y' € Prefiz(w).
It, however, contradicts the precondition that y = Base(aw) since |y'| > |y|. 0
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According to the above lemma, we can utilize Base(aw) for finding LRP(aw) in
STree' (w).

Lemma 10 Let a € ¥ and w € ¥*. If ©+ = LRP(w), y = Base(aw) and z =
Bridge(aw), then y € Prefiz(z) and z € Prefiz(y).

Proof. By Lemma 9 we have ay = LRP(aw). It is easy to see that |LRP(w)|+ 1 >
|LRP(aw)|, which implies |z| > |y|. Since z,y € Prefizt(w), we obtain y € Prefiz(z).
It can be readily shown that az € Prefiz(ay), since ay = LRP(aw). Thus we have
z € Prefiz(y). O

The above lemma ensures that we can find both Base(aw) and Bridge(aw) by going
up along the path from the node of LRP(w) in STree'(w).

Lemma 11 Leta € ¥ and w € ¥*. Let y = Base(aw) and z = Bridge(aw). Assume
v € X* is the string satisfying zy = y. Then, azy = LRP(aw).

Proof. By Lemma 9 and Lemma 10. O

According to the above lemma, we can locate LRP(aw) in STree’'(w) by going down

w

from the node aZ. The only thing not clarified yet is how to move from node 2 to

w

node az. If we maintain the set F’ below, we can detect LRP(aw) in constant time,
where

w w w w

F' = {(?,a, ﬁ) | z,azx € Factor(w),a € X, and W= a- ?}

Comparing F' and F in Definition 2, one can see that F’ is the set of the labeled
reversed suffiz links of STree'(w).
We now have the following theorem.

Theorem 3 For any a € ¥ and w € ¥*, STree'(w) can be updated to STree'(aw) in
amortized constant time.

3.3 Mutual Influences

Here, we consider mutual influences between Left Extension and Right Extension.
The next lemma shows what happens to LRP(w) when STree'(w) is updated to
STree' (wa).

Lemma 12 Let a € ¥ and w € X*. Assume LRP(w) = LRS(w). Let x = LRS(w).
If xa € Prefiz(w), then LRP(wa) = za.

Proof. Since xa € Prefiz(w), LRS(wa) = za. Thus xa = LRP(wa). 0

This lemma shows when and where LRP(wa) moves from the location of LRP(w)
according to the character a newly added to the right of w. Examining the precondi-
tion, “if za € Prefiz(w)”, is feasible in O(|X]|) time, which regarded as O(1) if ¥ is a
fixed alphabet.

The following lemma stands in contrast to Lemma 12.
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Lemma 13 Let a € ¥ and w € ¥*. Assume LRP(w) = LRS(w). Let v = LRP(w).
If ax € Suffiz(w), then LRS(aw) = az.

This lemma shows when and where LRS(aw) moves from the location of LRS(w)
according to the character a newly added to the left of w. Examining the precondition,
“4f ax € Suffizr(w)”, is also feasible in O(|X|) time, and moving from the location of
LRS(w) to that of LRS(aw) can be done in constant time by the use of the labeled
reversed suffix link of LRP(w).

As a result of discussion, we finally obtain the following:

Theorem 4 For any string w € ¥*, STree'(w) can be constructed in bidirectional
manner and in O(|w|) time.

A bidirectional construction of STree'(w) with w = cocoon is displayed in Fig-
ure 3.

4 Concluding Remarks

We introduced an algorithm for bidirectional construction of suffix trees, which per-
forms in linear time. It should be noted that the proposed algorithm can construct
an index of w™" at the same time, where w™ is the reversal of a given string w.
In [14], we improved Ukkonen’s algorithm so as to construct not only S7Tree'(w) but
also DAWG (w™) in right-to-left on-line manner. The algorithm of this paper leads
bidirectional construction of STree'(w) and DAWG (w™"), although theoretical details
are omitted in this draft.
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Figure 3: A bidirectional construction of STree'(w) with w = ababac. Solid arrows
represent edges while dotted arrows denote labeled reversed suffix links. On Right
Extension, labeled reversed suffix links are used for the reversed direction, that is,
as “normal” suffix links. In each phase, a gray triangle (star, respectively) indicates
the location of the longest repeated prefix (suffix, respectively). The newly added
character is underlined in each phase. When STree’(ab) is updated to STree’(bab),
the node for string b becomes implicit (Proposition 8). Due to the conversion of
STree' (bab) into STree'(abab), LRP(abab) moves via the labeled reversed suffix link,
and LRS(abab) also moves to the same position according to Lemma 13. Then,
the suffix tree is updated to STree’(ababa) where LRS(ababa) moves while spelling
out the new character a along the edge. Note that LRP(ababa) also moves due to
Lemma 12. Since the precondition of Lemma 12 is not satisfied in the string ababac,
LRP(ababac) does not move in STree’(ababac). For smart construction, we also
maintain the labeled reversed suffix link of the longest repeated suffix even if it is not
on an explicit node (see STree'(bab), for instance). This labeled reversed suffix link
is the only suffix link that would be “modified” after it is created. For example, the
labeled reversed suffix link of the node for string a in STree’(a) is deleted in STree’ (ab)
since it no longer satisfies the definition of labeled reversed suffix links. On the other
hand, that of the node for string ab in STree’(abab) still exists in STree’(ababa) as
that of the node for string aba.

87



Image Recognition Using Finite Automata

Tomas Skopal, Vaclav Snasel, Michal Kratky

Department of Computer Science
VSB-Technical University Ostrava
17. listopadu 15, 708 33 Ostrava
Czech Republic

e-mail: {tomas.skopal, vaclav.snasel, michal.kratky}@vsb.cz

Abstract. In this paper we introduce an idea of image recognition using con-
ventional (single-dimensional) finite automata. This approach could be an el-
egant alternative to complicated solutions based on two-dimensional languages
and two-dimensional automata. In consequence, this method could be generally
extended to the context of higher-dimensional languages beyond the scope of
image recognition.

1 Introduction

Image recognition recently became an object of interest for theory of automata. The
picture, a rectangular raster, can be considered as a sentence of a two-dimensional
language where the pixels of picture are characters of a finite alphabet.

It is obvious that sentences of two or more-dimensional language cannot be rec-
ognized by “conventional” automata. Conventional automaton takes the characters
from the input one by one as they appear in a single-dimension sentence. On the
other side, two-dimensional sentence processing (e.g. picture) is not so unambiguous,
there exist four directions in which the sentence can be processed in each step — left,
right, upwards, downwards. There were several two-dimensional automata designed,
e.g. 4-way finite-state automata [BHG7].

Our solution tries to exploit the existing well-established area of “conventional”
automata together with the transformation of the two-dimensional language into a
single-dimensional one. The transformation of a picture (or two-dimensional sen-
tence) consists of space linearization. This means that the pixels of a picture are
linearly ordered and the resultant ordering along with the original picture define the
appropriate single-dimensional sentence. The linear order is performed using a space
filling curve. In this paper we propose certain curves which were proved to be the
good space-describing curves in many applications (especially in data storage and
retrieval). However, the quality of the curves may differ in our case and therefore we
refer to [SKS02] where we discuss some general properties of space filling curves.

Once we have chosen the curve for language description we must construct an
automaton that recognizes a given picture in its “flat shape”. However, none of the
space filling curves describe the space (and picture) perfectly, some distortion of the
picture recognition must be taken into account. This seeming drawback can turn over
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to an advantage if we realize that the measure of recognition distortion may represent
stmilarity of the recognized picture to the prospective pattern.

Automaton construction for recognition of the linearized picture is based on the
Levenshtein DFA where the Levenshtein metric (edit distance) serves as the measure
for the allowed picture distortion.

2 Two-dimensional Languages

Informally, a two-dimensional string is called a picture and is defined as a rectangular
array of symbols taken from finite alphabet ¥. A two-dimensional language (e.g.
picture language) is then a set of pictures.

A generalization of formal languages to two dimensions is possible in different
ways, and several formal models to recognize or generate two-dimensional objects
have been proposed in the literature (see [KM1, KM2, LMNO98]). These approaches
were initially motivated by problems arising in the framework of pattern recognition
and image processing.

Definition [RS97] A two-dimensional string (e.g. picture) over ¥ is a two-
dimensional rectangular array of elements from . The set of all two-dimensional
strings over Y is denoted as ¥**. A two-dimensional language over ¥ is a subset of
YR,

Given a picture p € ¥** [1(p) denotes the number of rows and l5(p) denotes the
number of columns of p.

The pair (I;(p), [2(p)) is called the size of the picture p. The set of all pictures over ¥
of size (m,n), with m,n > 0 will be indicated as ¥™*". Furthermore, if 1 < i < [;(p)
and 1 < j < ly(p), then p(i, j) (or equivalently p; ;) denotes the symbol in picture p
on coordinates (i, j).

Two-dimensional languages, or picture languages, are an interesting generalization
of the standard languages of computer science. Rather than one-dimensional strings,
we consider two-dimensional arrays of symbols over a finite alphabet. These arrays
can then be accepted or rejected by various types of automata. The introduction of
two-dimensional automata brought a new sort of automata on the stage, with its own
huge theoretical background.

3 Another Approach

Our approach is to reuse the existing traditional (single-dimensional) automata (lan-
guages respectively) and simplify the automaton construction problem. The most
important thing is to transform the two-dimensional language (pictures) into one-
dimensional strings. This can be done using space filling curves. The consecutive
automaton construction depends on the properties of space filling curve we have cho-
sen.
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3.1 Space Filling Curves

We want to transform the two-dimensional string over ¥ into the one-dimensional
string over ¥. The two-dimensional string over ¥ is a two-dimensional rectangle array
of elements of 3. We can look at the array as a two dimensional space Q2 = D; x D,
where the cardinality of domain D; (| Dy|) is equal to the rows count of the array and
| Dy| is equal to the columns count. The tuple (point) with coordinates (column, row)
within the space will have a value in X.

Many space filling curves have been developed, for example C-curve, Z-curve or
Hilbert curve ([Ma99]). For deeper acquaintance with the topic of general space filling
curves we refer to the comprehensive monography by Hans Sagan [Sa94].

The usage of the curves isn’t in two-dimensional space only, but the curves fill any
vector space with arbitrary dimension. It is possible to use the curves for transforma-
tion of the n-dimensional string over ¥ into the one-dimensional string over . We
can see C-curve, Hilbert curve, and Z-curve filling the two dimensional space 8 x 8 in
Figure 1.

L e 2z,
IEIRIR NN — '
“f “
| = 7 [

———
—
I
—~——
I
——

a) b) C)

Figure 1: The space filling curves. a) C-curve, b) Hilbert curve, and c) Z-curve.

We can consider several curves, but it is convenient to choose the curve that
is highly self-similar ([Ma99], [SKS02]) — informally, it means that points that are
geometrically close, would have to lie close on the curve. For example, the Z-curve is
used for indexing of multidimensional data with UB-trees ([Ba97]). In the following
section we will describe the Z-curve as an example of space filling curve.

3.2 Z-address

Definition 1 (Z-address)
Let 2 be an n-dimensional space. For tuple O €  with n attributes and binary
representation attribute value A; = A; s 1A4;5_2... Ao, where 1 <7 <n. Then

s—1 n
Z(O) - Z ZAi,ijn-H_l

j=0 i=1

is the Z-address function for space €.
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The attributes of tuple define the coordinates of point representing tuple in the
space (2. If we are calculating the Z-address for all points of n-dimensional space €2
and order the points according their Z-address value, we get the Z-curve filling the
entire space ) (see Figure 2a). For calculation of tuple Z-address exists algorithm
with linear complexity - so called bit interleaving algorithm (see bellow).

Figure 2: a) The two-dimensional space (image) 8 x 8 filled by Z-curve. b) Picture
in image interleaved by the Z-curve.

Z-address calculation example

We see the calculation of Z-address according bit interleaving algorithm for point
(6,13) in two-dimensional space in Figure 3. Numbers 6 and 13 have the binary
form 0110 and 1101 respectively. We obtain the coordinate values as four places bit
strings. Maximal values for four places binary number is 16. The domains D; of both
attribute are sets {0,1, ..., 14,15}, point lies in two-dimensional space 16 x 16. The
result point Z-address is then 10110110 (182 decimal).

1/1/0/2]|[ol2/2 /o] {22 lolz]folx]2]o] [2/2lol1]{o/x]2lof [2]2l0/1]fo!1]20
1 110 o1 IS
a) b) c) d)
1/1/0/2]|[o/2/2 /o] {2/ lo/z]{o/x]2lo] [2/2olL]fo/x]2lof [2]2l0/1]fo/1]20
0110 ADRBERED 1//0//1][1]/0][1]1 T 0 L0
e) f) 9) h)

Figure 3: The Z-address calculation according to bit interleaving algorithm for point
(6,13) in two-dimensional space 16 x 16.
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It is possible to go through the entire space passing upon Z-curve. We interleave a
picture (the two-dimensional string) over X by Z-curve and we recognize the picture
by the “classical” one-dimensional finite automata (e.g. see Figure 2b). The automata
construction of the picture recognition is outlined in the next section.

3.3 Automaton Construction

The automaton will recognize a square picture of size  x y within an image of a
greater size (see Figure 2b).

Construction
The automaton type is well-known NDFA for matching patterns with %k differences
— in other words, it is an automaton for approximate string matching using Leven-
shtein metric. The construction takes as a parameter the pattern sentence (picture
to be recognized) and a Levenshtein distance threshold which defines the maximal
tolerance value of the above mentioned picture distortion. For detailed information
on construction of the Levenshtein automata see [Ho96].

The Levenshtein distance threshold is computed as the minimal distance of the
pattern picture to an input picture when the correct input is still recognizable. More
clearly, the correct input picture may appear on any position in the image and the
automaton must recognize the picture on this position. However, the threshold value
may cause that they can be recognized also incorrect pictures. This imprecise be-
haviour could serve as a similarity recognition because the recognized picture is always
within the Levenshtein distance threshold which guarantees only a limited number of
differences between the pattern picture and the input picture. Pictures that are close
(in terms of Levenshtein distance) could be considered as similar to each other.

In following we will focus on measuring of the pattern picture and input picture
using Levenshtein metric.

3.3.1 What is the Levenshtein Distance?

Levenshtein distance (LD) is a measure of the similarity between two strings, which
we will refer to as the source string (s) and the target string (¢). The distance is the
number of deletions, insertions, or substitutions required to transform s into ¢. For
example,

If s is "test" and ¢ is "test", then LD(s,t) = 0, because no transformations are
needed. The strings are already identical.

If sis "test" and ¢ is "tent", then LD(s,t) = 1, because one substitution (change
“s” to “n”) is sufficient to transform s into t. The greater the Levenshtein distance,
the more different the strings are.

Levenshtein distance is named after the Russian scientist Vladimir Levenshtein,
who devised the algorithm in 1965 [Le66]. If you can’t spell or pronounce Levenshtein,
the metric is also sometimes called edit distance.

The Levenshtein distance algorithm (based on dynamic programming) has been
used in:

e Spell checking

e Speech recognition
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e DNA analysis
e Plagiarism detection

The Algorithm — step description

1. Set n to be the length of s.
Set m to be the length of t.
If n = 0, return m and exit.
If m = 0, return n and exit.
Construct a matrix containing 0...m rows and 0...n columns.

2. Initialize the first row to 0...n.
Initialize the first column to 0...m.

3. Examine each character of s (i from 1 to n).
4. Examine each character of ¢ (j from 1 to m).

5. If s[i] equals t[j], the cost is 0.
If s[i] doesn’t equal ¢[j], the cost is 1.

6. Set cell d[i,j] of the matrix equal to the minimum of: a. The cell immediately
above plus 1: d[i — 1, j] + 1.
b. The cell immediately to the left plus 1: d[i,j — 1] + 1.
c. The cell diagonally above and to the left plus the cost: d[i — 1,5 — 1] + cost.

7. After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell
d[n, m].

3.4 Examples

As we have said earlier, the Levenshtein threshold value is computed as a maximum
distance of the pattern picture and the correct input picture on any position in the
image being recognized. In Figure 4 are depicted three examples of pictures (sized
3 x 3) in images (sized 8 x 8) and its distances to pattern pictures.

Note that the pixel values are characters from a finite alphabet. The numbers
next to the pixels are the character identifiers. The gaps denoting those pixels of
image that are not pixels of the picture are represented with appropriate characters
but in our examples, for simplicity and clarity, the gap is represented with a special
character that is not contained in the alphabet ¥. This special character ensures the
worst matching case, thus the real distance computations will be always smaller or
equal.

3.5 Extension to Multidimensional Languages

Because the space filling curve remains single-dimensional even for multidimensional
spaces, we can extend the scope of two-dimensional languages to the multidimen-
sional languages without the need of changing the automaton construction. Then,
multidimensional sentences can be constructed simply by extending the language with
additional coordinates.
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( a) Pattern picture
0,0,0,0,0,0,0,0,0,

Recognized picture
o, 0,0, 5 gaps e,0,0, 5 gaps 0,0,0,

Levenshtein distance: 10

(b) Pattern picture
0,0,0,0,0,0.0.0.0,

Recognized picture
e, 0 16 gaps 0,0,0,0,0,27::0, 17 gaps o,

Levenshtein distance: 38

(C Pattern picture
0,0,0.0,0.0.0.0,0,

Recognized picture
o, 5 gaps ®, 192p®; 2gaps @, @, 4gaps ©@;0,0; 0,

Levenshtein distance: 15

Figure 4: Measuring the Levenshtein distance on pictures.

In general, we can say that the imprecision caused by the Levenshtein distance
threshold will increase with increasing dimension. This fact arises from the behaviour
of the space filling curves in high-dimensional vector spaces. The other factor is the
relation of sentence size to space size. The longer sentences and smaller sentence/space
size ratio, the lower imprecision.

4 Conclusions

In this paper we have proposed an alternative solution of image recognition and even
multidimensional language recognition. This method is based on space filling curves
and Levenshtein automaton construction. The interesting property of this approach
is an ability of similarity recognition.
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Abstract. Brzozowski’s minimization algorithm is based on two successive de-
terminization operations. There is a paradox between its (worst case) expo-
nential complexity and its exceptionally good performance in practice. Our
aim is to analyze the way the twofold determinization performs the minimiza-
tion of a deterministic automaton. We give a characterization of the equiva-
lence classes of A w.r.t. the set of states of the automaton computed by the
first determinization. The second determinization is expected to compute these
equivalence classes. We show that it can be replaced by a specific procedure
based on the classes characterization, which leads to a more efficient variant of
Brzozowski’s algorithm.

Key words: Finite automata, DFA minimization, Brzozowski’s algorithm.

1 Introduction

It is well known that given a regular language L over an alphabet ¥ there exists a
canonical deterministic automaton which recognizes L, namely the minimal (deter-
ministic) automaton of L, whose states are the left quotients of L w.r.t. the words of
¥*. This automaton, denoted by Ay, is unique (up to an isomorphism) and it has a
minimal number of states [13]. Moreover, it can be computed from any determinis-
tic automaton recognizing L by merging states which have identical right languages.
There exist numerous algorithms to minimize a deterministic automaton. Watson
published a taxonomy on this topic [18].

Among the various possible constructions, Brzozowski’s minimization algorithm [3]
is of a specific interest, regarding to several criteria which are discussed below. Let us
first recall how it works. Let A be a (non necessarily deterministic) automaton, d(.A)
be the subset automaton of A and r(.A) be the reverse automaton of A. Brzozowski’s
algorithm is based on the following theorem:

Ap = d(r(d(r(A))))

This is a deep result since it relates DFA minimization to a basic operation, the de-
terminization one. Let us mention that it has been generalized by Mohri to the case of
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bideterminizable transducers defined on the tropical semiring [12]. Brzozowski’s the-
orem is also a fundamental tool for the computation of the nondeterministic minimal
automata of a regular language. Let us cite the implementation [6] of the canoni-
cal automaton Cj, defined by Carrez [4, 1] and the construction of the fundamental
automaton Fy, by Matz and Potthoff [11].

We are here especially interested by algorithmic and complexity features. Watson
used the fact that Brzozowski’s algorithm can take a nondeterministic automaton
as input to design an algorithm which directly constructs a minimal deterministic
automaton from a regular expression [19]. Since our aim is to study the way Br-
zozowski’s algorithm performs a minimization, we will essentially consider the case
when the initial automaton is a deterministic one. The paradox is the following: since
Brzozowski’s algorithm performs two determinizations, its (worst case) complexity is
exponential w.r.t. the number of states of the initial automaton; nevertheless, as
reported by Watson [18], Brzozowski’s algorithm has proved to be exceptionally good
in practice, usually out-performing Hopcroft’s algorithm [7] significantly. Let us add
that the average complexity of the algorithm has been proved to be exponential for
group automata, although they likely are a favourable case since they are both de-
terministic and codeterministic [14].

Our contribution is the following. Let A be a deterministic automaton. We give a
characterization of the equivalence classes of A w.r.t. the set of states of dr(.A), that
is after the first determinization. The second determinization is expected to compute
these equivalence classes. We show it can be replaced by a specific procedure based
on the classes characterization, which leads to a more efficient variant of Brzozowski’s
algorithm.

Next section recalls some useful notations and definitions of automata theory.
Section 3 is especially devoted to determinization and minimization operations. Sec-
tion 4 presents Brzozowski’s minimization algorithm and its proof. Section 5 provides
an original analysis of the algorithm and the variant it leads to.

2 Preliminaries

Let us first review basic notions and terminology concerning finite automata and
regular languages. For further details, classical books [2, 8] or handbooks [20] are
excellent references.

Let ¥ be a non-empty finite set of symbols, called the alphabet. Symbols are
denoted by zq,%2,...,2n. A word u over X is a finite sequence (y1, Y2, ..., Yn) of
symbols, usually written y;ys...y,. The length of a word u, denoted |u| is the number
of symbols in u. The empty word denoted by ¢ has a zero length. If u = y,9...y,, and
U = 21 25...2p are two words over X, their concatenation u-v, usually written wv, is the
word y1Ys...Yn2122...2,. The set of all the words over X is denoted £*. A language over
Y. is a subset of ¥*. The operations of union, concatenation and star over the subsets
of ¥* are called reqular operations. The regular languages over ¥ are the languages
obtained from the finite subsets of ¥* by using a finite number of regular operations.

A (finite) automaton is a 5-tuple M = (Q, 3,9, I, F)) where @ is a (finite) set of
states, ¥ is a finite alphabet, I C (@) is the set of initial states, F' C () is the set of
final states, and ¢ is the transition function. The automaton M is deterministic (M
is a DFA) if and only if |[I| = 1 and 4 is a mapping from @ x X to ). Otherwise M
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is a NFA and § is a mapping from @ x ¥ to 2¢. The automaton M is complete if
and only if ¢ is a full mapping. A path of M is a sequence (¢;, a;,Giv1), i = 1,...,n,
of consecutive edges. Its label is the word w = aqas...a,. A word w = ajas...a,
is recognized by the automaton M if there is a path with label w such that ¢, € I
and ¢,.1 € F. The language L(M) recognized by the automaton M is the set of
words which it recognizes. Two automata M and M’ are equivalent if and only if
they recognize the same language. A state is accessible (resp. coaccessible) if and
only if there is a path from an initial state to this state (resp. from this state to a
final state). An automaton is ¢trim if and only if all its states are both accessible and
coaccessible.

Kleene’s theorem [10] states that a language is regular if and only if it is recognized
by a finite automaton.

Let ¢ be astate of A = (Q, %, 8,4, F). The right language of q is the language L7'(q)
(written Lg(g) if not ambiguous) recognized by the automaton Ay(q) = (Q, %, 4, q, F)
obtained from A by making ¢ the unique initial state. The left language of ¢ is
the language L7'(q) (written Ly(q) if not ambiguous) recognized by the automaton
Ay(q) = (Q,%,6,1,q) obtained from A by making ¢ the unique final state. We will
use the following proposition:

Proposition 1 An automaton is deterministic if and only if the left languages of its
states are pairwise disjoint.

The reverse r(u) of the word u is defined as follows: r(¢) = € and, if u = ujusy...u,,
then r(u) = vive...vp, With v; = u,_;44, for all i from 1 to p. The reverse of the
language L is the language r(L) = {u | r(u) € L}. The reverse of the automaton
A= (Q,%,0,1,F) is the automaton r(A) = (Q,%,r(d), F, I), obtained from A by
swapping the role of initial and final states and by reversing the transitions.

We will use the following propositions, where A is a trim automaton:

Proposition 2 If A recognizes the language L then r(A) recognizes the language
r(L).

Proposition 3 If the left (resp. right) language of the state g in A is Ly(q) (resp.
Lq(q)), then its left (resp. right) language in r(A) is Lqa(q) (resp. Ly(q)).
3 Determinization and minimization operations

3.1 Determinization

Definition 1 Let A = (Q,%,0,1,F) be a NFA. The subset-automaton of A is the
automaton d(A) = (Q',3,0",{i'}, F') defined as follows [8, 20]:

e Set of states: A deterministic state is a set of nondeterministic states; for all
q in Q', we have ¢ C Q.

e Initial state: The initial state in d(A) is the set I of initial states in A.
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e Set of transitions: Let ¢' be a deterministic state and a be a symbol in . If the
transition from ¢ on symbol a is defined, then, by construction, its target is the
state 8'(q', a) such that:

(¢ a) = |Jd(g,0) (3)

qeq’

e Set of final states: A deterministic state is final if and only if it contains at
least one final nondeterministic state: ¢ € F' < ¢ N F # ().

We will use the following proposition:

Proposition 4 The right language of a state ' of d(A) is equal to the union of the
right languages of the states q of A belonging to the subset ¢'.

Let n (resp. n’) be the number of states in A (resp. in d(.A)). As stated by Rabin
and Scott [16], the upper bound n’ < 2™ —1 can be reached. Moreover, the automaton
d(A) can be computed with the following complexity [15, 5]: O(y/n2?") when using
lists, and O(n?(logn)2") when using balanced search trees.

3.2 Minimization
The (left) quotient of a regular language L w.r.t. a word u of ¥* is the language
w 'L ={v € X* | uv € L}. The minimal automaton A;, of a regular language L is
defined as follows:

e the set of states is the set of quotients of L,

e the initial state is L,

e the final states are the quotients which contain the empty word,

e the transition function is such that §(uv 'L, z) = (uz) L.

The automaton A;, is unique up to an isomorphism and it has a minimal number of
states [13]. We will use the following proposition:

Proposition 5 A (deterministic, complete, accessible) automaton is minimal if and
only if the right languages of its states are all different.

The automaton Aj, can be computed from any deterministic automaton recogniz-
ing L by merging states which are equivalent w.r.t. Nerode equivalence:

s=t&[scueFet-ue F,Yue X

Computing Nerode equivalence can be realized with a O(n?) complexity [13].
Using the notion of coarsest partition leads to a complexity of O(nlog(n)) [7].
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4 Brzozowski’s minimization algorithm

Let A be an automaton. Let d(A) (resp. r(A)) be the subset automaton (resp. the
reverse automaton) of A. We will write dr(A) for d(r(.A)), rdr(A) for r(d(r(A))) and
drdr(A) for d(r(d(r(A)))).

Brzozowski’s algorithm is based on the following theorem [3]:

Theorem 1 (Brzozowski, 1962) Given a (non necessarily deterministic) automaton
A recognizing a reqular language L, the minimal deterministic automaton Aj, of L
can be computed by the formula:

Ajp, = drdr(A)

Proof. The proof is based on Propositions (1)—(5). By construction, the automaton
drdr(A) is deterministic, complete and accessible. From Proposition (2) it recognizes
the language L. Let us show that the right languages of drdr(A) are all distinct. From
Proposition (1) the left languages of dr(.A) are pairwise disjoint. From Proposition
(3) the right languages of rdr(A) are the left languages of dr(.A). Therefore they are
pairwise disjoint. From Proposition (4) a right language of drdr(.A) is a union of right
languages of rdr(A). Since the right languages of rdr(A) are pairwise disjoint, the
right languages of drdr(A) are all distinct. Thus, by Proposition (5) the automaton
drdr(A) is minimal.

5 Analysis of Brzozowski’s algorithm

5.1 Split and join for minimizing

Let A be an automaton which recognizes a regular language L. We study the trans-
formation of the sequence Sy = (L7}(q))4eq of the right languages of the states of A,
when the twofold determinization is performed:

1 2
Sd —rdr Sd —>drdr Sd

Notice that since the languages of S} are pairwise disjoint and the languages of S3
are all distinct, S} and S2 are sets. Let us remind that the right language of a state
is a (left) quotient of L if A is deterministic and a subset of the intersection of some
(left) quotients of L if A is nondeterministic. The first determinization splits the right
languages of A into disjoint pieces, whereas the second one joins the pieces in order to
recombine the set of (left) quotients of L. The effect of the twofold determinization
is illustrated by the Example 1. This example is intentionally simple: the initial
automaton is deterministic and even minimal.

Example 1

Let ¢, and qy be two states of A. We suppose that there exist three distinct words,
u, v and w such that: L q) = {u,v}, L} () = {v,w}, {qg | v € L} (q)} = {1},
{glwe LM} ={g} and {q¢| v € L} (q)} = {q1,q2}. We suppose that there exist
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two distinct words, s and t such that: L (q1) = {s}, L;'(q2) = {t}, {q¢ | s € L;}(q)} =
{a} and {q |t € L;'(a)} = {a}.

The determinization of r(A) produces the three states q, ¢4 and ¢y of dr(A) such
that: ¢ ={a1}, ¢ = {q} and ¢§ = {q1,q2}. The right languages of ¢}, ¢, and ¢ in
rdr(A) are pairwise disjoint (they are respectively equal to {u}, {w} and {v}).

The effect of the first determinization is that the two right languages {u,v} and
{v,w} of A have been split into three right languages in rdr(A): {u}, {w} and {v}.

Notice that the left languages of 4y, ¢4 and g in rdr(A) are respectively equal to
{s}, {t} and {s,t} and thus all distinct. This is due to the fact that A is deterministic
(see Proposition (6)).

The determinization of rdr(A) produces the two states qf and ¢ of drdr(A) such
that: qf = {4, q5} and ¢§ = {q¢},q}}. The right languages of ¢ and ¢y in drdr(A)
are distinct (they are respectively equal to {u,v} and {v,w}).

The effect of the second determinization is that the three right languages {u}, {w}
and {v} of rdr(A) have been joined into two right languages in drdr(A): {u,v} and

{v,w}.

5.2 The deterministic case

Brzozowski’s algorithm can be applied to a nondeterministic automaton. Here we
focus on the case when A is deterministic. Proposition (6) is due to Brzozowski [3].
Proposition (7) and Corollary (1) are very likely not original. These propositions are
gathered in this section for sake of completeness.

Proposition 6 If A is deterministic, then dr(A) is the minimal automaton of r(L).

Proof. Since A is deterministic, its left languages are pairwise disjoint, and so are
the right languages of r(A). The right languages of dr(A), which are unions of right
languages of r(A), are therefore all distinct.

Proposition 7 If A is deterministic, then a state of rdr(A) is a union of Nerode
equivalence classes of the automaton A.

Proof. The transition function of (. A4) is denoted by d,. Let ¢; and ¢ be two states
of A=(Q,%,0,i, F'). We have:

7 = G2 < [Lﬁt(%) = Lf(%) A LZ(A) (1) = L;(A)(QQ)]

Let ¢’ be a state of dr(A). By construction, there exists a word u of ¥* such that
¢ = 6,(F,u). We have: ¢ € 0,(F,u) & u € L;(A)(q). Therefore, ¢; and ¢, are
equivalent if and only if they are such that: ¢; € §,(F,u) < ¢ € 6,(F,u). Thus, a
state of rdr(.A) is a union of equivalence classes of states in A.

Corollary 1 Let A be a deterministic automaton recognizing a reqular language L.
Let n be the number of states of A. Let r be the number of (left) quotients of L. Then
the deterministic complezity of r(A) is 2" < 2™
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The following proposition leads to a characterization of the equivalence classes of
A. It says that two states p and ¢ of A are equivalent if and only if they belong to
the same states of dr(A). This property can be seen as a corollary of Proposition (8).

Proposition 8 Let p and g be two states of A. It holds:
p=q&[pePeqge P, VP € Quu)

Proof. We have: p = ¢ < [u € Ly(p) & u € Ly(q), Yu € ¥*]. Moreover Ly(p) =
U,ep (Ly(P)), with P € Qgr(4). Hence the result.

6 A variant of Brzozowski’s minimization algorithm

We still assume that A is deterministic. We show that the Proposition (8) leads
to an original computation of the equivalence classes of the states of A after the
determinization of r(A) is achieved. On the one hand this result allows us to have
a better understanding of how Brzozowski’s algorithm performs the minimization:
the second determinization actually is a state-equivalence-based procedure. On the
other hand it yields a variant of Brzozowski’s minimization algorithm, where the
second determinization is replaced by a more efficient computation of the equivalence
classes.

The Algorithm 1 computes the equivalence classes of A. The partition of )
initially contains two sets: () — F and F. At each step of the algorithm, a set Y of

1. Begin

2. Partition < {Q — F, F'}

3. Waiting < {F}

4. While Waiting # () do begin

5. X « First(Waiting)

6. Waiting < Waiting — {X }

7. Processed < Processed U {X }

8. for all a € ¥ do begin

9. 7+ 0,(X,a); if Z ¢ Processed then Waiting < Waiting U Z
10. end

11. for all Y € Partition do begin

12. K+ XnY

13. if K # () then Partition < Partition U K

14. if X ¢ Ythen Partition < Partition U (X — K)
15. if Y ¢ Xthen Partition < PartitionU (Y — K)
16. end

17. end

18. end

Algorithm 1: Algorithm to extract equivalence classes of A.
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the current partition contains possibly equivalent states, in the sense that so far they
belong to the same states of dr(A). Every time a new state X of dr(.A) is processed,
it is checked w.r.t. every set of the partition in order to detect sets containing non-
equivalent states of A. The complexity of the Algorithm 1 is exponential since it
contains the determinization of r(A). However it is likely more efficient to extract
equivalence classes on the fly than performing a second determinization.

7 Conclusion

Brzozowski’s minimization algorithm is both simple and mysterious. It is based on two
basic and easily understandable operations. However the behaviour of the algorithm
is not so obvious. Its average complexity and experimental performance are still
unknown or unexplained. This short analysis is intended to contribute to a better
understanding of how this algorithm performs the minimization. In particular it
shows that the place of Brzozowski’s algorithm, in a taxonomy such as Watson’s one,
is among minimization algorithms based on the computation of a state equivalence.
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