Research Report

Proceedings

of the Prague Stringology Conference ’03
Edited by Milan Simdnek

September 2003

Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University

Karlovo nam. 13

121 35 Prague 2

Czech Republic

Program Committee

Gabriela Andrejkova, Jun-ichi Aoe, Maxime Crochemore, Jan Holub,
Costas S. Tliopoulos, Thierry Lecroq, Bofivoj Melichar (chair), Bruce W. Watson,
Geraint Wiggins

Organizing Committee
Miroslav Balik, Jan Holub, Botivoj Melichar, Milan Simanek

URL
http://cs.felk.cvut.cz/psc

Proceedings of the Prague Stringology Conference ’03
Published by Vydavatelstvi GVUT, Zikova 4, 16635 Praha 6, Czech Republic
Edited by Milan Simanek
Contact: Prague Stringology Club
Katedra pocitacu, CVUT-FEL
Karlovo nam. 13, Praha 2, Czech Republic.
E-mail: pscQcs.felk.cvut.cz Phone: +420-2-2435-7470
Printed by Edi¢ni stfedisko CVUT, Zikova 4, Praha 6

© Czech Technical University, Prague, Czech Republic, 2003

ISBN 80-01-02823-2

i

Table of Contents

The Transformation Distance Problem Revisited by Behshad Behzadi and
Jean-Marc Steyaert 1

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String
Matching Algorithm by Domenico Cantone and Simone Faro 10

Approximate Seeds of Strings by Manolis Christodoulakis and Costas S. II-
topoulos and Kunsoo Park and Jeong Seop Sim 25

Constructing Factor Oracles by Loek Cleophas and Gerard Zwaan and Bruce
W. Watson 37

Computing the Minimum k-Cover of a String by Richard Cole , Costas S.
Lliopoulos , Manal Mohamed , W. F. Smyth and Lu Yang 51

Learning the Morphological Features of a Large Set of Words by Abolfazl
Fatholahzadeh 65

A Linear Algorithm for the Detection of Evolutive Tandem Repeats by
Richard Groult, Martine Léonard and Laurent Mouchard 77

Computing the Repetitions in a Weighted Sequence by Costas S. Iliopou-
los, Laurent Mouchard, Katerina Pedikuri and Athanasios K. Tsakalidis 91

Matching Numeric Strings under Noise by Veli Mdkinen, Gonzalo Navarro,
and Esko Ukkonen 99

Opevration L-INSERT on Factor Automaton by Borivoj Melichar and Milan
Simadnek 111

An Efficient Mapping for Score of String Matching by Tetsuya Nakatoh,
Kensuke Baba, Daisuke Ikeda, Yasuhiro Yamada, and Sachio Hirokawa 127

il

v

Preface

The Prague Stringology Conference 2003 (PSC’03) was held at the Department of
Computer Science and Engineering of the Czech Technical University in Prague,
Czech Republic, on September 22—-24, 2003. The conference focused on stringology
and related topics. Stringology is a discipline concerned with algorithmic processing
of strings and sequences.

The papers submitted were reviewed by the programme committee and eleven
were selected for presentation at the conference, based on originality and quality.
This volume contains these selected papers.

In the years 1996-2000 the Prague Stringology Club Workshops (PSCW’s) and
the Prague Stringology Conferences in 2001 and 2002 preceded this conference. The
proceedings of these workshops and the conferences had been published by Czech
Technical University and are available on WWW pages of the Prague Stringology
Club (PSC). Selected contributions were published in a special issue of the journal
Kybernetika and those selected from PSC’02 were published in a special issue of the
Nordic Journal of Computing.

The Prague Stringology Club was founded in 1996 as a research group at the
Department of Computer Science and Engineering of the Czech Technical University
in Prague. The goal of PSC is to study algorithms on strings and sequences with em-
phasis on finite automata theory. The first event organized by PSC was the workshop
PSCW’96 featuring only a handful invited talks. However, since PSCW’97 the papers
and talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology, but also to facilitate personal contacts among the
people working on these problems.

I would like to thank all those who had submitted papers for PSC’03 as well as
the reviewers. Special thanks goes to all the members of the programme committee,
without whose efforts it would not have been possible to put together such a stimu-
lating program of PSC’03. Last, but not least, my thanks go to the members of the
organizing committee for ensuring such a smooth running of the conference.

In Hamilton, Ontario, Canada
on August 2003
Jan Holub

vi

The Transformation Distance Problem Revisited

Behshad Behzadi and Jean-Marc Steyaert

LIX, Ecole Polytechnique
Palaiseau cedex 91128, France

e-mail: {behzadi,steyaert}@lix.polytechnique.fr

Abstract. Evolution acts in several ways on biological sequences: either by mu-
tating an element, or by inserting, deleting or copying a segment of the sequence.
Varré et al. [VDROS8| defined a transformation distance for the sequences, in
which the evolutionary operations are copy, reverse copy and insertion of a seg-
ment. They also proposed an algorithm to calculate the transformation distance.
This algorithm is O(n?) in time and O(n*) in space, where n is the size of the
sequences. In this paper, we propose an improved algorithm which costs O(n?)
in time and O(n?) in space. Furthermore, we extend the operation set by adding
point deletions. We present an algorithm which is O(n?) in time and O(n?) in
space for this extended case.

Keywords: dynamic programming, pattern matching

1 Introduction

Building models and tools to quantify evolution is an important domain of biology.
Evolutionary trees or diagrams are based on statistical methods which exploit com-
parison methods between genomic sequences. Many comparison models have been
proposed according to the type of physico-chemical phenomena that underly the evo-
lutionary process [Do81|. Different evolutionary operation sets are studied. Mutation,
deletion and insertion were the first operations dealt with [SaKr83|. Duplication and
contraction were then added to the operation set [BeRi02, BeSt03]. All these oper-
ations were acting on single letters, representing bases, aminoacids or more complex
sequences: they are called point transformations. Segment operations are also very
important to study. In a number of papers [VDR97, VDR98, VDR99|, Varré et al.
have studied an evolutionary distance based on the amount of segment moves that
Nature needed (or is supposed to have needed) to transfer a sequence from one species
to the equivalent sequence in another one. Their model is concerned with segments
copy with or without reversal and on segment insertion: it is thus a very simple and
robust model which can easily be explained from biological mechanisms. They devel-
oped this study on DNA sequences, but the basic concepts and algorithms apply as
well to proteins or satellites.

The algorithm they propose to compute the minimal transformation sequence is
based on an encoding into a graph formalism, from which one can get the solution
by computing shortest paths. This gives an O(n*) answer both in space and time'.

'Even O(nf) in the last french version [Va00].

Proceedings of the Prague Stringology Conference 03

In fact it is possible to give a direct solution based on dynamic programming which
costs only O(n?) in time and space. This solution is obviously more efficient for long
sequences and makes the problem tractable even for very long sequences.

In the second section we describe the model and the problem description.

In the third section our algorithm for calculating the transformation distance is
presented. Firstly, in the preprocessing part we show how to find efficiently the
existence of all the substrings of one string in another one. Then the core of the
algorithm is presented, which is basically a dynamic programming algorithm.

In section 4, we introduce the point deletions in our model and we give an al-
gorithm to solve the transformation distance problem in presence of point deletions:
this algorithm runs in time O(n?®) and space O(n?).

Finally, section 5 is dedicated to conclusions and remarks.

2 Model and Problem Description

The symbols are elements from an alphabet 3. The set of all finite-length strings
formed using symbols from alphabet ¥ is denoted by ¥*. In this paper, we use the
letters x, y, z,... for the symbols in ¥ and S, T, P, R, ... for strings over X*.
The empty string is denoted by e. The length of a string S is denoted by |S|. The
concatenation of a string P and R, denoted PR, has length |P|+ |R| and consists of
the symbols from P followed by the symbols from R.

We will denote by S[i] the symbol in position i of the string S (the first symbol of
a string S is S[1]). The substring of S starting at position i and ending at position
j is denoted by S[i..j] = S[i]S[i + 1]...S[j]. The reverse of a string S is denoted
by S—!. Thus, if n is the length of S, S71[i..j] = S[(n —j + 1)..(n — i + 1)]"! and
Sli..g] ' =87 [(n—7j+1)..(n —i+1)]. We say that a string P is a prefiz of a string
S, denoted P C S, if S = PR for some string R € ¥*. Similarly, we say that a
string P is a suffix of a string S, denoted by P 3 S, if S = RP for some R € ¥*.
For brevity of notation, we denote the k-symbol prefix P[1..k] of a string pattern
P[1..m] by P;. Thus, Py = € and P,, = P = P[l..m]. We recall the definition of
a subsequence: Given a string S[1..n], another string R[1..k] is a subsequence of S,
denoted by R < S, if there exists a strictly increasing sequence < iy, 19, ...,7; > of
indices of S such that for all j = 1,2,...,k, we have S[i;] = R[j]. For example, if
S = zxyzyyzr, R = zzxx and P = xxzz, then P is a subsequence of S, while R is
not a subsequence of S. When a string S is a subsequence of a string 7', T" is called
a supersequence of S, denoted by T > S. In the last example, S is a supersequence
of P.

Varré et al. [VDR98, VDR99| propose a new measure which evaluates segment-
based dissimilarity between two strings: the source string S and the target string 7.
This measure is related to the process of constructing the target string T with segment
operations®. The construction starts with the empty string € and proceeds from left
to right by adding segments (concatenation), one segment per operation. The left-to-
right generation is not a restriction but a fact that can be formally proved. A list of
operations is called a script. Three types of segment operations are considered: the
copy adds segments that are contained in the source string S, the reverse copy adds

2In this paper we use segment as an equivalent word for substring.

The Transformation Distance Problem Revisited

the segments that are contained in S in reverse order, and the insertion adds segments
that are not necessarily contained in S. The measure depends on a parameter that
is the Minimum Factor Length (MFL); it is the minimum length of the segments
that can be copied or reverse copied. Depending on the number of common segments
between S and 7', there exist several scripts for constructing the target 7. Among
these scripts, some are more likely; in order to identify them, we introduce a cost
function for each operation. InsertCost(Ti..j]) is the cost of insertion of substring
Tli..j]. CopyCost(TTi..j]) is the cost of copying the segment T7i..j] from S if it is
contained in S. Finally RevCopyCost(T]i..j]) is the cost of copying substring T'[i..j]
from S if the reverse of this substring is contained in the source S. The cost of a
script is the sum of the costs of its operations. The minimal scripts are all scripts of
minimum cost and the transformation distance® (TD) is the cost of a minimal script.
The problem which we solve in this paper is the computation of the transformation
distance. It is clear that it is also possible to get a minimal script.

3 Algorithm

In this section we describe the algorithm to determine the transformation distance
between two strings. The algorithm consists of two parts. The first part is a prepro-
cessing part in which we determine for each substring of target string 7', whether it
exists in the source string S or not. In the second part, which is the core algorithm, we
determine the transformation distance with help of the information that we obtained
in the preprocessing part. This core algorithm is a dynamic programming algorithm.

3.1 Preprocessing

Deciding whether a given substring exists in S or not, and finding its position in the
case of presence, needs to apply a string matching algorithm. For this aim, we design
an algorithm based on KMP (Knutt-Moris-Pratt) string matching algorithm with
some changes. Let F'P[i,j] be the the first position of occurrence of the substring
Tli..j] in S if such an occurrence exists and oo otherwise. Similarly FPRJ[i, j] is the
first position of an occurrence of T~'[i..j] in S. We need to recall the definition of
prefix function m (adapted from the original KMP one), which is needed for precom-
putation. Given a pattern P[1..m], the prefix function for pattern P is the function
m:{1,2,...,m} — {0,1,...,m — 1} such that n[¢] = max{k : k < ¢ and P, J P,}.
That is, 7, is the length of the longest prefix of P that is a proper suffix of P,. We
have the following lemma for the prefix functions.

Lemma 1 The prefix function of P, is a restriction of prefix function of P to the set
{1,2,...,k}.

Proof: The proof is immediate by the definition of the prefix function because 7i]
for a given i can be obtained only from P,_; = P[1..(i — 1)] and P[i].

Although simple, this lemma is a corner-stone of the algorithm. It shows that, one
can search for the presence of the prefixes of a pattern string in the source string, in the

3 Although this measure is not a mathematical distance but we will use the term transformation
distance which was introduced by Varré et al. [VDR98, VDR99].

Proceedings of the Prague Stringology Conference 03

Algorithm 1 Prefix-Matcher(A, S, P, index) %% index — || + 1— length of the

1. n < length[S] %% suffix P being searched in S

2. m < length[P] %% Apnxn) : Aliyi +q] # oo iff the prefix
3. q <0 %% of P of length g+1 occurs in S
4. fori< 1ton

5. do while ¢ >0 and P[q + 1] # S]]

6. do q <« 7[q]

7. if Plg+ 1] = S[i] then

8. q+q-+1

9. if A[index,index + q] = oo then

10. Alindex,index + q] =i —q

11. if ¢ = m then

12. Exit %% the suffix P has been discovered

Figure 1: Prefix-Matcher

Algorithm 2 PreProcessing(S, T')

FillArray(F' P, oo)

FillArray(FPR,)

n < length|T]

for k < 1 ton

do P« Tlk..n]
Preﬁx—Matcher(FP, S, P, k) %% direct pattern
PR < T 'k..n]
Preﬁx-Matcher(FPR, S, PR, k) %% reverse pattern

X NSOt WD =

Figure 2: PreProcessing

same time of searching for the complete pattern, without increasing the complexity
of the search. The algorithm is given in pseudocode in figure 1 as the procedure
Prefix-Matcher. The complexity of the Prefix-Matcher algorithm is O(n) in time.
For the proof of the complexity and correctness of this algorithm, see chapter 34.4 of
[CLR90]. Prefix-Matcher finds the position of the first occurrence of all prefixes of a
pattern string P in string S. In the PreProcessing algorithm (figure 2), we call the
Prefix-Matcher with patterns T[1..n], T[2..n], ..., T[n]. Thus, we have the position of
the first occurrences of all of the substrings of 7" in S. Similarly, the first position of
all substrings of 7! are found in S. The total complexity the preprocessing part is
O(n?) in time and O(n?) in space.

3.2 Core Algorithm

As the scripts construct the target string 7' from left to right by adding segments,
dynamic programming is an ideal tool for computing the transformation distance.
The core part of the algorithm determines the transformation distance between S
and T by a dynamic programming algorithm. Let C[k] be the minimum production
cost of T'[1..k] using the segments of S. The algorithm is given in figure 3. We make
use of generic functions CopyCost, RevCopyCost and InsertCost as defined at the end
of section 2. These functions are defined using the PreProcessing algorithm: arrays

4

The Transformation Distance Problem Revisited

Algorithm 3 TransformationDistance(S, T')
1. PreProcessing(S, T)

2. C0]«0

3. fork« 1to|T|

Cli — 1] + CopyCost(Ti..k]) if FPli,k] < oo
: Cli — 1] + RevCopyCost(T[i..k]) if FPRn —k+1,n—i+1] < oo
4 ClH < 0<i<k Cli — 1] + InsertCost(Ti..k])
00

5. return C|n]

Figure 3: Transformation Distance: a dynamic programming solution

FP and FPR. In order to fix ideas, one can consider that these costs are proportional
to the length of the searched segment (and oo if this segment does not occur in S).
In fact any sub-additive function would be convenient.

Proposition 1 The recurrence relations of Algorithm 3, correctly determine the
transformation distance of S and 7.

Proof: We prove by induction on k that after the algorithm execution, C[k]| contains
the minimum production cost of target T[l..k] with the source string S. C[0] is
initialized to 0, because the cost of production of € from S is zero.

Now, we suppose that C[i] is calculated correctly for all i < k for some positive
value of k. Let us consider the calculation of C[k]. The last operation in a minimal
script which generates T'[1..k], creates a suffix of T[1..k]. Let this suffix be T'[i..k].
As the script is minimal, the script without its last operation is a minimal script for
T[1..(: — 1)]. The minimum cost of the script for T'[1..(i — 1)] is C[i — 1] by induction
hypothesis. If TTi..k] exists in S and the last operation of the minimal script is
a copy operation, the minimal cost of the script is C[i — 1] + CopyCost(T]i..k]).
Similarly, if the reverse of T'[i..k] exists in S and the last operation in the minimal
script of T[1..k] is a reverse copy operation, the minimal cost of the script is C[i —
1] + RevCopyCost(T[i..k]). Finally, if the last operation in the minimal script of
T[1..k] is an insertion, the minimal cost of the script is C[i — 1] 4+ InsertCost(T[i..k])
(see figure 4). Thus, C[n] is the minimum cost of production of 7' = T[1..n| and the
algorithm determines correctly the transformation distance of S and T'.

Note that when the length of the substring T'[i..k] is smaller than M F'L, Copy-
Cost(Ti..k]) and RevCopyCost(T[i..k]) are equal to oo.

The complexity of Algorithm 3 is O(n?) in time and O(n) in space. So the total
complexity of our algorithm (preprocessing + core algorithm) is O(n?) in time and
O(n?) in space.

4 An Additional Operation: Point Deletion

In this section, we extend the set of evolutionary operations by adding the point dele-
tion operation. During a point deletion (or simply deletion) operation, a symbol of
the string which is under evolution is eliminated. This is an important operation from

Y

Proceedings of the Prague Stringology Conference 03

i k
T ¥ 1 Copy
S |T 1 Ci — 1] + CopyCost(Ti..k])
FP[i, K]
i k
T 1) | 1 Reverse Copy
S +% 1 C[i — 1] + RevCopyCost(T[i..k])
FPR[i, k]
1
T |) | 1 Insertion

Cli — 1] + InsertCost(Ti..k])

Figure 4: The three different possibilities for generation of a suffix of T'[1..k]

the biological point of view; in the real evolution of biological sequences, in several
cases after or during the copy operations some bases (symbols) are eliminated. We
denote the cost of deletion of a symbol by DelCost. For simplicity, we suppose that
the cost of deletion of every unique symbol is the same. Since we have only point
deletions, deleting a segment of k£ symbols amounts to delete the k£ symbols one by
one, which will cost k& x DelCost. As before, our objective is to find the minimum
cost for a script generating a target string 7', with the help of segments of a source
string S. As the costs are independent of time, we consider that the deletions are
applied only in the latest added segment (rightmost one), at any moment during the
evolution. It should be clear that in an optimal transformation, deletions are not
applied into an inserted substring (a substring which is the result of an insertion
operation). Depending on the assigned costs, deletions can be used after the copy
or reverse copy operations. We consider a copy operation together with all deletions
which are applied to that copied segment as a unit operation. So we have a new op-
eration called NewCopy which is a copy operation followed by zero or more deletions
on the copied segment. In figure 5 a schema of a NewCopy operation is illustrated.
Similarly, NewRevCopy is a reverse copy operation followed by zero or more deletions.
Solving the extended transformation distance with the point deletions, amounts to
solve the transformation distance with the following three operations: Insertion, New-
Copy and NewRevCopy. A substring T'[i..j] of the target string can be produced by
a unique NewCopy operation if and only if 7T'[i..j] is a subsequence string of source
S. Conversely, T[i..j] can be produced by a unique NewRevCopy operation if and
only if T[i..j]™" is a subsequence string of the source S. In a preprocessing part, the
algorithm determines the minimum generation cost by a NewCopy or NewRevCopy
operation, for any substring of the target string 1. Very similar to the last section

The Transformation Distance Problem Revisited

Copy(STh..lg])

7 k
T 1 1] - l +
S % / / ; ; Delete(S[l..1I3])
Loy T 5 14[s s +

Delete(S|ly..1
Deleted segments (Slla- 1s])

NewCopy(Ti..k])

Figure 5: The illustration of NewCopy operation: A copy operation + zero or more
deletions

algorithm, a dynamic programming algorithm calculates the extended transformation
distance in the new core algorithm.

4.1 New Preprocessing

In the preprocessing part, we compute the costs of these new operations for any sub-
string of the target: NewCopyCost[i, j] is the minimum cost of generating the T'[i..j]
by a NewCopy operation. Similarly, New RevCopyCost|i, j| is the minimum cost of
generating T'[i..j] by a NewRevCopy operation. Computing the NewCopyCost]i, j]
amounts to find the shortest substring (with minimum length) of the source string
which contains T7Ti..j] as a subsequence string. By this way, the number of deletions
which are needed for this NewCopy operation is minimized. For NewRevCopyCost|i, j],
we need to find the shortest substring in S~' which contains T7i..j] as a subsequence.

In the NewPreProcessing algorithm listed in figure 6, the cost tables New-
CopyCost and LastOcc are initially filled with oo (lines 1-2). The algorithm scans the
source from left to right to find the shortest supersequence for each segment of the
target. The algorithm uses an auxiliary table LastOcc for this aim.

After the k-th letter of S is processed (loop of line 3), the following is true:
LastOccli, j] is the largest [< k such that S[l..k] is a supersequence of T'[i..j]. The loop
on T (line 4) is processed with decreasing indices for memory optimization. Whenever
the letter S[k| occurs in j-th position in 7' (line 5), then there is an opportunity of
obtaining a better supersequence for some of T'i..j]’s, i < j. LastOccli, j]| takes the
value LastOccli,j — 1] (computed for k — 1) since S[LastOccli,j — 1]..k] is now the
rightmost supersequence for T'[i..j] (line 9). Its cost is compared to the cost of the
best previous one; if better, the new cost is stored in NewCopyCost (lines 11-13). One
should observe that rightmost sequences are updated only when a new common letter
is scanned. This is necessary and sufficient as stated in the following lemma:

Lemma 2 If S[l..k] is the best supersequence for T7i..j] over S[1..N], then it is the
rightmost supersequence for T'[i..j] on S[1..k].

Proof: SJi..k] is the best sequence for Ti..j] over S[1..k] then it is better than
all S[I'..k] for I' < I and no S[I"..k] can be a supersequence for [" < [.

7

Proceedings of the Prague Stringology Conference 03

Algorithm 4 NewPreProcessing(S, T)

1. FillArray(NewCopyCost, o)

2. FillArray(LastOcc,00) %% LastOcc is a sub-diagonal array: LastOccli, j] = oo for i > j
3. for k + 1 to |S| %% Source scanned left to right

4. for each j « |T| downto 1 %9% find matches in T for S[K]

%% for a fixed k: LastOccli, j] =largest 1 such that S[l..k] = Ti..j]

5 if S[k] = T[j] then

6. LastOcclj, j] <+ k

7. NB’LUCOpyCOSt[j, j] — COpyCOSt(T[j]) %% deletions are not needed

8 for i+ 1toj—1 %% for all suffixes of T[1..]

9. LastOccli, j] < LastOccli, j—1] %% S[LastOccli,j—1].k—1]] = T[i..j—1]
10. NumDel + k — LastOccli, j| —i — j %% difference in lengths

11. ThisCost < DelCost x NumDel 4+ CopyCost(S[LastOccli, j|..k])
12. if ThisCost < NewCopyCost|i, j] then

13. NewCopyCostli, j] < ThisCost

Figure 6: NewPreProcessing (simplified: reverse copies have been omitted)

Algorithm 5 NewTransformationDistance(S, T)
1. NewPreProcessing(S,T)

2. C[0]«0

3. fork« 1ton

C[i — 1] + NewCopyCost|i, k| if FP[i, k] < o0
: Cli — 1) + NewRevCopyCostli, k| if FPR[i, k] < co
4 ClH] < 0<i<k Cli — 1] + InsertCost(Ti..k])
00

5. return C|n]

Figure 7: New Transformation Distance: dynamic programming

4.2 New Core Algorithm

In the core algorithm, the minimum generation costs of the prefixes of the target
string 1" are determined from left to right. This is realized by a dynamic programming
algorithm: Let C[k] be the minimum production cost of T[1..k] using the segments of
S. The algorithm is given in figure 7. The proof of the following proposition is very
similar to the proof of proposition 1:

Proposition 2 The recurrence relations of Algorithm 5, correctly determine the ex-
tended transformation distance of S and T

The complexity of the preprocessing part, is O(n?) in time and O(n?) in space.
The complexity of the core algorithm is O(n?) both in time and space. Therefore, the
whole complexity of the new algorithm for the calculation of extended transformation
distance is O(n?) in time and O(n?) in space.

8

The Transformation Distance Problem Revisited

Remarks and Conclusion

In this paper, we presented a new improved algorithm for calculation of the transfor-
mation distance problem. We also gave an algorithm for the transformation distance
problem in presence of the deletion operations. In this version, costs have been given
a special additive form for clarity. In fact a number of variations are possible within
our framework: the main property needed on costs seems to be their subadditivity.

In this paper, we state that Algorithm 3 complexity is O(n?); this stands for
the worst case complexity; in fact only a small proportion of pairs (S[k], T[j]) imply
running the inner loop. Under certain additional statistical hypotheses the average
complexity could be less than O(n?).

References

[BeSt03] Behzadi B. and Steyaert J.-M.: An Improved Algorithm for Generalized
Comparison of Minisatellites. CPM 2003.

[BeRi02| Bérard, S., Rivals, E.: Comparison of Minisatellites. Proceedings of the 6th
Annual International Conference on Research in Computational Molecular
Biology. ACM Press, 2002.

[CLR90] Cormen, T.H., Leiserson, C.E., Rivest R.L.: Introduction to Algorithms.
MIT Press, 1990.

[Do81] Doolittle, R.F.: Similar amino acid sequences: chance or common ances-
try?, Science,214,149-159, 1981.

[SaKr83] Sankoff, D. and Kruskal, J.B: Time Warps, String Edits and Macro-
molecules: The Theory and Practice of Sequence Comparison. Addison-
Wesley, 1983.

[Va00] Varré, J.S.: Concepts et algorithmes pour la comparaison de séquences
génétiques : une approche informationnelle. PhD thesis, 2000.

[VDR99| Varré, J.S., Delahaye, J.P., Rivals, E.: Transformation Distances: a family
of dissimilarity measures based on movements of segments. Bioinformatics,
vol. 15, no. 3, pp 194-202, 1999.

[VDR98| Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distance : A
Dissimilarity Measure Based On Movements Of Segments,German Confer-
ence on Bioinformatics, Koel - Germany, 1998.

[VDR97| Varré, J.S., Delahaye, J.P., Rivals, E.. The Transformation Distance.
Genome Informatics Workshop, Tokyo, Japan, 1997.

Forward-Fast-Search: Another Fast Variant of the
Boyer-Moore String Matching Algorithm

Domenico Cantone and Simone Faro
Dipartimento di Matematica e Informatica, Universita di Catania, Italy

e-mail: {cantone, faro}@dmi.unict.it

Abstract. We present a variation of the Fast-Search string matching algorithm,
a recent member of the large family of Boyer-Moore-like algorithms, and we com-
pare it with some of the most effective string matching algorithms, such as Hor-
spool, Quick Search, Tuned Boyer-Moore, Reverse Factor, Berry-Ravindran, and
Fast-Search itself. All algorithms are compared in terms of run-time efficiency,
number of text character inspections, and number of character comparisons.

It turns out that our new proposed variant, though not linear, achieves very
good results especially in the case of very short patterns or small alphabets.

Keywords: string matching, experimental algorithms, text processing.

1 Introduction

Given a text T and a pattern P over some alphabet Y, the string matching prob-
lem consists in finding all occurrences of the pattern P in the text 7. It is a very
extensively studied problem in computer science, mainly due to its direct applica-
tions to such diverse areas as text, image and signal processing, speech analysis and
recognition, information retrieval, computational biology and chemistry, etc.

Several string matching algorithms have been proposed over the years. The Boyer-
Moore algorithm [BM77| deserves a special mention, since it has been particularly
successful and has inspired much work. It is based upon three simple ideas: right-to-
left scanning, bad character heuristics, and good suffix heuristics. We will review it
at length in Section 2.1.

Many subsequent algorithms have been based on variations on how to apply the
two mentioned heuristics. For instance, the Fast-Search algorithm, recently introduced
by the authors [CF03], requires that the bad character heuristics is used only if the
mismatching character is the last character of the pattern, otherwise the good suffix
heuristics is to be used.

In this paper, we present a variation of the Fast-Search algorithm in which the good
suffix heuristics uses also a look-ahead character to determine larger advancements.
We also propose a practical algorithm to precompute the table encoding such an
extended good suffix rule.

Before entering into details, we need a bit of notations and terminology. A string
P is represented as a finite array P[0..m — 1], with m > 0. In such a case we say

10

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

that P has length m and write length(P) = m. In particular, for m = 0 we obtain
the empty string, also denoted by £. By P[i] we denote the (i 4+ 1)-st character of P,
for 0 < i < length(P). Likewise, by Pli..j] we denote the substring of P contained
between the (i + 1)-st and the (j + 1)-st characters of P, for 0 < i < j < length(P).
Moreover, for any ¢, j € Z, we put

Pli..j] € ifi>7
“J7) Plmax(i,0), min(j, length(P) — 1)] otherwise.

For any two strings P and P’, we write P’ 7 P to indicate that P’ is a suffix of P, i.e.,
P" = PJi..length(P) — 1], for some 0 < i < length(P). Similarly, we write P’ T P to
indicate that P’ is a prefix of P, i.e., P' = P[0..1 — 1], for some 0 < i < length(P).
In addition, we write P.P’ to denote the concatenation of P and P’.

Let T" be a text of length n and let P be a pattern of length m. When the character
P[0] is aligned with the character T'[s] of the text, so that the character P[i] is aligned
with the character T'[s + i|, for i = 0,...,m — 1, we say that the pattern P has shift
s in T. In this case the substring T'[s.. s +m — 1] is called the current window of the
text. If T'[s.. s+m—1] = P, we say that the shift s is valid. Thus the string matching
problem can be rephrased as the problem of finding all valid shifts of a pattern P
relative to a text T

Most string matching algorithms have the following general structure. First, dur-
ing a preprocessing phase, they calculate useful mappings, in the form of tables,
which later are accessed to determine nontrivial shift advancements. Next, start-
ing with shift s = 0, they look for all valid shifts, by executing a matching phase,
which determines whether the shift s is valid and computes a positive shift increment
As. Such increment As is used to produce the new shift s + As to be fed to the
subsequent matching phase. Observe that for the correctness of the algorithm it is
plainly necessary that each shift increment As computed is safe, namely the interval
{s+1,...,s4+ As — 1} contains no valid shifts.

For instance, in the case of the naive string matching algorithm, there is no pre-
processing phase and the matching phase always returns a unitary shift increment,
i.e., all possible shifts are actually processed.

The paper is organized as follows. In Section 2 we survey some of the most effective
string matching algorithms. Next, in Section 3, we introduce a new variant of the Fast-
Search algorithm. Experimental data obtained by running under various conditions
all the algorithms reviewed are presented and compared in Section 4. Finally, we
draw our conclusions in Section 5.

2 Some Very Fast String Matching Algorithms

In this section we briefly review the Boyer-Moore algorithm and some of its most effi-
cient variants that have been proposed over the years. In particular, we present the
Horspool [Hor80|, Tuned Boyer-Moore [HS91|, Quick-Search [Sun90|, Berry-Ravindran
[BR99|, and the Fast-Search [CF03] algorithms.

We also review the Reverse Factor algorithm [CCG194]|, which is based on the
smallest suffix automaton of the reverse pattern.

11

Proceedings of the Prague Stringology Conference 03

2.1 The Boyer-Moore Algorithm

The Boyer-Moore algorithm [BM77| is the progenitor of several algorithmic variants
which aim at computing close to optimal shift increments very efficiently. Specifically,
the Boyer-Moore algorithm checks whether s is a valid shift by scanning the pattern P
from right to left and, at the end of the matching phase, computes the shift increment
as the maximum value suggested by the good suffiz rule and the bad character rule
below, using the functions gsp and bep respectively, provided that both of them are
applicable.

If the first mismatch occurs at position ¢ of the pattern P, the good suffix rule
suggests to align the substring T[s+i+1...s + m — 1] = Pli + 1...m — 1] with
its rightmost occurrence in P preceded by a character different from P[i]. If such an
occurrence does not exist, the good suffix rule suggests a shift increment which allows
to match the longest suffix of T[s +i+1...s+m — 1] with a prefix of P.

More formally, if the first mismatch occurs at position ¢ of the pattern P, the good
suffix rule states that the shift can be safely incremented by gsp(i+1) positions, where

gsp(j) =pge min{0 <k <m | Pj—k.m—-k—123P
and (k<j—1—Plj—1]#Plj—-1-k])},

for j =0,1,...,m. (The situation in which an occurrence of the pattern P is found
can be regarded as a mismatch at position —1.)

The bad character rule states that if ¢ = T[s + i] # P[i] is the first mismatching
character, while scanning P and T from right to left with shift s, then P can be safely
shifted in such a way that its rightmost occurrence of ¢, if present, is aligned with
position (s+:) in 7. In the case in which ¢ does not occur in P, then P can be safely
shifted just past position (s 4 4) in T. More formally, the shift increment suggested
by the bad character rule is given by the expression (i — bep(T[s +i])), where

bep(c) =p max({0 < k <m| Plk] =c} U {-1}) ,

for ¢ € ¥, and where we recall that ¥ is the alphabet of the pattern P and text
T. Notice that there are situations in which the shift increment given by the bad
character rule can be negative.

It turns out that the functions gsp and bcp can be computed during the pre-
processing phase in time O(m) and O(m + |X|), respectively, and that the overall
worst-case running time of the Boyer-Moore algorithm, as described above, is linear
(cf. [GO8O]).

2.2 The Horspool Algorithm

Horspool suggested a simplification of the original Boyer-Moore algorithm, defining a
new variant which, though quadratic, performed better in practical cases (cf. [Hor80]).
He just dropped the good suffix rule and proposed to compute the shift advancement
in such a way that the rightmost character T[s + m — 1] is aligned with its rightmost
occurrence on P[0..m — 2], if present; otherwise the pattern is advanced just past
the window. This corresponds to advance the shift by hbep(T[s +m — 1)) positions,
where
hbcp(c) =p, min({1 <k <m|Pm—1—k]=c}U{m}) .

12

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

The resulting algorithm performs well in practice and can be immediately translated
into programming code (see Baeza-Yates and Régnier [BYR92] for a simple imple-
mentation in the C programming language).

2.3 The Tuned Boyer-Moore Algorithm

The Tuned Boyer-Moore algorithm [HS91| can be seen as an efficient implementation
of the Horspool algorithm. Again, let P be a pattern of length m. Each iteration
of the Tuned Boyer-Moore algorithm can be divided into two phases: last character
localization and matching phase. The first phase searches for a match of P[m — 1], by
applying rounds of three blind shifts (based on the classical bad character rule) until
needed. The matching phase tries then to match the rest of the pattern P[0..m — 2]
with the corresponding characters of the text, proceeding from right to left. At
the end of the matching phase, the shift advancement is computed according to the
Horspool bad character rule. Moreover, to begin with, the algorithm adds m copies
of P[m — 1] at the end of the text, as a sentinel, to compute the last shifts correctly.

The fact that the blind shifts require no comparison is at the heart of the very
good practical behavior of the Tuned Boyer-Moore, despite its quadratic worst-case
time complexity (cf. [Lec00]).

2.4 The Quick-Search Algorithm

The Quick-Search algorithm, presented in [Sun90|, uses a modification of the original
heuristics of the Boyer-Moore algorithm, much along the same lines of the Horspool
algorithm. Specifically, it is based on the following observation: when a mismatch
character is encountered, the pattern is always shifted to the right by at least one
character, but never by more than m characters. Thus, the character T[s + m] is
always involved in testing for the next alignment. So, one can apply the bad character
rule to T'[s + m], rather than to the mismatching character, obtaining larger shift
advancements. This corresponds to advance the shift by ¢bcp(T'[s + m]) positions,
where
gbep(c) =p, min({0 <k <m|Pm—kl=c}U{m+1}) .

Experimental tests have shown that that the Quick-Search algorithm is very fast
especially for short patterns (cf. [Lec00]).

2.5 The Berry-Ravindran Algorithm

The Berry-Ravindran algorithm [BR99| extends the Quick-Search algorithm in that
its bad character rule uses the two characters T'[s + m] and T'[s + m + 1] rather than
just the last character T'[s + m] of the window, where m is the size of the pattern P.
Thus, at the end of each matching phase with shift s, the Berry-Ravindran algorithm
advances the pattern so that the substring of the text T[s +m .. s+ m + 1] is aligned
with its rightmost occurrence in P.

The precomputation of the table used by the bad character rule requires O(|%2]?)-
space and O(m + |X|?)-time complexity, where ¥ is the alphabet of the text and
pattern. Experimental results [BR99| show that the Berry-Ravindran algorithm is
fast in practice and performs a low number of text/pattern character comparisons.

13

Proceedings of the Prague Stringology Conference 03

2.6 The Fast-Search Algorithm

Again, let P be a pattern of length m and let T" be a text of length n over a finite alpha-
bet ¥. The main observation upon which the Fast-Search algorithm [CF03] is based
is the following: the Horspool bad character rule leads to larger shift increments than
the good suffix rule if and only if a mismatch occurs immediately, while comparing
the pattern P with the window T'[s .. s+m —1], namely when P[m—1] # T[s+m—1],
where 0 < s < m — n is a shift.

In agreement with the above observation, the Fast-Search algorithm computes its
shift increments by applying the Horspool bad character rule only if a mismatch
occurs during the first character comparison. Otherwise it uses the good suffix rule.

Notice that hbcp(a) = bep(a), whenever a # P[m — 1], so that to compute the
shift advancement one can use the traditional bad character rule, bcp, rather then
the Horspool bad character rule, hbcp.

A more effective implementation of the Fast-Search algorithm is obtained along
the same lines of the Tuned Boyer-Moore algorithm: the bad character rule can be
iterated until the last character P[m — 1] of the pattern is matched correctly against
the text. At this point it is known that T'[s+m—1] = P[m—1], so that the subsequent
matching phase can start with the (m — 2)-nd character of the pattern. At the end
of the matching phase the algorithm uses the good suffix rule for shifting.

As in the case of the Tuned Boyer-Moore algorithm, the Fast-Search algorithm
benefits from the introduction of an external sentinel, which allows to compute cor-
rectly the last shifts with no extra checks.

Experimental results [CF03| show that the Fast-Search algorithm obtains the best
run-time performances in most cases and, sporadically, it is second only to the Tuned
Boyer-Moore algorithm. Concerning the number of text character inspections, it turns
out that the Fast-Search algorithm is quite close to the Reverse Factor algorithm,
which generally shows the best behavior. We notice, though, that in the case of very
short patterns the Fast-Search algorithm reaches the lowest number of text character
accesses.

2.7 The Reverse Factor Algorithm

Unlike the variants of the Boyer-Moore algorithm summarized above, the Reverse
Factor algorithm computes shifts which match prefixes of the pattern, rather than
suffixes. This is made possible by the smallest suffix automaton of the reverse of the
pattern P, which is a deterministic finite automaton S(P) whose accepted language
is the set of suffixes of P (for a complete description see [CCGT94]).

The Reverse Factor algorithm has a quadratic worst-case time complexity, but it
is very fast in practice (cf. [Lec00]). Moreover, it has been shown that on the average
it inspects O(nlog(m)/m) text characters, reaching the best bound shown by Yao in
[YaoT79).

3 The Forward-Fast-Search Algorithm

In this section we present a new efficient variant of the Boyer-Moore algorithm ob-
tained by modifying the Fast-Search algorithm presented in Section 2.6.

14

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

The new algorithmic variant, that we call Forward-Fast-Search, mantains the same
structure of the Fast-Search algorithm, but is based upon a modified version of the
good suffix rule, called forward good suffiz rule, which uses a look-ahead character to
determine larger shift advancements.

The forward good suffix requires a precomputed table of size (m - |3]), where m
is the length of the pattern and X is the alphabet of the text and pattern.

Concerning the running time, the forward good suffix rule can be precomputed by
|| iterations of the standard linear precomputation of the Boyer-Moore good suffix
rule, yielding a O(m - |¥|) time complexity. Nevertheless, we propose an alternative,
more direct approach which behaves very well in practice, though it requires O(m -
max(m, |X|)) time in the worst case.

3.1 Strengthening the Good Suffix Rule

3.1.1 The Backward Good Suffix Rule

A first natural way to strengthen the good suffix rule, which yields the backward good
suffiz rule, can be obtained by merging it with the bad character rule as follows.
As usual, let us assume that we are comparing a pattern P of length m with the
window T'[s..s +m — 1] at shift s of a given text T, scanning it from right to left.
If the first mismatch occurs at position i of the pattern P, ie. Pli+1..m — 1] =
Tls+i+1..s+m — 1] and P[i] # T[s + i], then the backward good suffix rule
proposes to align the substring T[s + i+ 1 .. s +m — 1] with its rightmost occurrence
in P preceded by the backward character T'[s + i]. If such an occurrence does not
exist, the backward good suffix rule proposes a shift increment which allows to match
the longest suffix of T'[s + i+ 1..s + m — 1] with a prefix of P. More formally, this
corresponds to increment the shift s by §sp(i + 1, T[s + i]), where

G5p(j,0) =pe minf0 <k <m | Plj—k..m—k—13P
and (k<j—-1—=P[j—-1]=0¢)},
for j=0,1,...,mand c € X.

3.1.2 The Forward Good Suffix Rule

As observed by Sunday [Sun90|, after a matching phase with shift s, the forward
character T[s+m] is always involved in the subsequent matching phase. Thus, another
possible variant of the good suffix rule, which we call forward good suffiz rule, consists
in matching the forward character T'[s + m], rather than the mismatched character
T|[s + i]. More precisely, if as above the first mismatch occurs at position 7 of the
pattern P, the forward good suffix rule suggests to align the substring T'[s+i+1..s+
m] with its rightmost occurrence in P preceded by a character different from P[i].
If such an occurrence does not exist, the forward good suffix rule proposes a shift
increment which allows to match the longest suffix of T[s+i+1.. s+m] with a prefix
of P. This corresponds to advance the shift s by ﬁp(i +1,T[s+m]) positions, where

9ép(j.0) =p, min({0<k<m | Pli—k.m—-k—123P
and (k<j—1— P[j—1]#P[j —1—k])
and Plm — k] =c} U {m+1}) ,
for j=0,1,...,mand c € X.

15

Proceedings of the Prague Stringology Conference 03

3.1.3 Comparing the Good Suffix Rule with its Variants

We computed the average shift advancement suggested by the good suffix rule and
its backward and forward variants on four Rando problems, for o = 2,4, 8,20, with
pattern lengths 2, 4,6, 8,10, 20, 40, 80, and 160, where a Rando problem consists in
searching, for each assigned value of the pattern length, a set of 200 random patterns
over an alphabet ¥ of size ¢ in a 20Mb random text over the same alphabet .

Experimental results, presented in the tables below, show that the forward and
backward good suffix rules propose on the average much larger shift advancements
than the standard good suffix rule (up to 400% better). In addition, the forward
good suffix rule shows always a slightly better behavior than the backward one, which
becomes more sensible in the case of very small alphabets. This is partly due to the
fact that the forward character is always used by the forward good suffix rule to
compute shift advancements, whereas there are cases in which the backward good
suffix rule does not exploit the backward character.

2 2 4 6 8 10 20 40 80 160

1.540 2.762 3.869 4.765 5.468 8464 12.254 16.137 21.807
1.540 2.762 3.869 4.765 5.468 8464 12.254 16.137 21.807
2.269 3.642 5.026 6.310 7.394 12.21 18.200 25.586 34.798

£

93

gs

=4 2 4 6 8 10 20 40 80 160
gs 1.750 3.062 4334 5.196 6.079 8.697 12.382 16.857 22.645
g%s’ 1.750 3.540 5170 6.691 8.097 13.62 21.604 30.540 42.891
g5
£
93
gs

2.687 4.407 6.114 7.696 9.245 15.55 25.149 36.584 51.398

8 2 4 6 8 10 20 40 80 160

1.880 3.453 4.833 5.399 6.656 10.05 13.613 19.510 25.807
1.880 3.857 5.692 7.441 9.294 17.63 31.570 51.010 75.734
2.860 4.775 6.671 8.399 10.24 18.72 33.225 54.825 81.334

=20 2 4 6 8 10 20 40 80 160
gs 1.930 3.714 5238 6.684 8512 12.81 19.078 25.169 33.975
g%s 1.930 3.956 5.892 7.919 9.867 19.47 38.167 72950 136.45
g_>.9 2.946 4.929 6.896 8.868 10.85 20.44 39.206 74.084 138.22

Average advancements for some Rando problems

3.1.4 Implementing the Forward Good Suffix Rule

Given a pattern P of length m over an alphabet X, we have plainly

.)
gSP(jac) :.QSP.C(]))

for 7 =0,1,...,m and ¢ € X, where P.c is the string obtained by concatenating the
character ¢ at the end of P. Thus, a natural way to compute the forward good suffix
function ﬁp consists in computing the standard good suffix functions gsp,., for all
¢ € ¥, by means of the O(m) tricky algorithm firstly given in [KMP77] and then
corrected in [Rit80).

Such a procedure is asymptotically optimal, as it has O(m - |X|) space and time
complexity.

In Figure 1 we propose an alternative procedure to compute the forward good
suffix function which, despite its O(m - max(m,|X|)) worst-case time complexity,
turns out to be very efficient in practice, even for large values of m.

16

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

precompute-forward-good-suffix(P)

Initialization:

1. m = length(P)

2. for i =0 to m do

3. for cc ¥ do

4, g8li,d=m+1

5. for:=0tom —1do

6. nextli) =i —1

Computation:

7. for slen =0 tom —1 do

8 last =m — 1

9. i = next[last]

10. while 7 > 0 do

11. if g&[m — slen, Pli+1]] > m —1 — i then

12. if (i — slen <0 or

13 (i — slen > 0 and P[i — slen] # P[m — 1 — slen])) then
14. ﬁ[m—slen,P[i—i—l]] =m-1—1
15. if (i — slen > 0 and P[i — slen| = Pllast — slen]) or
16. (i — slen < 0) then

17. next|last] =i

18. last =1

19. i = next|i]

20. if g4[m — slen, P0]] > m then

21. g&[m — slen, P[0]] = m
22. next|last] = —1
23. return ¢s

Figure 1: The function for computing forward good suffixes

After an initialization phase which takes O(m - |X|) space and time complexity,
the precompute-forward-good-suffix procedure carries out m iterations of its main for-
loop, starting at line 7. During the k-th iteration, for £ = 1,2,...,m, it computes
the sequence Si(P) of all occurrences in P of the suffix P[m — k.. m — 1] of length £,
implicitly represented by means of the array next:

Sc(P) = (Pnextim —1] —k+1..nextjm —1]] ,
Plnest@[m — 1] — k + 1 .. next®[m — 1]],

(1)

Plnext™[m — 1] — k + 1. nextt[m — 1]]) ,

where 7y, is such that nezt™+"[m —1] = —1. For that purpose, lines 15-18 implement
the recurrence

S(P)=(Plj—k+1.j]|Pj—k+2.j] €S8 1(P)and P[j —k+1] = Plm — k]),

where Sy(P) is also formally given by (1), thanks to the way the array next is ini-
tialized in lines 5-6. Moreover, during the k-th iteration of the for-loop, for each

17

Proceedings of the Prague Stringology Conference 03

P[j — k +1..j] € 8x(P), the procedure updates, if necessary, the value gé(m — k —
1, P[j + 1]) by setting it to (m — 1 — j) (lines 11-14).

Plainly, the procedure in Figure 1 requires O(m - |X|) space. To compute its
time complexity, it is enough to observe that the k-th execution of the while-
loop in lines 10-19, for & = 1,2,...,m, takes O(|Sx_1(P)|) time, giving a total
of O(X7,"|S;(P)) = O(m?) time in the worst case. This leads to an overall
O(m - max(m, |X|)) worst-case time complexity, taking into account also the initizial-
ization phase.

Experimental results show that the sum ¥75" |S;(P)| has on the average an al-
most linear behavior. For instance, the following tables report the average of the
sum 37" |S;(P)| computed for 100,000 random patterns of size m over an alphabet
of size o, for 0 = 2,4,8,20 and m = 2,4,6,8, 10, 20, 40,80, 160. The tests relative
to a natural language buffer NI have been computed by randomly selecting 100, 000
substrings for each given pattern length over the 3.13Mb file obtained by discarding
the nonalphabetic characters from the WinEdt spelling dictionary.

m 2 4 6 8 10 20 40 80 160

m? (worst case) 4 16 36 64 100 400 1600 6400 25600
Average for o =2 | 2.50 7.38 13.07 19.01 25.02 55.09 114.89 234.98 474.57
Average foro =4 | 2.24 546 876 12.10 15.45 32.09 65.34 132.06 264.98
Average for o =8 | 2.12 4.67 723 9.81 1240 25.24 50.93 102.45 204.98
Average for 0 = 20 | 2.04 4.25 6.46 8.68 10.89 21.96 44.00 88.21 176.63

Average on NL 2.04 423 6.47 884 11.99 28.57 57.97 111.61 208.00

For the same set of random tests, we also computed the total time taken to con-
struct the forward good suffix function ﬁ, using the two implementations described
earlier, namely the one which has a O(m - |X|) worst-case time and space complexity
and the procedure precompute-forward-good-suffix. Such implementations are denoted
respectively “gé (I)” and “g& (II)” in the tables below, where experimental results are
expressed in hundredths of seconds.

=2 2 4 6 8 10 20 40 80 160
(1) 58.1 60.1 63.1 66.1 68.1 81.1 103.2 149.2 239.3
(IT) 3.0 6.0 11.0 15.1 18.0 37.0 74.1 145.3 2884

oc=4 2 4 6 8 10 20 40 80 160
g_§ (I | 113.2 117.1 121.2 1242 128.2 1422 1742 2354 357.5
g_>s (I1) | 3.0 6.0 10.0 13.0 16.0 33.1 64.1 126.2 250.3

o=28 2 4 6 8 10 20 40 80 160
g_>s (I) | 225.3 2304 237.3 2404 2433 268.4 3134 401.6 577.9
ﬁ (I1) | 4.0 7.0 11.0 14.0 19.0 36.1 72.1 141.2 2894

o=20 2 4 6 8 10 20 40 80 160
g_§ (I) | 558.8 573.9 580.8 589.8 5989 642.9 733.1 905.3 1250.8
gs (1) | 5.0 11.0 16.0 20.1 26.0 50.1 98.1 195.3 394.6

NL 2 4 6 8 10 20 40 80 160
ﬁ (I) | 553.8 565.8 573.8 583.8 592.8 636.9 725.0 895.3 1238.8
ﬁ (Ify | 5.0 10.0 16.0 19.0 23.1 48.1 95.1 189.3 379.5

18

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

Forward-Fast-Search(P, T')

1. n = length(T')

2. m = length(P)

3. T'=T.Plm—1]"

4. bc = precompute-bad-character(P)

5. ﬁ = precompute-forward-good-suffix(P)
7. s=10

8. while bc[T'[s +m — 1]] > 0 do

9. s=s+bc[T'[s + m — 1]]

10. while s <n —m do

11. j=m—2

12. while j > 0 and P[j] = T"[s + j] do
13. j=j—1

14. if 7 <0 then

15. print(s)

16. s=s+g5[j+1,T[s +m]|
17. while bc[T"'[s + m — 1]] > 0 do
18. s =5+ bcT'[s +m — 1]]

Figure 2: The Forward-Fast-Search algorithm

The analysis of the above experimental results show that for alphabets of size at least
4 the procedure precompute-forward-good-suffix is on the average always faster than
the implementation of the forward good suffix function described at the beginning
the present section.

3.2 Building up the Forward-Fast-Search Algorithm

The implementation of the Forward-Fast-Search algorithm can be obtained along the
same lines of the Fast-Search and the Tuned Boyer-Moore algorithms.

In the first phase, called character localization phase, the algorithm iterates the
bad character rule until the last character P[m —1] of the pattern is matched correctly
against the text. More precisely, starting from a shift position s, if we denote by j;
the total shift advancement after the i-th iteration of the bad character rule, then we
have the following recurrence:

Ji = jic1 +bep(T[s + jioy +m —1]) .

Therefore, the bad character rule is applied & times in a row, where £ = min{i | T'[s+
Ji +m — 1] = P[m — 1]}, with an overall shift advancement of jj.

At this point we have that T'[s + j, +m — 1] = P[m — 1], so that the subsequent
matching phase can test for an occurrence of the pattern by comparing only the
remaining (m — 1) characters of the pattern. At the end of the matching phase the
algorithm applies the forward good suffix rule instead of the traditional good suffix
rule.

As in the case of the Fast-Search and Tuned Boyer-Moore algorithms, the Forward-
Fast-Search algorithm benefits from the introduction of an external sentinel: since the

19

Proceedings of the Prague Stringology Conference 03

forward good suffix rule looks at the character T[s+m)] just after the current window,
m + 1 copies of the character P[m — 1] are added at the end of the text 7', obtaining
a new text T' = T.P[m — 1]™*!. This allows to compute correctly the last shifts with
no extra checks. Plainly, all the valid shifts of P in T are the valid shifts s of P in T"
such that s < n — m, where, as usual, n and m denote respectively the lengths of T’
and P. The code of the Forward-Fast-Search algorithm is presented in Figure 2.

4 Experimental Results

We present next experimental data which allow to compare the following string match-
ing algorithms under various conditions: Horspool (HOR), Quick-Search (QS), Barry-
Ravidran (BR), Tuned Boyer-Moore (TBM), Reverse Factor (RF), Fast-Search (FS),
and Forward-Fast-Search (FFS).

We have chosen to compare the algorithms in terms of running time, number of
text character inspections, and number of character comparisons.

All algorithms have been implemented in the C programming language and were
used to search for the same strings in large fixed text buffers on a PC with AMD
Athlon processor of 1.19GHz. In particular, the algorithms have been tested on four
Rando problems, for o = 2,4, 8,20, and on a natural language text buffer NL with
patterns of length m = 2,4, 6,8, 10, 20, 40, 80, and 160.

We recall that each Rando problem consists in searching a set of 200 random
patterns of a given length in a 20Mb random text over a common alphabet of size o.

The tests on the natural language text buffer NL have been performed on a 3.13Mb
file obtained by discarding the nonalphabetic characters from the WinEdt spelling
dictionary. For each pattern length m, we have selected 200 random substrings of
length m in the file which subsequently have been searched for in the same file.

4.1 Running Times

Experimental results show that the Forward-Fast-Search algorithm obtains the best
run-time performance in most cases and, sporadically, it is second only to the Fast-
Search algorithm, in the case of natural language texts and long patterns, and to the
Berry-Ravidran algorithm, in the case of large alphabets and patterns.

In the following tables, running times are expressed in hundredths of seconds.

o= 2 4 6 8 10 20 40 80 160
HOR | 42.01 44.18 42.86 42.02 46.57 40.24 39.51 38.83 39.95
QS 34.33 4112 3835 39.30 4280 3742 36.77 36.42 36.54
BR 44.84 49.36 4442 4348 4769 40.66 40.70 40.74 40.54
TBM | 33.96 36.54 36.88 36.65 40.53 3598 36.05 3554 36.30
RF 249.2 200.0 1459 1142 107.3 57.95 36.84 2795 22.36
FS 41.79 3536 28.72 2532 26.15 2040 1840 1799 17.31
FFS | 31.08 28.87 25.28 22.37 23.15 18.05 16.78 16.62 15.82

Running times for a Rand2 problem

20

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

oc=4 2 4 6 8 10 20 40 80 160
HOR | 34.66 25.57 22.05 20.76 20.27 19.68 20.05 19.54 20.20
QS 26.49 22,10 19.87 19.35 1898 1858 19.05 18.73 19.04
BR 32.20 25.68 22.08 20.31 19.24 1729 16.66 16.36 16.51
TBM | 25.53 20.68 19.15 18.85 1876 1850 18.81 18.38 18.78
RF 156.1 98.60 74.84 62.28 53.79 34.73 2426 20.34 16.67
FS 28.60 20.58 1891 1826 17.8 17.22 16.53 16.18 15.82
FFS | 24.87 20.06 18.35 17.65 17.22 16.23 15.61 15.33 14.40

Running times for a Rand4 problem

o=28 2 4 6 8 10 20 40 80 160
HOR | 27.71 20.19 1840 1743 16.84 15.70 1556 15.62 15.71
QS 2091 18.27 1717 16.59 16.25 1536 15.22 15.23 15.35
BR 25.19 20.55 1877 1774 17.02 1533 14.55 14.55 13.96
TBM | 21.09 17.78 16.78 16.77 16.22 15.14 15.11 15.05 15.18
RF 114.8 70.75 5497 46.27 40.62 27.26 20.58 18.17 15.01
FS 20.66 17.75 16.75 16.41 16.01 15.02 14.89 14.80 14.81
FFS | 20.20 17.58 16.60 16.17 15.82 14.87 14.54 14.52 13.92

Running times for a Rand8 problem

o =20 2 4 6 8 10 20 40 80 160
HOR | 23.45 18.17 16.58 16.21 15.89 1521 1490 14.84 14.98
QS 18.67 16.84 15.78 15.69 1549 1498 14.74 1473 14.79
BR 21.83 1888 17.32 16.89 16.47 1547 1490 14.42 12.60
TBM | 18.76 16.78 15.64 15.44 1539 14.85 14.82 14.65 14.65
RF 9244 54.83 41.67 35.57 31.61 23.12 19.25 17.69 14.72
FS 19.11 16.59 15.57 1549 15.24 14.81 14.66 14.65 14.58
FFS 18.76 16.51 15.51 15.44 15.24 14.83 14.64 14.65 14.35

Running times for a Rand20 problem

NL 2 4 6 8 10 20 40 80 160
HOR | 340 265 245 236 236 222 215 211 1.98
QS 2.73 242 235 2.24 220 2.14 2.09 2.09 201
BR 3.28 287 266 259 247 233 225 221 195
TBM | 2.77 239 227 225 218 219 209 212 193
RF 13.94 833 648 546 4.87 335 279 268 4.67
FS 2.79 245 2.22 2.24 219 2.14 2.06 2.09 1.91
FFS | 2.70 2.35 226 226 2.18 215 213 211 224

Running times for a natural language problem

4.2 Average Number of Text Character Inspections

For each test, the average number of character inspections has been obtained by
taking the total number of times a text character is accessed, either to perform a
comparison with a pattern character, or to perform a shift, or to compute a transition
in an automaton, and dividing it by the length of the text buffer.

It turns out that the Forward-Fast-Search algorithm is always very close the best
results which are generally obtained by the Fast-Search algorithm, for short patterns,
and by Reverse-Factor algorithm, for long patterns. We notice, however, that the
Forward-Fast-Search algorithm obtains in most cases the second best result and is
better than Reverse-Factor, for short patterns, and Fast-Search, for long patterns.

21

Proceedings of the Prague Stringology Conference 03

o=2 2 4 6 8 10 20 40 80 160
HOR | 1.00 1.15 1.26 126 128 1.24 127 123 1.27
QS 1.54 167 163 167 164 161 165 1.61 1.60
BR 1.28 125 120 120 119 1.19 119 1.18 1.16
TBM | 1.23 135 146 146 147 143 146 142 1.46
RF 143 1.06 .799 .615 .519 .294 .169 .096 .054
FS 1.00 .929 806 .698 .632 460 .348 .270 .213
FFS 1.15 993 833 .703 .621 410 .289 .210 .161

oc=4 2 4 6 8 10 20 40 80 160
HOR | .714 510 435 404 392 373 389 .365 .392
QS 1.03 817 700 .675 .645 .610 .650 622 .633
BR 949 713 569 488 429 307 264 244 251
TBM | .841 .591 .504 .468 .454 432 450 422 .446
RF 886 .528 .387 .316 .264 .154 .089 .051 .028
FS 714 489 398 356 .330 .273 .239 200 .177
FFS 768 526 418 367 .330 241 182 .136 .105

oc=28 2 4 6 8 10 20 40 80 160
HOR | .600 .350 .263 .222 .198 .158 .153 .149 .152
QS 842 575 456 393 358 291 282 278 277
BR 844 582 443 360 .305 179 109 072 .057
TBM | .663 .386 .291 .245 218 .174 .168 .164 .167
RF 674 381 278 .225 .191 .112 .063 .036 .020
FS .600 .348 .260 .217 .193 150 .137 126 .117
FFS 627 368 274 227 .201 .146 .117 .093 .075

o =20 2 4 6 8 10 20 40 80 160
HOR | .538 .285 .199 .157 132 .083 .061 .054 .053
QS 734 463 346 282 .242 157 118 104 .104
BR 787 528 0 397 318 266 146 .078 .042 .023
TBM | .563 .297 .208 .164 .137 .086 .063 .056 .056
RF .b65 302 214 170 143 084 .049 .027 .014
FS .538 .284 .198 .156 .131 .082 .060 .053 .052
FFS 550 293 205 161 135 .082 .060 .049 .043

NL 2 4 6 8 10 20 40 80 160
HOR | .550 .300 .211 .171 .144 .091 .059 .042 .032
QS 759 489 375 309 261 175 125 .086 .066
BR 795 538 411 335 278 155 .085 .050 .028
TBM | .584 318 .226 .182 .153 .096 .062 .044 .034
RF H88 321 231 185 153 .084 .045 .024 .013
FS 550 .299 .211 .171 .143 .087 .055 .038 .027
FFS D65 312 220 180 .152 .088 .054 .036 .026

Average number of text character inspections for some Rando problems and for
a natural language problem

4.3 Average Number of Comparisons

For each test, the average number of character comparisons has been obtained by
taking the total number of times a text character is compared with a character in the
pattern and dividing it by the total number of characters in the text buffer.

It turns out that the Forward-Fast-Search algorithm achieves the best results in
most cases. Sporadically our algorithm is second only to the Berry-Ravindran al-
gorithm which obtains very good results for short patterns and small alphabets.
Moreover we observe that Tuned Boyer-Moore, Fast-Search and Forward-Fast-Search

22

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

algorithms perform a very low number of characters comparisons in the case of large
alphabets.

oc=2 2 4 6 8 10 20 40 80 160
HOR | 1.000 1.159 1.260 1.269 1.281 1.244 1.272 1.235 1.270
QS 9588 1.109 1.088 1.119 1.095 1.073 1.104 1.079 1.080
BR .2631 .3766 .3916 .3989 .3962 .3973 .3969 .3940 .3893
TBM | .3333 .6044 .6995 .7154 .7249 7082 .7215 .7024 .7205
FS 3333 4767 4466 3925 3573 2609 1967 .1530 .1248
FFS 3076 4224 3875 .3324 .2962 .1964 .1377 .1003 .0766

oc=4 2 4 6 8 10 20 40 80 160
HOR | .7143 5100 .4356 .4041 .3922 .3732 3890 .3652 .3928
QS 6053 4864 4109 .3908 3716 .3491 3719 .3556 .3742
BR 2747 2353 1898 11628 1432 .1025 .0883 .0813 .0837
TBM | .1429 .1445 .1264 .1175 .1140 .1085 .1131 .1062 .1141
FS 1429 1373 1141 1024 .0949 .0784 .0690 .0577 .0526
FFS | .1323 .1272 .1041 .0913 .0822 .0601 .0454 .0341 .0263

o=28 2 4 6 8 10 20 40 80 160
HOR | .6000 .3501 .2639 .2222 .1985 .1586 .1531 .1490 .1522
QS 4631 3189 2505 .2139 1943 1559 1504 .1487 1524
BR 2711 1940 1479 1202 1018 .0598 .0364 .0243 .0190
TBM | .0667 .0482 .0365 .0307 .0274 .0219 .0212 .0206 .0210
FS 0667 .0477 .0359 .0300 .0267 .0207 .0190 .0175 .0167
FFS | .0634 .0459 .0345 .0287 .0252 .0184 .0148 .0117 .0095

o=20 2 4 6 8 10 20 40 80 160
HOR | .5385 .2844 .1991 .1569 .1316 .0828 .0608 .0541 .0537
QS 3837 2427 1805 .1476 .1263 .0817 .0607 .0538 .0534
BR 2608 1760 .1323 .1061 .0887 .0490 .0263 .0141 .0079
TBM | .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0028
FS 0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0027
FFS .0251 .0147 .0103 .0081 .0068 .0042 .0030 .0025 .0022

NL 2 4 6 8 10 20 40 80 160
HOR 5501 3000 2117 1716 1445 .0913 .0595 .0420 .0329
QS 4031 2605 .2002 .1646 .1393 .0914 .0654 .0455 .0364
BR 2599 1794 1371 1118 0927 .0519 .0286 .0168 .0094
TBM | .0345 .0245 .0171 .0142 .0123 .0089 .0061 .0046 .0042
FS .0345 .0245 .0171 .0141 .0121 .0066 .0043 .0030 .0025
FFS .0333 .0244 .0168 .0153 .0140 .0058 .0032 .0020 .0014

Average number of comparisons for some Rando problems and for a natural language problem

5 Conclusion

We presented a new efficient variant of the Boyer-Moore string matching algorithm,
named Forward-Fast-Search. As its progenitor Fast-Search, the Forward-Fast-Search
algorithm applies repeatedly the bad character rule until the last character of the
pattern is matched correctly and then it begins to match the pattern against the
text from right to left. At the end of each matching phase, it computes the shift
advancement as a function of the matched suffix of the pattern and the first character
of the text past the current window (forward good suffix rule).

It turns out that, despite the O(m - |X|)-space and O(m - max(m, |X]|))-time com-
plexity required in the worst case to precompute the forward good suffix function, the

23

Proceedings of the Prague Stringology Conference 03

Forward-Fast-Search algorithm is very fast in practice and compares well with other
fast variants of the Boyer-Moore algorithm.

We plan to evaluate theoretically the average time complexity of the Forward-Fast-
Search algorithm, and to adapt it to scanning strategies depending on the character

frequencies.

References

[BM77] R.S. Boyer and J. S. Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762-772, 1977.

[BR99| T. Berry and S. Ravindran. A fast string matching algorithm and experi-
mental results. Proc. of the Prague Stringology Club Workshop 99 Czech
Technical University, Prague, Czech Republic, Collaborative Report DC—
99-05, pp. 1628, 1999.

[BYR92|] R. A. Baeza-Yates and M. Régnier. Average running time of the Boyer-
Moore-Horspool algorithm. Theor. Comput. Sei., 92(1):19-31, 1992.

[CF03] D. Cantone and S. Faro. Fast-Search: a new variant of the Boyer-Moore
string matching algorithm. In K. Jansen et al. (Eds.), Proc. of WEA 20083,
LNCS 2647, pp. 47-58, 2003.

[CCGT94] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string matching al-
gorithms. Algorithmica, 12(4/5):247-267, 1994.

[GO80] L. J. Guibas and A. M. Odiyzko. A new proof of the linearity of the
Boyer-Moore string searching algorithm. STAM J. Comput., 9(4):672-682,
1980.

[Hor80] R. N. Horspool. Practical fast searching in strings. Softw. Pract. Exp.,
10(6):501-506, 1980.

[HS91] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp.,
21(11):1221-1248, 1991.

[KMP77] D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6:323-350, 1977.

[Lec00] T. Lecroq. New experimental results on exact string-matching. Rapport
LIFAR 2000.03, Université de Rouen, France, 2000.

[Rit80] W. Rytter. A correct preprocessing algorithm for Boyer-Moore string
searching. STAM J. Comput., 9:509-512, 1980.

[Sun90] D. M. Sunday. A very fast substring search algorithm. Commun. ACM,
33(8):132-142, 1990.

[Yao79] A. C. Yao. The complexity of pattern matching for a random string. STAM

J. Comput., 8(3):368-387, 1979.

24

Approximate Seeds of Strings

Manolis Christodoulakis' and Costas S. Iliopoulos' and
Kunsoo Park?* and Jeong Seop Sim?

! Department of Computer Science,
King’s College London
e-mail: {manolis, csi}@dcs.kcl.ac.uk

2 School of Computer Science and Engineering,
Seoul National University
e-mail: kpark@theory.snu.ac.kr

3 Electronics and Telecommunications Research Institute
Daejeon 305-350, Korea
e-mail: simjsQ@etri.re.kr

Abstract. In this paper we study approximate seeds of strings, that is, sub-
strings of a given string z that cover (by concatenations or overlaps) a super-
string of z, under a variety of distance rules (the Hamming distance, the edit
distance, and the weighted edit distance). We solve the smallest distance ap-
proximate seed problem and the restricted smallest approzimate seed problem
in polynomial time and we prove that the general smallest approzimate seed
problem is NP-complete.

Keywords: regularities, seeds, approximate seeds, Hamming distance, edit dis-
tance, weighted edit distance, penalty matrix.

1 Introduction

Finding regularities in strings is useful in a wide area of applications which involve
string manipulations. Molecular biology, data compression and computer-assisted
music analysis are classic examples. By regularities we mean repeated strings of an
approximate nature. Examples of regularities include repetitions, periods, covers and
seeds. Regularities in strings have been studied widely the last 20 years.

There are several O(nlogn)-time algorithms [11, 6, 27| for finding repetitions, that
is, equal adjacent substrings, in a string =, where n is the length of . Apostolico and
Breslauer [2] gave an optimal O(loglogn)-time parallel algorithm (i.e., total work is
O(nlogn)) for finding all the repetitions.

The preprocessing of the Knuth-Morris-Pratt algorithm [22] finds all periods of
x in linear time— in fact, all periods of every prefix of x. Apostolico, Breslauer
and Galil [3] derived an optimal O(loglogn)-time parallel algorithm for finding all
periods.

*Work supported by IMT 2000 Project AB02, MOST grant M1-0309-06-0003, and Royal Society
grant.

25

Proceedings of the Prague Stringology Conference 03

The fact that in practise it was often desirable to relax the meaning of “repetition”,
has led more recently to the study of a collection of related patterns—‘covers” and
“seeds”. Covers are similar to periods, but now overlaps, as well as concatenations, are
allowed. The notion of covers was introduced by Apostolico, Farach and Iliopoulos
in [5], where a linear-time algorithm to test superprimitivity, was given (see also
[8, 9, 18]). Moore and Smyth [29] and recently Li and Smyth [25] gave linear time-
time algorithms for finding all covers of a string z. In parallel computation, [liopoulos
and Park [19] obtained an optimal O(loglogn) time algorithm for finding all covers
of . Apostolico and Ehrenfeucht [4] and Iliopoulos and Mouchard [17] considered
the problem of finding maximal quasiperiodic substrings of x. A two-dimensional
variant of the covering problem was studied in [12, 15|, and a minimum covering by
substrings of a given length in [20].

An extension of the notion of covers, is that of seeds; that is, covers of a superstring
of . The notion of seeds was introduced by Iliopoulos, Moore and Park [16] and an
O(nlogn)-time algorithm was given for computing all seeds of z. A parallel algorithm
for finding all seeds was presented by Berkman, Iliopoulos and Park [7], that requires
O(logn) time and O(nlogn) work.

In applications such as molecular biology and computer-assisted music analysis,
finding exact repetitions is not always sufficient. A more appropriate notion is that
of approzimate repetitions (|10, 13]); that is, finding strings that are “similar” to a
given pattern, by allowing errors. In this paper, we consider three different kinds of
“similarity” (approximation): the Hamming distance, the edit disctance [1, 35] and a
generalization of the edit distance, the weighted edit distance, where different costs
are assigned to each substitution, insertion and deletion for each pair of symbols.

Approximate repetitions have been studied by Landau and Schmidt [24|, who
derived an O(knlogklogn)-time algorithm for finding approximate squares whose
edit distance is at most k in a text of length n. Schmidt also gave an O(n?logn)
algorithm for finding approximate tandem or nontandem repeats in [31] which uses an
arbitrary score for similarity of repeated strings. More recently, Sim, Iliopoulos, Park
and Smyth provided polynomial time algorithms for finding approximate periods [33]
and, Sim, Park, Kim and Lee solved the approximate covers problem in [34].

In this paper, we introduce the notion of approximate seeds, an approximate
version of seeds. We solve the smallest distance approximate seed problem and the
restricted smallest approrimate seed problem and we prove that the more general
smallest approrimate seed problem is NP-complete.

The paper is organized as follows. In section 2, we present some basic definitions.
In section 3, we describe the notion of approximate seeds and we define the three
problems studied in this paper. In section 4, we present the algorithms that solve the
first two problems and the proof that the third problem is NP-complete. Section 5
contains our conclusion.

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet . The set of all
strings over ¥ is denoted by ¥*. The length of a string z is denoted by |z|. The
empty string, the string of length zero, is denoted by . The i-th symbol of a string
x is denoted by x[i].

26

Approximate Seeds of Strings

A string w is a substring of x if © = uwwv, where u,v € ¥*. We denote by x[i..j]
the substring of = that starts at position ¢ and ends at position j. Conversely, z is
called a superstring of w. A string w is a prefiz of z if x = wy, for y € ¥*. Similarly,
w is a suffiz of x if x = yw, for w € ¥*. We call a string w a subsequence (also called
a subword [14]) of = (or x is a supersequence of w) if w is obtained by deleting zero or
more symbols at any positions from x. For example, ace is a subsequence of aabcdef.
For a given set S of strings, a string w is called a common supersequence of S if s is
a supersequence of every string in S.

The string zy is a concatenation of the strings x and y. The concatenation of k
copies of x is denoted by z*. For two strings x = z[1..n] and y = y[1..m] such that
xzln — i+ 1..n] = y[l..9] for some ¢ > 1 (that is, such that z has a suffix equal to
a prefix of y), the string x[1..n]y[i + 1..m] is said to be a superposition of = and y.
Alternatively, we may say that x overlaps with .

A substring y of z is called a repetition in z, if + = uy*v, where u,y,v are
substrings of z and k > 2, |y| # 0. For example, if © = aababab, then a (appearing in
positions 1 and 2) and ab (appearing in positions 2, 4 and 6) are repetitions in z; in
particular a? = aa is called a square and (ab)?® = ababab is called a cube.

A substring w is called a period of a string x, if can be written as x = w"w’
where k£ > 1 and w' is a prefix of w. The shortest period of x is called the period of
x. For example, if = abcabcab, then abc, abcabe and the string x itself are periods
of x, while abc is the period of .

A substring w of x is called a cover of x, if x can be constructed by concatenating
or overlapping copies of w. We also say that w covers x. For example, if x = ababaaba,
then aba and x are covers of x. If x has a cover w # x, x is said to be quasiperiodic;
otherwise, x is superprimitive.

A substring w of z is called a seed of z, if w covers one superstring of (this can
be any superstring of z, including x itself). For example, aba and ababa are some
seeds of x = ababaab.

We call the distance 6(x,y) between two strings 2 and y, the minimum cost to
transform one string = to the other string y. There are several well known distance
functions, described in the next paragraph. The special symbol A is used to represent
the absence of a character.

k

2.1 Distance functions

The edit distance between two strings is the minimum number of edit operations
that transform one string into another. The edit operations are the insertion of an
extraneous symbol (e.g., A — a), the deletion of a symbol (e.g., @ — A) and the
substitution of a symbol by another symbol (e.g., a — b). Note that in the edit
distance model we only count the number of edit operations, considering the cost of
each operation equal to 1.

The Hamming distance between two strings is the minimum number of substitu-
tions (e.g., a — b) that transform one string to the other. Note that the Hamming
distance can be defined only when the two strings have the same length, because it
does not allow insertions and deletions.

We also consider a generalized version of the edit distance model, the weighted
edit distance, where the edit operations no longer have the same costs. It makes use

27

Proceedings of the Prague Stringology Conference 03

Figure 1: Alignment example

of a penalty matriz, a matrix that specifies the cost of each substitution for each pair
of symbols, and the insertion and deletion cost for each character. A penalty matrix
is a metric when it satisfies the following conditions for all a,b,c € X U {A}:

e §(a,b) >0,

e 0(a,b) =4(b,a),

e §(a,a) =0, and

e d(a,c) <d(a,b) + (b, c) (triangle inequality).

The similarity between two strings can be seen by using an alignment; that is, any
pairing of symbols subject to the restriction that if lines were drawn between paired
symbols, as in Figure 1, the lines would not cross. The equality of the lengths can be
obtained by inserting or deleting zero or more symbols. In our example, the string
“abcae” is transformed to “abdeg” by deleting, substituting and inserting a character
at positions 3, 4 and 6, respectively. Note that this is not the only possible alignment
between the two strings.

We say that a distance function §(z, y) is a relative distance function if the lengths
of strings x and y are considered in the value of §(x,y); otherwise it is an absolute
distance function. The Hamming distance and the edit distance are examples of
absolute distance functions. There are two ways to define a relative distance between
x and y:

e First, we can fix one of the two strings and define a relative distance function
with respect to the fixed string. The error ratio with respect to x is defined to
be d/|x|, where d is an absolute distance between z and y.

e Second, we can define a relative distance function symmetrically. The symmetric
error ratio is defined to be d/I, where d is an absolute distance between x and
y, and [= (|z| + |y|)/2 |32]. Note that we may take I = |z| + |y|, in which case
everything is the same except that the ratio is multiplied by 2.

If d is the edit distance between x and y, the error ratio with respect to x or the
symmetric error ratio is called a relative edit distance. The weighted edit distance can
also be used as a relative distance function because the penalty matrix can contain
arbitrary costs.

3 Problem Definitions

Definition 1 Let z and s be strings over ¥* ¢ be a distance function and ¢ be
a number. We call s a t-approximate seed of z if and only if there exist strings
S1,892,.-.,5 (8; #) such that

28

Approximate Seeds of Strings

(i) 6(s,s;) <t, for 1 <i<r, and

(ii) there exists a superstring y = uzv, |u| < |s| and |v| < |s|, of x that can be
constructed by overlapping or concatenating copies of the strings s, sa, ..., ;.

Each s;, 1 < i < r, will be called a seed block of z.

Note that y can be any superstring of z, including z itself (in which case, s is
an approximate cover). Note, also, that there can be several versions of approximate
seeds according to the definition of distance function 9.

An example of an approximate seed is shown in Figure 2. For strings = =
BABACCB and s = ABAB, s is an approximate seed of z with error 1 (ham-
ming distance), because there exist the strings s; = ABAB,s, = ABAC,s3; =
CBAB, such that the distance between s and each s; is no more than 1, and by
concatenating or overlapping the strings si, ss, s3 we construct a superstring of x,

y = ABABACCBAB.

ABABACCBARB
51 52 53

Figure 2: Approximate Seed example.

We consider the following three problems related to approximate seeds.

Problem 1 SMALLEST DISTANCE APPROXIMATE SEED Let x be a string of length
n, s be a string of length m, and § be a distance function. Find the minimum number
t such that s is a t-approximate seed of x.

In this problem, the string s is given a priori. Thus, it makes no difference whether
0 is an absolute distance function or an error ratio with respect to s. If a threshold
k < |s| on the edit distance is given as input to Problem 1, the problem asks whether
s is a k-approximate seed of = or not (the k-approxzimate seed problem). Note that if
the edit distance is used for ¢, it is trivially true that s is an |s|-approximate seed of
x.

Problem 2 RESTRICTED SMALLEST APPROXIMATE SEED Given a string x of
length n, find a substring s of x such that: s is a t-approrimate seed of x and there
s no substring of x that is a k-approximate seed of x for all k < t.

Since any substring of x can be a candidate for s, the length of s is not (a priori)
fixed in this problem. Therefore, we need to use a relative distance function (i.e.,
an error ratio or a weighted edit distance) rather than an absolute distance function.
For example, if the absolute edit distance is used, every substring of x of length 1 is
a l-approximate seed of x. Moreover, we assume that s is of length at most |z|/2,
because, otherwise the longest proper prefix of z (or any long prefix of x) can easily
become an approximate seed of z with a small distance. This assumption will be
applied to Problem 3, too.

29

Proceedings of the Prague Stringology Conference 03

Problem 3 SMALLEST APPROXIMATE SEED Given a string x of length n, find a
string s such that: s is a t-approxrimate seed of x and there is no substring of x that
s a k-approrimate seed of x for all k < t.

Problem 3 is a generalization of Problem 2; s can now be any string, not necessarily
a substring of x. Obviously, this problem is harder than the previous one; we will
prove that it is NP-complete.

4 Algorithms and NP-Completeness

4.1 Problem 1
Our algorithm for Problem 1 consists of two steps. Let n = |z| and m = |s|.

1. Compute the distance between s and every substring of x.

We denote by w;; the distance between s and z[i..j], for 1 < i < j < n. Note
that, by definition of approximate seeds, x[i..n] can be matched to any prefix
of s, and z[l..j] can be matched to any suffix of s (because s has to cover
any superstring of). Thus, we denote w;, the minimum value of the distances
between all prefixes of s and z[i..n|, and wy; the minimum value of the distances
between all suffixes of s and z[1..j].

2. Compute the minimum t such that s is a t-approximate seed of x.
We use dynamic programming to compute ¢ as follows. Let ¢; be the minimum
value such that s is a ¢;-approximate seed of z[1..7]. Let ¢y = 0. For i = 1 to n,
we compute ¢; by the following formula:

t; = 01%1’321 {max {hrgjlgl {ti} wnyiit} (1)

The value t,, is the minimum ¢ such that s is a f-approximate seed of .

To compute the distance between two strings, = and y, in step 1, a dynamic
programming table, called the D table, of size (|x| + 1) x (Jy| + 1), is used. Each
entry D[i,j], 0 < i < |z| and 0 < j < |y|, stores the minimum cost of transforming
2[1..1] to y[1..5]. nitially, D[0,0] = 0, D[i,0] = D[i — 1,0] + 6(zi], A) and D[0, j] =
DI[0,j—1]+06(A,y[j]). Then we can compute all the entries of the D table in O(|z||y|)
time by the following recurrence:

Dli—1,7] + o(z[i], A)
Dli—1,5=1] + 6zl y[j])

where §(a,b) is the cost of substituting character a with character b, §(a,A) is the
cost of deleting a and §(A, a) is the cost of inserting a.

The second step of the algorithm is computed as shown in Figure 3. For every h,
we cover x[h+1..7] with one copy of s, with error wy,1 ;. What is left to be covered is
x[1..h]. We obtain this by covering either x[1..h], with error ¢[h], or z[1..h + 1], with
error t[h +1], ... or x[1..i — 1], with error ¢[i — 1], (in general z[1..j], with error ¢[j]);
we choose the z[1..7] (the shaded box) that gives the smallest error. Note that, this
box covers a superstring of z[1..5].

30

Approximate Seeds of Strings

N ANNNWN J
x| [R
1 h+1 J 7 n

Figure 3: The second step of the algorithm.

Theorem 1 Problem 1 can be solved in O(mn?) time when a weighted edit distance
is used for §. If the edit or the Hamming distance is used for ¢, it can be solved in
O(mn) time.

PROOF. For an arbitrary penalty matrix, step 1 takes O(mn?) time, since we make a
D table of size (m+1) x (n—i+2) for each position i of z. The fact that a superstring
of x, rather than x itself, has to be “covered” does not increase the time complexity,
if we use the following procedure: instead of computing a new D-table between each
s[1..k] (resp. s[k..m]) and z[i..n] (resp. z[1..j]), we just make one D-table between
s and x[i..n] (resp. s® (z[1..5])%) and take the minimum value of the last column of
this table.

In step 2, we can compute the minimum ¢ in O(n?) time as follows. The inner
min loop of formula (1) can be computed in constant time by reusing the min values
computed in the previous round. The outer min loop is repeated ¢ times, for 1 < i <
n, i.e., O(n?) repetitions.

Thus, the total time complexity is O(mn?).

When the edit distance is used for the measure of similarity, this algorithm for
Problem 1 can be improved. In this case, 6(a,b) is always 1 if a # b and 6(a,b) = 0
otherwise. Now it is not necessary to compute the edit distances between s and the
substrings of x whose lengths are larger than 2m because their edit distances with
s will exceed m. (It is trivially true that s is an m-approximate seed of x.) Step 1
now takes O(m?n) time since we make a D table of size (m + 1) x (2m + 1) for each
position of x. Also, step 2 can be done in O(mn) time since we compare O(m) values
at each position of z. Thus, the time complexity is reduced to O(m?n).

However, we can do better. Step 1 can be solved in O(mn) time by the algorithm
due to Landau, Myers and Schmidt [23]|. Given two strings 2 and y and a forward
(resp. backward) solution for the comparison between z and y, the algorithm in [23]
incrementally computes a solution for z and by (resp. yb) in O(k) time, where b is an
additional character and £ is a threshold on the edit distance. This can be done due
to the relationship between the solution for and y and the solution for x and by.
When k& = m (i.e., the threshold is not given) we can compute all the edit distances
between s and every substring of 2z whose length is at most 2m in O(mn) time using
this algorithm. Recently, Kim and Park [21] gave a simpler O(mn)-time algorithm
for the same problem. Therefore, we can solve Problem 1, in O(mn) time if the edit
distance is used for §. When the threshold % is given as input for Problem 1, it can
be solved in O(kn) time because each step of the above algorithm takes O(kn) time.

If we use the Hamming distance for §, in step 1 we consider only the substrings
of x of length m. (Recall that the Hamming distance is defined only between strings
of equal length) Since there are O(n) such substrings, and we need O(m) time to
compute the distance between each substring and s, step 1 takes O(mn) time. Also,
as in the case of the edit distance, step 2 can be done in O(mn) time (we compare
O(m) values at each position of x). Thus, the overall time complexity is O(mn). O

31

Proceedings of the Prague Stringology Conference 03

z x
Tl s z| s
i+m-2
/—\ .
Newly computed z+m_1
s =x[i..i +m — 2 x[i..q 1]
(Previous D table (New D table)

Figure 4: Computing new D tables

4.2 Problem 2

In this problem, we are not given a string s. Any substring of x is now a candidate
for approximate seed. Let s be such a candidate string. Recall that, since the length
of s is not fixed in this case, we need to use a relative distance function (rather than
an absolute distance function); that is, an error ratio, in the case of the Hamming or
edit distance, or a weighted edit distance.

When the relative edit distance is used for the measure of similarity, Problem 2
can be solved in O(n*) time by our algorithm for Problem 1. If we take each substring
of x as s and apply the O(mn) algorithm for Problem 1 (that uses the algorithm in
[23]), it takes O(]s|n) time for each s. Since there are O(n?) substrings of z, the
overall time is O(n?).

For weighted edit distances (as well as for relative edit distances), we can solve
Problem 2 in O(n*) time, without using the somewhat complicated algorithm in [23].
Like before, we consider every substring of x as candidate string s, and we solve
Problem 1 for z and s. But, we do this, by processing all the substrings of = that
start at position 7, at the same time, as follows.

Let T be the minimum distance so far. Initially, T" = oco. For each i, 1 < i < n,
we process the n — ¢ 4 1 substrings that start at position ¢ as candidate strings. Let
m be the length of a chosen substring of x as s. Initially, m = 1.

1. Take z[i.i +m — 1] as s and compute wy;, for all 1 < h < j < n. This
computation can be done by making n D tables with s and each of the n
suffixes of z. By adding just one row to each of previous D tables (i.e., n D
tables when s = z[i..i + m — 2]), we can compute these new D tables in O(n?)
time. See Figure 4. (Note that when m = 1, we create new D tables.)

2. Compute the minimum distance ¢ such that s is a t-approximate seed of x. This
step is similar to the second step of the algorithm for Problem 1. Let ¢; be the
minimum value such that s is a t;-approximate seed of x[1..i] and t, = 0. For
i =1 to n, we compute t; by the following formula:

t; = 0‘?&2 {max{ m1n {t bowpi,it}

The value t,, is the minimum ¢ such that s is a t-approximate seed of . If ¢,, is
smaller than 7', we update 1" with t,,. If m <n —14+ 1, increase m by 1 and go
to step 1.

When all the steps are completed, the final value of 7" is the minimum distance
and the substring s that is a T-approximate seed of x is an answer to Problem 2.

32

Approximate Seeds of Strings

(Note that there can be more than one substring s that are T-approximate seeds of

Theorem 2 Problem 2 can be solved in O(n?) time when a weighted edit distance
or a relative edit distance is used for . When a relative Hamming distance is used
for §, Problem 2 can be solved in O(n?) time.

PROOF. For a weighted edit distance, we make n D tables in O(n?) time in step 1
and compute the minimum distance in O(n?) time in step 2. Form =1ton —i+1,
we repeat the two steps. Therefore, it takes O(n?) time for each i and the total time
complexity of this algorithm is O(n*). If a relative edit distance is used, the algorithm
can be slightly simplified, as in Problem 1, but it still takes O(n*) time.

For a relative Hamming distance, it takes O(n) time for each candidate string and
since there are O(n?) candidate strings, the total time complexity is O(n?). O

4.3 Problem 3

Given a set of strings, the shortest common supersequence (SCS) problem is to find
a shortest common supersequence of all strings in the set. The SCS problem is NP-
complete [26, 30]. We will show that Problem 3 is NP-complete by a reduction from
the SCS problem. In this section we will call Problem 3 the SAS problem (abbreviation
of the smallest approximate seed problem). The decision versions of the SCS and SAS
problems are as follows:

Definition 2 (SCS) Given a positive integer m and a finite set S of strings from -*
where ¥ is a finite alphabet, the SCS problem is to decide if there exists a common
supersequence w of S such that |w| < m.

Definition 3 (SAS) Given a number ¢, a string = from (X')* where ¥’ is a finite
alphabet, and a penalty matrix, the SAS problem is to decide if there exists a string
u such that u is a t-approximate seed of x.

Theorem 3 The SAS problem is NP-complete.

5 Conclusions

In this paper, we solved the smallest distance approzimate seed problem, in O(mn)
time for the Hamming and edit distance and O(mn?) for the weighted edit distance,
and the restricted smallest approzimate seed problem, in O(n*) time for the edit and
weighted edit distance and O(n?) for the Hamming distance. We also proved that the
smallest approrimate seed problem is NP-complete.

The significance of our work comes from the fact that we solved the first two
problems for approximate seeds, with exactly the same time complexities as those
for approximate periods [33] and approximate covers [34|, despite the fact that seeds
allow overlaps, as well as concatenations, and cover a superstring of a string = (rather
than covering the string x itself).

33

Proceedings of the Prague Stringology Conference 03

References

[1] A. Aho and T. Peterson. A minimum distance error-correcting parser for context-
free languages. STAM J. Computing, 1:305-312, 1972.

[2] A. Apostolico and D. Breslauer. An optimal O(loglog N)-time parallel algorithm
for detecting all squares in a string. STAM Journal on Computing, 25(6):1318—
1331, 1996.

[3] A. Apostolico, D. Breslauer, and Z. Galil. Optimal parallel algorithms for peri-
ods, palindromes and squares. Proc. 19th Int. Collog. Automata Languages and
Programming, 623:296-307, 1992.

[4] A. Apostolico and A. Ehrenfeucht. Efficient detection of quasiperiodicities in
strings. Theoretical Computer Science, 119(2):247-265, 1993.

[5] A. Apostolico, M. Farach, and C. S. Tliopoulos. Optimal superprimitivity testing
for strings. Information Processing Letters, 39(1):17-20, 1991.

[6] A. Apostolico and F. P. Preparata. Optimal off-line detection of repetitions in a
string. Theoretical Computer Science, 22:297-315, 1983.

[7] O. Berkman, C. S. Iliopoulos, and K. Park. The subtree max gap problem
with application to parallel string covering. Information and Computation,
123(1):127-137, 1995.

[8] D. Breslauer. An on-line string superprimitivity test. Information Processing
Letters, 44(6):345-347, 1992.

[9] D. Breslauer. Testing string superprimitivity in parallel. Information Processing
Letters, 49(5):235-241, 1994.

[10] T. Crawford, C. S. Tliopoulos, and R. Raman. String matching techniques for
musical similarity and melodic recognition. Computing in Musicology, 11:73-100,
1998.

[11] M. Crochemore. An optimal algorithm for computing repetitions in a word.
Information Processing Letters, 12(5):244-250, 1981.

[12] M. Crochemore, C. S. Tliopoulos, and M. Korda. Two-dimensional prefix string
matching and covering on square matrices. Algorithmica, 20:353-373, 1998.

[13] M. Crochemore, C. S. Tliopoulos, and H. Yu. Algorithms for computing evolu-
tionary chains in molecular and musical sequences. In Proc. 9th Australasian
Workshop on Combinatorial Algorithms, pages 172-185, 1998.

[14] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[15] C. S. Tliopoulos and M. Korda. Optimal parallel superprimitivity testing on
square arrays. Parallel Processing Letters, 6(3):299-308, 1996.

[16] C.S. Tliopoulos, D. Moore, and K. Park. Covering a string. Algorithmica, 16:288—
297, 1996.

34

Approximate Seeds of Strings

[17] C. S. Hiopoulos and L. Mouchard. An O(nlogn) algorithm for computing all
maximal quasiperiodicities in strings. In Proc. Computing: Australasian Theory
Symposium, pages 262-272. Lecture Notes in Computer Science, 1999.

[18] C. S. Iliopoulos and K. Park. An optimal O(loglogn)-time algorithm for parallel
superprimitivity testing. J. Korea Inform. Sci. Soc., 21:1400-1404, 1994.

[19] C. S. Tliopoulos and K. Park. A work-time optimal algorithm for computing all
string covers. Theoretical Computer Science, 164:299-310, 1996.

[20] C. S. Tliopoulos and W. F. Smyth. On-line algorithms for k-covering. In Pro-
ceedings of the 9th Australasian Workshop On Combinatorial Algorithms, pages
97-106, Perth, WA, Australia, 1998.

[21] S. Kim and K. Park. A dynamic edit distance table. In Proc. 11th Symp.
Combinatorial Pattern Matching, volume 1848, pages 60—68. Springer, Berlin,
2000.

[22] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern mathcing in strings.
STAM Journal on Computing, 6(1):323-350, 1977.

[23] G. M. Landau, E. W. Myers, and J. P. Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557-582, 1998.

[24] G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem repeats.
In Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching,
number 684, pages 120-133, Padova, Italy, 1993. Springer-Verlag, Berlin.

[25] Y. Li and W. F. Smyth. An optimal on-line algorithm to compute all the covers
of a string.

[26] D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM, 25(2):322-336, 1978.

[27] M. G. Main and R. J. Lorentz. An algorithm for finding all repetitions in a
string. Journal of Algorithms, 5:422-532, 1984.

[28] M. Middendorf. More on the complexity of common superstring and superse-
quence problems. Theoretical Computer Science, 125(2):205-228, 1994.

[29] D. Moore and W. F. Smyth. A correction to “An optimal algorithm to compute
all the covers of a string”. Information Processing Letters, 54(2):101-103, 1995.

[30] K. J. Rdihd and E. Ukkonen. The shortest common supersequence problem
over binary alphabet is NP-complete. Theoretical Computer Science, 16:187—
198, 1981.

[31] J. P. Schmidt. All highest scoring paths in weighted grid graphs and its applica-
tion to finding all approximate repeats in strings. STAM Journal on Computing,
27(4):972-992, 1998.

[32] P. H. Sellers. Pattern recognition genetic sequences by mismatch density. Bulletin
of Mathematical Biology, 46(4):501-514, 1984.

35

Proceedings of the Prague Stringology Conference 03

[33] J. S. Sim, C. S. Tliopoulos, K. Park, and W. F. Smyth. Approximate periods of
strings. Theoretical Computer Science, 262:557-568, 2001.

[34] J. S. Sim, K. Park, S. Kim, and J. Lee. Finding approximate covers of strings.
Journal of Korea Information Science Society, 29(1):16-21, 2002.

[35] R. Wagner and M. Fisher. The string-to-string correction problem. Journal of
the ACM, 21:168-173, 1974.

36

Constructing Factor Oracles

Loek Cleophas! and Gerard Zwaan' and Bruce W. Watson'?

! Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

2 Department of Computer Science, University of Pretoria,
Pretoria 0002, South Africa
e-mail: loek@loekcleophas.com, g.zwaan@tue.nl, bruce@bruce-watson.com

Abstract. A factor oracle is a data structure for weak factor recognition. It is
an automaton built on a string p of length m that is acyclic, recognizes at least
all factors of p, has m + 1 states which are all final, and has m to 2m — 1 transi-
tions. In this paper, we give two alternative algorithms for its construction and
prove the constructed automata to be equivalent to the automata constructed
by the algorithms in [1]. Although these new O(m?) algorithms are practically
inefficient compared to the O(m) algorithm given in [1], they give more insight
into factor oracles. Our first algorithm constructs a factor oracle based on the
suffixes of p in a way that is more intuitive. Some of the crucial properties of
factor oracles, which in [1] need several lemmas to be proven, are immediately
obvious. Another important property however becomes less obvious. A second
algorithm gives a clear insight in the relationship between the trie or dawg rec-
ognizing the factors of p and the factor oracle recognizing a superset thereof.
We conjecture that an O(m) version of this trie-based algorithm exists.

Keywords: factor oracle, finite automaton, weak factor recognition, algorithm
derivation, pattern matching.

1 Introduction

A factor oracle is a data structure for weak factor recognition. It can be described
as an automaton built on a string p of length m that (a) is acyclic, (b) recognizes
at least all factors of p, (¢) has m + 1 states (which are all final), and (d) has m to
2m — 1 transitions (cf. [1]). Some example factor oracles are given in Figures 1 and 2.

Figure 1: Factor oracle for abbe (recognizing abe ¢ fact(p))

37

Proceedings of the Prague Stringology Conference 03

Figure 2: Factor oracle for abbcca (recognizing abe, abee, abeca, abea, abbea, bbea, bea &
fact(p))

Factor oracles are introduced in [1] as an alternative to the use of exact factor
recognition in many on-line keyword pattern matching algorithms. In such algorithms,
a window on a text is read backward while attempting to match a keyword factor.
When this fails, the window is shifted using the information on the longest factor
matched and the mismatching character.

Instead of an automaton recognizing exactly the set of factors of the keyword,
it is possible to use a factor oracle: although it recognizes more strings than just
the factors and thus might read backwards longer than necessary, it cannot miss any
matches. The advantage of using factor oracles is that they are easier to construct
and take less space to represent compared to the automata that were previously used
in these factor-based algorithms, such as suffix, factor and subsequence automata.
This is the result of the latter automata lacking one or more of the four essential
properties of the factor oracle.

The factor oracle is introduced in [1] by means of an O(m?) construction algorithm
that is used as its definition. Furthermore, an O(m) sequential construction algorithm
is described. It is not obvious by just considering the algorithms that it recognizes
at least all factors of p and has m to 2m — 1 transitions (i.e. that (b) and (d) hold).
For both algorithms, a number of lemmas are needed to prove this. In this paper, we
give two alternative algorithms for the construction of a factor oracle.

Our first algorithm, in Section 2, constructs a factor oracle based on the suffixes
of p. This algorithm is O(m?) and thus not of practical interest, but it is more in-
tuitive to understand and properties (b) and (d)—two important properties of factor
oracles—are immediately obvious from the algorithm. The acyclicity of the factor or-
acle however—corresponding to property (a)—is not immediately obvious. Our proof
of this property (part of Property 6) is rather involved, whereas the property is imme-
diately obvious from the algorithms in [1]. We prove that the alternative construction
algorithm and those given in [1] construct equivalent automata in Section 3.

In Section 4 we present our second algorithm, which constructs a factor oracle
from the trie recognizing the factors of p. Although this algorithm is O(m?) as well,
it gives a clear insight in the relationship between the trie and dawg recognizing the
factors of p and the factor oracle recognizing a superset thereof. In addition, we
conjecture that an O(m) trie-based algorithm exists.

Finally, Section 5 gives a summary and overview of future work.

1.1 Related Work

An earlier version of this paper appears as [3, Chapter 4|. In that thesis, some
properties of the language of a factor oracle are discussed as well. The thesis also

38

Constructing Factor Oracles

discusses pattern matching algorithms—among them those using factor oracles—and
the implementation of the factor oracle as part of the SPARE TIME pattern matching
toolkit, a revised and extended version of SPARE PARTS (]9]).

As mentioned before, factor oracles were introduced in [1| as an alternative to the
use of exact factor recognition in many on-line keyword pattern matching algorithms.
A pattern matching algorithm using the factor oracle is described in that paper as
well.

Apart from their use in pattern matching algorithms, factor oracles have been
used in a heuristic to compute repeated factors of a string [6] as well as to compress
text [7]. An improvement for those uses of factor oracles is introduced in [8] in the
form of the repeat oracle.

Related to the factor oracle, the suffiz oracle—in which only those states corre-
sponding to a suffix of p are marked final—is introduced in [1]. In [2] the factor oracle
is extended to apply to a set of strings.

1.2 Preliminaries

A string p = p1...pm of length m is a sequence of characters from an alphabet V. A
string w is a factor (vesp. prefiz, suffiz) of a string v if v = sut (resp. v = ut, v = su),
for s,t € V*. We will use pref(p), suff(p) and fact(p) for the set of prefixes, suffixes
and factors of p respectively. A prefix (resp. suffix or factor) is a proper prefix (resp.
suffix or factor) of a string p if it does not equal p. We write u <; v to denote that u
is a suffix of v, and u <, v to denote that u is a proper suffix of v.

2 Construction Based on Suffixes

Our first alternative algorithm for the construction of a factor oracle constructs a
‘skeleton’ automaton for p—recognizing pref(p)—and then constructs a path for
each of the suffixes of p in order of decreasing length, such that eventually at least
pref(suff(p)) = fact(p) is recognized. If such a suffix of p is already recognized, no
transition needs to be constructed. If on the other hand the complete suffix is not yet
recognized there is a longest prefix of such a suffix that is recognized. A transition on
the next, non-recognized symbol is then created, from the state in which this longest
prefix of the suffix is recognized, to a state from which there is a path leading to state
m that spells out the rest of the suffix.

Build Oracle 2(p = pipa...pm)
1: for i from 0 to m do
2: Create a new final state ¢
3: end for
4: for ¢ from 0 to m — 1 do
5: Create a new transition from 7 to ¢ + 1 by p;11
6: end for
7. for i from 2 to m do
8: Let the longest path from state 0 that spells a prefix of p;...p,, end in state j
and spell out p;..pr (i —1 <k < m)
if £ # m then

©

39

Proceedings of the Prague Stringology Conference 03

10: Build a new transition from j to k + 1 by ppi1
11: end if
12: end for

Note that this algorithm is O(m?) (since the operation on line 6 can be implemented
using a while loop). The factor oracle on p built using this algorithm is referred to
as Oracle(p) and the language recognized by it as factoracle(p).

The first two properties we give are obvious given our algorithm. They correspond
to (b) and (c)-(d) respectively as mentioned in Section 1.

Property 1 fact(p) C factoracle(p).
Proof: The algorithm constructs a path for all suffixes of p and all states are final. [

Property 2 For p of length m, Oracle(p) has exactly m + 1 states and between m
and 2m — 1 transitions.

Proof: States can be constructed in steps 1-2 only, and exactly m + 1 states are
constructed there. In step 4 of the algorithm, m transitions are created. In steps 5-8,
at most m — 1 transitions are created.]

Property 3 (Glushkov’s property) All transitions reaching a state i of Oracle(p)
are labeled by p;.

Proof: The only steps of the algorithm that create transitions are steps 4 and 8. In
both, transitions to a state i are created labeled by p;. O

Property 4 (Weak determinism) For each state of Oracle(p), no two outgoing
transitions of the state are labeled by the same symbol.

Proof: The algorithm never creates an outgoing transition by some symbol if such a
transition already exists. O

We now define function poccur(u, p) to give the end position of the leftmost occurrence
of u in p (equivalent to the same function in [1]):

Definition 1 Function poccur € V* x V* — N is defined as

poccur(u, p) = min{|tu|,p = tuv} (p,t,u,v € V)

]
Note that if u & fact(p), poccur(u, p) = oc.
Property 5 For suffixes and prefixes of factors we have:
uv € fact(p) = poccur(v,p) < poccur(uv,p) (p,u,v € V*)
uv € fact(p) = poccur(u, p) < poccur(uv,p) — |v| (p,u,v € V¥)
]

We introduce min(i) for the minimum length string recognized in state i—either in
a partially constructed or in the complete automaton.

In the following property, we use j; and k; to identify the values j and k attain
when considering suffix p;...p,, of p in steps 5-8 of the algorithm.

40

Constructing Factor Oracles

Property 6 For the partial automaton constructed according to algorithm Build -
Oracle 2 with all suffixes of p of length greater than m — i + 1 already considered
in steps 5-8 (2 < i < m+ 1), we have that

i.

ii.

iii.

it is acyclic
for each h with 1 < h < 4, all prefixes of py,...p,, are recognized

for each state n and outgoing transition to a state ¢ # n + 1,
q < kmaz + 1 holds where k0, = max{k,, 1 < h <i Ak, <m}

iv. for each state n, min(n) is an element of fact(p), min(n) is a suffix of each
string recognized in n, and n = poccur(min(n), p)
v. if u € fact(p) is recognized, it is recognized in a state n < poccur(u, p)
vi. for each state n and each symbol a such that there is a transition from n to a
state ¢ by a, min(n) - a € fact(p) and ¢ = poccur(min(n) - a, p)
vii. for each pair of states n and ¢, if min(n) <, min(q), then n < ¢, and as a
result, if min(n) <; min(q), then n < ¢
viii. if w is recognized in state n, then for any suffix u of w, if u is recognized, it is
recognized in state ¢ < n
Proof: See Appendix A. O

Note that Property 6, i. corresponds to property (a) in Section 1.

3 Equivalence to Original Algorithms

A factor oracle as introduced in [1] is built by the following algorithm:

Build _Oracle(p = pips...pm)

1: for 7 from 0 to m do

© ok ey

—_ =
= O

12:
13:

Create a new final state ¢

end for
: for ¢ from 0 to m — 1 do

Create a new transition from 7 to 2 + 1 by p; 14

end for
. for ¢ from 0 to m — 1 do

Let u be a minimal length word in state ¢
for all 0 € ¥, 0 # p;;1 do
if uo € Fact(p;_|u41...-Pm) then
Build a new transition from 7 to*
i — |u| + poccur(uo, pi_jyj+1...pm) by o
end if
end for

*Note that in [1] the term —|u]| is missing in the algorithm, although from the rest of the paper
it is clear that it is used in the construction of the automata

41

Proceedings of the Prague Stringology Conference 03

14: end for

To prove the equivalence of the automata constructed by the two algorithms, we need
the following properties.

Property 7 For any state i of both Oracle(p) (i.e. the factor oracle constructed ac-
cording to algorithm Build Oracle 2 and the factor oracle constructed according

to algorithm Build Oracle), if u = min(i) then
uo € fact(pi_jy41...pm) = uo € fact(p)

Proof: = Trivial. <=: By Property 6, iv. (for Build Oracle 2) and [1, Lemma
1| (for Build Oracle), i = poccur(u,p). By Property 5, poccur(uo,p) > i, hence
uo € fact(p;_juj+1.--Pm)- O

Property 8 For any state ¢ of an automaton constructed by either algorithm, if
u = min(i) and uo € fact(p) then

i — |u| + poccur(uo, pi_ju|+1...pm) = poccur(uo, p)
Proof:

i — |ul + poccur(uo, pi—juf4+1---Dm)
= { definition poccur }
i — |u] + min{|tuo|, pi_juj41..-Pm = tuov}
= { u = min(i), hence recognized in i = poccur(u,p) }
i — |u| + min{|tuo| — (i — |ul),p = tuov}
= { uo € fact(p), property of min }
i — |u| + min{|tuc|,p = tuov} — (i — |u|)
= { calculus, definition poccur }

poccur(uo, p) a

Property 9 The algorithms Build Oracle 2 and Build Oracle

construct, equivalent automata.

Proof: 'We prove this by induction on the states. Our induction hypothesis is that
for each state j (0 < j < i), min(j) is the same in both automata, and the outgoing
transitions from state j are equivalent for both automata.

If i =0, u = min(i) = £ in both automata. Consider a transition created
by Build Oracle 2, say to state £ by o # p;;i. Since this transition exists,
uo € fact(p) and k = poccur(uo,p) (due to Property 6, vi.). Using Properties 7
and 8, such a transition was created by Build Oracle as well. Similarly, consider
a transition created by Build Oracle, say to state £ by o. This transition, say
on symbol o, leads to state k = i — |u| + poccur(uc, pi—juj41---Pm) and was created
since uo € fact(p;—ju41...Pm) (see the algorithm). Using Properties 7 and 8, such a
transition was created by Build Oracle 2 as well.

42

Constructing Factor Oracles

If © > 0, using the induction hypothesis and acyclicity of the automata, 7 has
the same incoming transitions and as a result min(7) is the same for both automata.
Using the same arguments as in case ¢ = 0, the outgoing transitions from state i are
equivalent for both automata.

As a result, the two automata are equivalent. O

4 Construction Based on Trie
:
c

Figure 3: Trie recognizing fact(abbc)

Figure 5: Factor oracle recognizing fact(abbc) U {abc}

There is a close relationship between the data structures Trie(fact(p)) —the trie
([5]) on fact(p)—recognizing exactly fact(p), DAWG(fact(p)) —the directed acyclic
word graph ([4]) on fact(p)—recognizing exactly fact(p), and Oracle(p)—the factor
oracle on p—which recognizes at least fact(p).

It is well known that DAWG(fact(p)) can be constructed from Trie(fact(p)) by
merging states whose right languages are identical (see for example [4]). The factor
oracle as defined by Oracle(p) can also be constructed from Trie(fact(p)), by merging
states whose right languages have identical longest strings (which are suffixes of p).
An example of a trie, DAWG and factor oracle for the factors of abbc can be seen in
Figures 3-5.

43

Proceedings of the Prague Stringology Conference 03

Definition 2 We define Trie(S) as a 5-tuple <@, V, §, &, F> where S is a finite
set of strings, @@ = pref(S) is the set of states, V' is the alphabet, § is the transition
function, defined by

ua if ua € pref(S)

O, 0) = { L if ua & pref(S) (u € pref(5),a € V),

¢ is the single start state and F' = S is the set of final states. O
Property 10 For u,v € fact(p) we have :

uv € fact(p) A (VYw : uw € fact(p) : |w| < |v]) = uv € suff(p)

uvy € fact(p) A (Vw : uw € fact(p) : |w| < |v1])
A uvg € fact(p) A (Vw : uw € fact(p) : |w| < |vg]|) = v1 = vg

Property 11 For u € fact(p) and C' € N,
(Vw :uw € fact(p) : |lw| < C) = (Vw : uw € suff(p) : |w| < C)

Proof: = trivial. <=: Let ux € fact(p), then (Jy : : uzxy € suff(p)), hence (Fy : :
|zy| < C), and since |y| > 0, |z| < C. O

Using Properties 10 and 11, max,(u) can be defined as the unique longest string v
such that uv € suff(p):

Definition 3 Define max,(u) = v where v is such that

uv € suff(p) A (Vw : uw € suff(p) : |w| < |v|)

We now present our simple trie-based construction algorithm for factor oracles:

Trie To Oracle(p = pipa...pm)
1: Construct Trie(fact(p))
2: for i from 2 to m do
3: Merge all states u for which maz,(u) = pit1...pn into the single state p;...p;
4: end for

The order in which the values of ¢ are considered is not important. In addition, note
that it is not necessary to consider the states u for which maz,(u) = ps...pn, since
there is precisely one such state u in Trie(fact(p)), u = p;. Due to Property 10, it is
sufficient to only consider suffixes of p as longest strings.

Also note that the intermediate automata may be nondeterministic, but the final
automaton will be weakly deterministic (as per Property 4).

The above algorithm has complexity O(m?) (assuming that max,(u) was com-
puted during construction of the trie). The construction of a Trie can be done in
O(m) time however, and the merging of the states is similar to minimization of an

44

Constructing Factor Oracles

acyclic automaton, which can also be done in O(m). We therefore conjecture that an
O(m) trie-based factor oracle construction algorithm exists.

To prove that algorithm Trie To Oracle constructs Oracle(p), we define a
partition on the states of the trie, induced by an equivalence relation on the states.

Definition 4 Relation ~, on states of Trie(fact(p)) is defined by
t ~, u=max,(t) = max,(u) (t,u € fact(p))

Note that relation ~,, is an equivalence relation. O

We now show that the partitioning into sets of states of Trie(fact(p)) induced by ~,,
is the same as the partitioning of Trie(fact(pa)) induced by ~,,, restricted to the
states of Trie(fact(p)), i.e.

Property 12
t~pu=try,u (tu € fact(p),a € V)

Proof:
t~pu

{ definition ~, }
mazx,(t) = maz,(u)

{1}

maz,(t)a = max,(u)a

{ (%)}

MaTpg (t) = Mmatp,(u)

{ definition ~,, }
t ~pa U
where we prove (*) by

U = maxy, (u)

{ definition max,, }

uv € suff(pa) A (Vw : uw € suff(pa) : jw| < |v])

{ u € fact(p), hence (Fz : : uxa € suff(pa)),
hence |za| > 0 and |v| > 0; suff(pa) = suff(p)a U {c} }

uv € suff(p)a A (Vw : uw € suff(pa) : jw| < |v])
{ lv[>0}

uv € suff(p)a A (Vw : w # e A uw € suff(pa) : jw| < |v|) Av="1'a
{ suff(pa) = suff(p)aU{c} }

uv € suff(p)a A (Vw : w # e A uw € suff(p)a : jw| < |v|) Av="1'a

45

Proceedings of the Prague Stringology Conference 03

{w=wa }

uv € suff(p)a A (Vw': vw'a € suff(p)a : |w'al < |v'al) Av="1'a
{1}

uv € suff(p)a A (Vw': uw' € suff(p) : |w'| < V') Av=1a

{v=va}

wv' € suff(p) A (Vw' : uw' € suff(p) : [w'| < |v'|) Av="1a

{ definition max, }
v =maz,(u) ANv="1'a
{1

v = max,(u)a

Property 13 Algorithm Trie To Oracle constructs Oracle(p).

Proof: By induction on |p| = m. If m = 0, p = ¢, and Trie(fact(¢)) = Oracle(e).
If m=1 p=a (a € V), and Trie(fact(a))=Oracle(a). If m > 1, p = za
(x € V*;a € V), and we may assume the algorithm to construct part Oracle(x)
of Oracle(za) correctly (using fact(ua) = fact(u) U suff(u)a, Trie(fact(za)) being
an extension of Trie(fact(x)), and Oracle(xa) being an extension of Oracle(z) (which
is straightforward to see from algorithm Build Oracle 2 as well as [1, page 57,
after Corollary 4]), and Property 12). Now consider the states of this partially con-
verted automaton in which suffixes of z are recognized. By construction of the trie,
there are transitions from these states by a. The factor oracle construction accord-
ing to algorithm Oracle Sequential in [1] creates Oracle(za) from Oracle(z)+a
(i.e. the factor oracle for x extended with a single new state m reachable from state
m — 1 by symbol p,, = a) by creating new transitions to state m from those states in
which suffixes of x are recognized and that do not yet have a transition on a. Since
Trie To Oracle merges all states ¢ for which maw,,(t) = a into the single state
m, Oracle(za) is constructed correctly from Trie(fact(za)). O

5 Conclusions and Future Work

We have presented two alternative construction algorithms for factor oracles and
shown the automata constructed by them to be equivalent to those constructed by
the algorithms in [1]. Although both our algorithms are O(m?) and thus practically
inefficient compared to the O(m) sequential algorithm given in [1], they give more
insight into factor oracles.

Our first algorithm is more intuitive to understand and makes it immediately
obvious, without the need for several lemmas, that the factor oracle recognizes at
least fact(p) and has m to 2m — 1 transitions.

Our second algorithm gives a clear insight into the relationship between the trie
or dawg recognizing fact(p) and the factor oracle recognizing a superset thereof. We

46

Constructing Factor Oracles

conjecture that an O(m) trie-based algorithm for the construction of factor oracles
exists.

e

O+~

Figure 6: Factor oracle recognizing a superset of fact(p) (including for example cace ¢
fact(p)), for p = abcacdace.

O

Figure 7: Alternative automaton with m + 1 states satisyfing Glushkov’s property
yet recognizing a different superset of fact(p) than the factor oracle for p (including
for example acacdace ¢ factoracle(p), but not cace) and having less transitions, for
p = abcacdace.

As stated in [1], the factor oracle is not minimal in terms of number of transitions
among the automata with m + 1 states recognizing at least fact(p). We note that it
is not even minimal among the subset of such automata having Glushkov’s property
(see Figures 6 and 7).

We are working on an automaton-independent definition of the language recog-
nized by the factor oracle. Such a characterization would enable us to calculate how
many strings are recognized that are not factors of the original string. This could
be useful in determining whether to use a factor oracle-based algorithm in pattern
matching or not.

Acknowledgements

We would like to thank Michiel Frishert for reading and commenting on earlier ver-
sions of this paper, and the anonymous referees for their helpful comments and sug-
gestions.

47

Proceedings of the Prague Stringology Conference 03

References

[1] Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Efficient Experi-
mental String Matching by Weak Factor Recognition. In Proceedings of the 12th
conference on Combinatorial Pattern Matching, volume 2089 of LNCS, pages 51—
72, 2001.

[2] Cyril Allauzen and Mathieu Raffinot. Oracle des facteurs d’un ensemble de mots.
Technical Report 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée,
June 1999.

[3] Loek G.W.A. Cleophas. Towards SPARE Time: A New Taxonomy and Toolkit
of Keyword Pattern Matching Algorithms. MSc thesis, Technische Universiteit
Eindhoven, August 2003.

[4] Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University
Press, 1994.

[5] E. Fredkin. Trie memory. Communications of the ACM, 3(10):490-499, 1960.

[6] Arnaud Lefebvre and Thierry Lecroq. Computing repeated factors with a factor
oracle. In L. Brankovic and J. Ryan, editors, Proceedings of the 11th Australasian
Workshop on Combinatorial Algorithms, pages 145-158, 2000.

[7] Arnaud Lefebvre and Thierry Lecroq. Compror: on-line losless data compression
with a factor oracle. Inf. Process. Lett., 83(1):1-6, 2002.

[8] Arnaud Lefebvre, Thierry Lecroq, and J. Alexandre. Drastic improvements over
repeats found with a factor oracle. In E. Billington, D. Donovan, and A. Khodkar,
editors, Proceedings of the 13th Australasian Workshop on Combinatorial Algo-
rithms, pages 253-265, 2002.

[9] Bruce W. Watson and Loek Cleophas. SPARE Parts: A C++ toolkit for String
PAttern REcognition. Software: Practice and Fxperience, 2003. To be published.

A Proof of Property 6

We first consider the automaton constructed in steps 1-4 of the algorithm. It is
straightforward to verify that the properties hold for ¢ = 2.

Now assume that the properties hold for the automaton with all suffixes of p of
length greater than m — 7 4+ 1 already considered. We prove that they also hold for
the automaton after the suffix of length m — 7 + 1, p;...pm, has been considered.

If £ = m in step 6, suffix p;...p,, is already recognized, no new transition will be
created, the automaton does not change and the properties still hold.

If £ < m, then we need to prove that each of the properties holds for the new
automaton.

Ad i: By v., string p;...px is recognized in state j < poccur(p;...pk,p). Since
Pie-Dk <s p1---Pr and poccur(py...pg, p) = k, poccur(p;...px, p) < k due to Property 5.
Since j < k, the transition created from j to k 4 1 is a forward one.

48

Constructing Factor Oracles

Ad ii: Trivial.

Ad iii: We prove that the property holds for the new automaton by showing that
k =k; > ke, 1.e. k will become the new k,,,;.

If kppow = —00, k > Ky clearly holds.

If kpow > —00, assume that k,,,, > k, then there is an h such that 1 < h <17 A
kn < m A kp = kpas. Factor py...pg is recognized in g < k due to ii. and v.

If ¢ =k, then py,...p; is recognized in k and py,...p,, is recognized in m; so k, = m
which contradicts k;, < m.

If g < k, then pp...py is recognized in g < k. Since p;...p; is recognized in j = j;
and p;...pr <s Pp..-Px, due to viii., 7 < g.

If 7 = g, then py...p is the longest prefix of py,...p,, recognized by the old automa-
ton, which contradicts ii.

If j < g, then j < g < k. We know that min(g) < pp...px (using iv.), min(j) <,
Ph-..pr (using iv. and p;..pp <; pp...px) and therefore that min(j) <; min(g) (due
to vii.). Let [be the state to which the transition by py,1 from g leads, i.e. [is the state
in which py,...pg41 is recognized. Using vi., we have that [= poccur(min(g) - pe11,p)-
Using Property 5 we have that [< poccur(py...prs1,p) and the latter is < k + 1 due
to the definition of poccur (since k + 1 marks the end of an occurrence of pp...pg11)-
We have poccur(min(j) - pri1,p) < poccur(min(g) - prr1,p) = [since min(j) <
min(g). We want to prove that k + 1 < poccur(min(j) - pg+1,p). Assume that
poccur(min(j) - pr+1,p) < k + 1. If the first occurrence of min(j) - pr+1 starts before
position ¢ of p, then it is a prefix of a suffix of p longer than p;...p,, and thus by ii.
min(j) - pry1 is recognized. Since min(j) is recognized in j, a transition from j by
Pr+1 must exist and we have a contradiction. If the first occurrence of min(j) - pes1
starts at or after position ¢ of p, then there exists a shortest string z such that
x-min(j) - per1 € pref(p;...pr) and x - min(j) - pry1 is recognized in a state < j. But
then x - min(j) is recognized in a state n < j. By viii., since min(j) <, = - min(j),
this means that min(j) is recognized in state s < n < j and we have a contradiction.
Thus k+1 < poccur(min(j)-prs1,p) < [and therefore, since [< k+1 holds, [= k+1.
In that case, pp...prps1 is recognized in [= k + 1 and py,...p,, is recognized in m. But
then k;, = m, and we have a contradiction.

Thus, ke = kn, < k = k; and iii. holds for the new automaton.

Ad iv: Let s = min(j), t = min(k + 1) and v = min(h) (k+1 < h < m)
respectively in the old automaton. Due to the proof of iii., £ = k; > k. and
therefore a unique path between k£ + 1 and h exists, labeled r, and—due to iv—
u <g tr.

If |spky17| > |ul, v remains the minimal length string recognized in state h. Since
§ <y Die-Dhs SPE+1T <y Diwe-Pp17. Since u < tr, tr <; pr..pppr and [spyyir| > |ul,
u <g sppp1r and—due to iv.—u <, s'ppy 17 as well for any s’ recognized in state j.

If |sper1r| < |u|, spgrir is the new minimal length string recognized in state
h. Since s <g pPj.e-Pry SPrr1” <5 Pi---Pry1r. Since u <, tr, tr <; pi...pgs1r and
lsprr| < |ul, sprar <s u and—due to iv.—spp 11 <s; $'prrir as well for any '
recognized in state j.

Since p;...pp11r was not recognized before, it is not a prefix of p, po..pm, ..y
Pi1-.-Pm (using ii.), hence poccur(p;...px417,p) = k + 1+ |r|. Since s <; p;...p,
poccur(spryir,p) < k+ 1+ |r|. Assume that poccur(sppiir,p) < k+ 1+ |r|, then
Dive-Dii1T = uspry17v (u,v € V*, v # £, |u| minimal), since spy 17 cannot start before

49

Proceedings of the Prague Stringology Conference 03

p; because in that case it would have already been recognized by the old automaton.
Factor us is recognized in state g < j (using i.) and—since viii. holds—s <; us is
recognized in a state o < g < j. This contradicts s being recognized in j. As a result
poccur(sprar,p) =k + 1+ r|.

Ad v: Any new factor of p recognized after creation of the transition from j to
k+1 has the form vpg, (7 and is recognized in k + 1+ |r| with v € fact(p) recognized
in state j. Since k + 1+ |r| = poccur(min(k + 1)r,p) (using iii., iv. holding for the
new automaton plus the fact that & is the new k,q,) and min(k+1)-r <, vppyir due
to iv. holding for the new automaton, k+ 1+ |r| < poccur(vpg,17, p) using Property 5.

Ad vi: The states n we have to consider are n =j and n =h for k+1 < h < m.

For n = j, a new transition to k+1 is created and by iv., min(j) < p;...pk., hence
we have min(j) - pr1 <s Pi---Pht1, Phti—|min(j)|---Pht1 — MIn(J) - D1, min(f) - pps1 €
fact(p) and poccur(min(j) - pgs1,p) < k+1. Since min(j) - pg41 is recognized in state
k + 1, due to v. for the new automaton, k + 1 < poccur(min(j) - pp+1,p). Therefore
k + 1 = poccur(min(j) - pri1,p)-

For n = h with £ +1 < h < m, min(h) changes to sppyr if and only if
|spry1r] < |u| (with 7, s,u as in the proof of iv.). We know that ua € fact(p) and
q = poccur(ua, p). Since spp11 <g u, Sprr1ra <s ua, hence spr1ra € fact(p) as well
and poccur(spgiira,p) < poccur(ua,p) = ¢, but due to v., ¢ < poccur(spgiira,p)
hence ¢ = poccur(spgiira,p).

Ad vii: Assume min(n) <; min(q). We have poccur(min(n), p) < poccur(min(q),
p) due to Property 5, which according to iv. is equivalent to n < q.

Ad viii: By induction on |w|. It is true if jw| = 0 or |w| = 1. Assume that it
is true for all strings x such that |z| < |w|. We will show that it is also true for w,
recognized in n.

Let w = za (x # €), x is recognized in h (0 < h < n). Consider a proper suffix of
w, recognized in state ¢. It either equals € and is recognized in state 0 < n or it can
be written as va where v <; x.

Suffix va of w is recognized, therefore suffix v of z is recognized and according
to the induction hypothesis, v is recognized in state [< h. Let & = min(h) and
v = min(l). Due to iv. for the new automaton, Z <, x and v <; v. We now prove
that v <; z. If [= h, then v = Z. Now consider the case [< h. Since v <, x and
v <;v,0 <z x. Due tovii., T £, v. Thus, since v and T both are suffixes of x, v <, 7.
Since 7 is recognized in h and there is a transition by a from A to n, by vi. for the new
automaton we have that Za € fact(p) and n = poccur(Za,p). Since v is recognized
in [and there is a transition by a from [to ¢, va € fact(p) and g = poccur(va, p) due
to vi. for the new automaton. Since va <, Ta, poccur(va,p) < poccur(Za,p) due to
Property 5 and hence ¢ < n.

We have shown that the properties hold for every partial automaton during the
construction. Consequently, they hold for the complete automaton Oracle(p). O

50

Computing the Minimum k-Cover of a String

Richard Cole '8, Costas S. Iliopoulos 2, Manal Mohamed %,
W. F. Smyth 37 and Lu Yang*

! Computer Science Department, Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012-1185 U.S.A.
cole@cs.nyu.edu
2 Algorithm Design Group, Department of Computer Science,

King’s College London, London WC2R, 2LS, England
{csi,manal}@dcs.kcl.ac.uk
3 Algorithms Research Group, Department of Computing & Software,
McMaster University, Hamilton ON L8S 4K1, Canada &

School of Computing, Curtin University, Perth WA 6845, Australia
smythOmcmaster.ca
* IBM Canada Limited, 8200 Warden Avenue, Markham ON L6G 1C7, Canada
luyang@ca.ibm.com

Abstract. We study the minimum k-cover problem. For a given string x of
length n and an integer k, the minimum £k-cover is the minimum set of k-
substrings that covers z. We show that the on-line algorithm that has been
proposed by Iliopoulos and Smyth [IS92] is not correct. We prove that the
problem is in fact NP-hard. Furthermore, we propose two greedy algorithms
that are implemented and tested on different kind of data.

Keywords: string algorithm, k-cover, data compression, NP-complete, greedy algo-

rithm.

1 Introduction

The minimum k-cover problem is to compute, for a given string x and an integer
k < x|, aset U= {ui,ug, ..., uy} of substrings of x such that:

(i) every u; is of length k;
(ii) the set U covers the string x;

(iii) the number m = |U| of such substrings is the smallest possible.

§ Work supported in part by NSF grant CCR-0105678.
t Partially supported by a Marie Curie fellowship, Wellcome and Royal Society grants.

t Supported by an EPSRC studentship.
¥ Supported by a grant from the Natural Sciences & Engineering Research Council of Canada.

o1

Proceedings of the Prague Stringology Conference 03

This problem was studied by Iliopoulos and Smyth [IS92], where they designed an
O(n%(n — k)) on-line algorithm. The idea of a k-cover is a generalization of the idea
of a cover, where a string w is called a cover of a string x if can be constructed
by concatenations and superpositions of w. For example, if x = ababaaba, then aba
and x are the covers of x. If w # x covers x then w is called a proper cover of a
coverable string x. The notion of a cover was introduced by Apostolico et al. [AFI91],
where they gave a linear time algorithm for the shortest covers problem. Breslauer
[B92] presented an on-line algorithm for the same problem. Moore and Smyth [MS94]
presented a linear time algorithm to compute all the covers of every prefix of a string.
An on-line algorithm for the same problem was developed by Li and Smyth [L.S02].
Two O(nlogn) algorithms for computing all maximal coverable substrings of a given
string were also presented, one by Iliopoulos and Mouchard [IM93] and the other by
Brodal and Pederson [BP00|. A lot of work has been done on parallel computation
of covers; see for example [B94| and [IP94].

A minimum k-cover provides a theoretical classification of strings according to
approximate periodicity. For every k, some strings have a minimum k-cover of car-
dinality 1, some a minimum k-cover of cardinality 2, and so on. Thus for a range of
k, a minimum k-cover can provide a measure of how close to periodic every string
x is. Practically, a minimum k-cover has a potential application in data compres-
sion of nonrandom strings. A minimum k-cover may also be useful in DNA sequence
analysis. A DNA sequence is based on a four-letter alphabet for example {a,c, g,t}.
Hence, finding the k-cover of a DNA sequence could be helpful for the analysis of its
structure.

In this paper, we briefly present Iliopoulos and Smyth’s on-line algorithm. Their
algorithm computes the minimum k-covers for all prefixes of a given string x in
O(n*(n — k)) time. We show why the algorithm does not work correctly (Section 3).
In the rest of the paper we consider two closely-related problems:

(Problem 1) for given z, k and m, decide whether there exists a k-cover of z of
cardinality m;

(Problem 2) compute a minimum k-cover of x.

For m = 1, Problem 1 can be solved in ©(n) time simply by computing all
the covers of = [MS94, MS95, LS02| while at the same time testing to determine
whether or not each one is of length k. For m > 1 we show by reduction to 3-SAT
that Problem 1 is NP-hard (Section 4). We then describe two efficient algorithms
that yield approximate solutions to Problem 2 (Section 5). These approximation
algorithms have been tested and shown to provide good results (Section 6). More
approximation algorithms were proposed in [Y00].

2 Preliminaries

A string is a sequence of zero or more symbols drawn from an alphabet . The set
of all strings over X is denoted by ¥*. The string of length zero is the empty string e;
a string x of length n > 0 is represented by x,25 - - - x,, where z; € ¥ for 1 < i < n.
A string w is a substring of x if x = wwv for u,v € X*. More precisely, let i < n and
J < n denote nonnegative integers: if 1 < i < j, z[i..j] denotes the substring of x

52

Computing the Minimum k-Cover of a String

that starts at position i and has length j — i + 1; otherwise, z[i..j] = €. A string w is
a prefix of x if x* = wu for some u € ¥*. Similarly, w is a suffiz of x if v = uw for
some u € X*.

The string zy is a concatenation of two strings and y. The concatenation of k
copies of x is denoted by x*. For two strings = z1---2, and y = vy - - -y, such
that z, ;.1 2, =y ---y; for some i > 1 (that is, such that = has a suffix equal to
a prefix of y), the string zq -+ -2, y;11 -+ - Y 18 said to be a superposition of x and y.
Alternatively, we may say that = overlaps with y.

A substring w is said to be a cover of a given string x if every position of = lies
within an occurrence of a string w within z. Additionally, if |w| < |z| then w is called
a proper cover of x. For example, x is always a cover of x, and w = aba is a proper
cover of x = abaababa.

For a given a nonempty string x of length n and a set

U= {uy,ug,...,un}

of m strings each of length k, we say that U is a k-cover of z if and only if every
position of x lies within an occurrence of some wu;, 1 < i < m. If m is the minimum
integer for which such a set U exists, then U is said to be a minimum k-cover of x. To
avoid trivialities we suppose throughout that 1 < k& < n/2. Note that 1 <m < [n/k].
Next we state some basic facts about the minimum k-cover.

Fact 1 The prefix x[1..k] and the suffix z[n — k4 1..n] are both necessarily elements
of every minimum k-cover of x.

Fact 2 The cardinality of a minimum k-cover of a string of length n is at most [n/k].

Fact 3 A minimum k-cover of a string x is not unique.

For example, if x = abedefg, then the sets

{abe, bed, ef g}, {abe, cde, ef g}, {abe, def, e fg}

are all minimum 3-covers of x.

In [IS92], the number of distinct minimum k-covers of a given string x of length
n has been proved to be exponential in n. This is a major complicating factor in the
design of polynomial time algorithm for computing the minimum k-covers of a given
string.

3 Iliopoulos & Smyth On-Line Algorithm

Recall that in [IS92], Tliopoulos and Smyth designed an O(n?(n — k)) time on-line
algorithm for computing a minimum k-cover of a given string = of length n. Their
algorithm scans a given string x from left to right and iteratively calculates a minimum
k-cover for every prefix of x. The algorithm is based upon the following two main
ideas:

1. Fact 1 states that a minimum k-cover of x[1..i + 1] must include the suffix
x[i — k + 2.0 + 1]. This is used as a yardstick to find a minimum k-cover.

53

Proceedings of the Prague Stringology Conference 03

2. For ¢ > k, a minimum k-cover of z[1..i + 1] depends only on the minimum
k-covers of the previous k positions; that is, the minimum k-cover of z[1..i —
k+1],...,2[1..0 — 1], z[1..4].

To achieve efficiency, the algorithm stores for each positions ¢ in x an array which
identifies all the k-substrings that occur in at least one of the minimum k-covers.
Let ¢; be the cardinality of this set. At step 7 + 1, the algorithm checks for each
position j € i — k 4 1..i, whether the current suffix x[i — k + 2..i + 1] has already been
included in the stored minimum k-cover of x[1..j]. If so then the set covers x[1..i + 1],
otherwise the current suffix has to be added to the set. Among these k candidates,
the algorithm chooses a set with the smallest cardinality as a minimum k-cover of
x[1..i + 1]. For more details see [IS92].

Lemma 3.1 For ¢ > 2k and [,I' = 1,2,..., let U;; denotes the distinct minimum
k-cover for z[1..7]. Then every minimum set U, is a superset of some minimum set
Uiy, i —k+1<7 <.

The above lemma is stated in [IS92] and it follows directly from the two ideas
stated at the beginning of this section. The algorithm as we briefly described also
relies on the correctness of the lemma. In the next example we will show that the
lemma is not correct and consequentially nor is the algorithm. The following example
illustrates just one of the situations where the algorithm fails to compute a minimum
k-cover.

Example: 1f © = bacaababbaaaccaabbabbbaaaac and k = 3 then when i + 1 = 27,
j € 24..26, and position 27 should form its minimum k-cover from position 24 because
c24 = min(c¢;), j € 24..27. The minimum k-covers of position 24 are as follows:

Uz, = {bac, aab, abb, baa, cca},
Uz o = {bac, aab, abb, baa, acc}.

Neither of them contains the suffix aac, so we get co; = ¢94 + 1 = 6, and accordingly
the minimum k-covers of position 27 are as follows:

Usra = {bac, aab, abb, baa, cca, aac},
Usz 2 = {bac, aab, abb, baa, acc, aac}.

But we can find at least one minimum k-cover that is different from Usy;; and Uszo;
namely:
Usr 3 = {bac, aab, abb, baa, caa, aac}.

U,z 3 is a k-cover of position 24, but not the minimum. However it will contribute to
the minimum when position 27 is reached. There is a potential problem for future
calculations if we lose U7 3 at position 27; for example if we extend x by adding aa to
the end. As we can see, Uz 3 can be a minimum k-cover of z[1..29]. Without keeping
Usz 3, we shall get cy9 = 7, one greater than the minimum.

The above suggests that in order to compute a minimum k-cover of the current
position, we have to refer to every single k-cover of the previous positions. Since
the number of minimum k-covers of a string may be exponential, we doubt that the
problem of computing a minimum k-cover can be solved in polynomial time.

54

Computing the Minimum k-Cover of a String

4 Problem 1 and NP-Completeness

The k-cover problem is to find a set cover of minimum size for a given string. Restating
this optimization problem as a decision one, we wish to determine whether a given
string has a k-cover of a given size m.

km-COVER = {(z, k,m) : string = has a k-cover of size m}.

The following theorem shows that this problem is NP-complete.

Theorem 4.1 The k,,-COVER € NP.

Proof. To show that k,,-COVER € NP, for a given string =, we use the set U, of m
substrings all of length £k as a certificate for . Checking whether U,, is a k-cover can
be accomplished in O(nlogn) time by checking whether, for each position 1 < i < n,
i is covered by at least one of the k-substrings in U,,.

We next prove that 3-SAT <, k,,,-COVER, which shows that a minimum k-cover
problem is NP-hard. 3-SAT is well-known to be NP-complete [C71|. We transform 3-
SAT to k,,~-COVER. Let V' = {v, v,...,v,} be a set of variables, C' = {¢y, ¢, ..., ¢,}
be the set of clauses and F' = ¢; AcaA. .. Ac, be a 3-SAT formula with ¢; = ¢4V 5V (3,
1 <1 <q.

We shall show how to construct from F' a string = such that = will have a k-cover
of size m if and only if F' is satisfiable. We choose £ = 3 and note that there is an
easy reduction to 2-CNF for £ = 2. The string x is build of substrings separated by
sequences of sssss; hence sss is one of the chosen covering k-strings, and thus we can
focus on the individual substrings. The construction will be made up of truth-setting
components, and satisfaction testing components.

Variable Choice

For each variable v € V| we construct the following 6 substrings (each substring is
proceeded and followed by sssss); each character is indexed by v:

Q) #orrSvomrr#, @{)#ttSoomtt+
(iii) #, (iv) #
(V)#a #o (vi)#o #a

The only ways to cover the above strings with 9 or fewer length 3 strings, are one of
the following (notice the uninteresting flexibility in (v) and (vi)):

1. {ss#ta,rr$, vdm, rrdt,, #ott, S0d, wit, #pss} and one of {s#p#a, #o#aS}-
2. {Ftarr, Svd, Trr, #4585, ss#y, 118, Vo7, tt#, } and one of {s#H b, FaFHbS)

To see this, consider covering string (iii). It can be done by one of ss#,, #45s,
s#aqs, but only the first two could be used elsewhere, so one of them may as well be
chosen. Clearly, 8 strings at least are needed to cover (i) and (ii) as they have no
length 3 substring in common. Thus, to use only 1 additional string to cover (v) and
(vi) we need to choose either ss#,, #,55 or #,5S, SS#.

The choice v and $0¢ (given by choosing ss#,) corresponds to v = T while the
choice vpm and $v¢ (given by choosing #,ss) corresponds to v = F.

95

Proceedings of the Prague Stringology Conference 03

Clause Satisfiability

For each clause ¢ € C, where ¢ = ¢,V {5V (3, the following substrings are created, again
preceded and followed by sssss. The characters, except for $;, ¢;, m;, ;1 = 1,2, 3 are
indexed by ¢ also; $;, ¢;, m;, £; carry the index for the literal.

(1)$1 €1 o1 1 Iy (ii) $2 £ @9 T ho (iii) S5 l3 ¢g T3 hg
(iV)$1 (V)$2 (Vi)$3

(Vii)hl (Viii)h2 (iX)hg

(X)¢1 7y hy dy ¢ o Dy (Xi)¢2 Ty hy dy ¢3 w3 h3 (Xii)¢3 w3 hs d3z ¢1 ™1 hy
(xiii) (xiv) s (xv)¢s

To cover (iv)-(ix) and (xiii)-(xv) we may as well choose ss$;, h;ss and ss¢; as these
are the only reusable substrings.

If ¢; is true, then /;¢;m; was already chosen; otherwise $,/;¢; was chosen. Thus, if
¢; is false; in (i)-(iii), m; remains to be covered. The only reusable covering string is
¢imih;.

Consider strings (x)-(xii) and suppose at least one ¢; is true. Without loss of
generality let it be ¢;. Then it is not hard to see that 5 more strings that include
pamahe and ¢3mzhs thereby covering m in (ii) and 73 in (iii) suffice. We choose:
Gomohs, p3mshs, T hidy, dagpsms and dzpimy. 1t is not hard to see that 5 covering strings
are needed: 3 to cover dy,ds and ds, but this can only completely cover one of 7,
and 73 as each occurs twice, and hence two more covering strings are needed for the
remaining pair among 7y, T and 7s.

If no ¢; is true, we are obliged to choose ¢ 7w hy, pamohy and ¢3m3hs as well as 3
strings to cover dy,ds and ds. At least 6 covering strings in all are needed. Thus, if
F is satisfiable then the full string can be covered by

m=9p+6p+3¢+5¢g+1=15p+8¢+1

covering strings, where p is the number of variables in F' and ¢ is the number of
clauses. Otherwise, it needs at least 15p 4+ 8¢ + 2 covering strings. O

5 Approximate Minimum k-Cover

In this section we introduce two greedy algorithms to compute a minimum k-cover.
The greedy method works by picking, at each stage, the k-substring which covers the
greatest number of uncovered positions. The first algorithm works globally while the
second algorithm follows a local strategy. To calculate all possible k-substrings in a
given string x, both greedy algorithms use Crochemore’s partitioning algorithm [C81]
to preprocess the input string x.

Originally, Crochemore’s algorithm was designed to compute the repetitions in a
string in O(nlogn) time. A string has a repetition when it has at least two consecutive
equal substrings. For example, abab is a repetition in aababba = a(ab)?ba. We shall
use the algorithm in another way — to find the sets of the starting positions of all
the distinct substrings of length k£ in a given string x. This idea can be expressed
more precisely as follows:

56

Computing the Minimum k-Cover of a String

Given a string z[1..n] and an integer k£, Crochemore’s algorithm is used to compute
the equivalence classes of all equal substrings of length £ in . We denote these equiv-
alence classes by ey, es, ..., e,,, where the elements in e; are sorted integers denoting
starting positions of equal substrings, and m is the number of possible equivalence
classes returned by the algorithm.

These elements are stored using a global array L[1..n], such that L[i] is the next
position in the same equivalence class of equal substrings of length k. That is, L[i] = j
if L[i..i+k—1] = x[j..j + k — 1] and the circular sequence i, L[i], L[L[i]], ..., L*[i] = i
identifies all ¢ k-substrings in x that are equal to z[i..i + k — 1].

For example, if x = abaababaabaab and k = 3 then e; = {3,8,11}, ey =
{1,4,6,9}, e3 = {2,7,10}, and e, = {5} are the equivalence classes. Where aab, aba,
baa, bab are the corresponding 3-substrings. Hence, the value of array L is as follows:

123456 7 8 91011 12 13

r= abaababaabaabd
Lli] 47865910111 2 3
Fidli] 2312423 1231

In the above, Fid[i] identifies the equivalence class containing position i. In the
following subsections, we shall present two approximation algorithms. We call the
first Global-Uncovered and the second Local-Uncovered.

5.1 Global-Uncovered Algorithm

Recall that the greedy algorithm works by selecting one k-substring at a time that cov-
ers the most positions among the uncovered ones. Our greedy algorithm is comparable
to the greedy one [J74] to construct the minimum set cover. The cost of a greedy
solution is known to come always within a multiplicative factor of H(max; |EC}|),
where EC; is the number of positions that could be covered by the k-substring j.
Here, H(d) = >2{_, 1 is the dth harmonic number and is bounded by 1 + logd. This
was shown by Johnson [J74] and Lovasz [L.75] for the general SET COVER problem.

The key to Algorithm Global-Uncovered is finding the equivalence class which can
cover the maximum number of so-far-uncovered positions efficiently. The details of
the algorithm are provided in Figure 1. To achieve efficiency, the algorithm uses the

following data structures:

1. An array Fbucket[1..n] indexed by the number of so-far-uncovered positions
that could be covered by a single equivalence class. Each element (bucket) of
the array is doubly-linked list of the equivalence classes that could cover equal
number of so-far-uncovered positions. Thus, every element of the doubly linked
list contains an index of an equivalence class in addition to the left and the right
pointers to the adjacent elements.

2. A two dimensional array Eptr[l..m] indexed by the equivalence class j. Where
Eptr|j][bucket] identifies the bucket that includes j in its doubly linked list.
In other words, equivalence class j could cover Eptr[j|[bucket] so-far-uncovered
positions. Additionally Eptr[j][ptr] is a pointer to the corresponding element
of the doubly linked list Ebucket|Eptr[j][bucket]]. Thus, any elements of the
doubly linked lists can be referenced in constant time by using Eptr.

o7

Proceedings of the Prague Stringology Conference 03

Algorithm Global-Uncovered(z, k)

Input: A string z of length n, an integer 0 < k <n

Output: An approximate minimum k-cover Uy

1. (L[1..n], Eid[1..n], start[1..m],m) <CrochemorePar(x, k)
2. cover_so_far[l.n] «F,F,...,F

3. initialization:

4. Uy«0

5. for e +1tom do
6 Euncovle] <0 **number of positions that could be covered by equivalence class e**
7. foric-lton—-Fk+1

8

. if i < L[i]
9. then Euncov[Eid[i]] + = man(k, L[i] — i)
10. else Funcov[FEid[i]] + = k

11. (Ebuckect, Eptr) <Bucket-Sort(Euncov)

12. The algorithm:

13. k_prefiz,k_suffix «Eid[l], Eidln — k + 1]
14. GU-Cover(k_prefiz, Ebucket, Eptr)

15. Add(Uy, k_prefiz)

16. if k_suffix #k_prefiz

17. then GU-Cover(k_suf fixz, Ebucket, Eptr)
18. Add(Uy, k_suf fiz)

19. e < Head(Ebucket)

20. while e # 0

21. GU-Cover(e, Ebucket, Eptr)
22. Add(Uy, e)
23. e < Head(Ebucket)

24. return U,

25. Function GU-Cover(e, Ebucket, Eptr)
26. i <startle] **the first element in the equivalence class e**

27. repeat

28. for j <1 to k do

29. if cover_so_ far[i+ j— 1] = F then

30. cover _so_ far[i+j — 1]«T

31. for every 1 € EBid[(i +j—1)—k+1],...Eidli + j — 1] do

32. Delete(Ebucket[Eptr[l][bucket]], Eptr[l][ptr])

33. if Eptr[l][bucket] # 1

34. then Insert(Ebucket|Eptr[l][bucket — 1]],Eptr[l][ptr])
35. Eptr[l][bucket] < Eptr(l][bucket] — 1

36. i «Lli]

37. until (i = startle])

Figure 1: Global-Uncovered Algorithm.

58

Computing the Minimum k-Cover of a String

Once Ebucket is established, the k-prefix and the k-suffix are the first elements
to be included in the approximate minimum k-cover. The algorithm then iteratively
choose a head element of Ebucket as an element of the approximate minimum k-
cover. The head element is an equivalence class that covers the largest number of so
far uncovered positions. Finding such equivalence classes costs O(n) time throughout
the calculations.

The algorithm requires O(nlogn) time to run Crochemore’s algorithm and an
additional O(n) time to construct and initialize Ebucket and Eptr. Note that a
linear time Bucket-Sort has been used because the number of positions that could be
covered by any equivalence class is bounded.

For each position i, cover so_ far[i] is initialized to F' and set to T once during
the calculation. When cover _so_ far[i] is set from F' to T, O(k) elements in Ebucket
may need to be deleted from the current bucket and inserted to the next bucket.
Each rearrangement costs O(1) time. Thus, the total time required to maintain the
elements in Ebucket throughout the calculation is O(kn). Summing the above gives
the total running time: O(nlogn) + O(n) + O(kn) = max{O(nlogn), O(kn)} time,
which for a fixed k, asymptotically approaches O(nlogn) as n increases to oo.

5.2 Local-Uncovered Algorithm

Algorithm Local-Uncovered chooses its candidate element, of the approximate mini-
mum k-cover, in a range of Fid[left uncover —k+1]..Eid[left uncover]; the integer
left _uncover keeps track of the leftmost so-far-uncovered position. The algorithm
uses the array uncover mno. The array uncover no[l..m] is indexed by the equiva-
lence classes, where uncover nolj| is the number of positions corresponding to equiv-
alence class j that have not been covered. Hence, the values of the array need to be
updated dynamically during the computation. The details of the algorithm are pro-
vided in Figure 2.

The initialization is just the same as in Global-Uncovered. However, we need to
update uncover mno. As in Global-Uncovered, the k-prefix and the k-suffix are the
first two elements to be included in the approximate minimum k-cover. The algorithm
then tries to cover the leftmost uncovered position with the k-substring corresponding
to the equivalence class which can cover the maximum number of uncovered positions.
That is, let 7 = left uncover if j < n, then the chosen k-substring is the one
corresponding to equivalence class satisfying

max{uncover no[Eid[j — k + 1], uncover _nolj — k + 2|,..., uncover_ _no[Fid|[j]]}.
A brief analysis of the algorithm shows that the algorithm requires:

e O(nlogn): to run Crochemore’s algorithm;

e O(n): Step 2, the loop on (Steps 6-9), and the total time spent in Add();

e O(k): the loop on (Steps 19-23);

e O(kn): is the total time of the LU-Cover subroutine.

Summing the above gives the total running time O(nlogn)+O(n)+O(k) 4+ O(kn) =
maz{O(nlogn),O(kn)} time.

29

Proceedings of the Prague Stringology Conference 03

Algorithm Local-Uncovered(z, k)
Input: A string = of length n, an integer 0 < k <n
Output: An approximate minimum k-cover U,

1.

® N ook LD

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

(L[1..n], Eid[1..n],m) <CrochemorePar(z, k)
cover_so_far[l.n] < F,F,...,F
initialization:
U 0
left _uncover <1
for i«~1ton—k+1do
if i < L[i]
then uncover no|Eid]i]
else uncover no|Eid]i]

. The algorithm:
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

k_prefiz,k_suf fix < Eid[1], Fidjn — k + 1]
LU-Cover(k_prefiz,1,uncover _no,left uncover)
Add(U;, k_prefix)
if k_suffizx#k_prefiz then
LU-Cover(k_suf fix,n —k + 1,uncover _no,left uncover)
Add(U, k_suf fix)
while left uncover < n do
maz = 0
for 7 +1 to k do
if uncover no[Eid[left uncover — j + 1]] > maz then
max <uncover _no[Fid[left uncover — j + 1]]
e «FEid[left _uncover — j + 1]
s «left _uncover —j +1
LU-Cover(e, s, uncover_ _no,left uncover)
Add(U,, e)
return U

Function LU-Cover(e, start,uncover _no,left _uncover)
1 <start
repeat
for j +1 to k do
if cover _so_far[i+j— 1] = F then
cover_so_ farfi +j — 1]«T
for every | € Eid[(i+j—1)—k+1],...Eid[i +j — 1] do
uncover _no[l] — =1
i «LJ[i]
until (i = start)
while left _uncover < n and cover so_ far[left uncover] do
left _uncover + +

Figure 2: Local-Uncovered Algorithm.

60

Computing the Minimum k-Cover of a String

Length [Un| | [Ucu| | \Uru| | Usest| | an (%) | acu (%) | ary (%)
100 12 11 11 11 9.09 0 0
200 14 14 14 14 0 0 0
300 14 15 15 14 0 7.14 7.14
400 16 15 17 15 6.67 0 13.3
500 17 17 17 17 0 0 0
600 16 16 16 16 0 0 0
700 18 16 16 16 12.5 0 0
800 17 17 19 17 0 0 11.8
900 18 16 18 16 12.5 0 12.5
1000 18 17 16 16 12.5 6.25 0

Average (%) | / / / / 5.33 1.34 4.47

Table 1: Pseudo-Random Strings on Alphabet {a, b, ¢}, and k = 3

6 Experimental Results

We used four types of strings: sturmian strings, pseudo random strings on the al-
phabets: {a,b}, {a,b,c}, {a,b,c,d}, DNA sequences*, and English text. In order
to compare our approximate methods in term of effectiveness, we developed a naive
algorithm based on the Iliopoulos and Smyth algorithm. This naive algorithm finds
the minimum k-cover at position ¢ + 1 by testing each position j € ¢ — k4 1..7 in the
same way as in [liopoulos and Smyth’s. However, the key difference is that the algo-
rithm stores not only the covers that are minimum but also those that are one more
than minimum at every position. Thus, the aim here is to store as much informa-
tion as possible taking into consideration the limitation of the computer’s resources.
The implementation results show that the naive algorithm does not always yield the
best k-cover - in most cases the two approximate algorithms yield better results. Let
U,nin be the minimum k-cover of a string z, Uy be the result computed by our naive
method, Ugy be the result computed by Global-Uncovered algorithm, and Uy be
the result computed by Local-Uncovered algorithm. Then the following simplifying
assumption has been made:

\Unin| < |Upest| = min{|Un|, |Ucv |, |Urv|}

Table 1, 2, 3 show that Algorithm Global-Uncovered yields the best result in most
cases, the naive algorithm never exceed a deviation of 7.83%, and Algorithm Local-
Uncovered never exceed 6.24%. The following observations are also worth mentioning:

e The Sturmian strings are very well-structured. For the tested Sturmian strings,
from length of 20 to 1000, for every k € 3,4, 5, |Upest| = 2.

e For the tested pseudo-random strings and DNA sequences, |Ujes| increases as
the values of k, the length n, and the alphabet size are increasing.

e Let |Upesi—pnal denotes the cardinality of the approximate minimum k-cover
of DNA sequence and |[Upes;—apeq| denotes the cardinality of the approximate

*excerpted from www.cbs.dtu.dk/databases/DNA2protSS /nucall.seq.

61

Proceedings of the Prague Stringology Conference 03

Length Un| | [Ucu| | [Urv] | [Usest| | an (%) | acu (%) | ary (%)
100 19 19 19 19 0 0 0
200 25 26 27 25 0 4.00 8.00
300 32 29 29 29 10.3 0 0
400 37 34 36 34 8.80 0 .88
500 36 36 35 35 2.86 2.86 0
600 37 36 37 36 2.78 0 2.78
700 37 35 38 35 5.71 0 8.57
800 42 37 39 37 16.2 0 5.41
900 42 35 42 35 20 0 20
1000 42 38 39 38 10.5 0 2.63

Average (%) | / / / / 7.71 0.68 5.32

Table 2: Pseudo-Random Strings on Alphabet {a, b, ¢, d}, and k = 3

Length \Un| | [Ucu| | [Urv| | |Usest| | an (%) | acu (%) | oy (%)
60 13 13 13 13 0 0 0
126 21 22 23 21 0 4.76 9.52
171 23 22 23 22 4.54 0 4.54
234 25 24 26 24 4.17 0 8.33
312 32 29 30 29 10.3 0 3.45
432 26 27 29 26 0 3.85 11.5
591 34 31 35 31 9.68 0 12.9
771 40 34 36 34 17.6 0 5.89
1233 43 38 37 37 24.3 2.70 0

Average (%) | / / / / 7.83 1.26 6.24

Table 3: DNA Sequences, and k =3

62

Computing the Minimum k-Cover of a String

minimum k-cover of pseudo-random strings on alphabet {a, b, ¢, d}. For the
same value of k and n, |Upesi—pnal < |Ubest—abed|- We can make a conjecture
that DNA sequences are better structured than pseudo-random strings on an
alphabet of size 4.

Conclusions

We have shown that for & > 2, the k-cover problem (Problem1) is NP-Complete. We
have then proposed two O(nlogn) greedy algorithms that can be used to calculate an
approximate minimum k-cover. The results obtained by the algorithms are believed
to come within a multiplicative factor of the minimum. Prove this has been left as
an open problem.

References

[AFI91] A. Apostolico, M. Farach & C. S. Iliopoulos, Optimal superprimitivity
testing for strings, Information Processing Letters 39-1 (1991) 17-20.

[B92] D. Breslauer, An on-line string superprimitivity test, Information
Processing Letters 44 (1992) 345-347.

[B94] D. Breslauer, Testing string superprimitivity in parallel, Informa-
tion Processing Letters 49-5 (1994) 235-241.

[BPOO] G. S. Brodal & C. Pederson, Finding maximal quasiperiodicities in
strings. In Proceedings of the 11th Annual Symposium on Combinatorial
Pattern Matching (CPM) (2000) 397-411.

[CT71] Stephen A. Cook, The complexity of theorem-proving procedures,
Proc. Third Annual ACM Symp. on Theory of Computing (1971) 151-158.

[C81] M. Crochemore, An optimal algorithm for computing all the repe-
titions in a word, Information Processing Letters 12-5 (1981) 244-248.

[TM93] C. S. liopoulos & L. Mouchard, An O(nlogn) algorithm for comput-
ing all maximal quasiperiodicities in strings, Theoratical Computer
Science 119-2 (1993) 247-265.

[TP94] C. S. Tliopoulos & K. Park, An optimal O(loglogn)-time algorithm
for parallel superprimitivity testing, Journal of the Korea Informa-
tion Science Society 21-8 (1994) 1400-1404.

[1S92] C. S. Iliopoulos & W. F. Smyth, An on-line algorithm of computing
a minimum set of k-covers of a string, Proc. Ninth Australasian
Workshop on Combinatorial Algorithms (AWOCA), (1998) 97-106.

[J74] D. S. Johnson, Approximation algorithms for combinatorial prob-

lems, Journal of Computer and System Science 9 (1974) 256-278.

63

Proceedings of the Prague Stringology Conference 03

[MS94] D. Moore & W. F. Smyth, An optimal algorithm to compute all the
covers of a string, Information Processing Letters 50-5 (1994) 239-246.

[MS95] D. Moore & W. F. Smyth, A correction to: An optimal algorithm
to compute all the covers of a string, Information Processing Letters
54 (1995) 101-103.

[L75] L. Lovasz, On the ratio of optimal integral and fractional covers,
Discrete Mathematics 13 (1975) 383-390.

[LS02] Y. Li & W. F. Smyth, Computing the cover array in linear time,
Algorithmica 32-1, (2002) 95-106.

[Y00] Lu Yang, Computing the Minimum k-Cover of a String, M. Sc.
thesis, McMaster University, (2000).

64

Learning the Morphological Features of a Large Set
of Words*

Abolfazl Fatholahzadeh

Supélec - Campus de Metz
2, rue Edouard Belin, 57078 Metz, France.

e-mail: Abolfazl.Fatholahzadeh@supelec.fr

Abstract. Given K - a large set of words - this paper presents a new method
for learning the morphological features of K. The method, LMF, has two com-
ponents : preprocessing and processing. The first component makes use of two
separate methods, namely, refinement and time-space optimization. The for-
mer is a method that uses the closed world assumption of the default logic for
partitioning K into a set of hierarchical languages. The latter is for efficiently
learning the morphological features of each language outputted by the former
method. Although, the finite-state transducers or the two-trie structure can be
used to map a language onto a set of values, but we use our own competitor
which has recently been proposed for such a mapping, consisting of associating
a finite-state automaton accepting the input language with a decision tree (dt)
representing the output values. The advantages of this approach are that it
leads to more compact representations than transducers, and that decision trees
can easily be synthesized by machine learning techniques.

In the processing phase, given an input string (z), thanks to the hierarchical
languages establishing the preferency order for the utilization of the current
automaton(g;) among the multiple ones, if z can be spelled out using g;, then
the output is returned using its counterpart namely dt;, otherwise, we inspect
other alternative until an output or failure be done. LMF has learned good
strategies for the large sets of the words which are consuming tasks form space
and times point of views e.g., all the verbs in French, including all the conjugated
forms of each verb.

Keywords: morphological features, automata, decision trees, learning.

1 Introduction

The morphological features (i.e., mode, tense, person and gender) are supposed to
be the important ingredients of the lexicons which are widely used in the process
of determining for a word (e.g., “livre”) its output values (e.g., Verb-+IND-PRES-
1-SING, Verb+IND-PRES-3-SING, Verb+IMP-PRES-3-SING, Noun+MASC-SING
and Noun+FEM-SING).

*This work is partially supported by le Conseil Régional de Lorrain.

65

Proceedings of the Prague Stringology Conference 03

Figure 2: Our alternative - a (7,7) un-
labeled automaton along with two de-
cision rules. If b2 = ’b’ Then vl =

b:y Ot y [xxxxx,xxyyx,xtzyx|. If b2 = ’¢’ Then
Figure 1: Example of ambiguous finite- v2 = |yzxxy,yzyyy|. b, stands for the
state transducer shown by a (13,16) au- second character from right to left of
tomaton [4, Page 158|. the input language.

An obvious solution to such a task is to store all the desired words along with
their associated output values in a large-scale dictionary. But in this case two major
problems have to be solved: fast lookup and compact representation. Two modern
and efficient methods can achieve fast lookup by determination and compact repre-
sentation by minimization. The first method is the technique of two—tries proposed
by Aoe et al [1]. This method has the advantage of being applicable to a dynamic
set of keys but unfortunately it has the disadvantage (Please refer to the page 488
of [1]) of containing more than states (hence the transitions) representing the data
compared to its competitor, namely, the automata [13].

The second method is the transducers (i.e., automata with outputs) [6, 8, 9|
which have proved to be a very formal and robust execution framework for linguistic
phenomena, but there are still some aspects that should be investigated. In particular,
as shown in Figures 1, the transducers assign the unnecessary labels to some arcs of the
graph representing the automaton. That is why, in our recent work, we have proposed
a method to avoid such unnecessary labels (hence the states and the transitions) as
pictured in Figure 2. Our solution for mapping a language onto a set of values is
based on associating a finite-state automaton accepting the input language with a
decision tree representing the output values. The advantages of this approach are
that it leads to more compact representations than transducers, and that decision
trees can easily be synthesized by machine learning techniques.

For the sake of clarity, we consider only the verbs in a given language and will
show how our alternate approach can be combined with the closed world assumptions
of the default reasoning. We show that the representation developed here provides a
richer language for dealing with a set of strings where each of which is associated with
one or more set of strings while keeping in the core of our system the two mentioned
desiderata: compact representation and fast lookup. After presenting the default
reasoning and its applicability to the morphology, we illustrate in Section 3 combining
the automata and the decision tree. In Section 4 the refinement is described. The
main algorithm of LMF along with examples in four languages closes: Azeri, English,
French and Persian are described in Section 5. Finally, the concluding remarks close
the paper.

2 Using Default Logic in Morphology

Default reasoning is a special but very important form of non-monotonic reasoning [5].
The term “default reasoning” is used to denote the process of arriving at conclusions

66

Learning the Morphological Features of a Large Set of Words

based upon patterns of inferences of the form “In the absence of any information to
the contrary assume ...” (e.g., if all elephants we have seen had a trunk, we might
think that all elephants have a trunk). Of course, the possible circumstances in which
any “presumed” correct line of reasoning can be defeated astound, and we are doomed
to make mistakes when our experiences does not support the current situation. If we
assume that the morphology world of the natural languages is closed one then there
is a great chance that the rate of the classification noise be lower, even zero.
Example 1: w.r.t. the world of the verbs in French, even if there is no indications
about the verb “zaper” in our system, LMF is able to learn 95 morphological features
associated with the conjugated forms (e.g., “zapons”) of that verb.

Remark 1: The number 95 came from the fact that LMF is designed to learn the
morphological features of all modes, namely indicative (IND), subjunctive (SUB),
conditional (COND), imperative (IMP), infinitive(INF) and participate (PART). IND
mode has 48 forms in eight tenses: present, imperfect, past, future, etc. Each of which
allows to generate six forms according to: (1) gender (singular and plural); and (2)
the person (1, 2, and 3). SUB mode has 24 forms in four tenses. COND mode has 24
forms in two tenses. IMP, INF modes has two and three forms, respectively. PART
mode has usually three forms, two for some irregular verbs.

2.1 The Closed World Assumption

It seems not generally recognized that the reasoning components of many natural
language understanding systems have default assumption built into them. The repre-
sentation of knowledge upon which the reasoner computes does not explicitly indicate
certain default assumptions. Rather, these default are realized as part of the code of
the reasoner’s process structure containing the hierarchies.

The starting point of the default reasoning is a set of inference rules(axioms) pos-
sibly along with some facts of the domain at hand collected in database which we call
axiomal database (noted by G,;). Given G, the task based on the “specificity” and
“inheritance” is to draw a plausible inference for the input. These can be illustrated
by the classical Tweety example as follows: Consider the database containing four de-
faults: “penguins are birds”, “penguins do not fly”, “birds fly” and “birds have wings”.
“Specificity” tell us Tweety is a penguin, then Tweety doesn’t fly because penguin is
a more specific classification of Tweety than bird. “Inheritance” on the other hand,
does equip Tweety with wings, by virtue of being a bird, albeit an exceptional bird
w.r.t. flying ability.

From efficient implementation of the reasoner’s process structure point of view, if
the class “Specificity” lies “above” the generic class i.e., there is some pointer leading
from penguin’s to node bird in G,;, then given a particular penguin we can conclude
that it doesn’t fly. Notice that the reasoner’s process structure of G4, can be either
a network - the graph of the taxonomy - or a set of first order formulae. The second
option has been chosen to form G, of the morphology world in our work. In that
option for fast inference purpose, GG, is organized according to priorities which are
given as ordering of predicates formulae, or default rules: in conflicting situations
preference is given to item with high priority. That is to say, the data are added
in G, in the following orders: (1) the facts of the exceptional data; (2) the facts

67

Proceedings of the Prague Stringology Conference 03

associated with generic axioms; (3) the exceptional axioms describing the specificity;
and finally (4) the generic axioms.

Example 2: w.r.t. Tweety the orders of G, is as follows: (1) Penguin(tweety); (2)
Bird(tweety); (3) (Vz)Penguin(x) — —Flies(x); (4) (Vz)Bird(z) — Flies(x).

(3) can be paraphrased as “penguins usually cannot fly”. If a particular penguin
(say Foo) can fly, this is obviously a counter exceptional data (or insensitivity to
specificity) w.r.t. to (3). Although, how the representation of the insensitivity to
specificity can be done in the open world (i.e., the data related to the exceptions and
in particular those of the counter exceptions are not known in advance), but this is
not a limitation for our work because the databases of LMF is composed only using
three predicates : regular, exceptional and counter-exceptional. The selection of the
counter exceptional data is based on the fast inference purpose.

The LMF policy for such above purpose is to take into account both the high
priority of usage in the text of a given language (e.g., the auxiliary verbs of a given
language such as “avoir” - to have - or “étre” - to be -) and the seldom of data w.r.t.
exceptional data (e.g., “aller” -to go - the only member of the class 22 of the irregular
verbs) or its specificity w.r.t. the general data (e.g., “Hair” meaning to hate, which
is also a unique member of the 20th class of the regular verb).

3 Combing the Automata and the Decision Trees

In what follows, we summarize our recent work [3| concerning the combination of the
automata and the decision trees. We assume the reader to be familiar with both the
theory of finite automaton and the decision tree learning as presented in standard
books e.g., [13] and [7], respectively. We refer to a key and a value denoted by k
and kv, respectively, as a sequence of characters surrounded by empty spaces which
may have one or more internal spaces. We may use key and word (including verbs),
interchangeably, as well as, the value, key-value and the morphological features.
The input of our algorithm for such above combination is the following customary
form: f = {(k;,v;)|i =1,...,n} for representation and fast lookup. The point of our
idea is as follows: If an input string(z) can be recognized using the unlabeled finite-
state-automaton (g) associated with the keys (of f) - hence having less states and
transitions compared to the transducer as shown in Figures 1 and 2 - then use the learn
decision tree (dt) for outputting the value associated with z. Table 1 shows a sim-
ple decision tree (dt) of f1 = {(Iran,Tehran), (Iraq, Baghdad), (Ireland, Dublin)}.
Note that the dt w.r.t. £5 = {(Iran,Asia),(Iraq,Asia)} has a unique solution-path i.e.
(kvAsia) - no condition (i.e., question) is required to discriminate the key-value.

3.1 Acyclic Finite-state Automaton

Recall that an acyclic finite-state automaton is a graph of the form g = (Q, %, 6, ¢, F)
where Q is a finite set of states, I is the alphabet, qo is the start state, F' C @ is the
accepting states. ¢ is a partial mapping 0 : @) x ¥ — @ denoting transition. If
a € X, the notation §(g,a) = L is used to mean that d(q,a) is undefined. Let T*
denotes the set containing all strings over & including zero-length string, called the

68

Learning the Morphological Features of a Large Set of Words

Table 1: Backward attribute-based Data and Decision Tree.

by b bs by by by by KV Solution-Path Question | KV

*x x * I r a n Tehran (by n kv Tehran) | by = n? | Tehran
* x * I r a q Baghdad | (b q kv Baghdad) | by = q? | Baghdad
I r e 1 a n d Dublin (by d kv Dublin) | by = d? | Dublin

Table 2: Ten keys of the same lengths along with associated values.
Key onC | myC | mnH | onH | nnH | nnC | mnC | nyC | myH | oyC
Value | down | down | up down | up up up up | down | down

empty string €. The extension of the partial § mapping with x € ¥* is a function
0* 1 Q x ¥* — () and defined as follows:

0*(q,e) = q
5(6(a,0),2) if 6(g,0) # L
* . Y))
0"(q,ax) = 1 otherwise.
A finite automaton is said to be (n,m)-automaton if |Q] = n and |E| = m where E

denotes the set of the edges (transitions) of g. The property ¢* allows fast retrieval for
variable-length strings and quick unsuccessful search determination. The pessimistic
time complexity of §* is O(n) w.r.t. a string of length n.

3.2 Decision Tree Learning

Decision tree learning is a method for approximating discrete—valued target functions,
in which the learned function is represented by a decision tree (dt). Learned decision
trees can also be re-represented as a set of if-then rules to improve human readability.

Example 3: Below we list the if-then rules representing the decision tree associated
with data of Table 2.

If fi =10 Then KV = ‘down’;

If fi=m'Afy=19 Then KV = ‘down’;

If fi=‘m'Afy='"n" Then KV = ‘up’;

If fi="2 Then KV = ‘up’;
where f; and fy denote first character and sceond character (of the key from left to
right), respectively. Decision trees classify instances by sorting them down the tree
from the root to some leaf node, which provides the classification of the instances.
Each node in the tree specifies a test of some attribute (e.g., bl of Table 1) instance,
and each branch descending from that node corresponds to one of the possible values
for this attribute. An instance is classified by starting at the root of the tree, testing
the attribute value by this node, then moving down the tree branch corresponding to
the value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node. Notice that the implementation of the decision tree
is based on m-array tree rather than the binary one. The former allows to save the
decision tree in a less space compared to the latter. Figure 4 shows such a learned
tree representing the values of the keys of Table 2.

69

Proceedings of the Prague Stringology Conference 03

1:omn

o m 1

(0 : down) 2:yn) (0: up)
Ly m
(0 : down) (0 : up)

Figure 3: A (6,10) unlabeled automa- Figure 4: Learned decision tree for de-
ton for recognizing the keys of Table 2. termining the value of any recognized
key of Table 2.

Table 3: Distribution of French regular verbs according to the class and the frequency
noted by C and F, respectively.

C 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
F 3875 156 165 342 69 114 19 12 9 254 26 49 2 302 1

4 Refinement

The refinement process has the following tasks to perform:

1. Transform the input of LMF, namely our input, namely f = {(k;v;)]i =
1,...,n} into axiomal database D,,, as described in Section 2.1.

2. Partition D,, into the counter-exceptional, exceptional and general axioms.

The transformation is based on the closed world assumption of the morphology
assuming that the set of the words of (f) noted by K can be divided into two subsets
of so-called regular and irregular words. The regular forms follows the fact that their
derivate/inflectional forms (each noted by di) can be generated using those axioms
specified by the linguists which are usually further refined in a set of finer regular
axioms (axiom). Using a root (of the word) each axiom allows to generate all dis of
the word. The root is obtained by removing a particular substring of used axiom.

Example 4: The regular forms of the verbs in French is divided into the first group
containing 13 classes (ranged from 6 to 18) and the second group which is composed of
two classes (ranged from 19 to 20), where each number stands for an axiom. Below
the repartition of 5189 infinitives (of the regular verbs) used in our experiment is
shown in Table 3.
Remark 2: As appear from Table 3, 20th class has only one member, namely “Hair”.
However, as we mentioned earlier, it is not considered is a a regular data. Indeed,
w.r.t. to the inference process, it is wise to consider it as a counter-exceptional data.
The reason is to speed up the inference processing by mentioning explicitly the data
and axioms is the following order: counter-exceptional, exceptional and general. This
process constitutes the well known practical trick of the default logic. So, 5188 (i.e.,
5189 -1) roots along with 19 classes will be used as the reservoir for learning the
extended database of 492860 (i.e., 5188 x 95) dis of the lexicographers expressed in
a raw database.

An axiom can be described using a two dimensional vector of size r, where r
stands for the number of morphological features in use. The first row of such a vector

70

Learning the Morphological Features of a Large Set of Words

Table 4: Information on size of 13943 verbs of the third group in French and mor-
phological information along with the forest of the decision trees obtained by the
partitive learning mode. Ent. refers to number of call to the entropy function.

Data Decision Tree Gain
Len. | Freq. Inodes | Leaves | Ent. K% | V%
2 11 9 3 15 66% | 19%
4 183 133 40 371 81% | 23%
5 412 225 66 904 88% | 44%
6 943 460 131 2149 91% | 47%
7 1480 578 202 3388 93% | 57%
8 2160 727 240 5065 94% | 62%

9 2317 692 342 6664 95% | 67%
10 2115 082 252 6531 96% | 70%
11 1729 445 207 6361 96% | 2%
12 1168 318 125 4980 97% | 0%

13 733 164 69 3472 97% | 75%
14 389 106 50 2620 97% | 70%
15 183 29 22 1624 97% | 68%
16 72 36 18 1063 95% | 50%
17 25 9 4 288 97% | 64%
18 7 3 2 83 96% | 58%

is composed of r the values. The second row contain different substrings related to
dps. Usually, the lexicographers are used to add the word in explicit database in
which each entry is composed one d; and a value. Since it may happen that for a dj,
different values be associated with it (e.g., aime IND-PRES-1-SING, IMP-PRES-3-
SING, etc.) therefore, the learning process should assure to collect them into a set of
morphological features representing a set of unique ambiguity class. In summary, the
entire lexicon can viewed as follows. First on can form the the four following reservoir
fgs Sg, fe and f. representing: (1) f,: Database related to the general axioms; (2) s,:
Database of suffixes of the regular (general) words; (3) f.: Database of derivate forms
expressed as the exceptional data; (4) f.: Database of derivate forms based on the
high priority relating the counter exceptional data. Notice that f, along with s, will
be used to recognize the derivate forms of the words governed by the general axioms.

4.1 More Refinement: Learning by Partitive Mode

As we mentioned earlier, the input of decision tree learning is a fixed attributes the
size of this table is /41 x n, where ¢ denotes the length of the longest keys of f and n
is the number of keys. Usually, we have to use the dummy characters (noted by % see
Table 1). Using the dummy characters augment the size of the input table. Because
of the very recursive nature of the learning process, including the characterization of
the decision tree may be a time consuming task for the large data. An alternative to
the a unique table is to employ multiple tables as follows. First f is divided into ¢

71

Proceedings of the Prague Stringology Conference 03

user-inputs (f;) such that the length of the keys of each f; be identical, then form the
corresponding decision trees. So, in the partitive mode, we have to learn a forest of
the decision tress : composed a vector of r positive integers. ith number is pointed
to the ith decision tree.

Searching a value for an input string (x of length y) works as follows. If y belongs
to the vector of above mentioned numbers, first we spell out x this time using the
automaton associated with entire keys of K. If x spelled out correctly, then we use
the y decision tree to output the value.

Example 5: The value of + = abababad can not be learned w.r.t. current f =
{(abe, 1), (ababbac, 2)(abababe, 3)}. We have length(x) = 8 which is not member of
{3,5,7}. In the contrary, for x = abc the value is 1 i.e., (1) length(z) € {3,5,7}, (2)
x is recognized using the automaton associated with K = {abc, ababe, abababc} and
(3) no question is required for f3 the value is 1. Table 4 shows the Information on
size of 13943 verbs of the third group in French and morphological information along
with the forest of the decision trees obtained by the partitive learning mode.

5 Main Algorithm

Below the algorithm for learning morphological features is given which is composed of
two components: preprocessing and processing. In the first component four automata
and two decision trees along with a forest decision trees containing r decision trees are
formed, where r stands for the number of partitions of the exceptional data according
to the same key-length criterion. In the second component, if an user-input (x) can
be recognized by one of the four automata (see below for the order in use) then the
corresponding decision tree will be inspected to output the value. The argument of
main function are:

1. f, = {(root;, axiom;)|i =1...,n1} i.e., Database related to the general axioms;

2. s, ={(sufi,mfili=1...,my} i.e., Database of suffixes of the regular (general)
words; mf stands for a morphological features or a set of alternate morpholog-
ical features;

3. fe=A{(diymfi)|i =1...,ny} i.e., Database of derivate forms expressed as the
exceptional data; d; refers to a derivate form of a base word (e.g., infinitive);

4. fo={(d;,mf;)]i = 1...n3} i.e., Database of derivate forms based on the high
priority relating the counter exceptional data.

func LearningMorphologicalFeatures(f,, sq, fe, fc)

K, + CollectKeys(f,). K. < CollectKeys(f.).

Grg < FormAutomaton(K,); gie < FormAutomaton(K.).
ApplyPreprocessingPartitiveMode(f,).

grce < FormAutomaton(K,).

table. < FormInputForLearning(f.).

t. < LearnDecisionTree(table,).

ts <— LearnDecesionTreeO fSuf fives(s,).

72

Learning the Morphological Features of a Large Set of Words

ApplySearch(z).{Processing component, x is an input string.}
cnuf

The function FormAutomaton() follows the elegant algorithms described in [2] for
the incremental construction of minimal acyclic finite state automata and transducers
from both sorted and unsorted data We adapted the former one such that the length
of the longest key be calculated for being used later in the construction of suitable
input for learning the dt of the counter exceptional data. Please refers to [3] for the
description of the function FormInputForLearning() and LearnDecisionTree().
The construction of the forest of the decision trees works as follows.

func ApplyPreprocessingPartitionMode(f)
Uizy, fei < Partition(f.)
for i € (¢4,...4,) do
K. < CollectKeys(fe;); grei + FormAtuomaton(fe;).
Tabley; + FormInputForLearning(fe;)
te; <+ LearnDecisionTree(Table,;).
end for

cnuf

Since the search order is based on looking at the following order : (1) counter
exceptional, (2) exceptional and general data, then processing component is as follows:

func ApplySearch(z)

return(SearchValue(z, g, t.) OR SearchValueUsingPartitionMode(z, gi., forest)
OR SearchByMismatch(z, gkg, Sg, ts))-

cnuf

For knowing how SearchValue() works, again consider Figure 4 where zero used
in a node indicates that node is a leaf one. A positive integer number used in a node
has its own meaning indicating the test to be done taking into account the content
of the current node under inspection e.g., “1:omn” means that if the first character
of z is 'm’ then gets the value by descending in the sub-tree of first child. Since the
sub-tree has only one node - a leaf - then value is "down’. If the first character of x
is 'm’ this time the value has to be selected using the sub-tree of the second child.
Depending on the second character (“2:yn”) of = the output value is either “down” or
ccupn‘

func SearchValue(z, g, dt)
if 0*(qo,z) = ¢ such that ¢ € F(ofg) then
kv < GetValue(x,dt).
else
kv < nil; {x is unknown w.r.t. the current g}

end if
cnuf

73

Proceedings of the Prague Stringology Conference 03

The function SearchByMismatch() uses the automaton associated with the general
data to know if the root of (the base) word can be recognized by that automaton.
If the input string can be spelled out using a given position then there is a chance
that the suffix of the input string be recognized using the automaton of the available
suffixes (s,), if so, then GetValue will be activated to output the output value.

func SearchByMismatch(z, gig, ts)

pos <— MisMatchPosition(z, gig); s <— substr(z,pos). {s stands for the suffix}
return(GetValue(s, ts)).

cnuf

5.1 Examples

Below we illustrate the traces of LMF applied to the verbs in English and French,
Azeri and Persian.

Example 6 (French): Let us consider the following phrase: “Il livre un livre.” i.e.,
He is providing a book. Suppose that we are interested in learning the morpholog-
ical features of the word “livre”. The current word cannot be spelled out neither
using the automaton associated with the counter exceptional automaton nor with the
exceptional automaton. Therefore, the automaton associated with f, (database of
regular roots in French corresponding to the first group) will be called to partially
spell out the word “livre”. Using function SearchByMismatch tell us to stop at the
fourth character (from left to right). The remaining part of the current word - “e” -
will then be used as the entry of the decision tree associated with the suffixes of f,
outputting the desired result: Verb-+IND-PRES-1-SING, Verb+IND-PRES-3-SING,
Verb+IMP-PRES-3-SING, Noun+MASC-SING and Noun-+FEM-SING.

Remark 3: The reason for which it is preferable to divide the set of words (of
a language) into several files, each of which containing the same syntactic category
could better be illustrated using our previous example. Indeed, one could use the rules
of local grammar e.g., (1) pronoun-+verb as in “il livre” and (2) determinant-+noun,
as in “un livre”, for the efficient tagging purpose while learning the morphological and
right features of used word in a text.

Example 7 (French): In the the following phrase: “Bush hait Saddam et vice-versa.
i.e., Bush hates Saddam and vice-versa.” Learning the morphological features of the
word “hait” is immediate because this word belongs to the exceptional data containing
the verbs of 20th class.

Example 8 (English): The morphological features of the word “stood” in the fol-
lowing phrase: ‘“He stood the child’’, can also be learned immediately, because it
belongs to the exceptional data w.r.t. the verbs in English.

Example 9 (Azeri): Like in Turkish, the order of constituents may change rather
freely without affecting the grammaticality of a sentence. Due to various syntactic
and pragmatic constraints, different orderings are not just stylistic variants of the
canonical order. For instance, a constituent that is to be emphasized is generally
placed immediately before the verb. This affects the places of all the constituents in

74

Learning the Morphological Features of a Large Set of Words

a sentence except that of the verb:

Man oshaxlara ketabi verdim. I gave the book to

I children+DAT book+ACC give+P1S the children.
Oshaxlara man ketabi verdim. [t was me who gave
children+DAT 1 book+ACC give+P1S the children the book.
Man ketabi oshaxlara verdim. It was the children to
I book+ACC children+DAT give+P1S them I gave the book.

The first above sentence is an example of the canonical word order whereas in
the second one the subject, man, is emphasized. Similarly, in the last one the direct
object, oghaxlara, is emphasized.

Remark 4: Although, Azeri has some similarity with old Turkish, but their struc-
tures differ in several aspects, notably w.r.t. new Turkish. This is particularly true
for the the vocabularies and the morphology. All together, this makes the processing
of Azeri different from Turkish, including our learning process.

Example 10 (Persian): If we concern ourselves with the unmarked order of con-
stituents, like in Turkish and Azeri, Persian can be characterized as a subject-object-
verb language: (a) “Man be baceha ketab ra dadam.” (i.e., T gave the book to the
children.) and (b) “Lazat bordand.” (i.e., (They) enjoyed). In (a) the morphological
features of the verb “dadam” is determined by what we call the counter exceptional
data whereas in (b) the segment “Lazat (adjective) bordan (verb)” have to be consid-
ered as a compound verb. So, the combination of the morphological features of two
words would determine the morphological feature of the mentioned segment.

6 Concluding Remarks

LMF is written in C and applied for learning of the large set of the verbs in French
and very limited ones in Persian and Azeri. The experiments show that combing
the closed world assumption, the automata and the decision trees is a good approach
since our tests provide the right results for more than half million verbs - including the
conjugated form - in French. Note that the transducers [8], as the the best available
method, have been used in the morphology world. However, the advantages of comb-
ing the automata with the decision trees are that it leads to compact representations
than transducers, and the decision trees can easily synthesize by machine learning
techniques. This is emphasized in this work by Figure 2.

It must be stressed that using automata is appropriate when there is no need
for frequent updates of one or more databases. This is due to the fact that it is
difficult to update quickly the automaton. However, w.r.t. our present work, this is
not necessarily a limitation because we are dealing with static keys originated from
the morphology world. From update viewpoint, using the two-trie structure of Aoe
et al. [1| instead of the automata is preferred where there is the need for frequent
updates. But in this case, the cost of space (number of states and transitions) is
(slightly) expensive compared to the automaton.

An interesting extension is the question of addressing how to learn the regular
and irregular data from pure Stringology viewpoint i.e., without attaching a domain
to the values of the keys. That is to say, we have to discover the axioms along with
possible exceptional and/or counter exceptional ones.

75

Proceedings of the Prague Stringology Conference 03

Acknowledgments

I thank the anonymous referees for their constructive comments.

References

[1] Aoe, J-1., Morimoto, K., Shishibori, M., and Park, K. A trie compaction algorithm
for a large set of keys. IEFEE Transaction on Knowledge and Data Engineering 8,
3 (1996), 476-491.

[2] Daciuk, J., Mihov, S., Watson, B. W., and Watson, R. E. Incremental construction
of finite-state automata. Association for Computational Linguistics 26, 1 (2000),
3-16.

[3] Fatholahzadeh, A. Implementation of dictionaries via automata and decision trees.
Champarnaud J. M. and Maurel D. (eds.): Seventh International Conference on
Implementation of Automata (CIAA02). In LCNS Lecture notes on Computer
Science, vol. 2608. Springer, Berlin Heidelberg, (2003), 95-105.

[4] Kempe, A. Factorizations of ambiguous finite-state transducers. In International
Conference on Implementation and Application of Automata (2000), Daley M.,
Eramian M., and Yu S. pre-proceeding (eds.), 157-164.

[5] McCarthy J., and Hayes, P.J. Some Philosophic problems from the standpoint
of Artificial Intelligence. In Machine Intelligence (1969), vol. 4, Meltzer B. and
Michie D. (eds), Edinburgh University Press, 463-502.

[6] Mihov, S., and Maurel, D. Direct construction of minimal acyclic sub-sequential
transducers. In International Conference on Implementation and Application of
Automata (2000), Daley M., Eramian E., and S.Yu pre-proceeding (eds.), 150-156.

[7] Mitchell, T. M. Machine Learning. Mc Graw-Hill, 1997.

[8] Mohri, M. On some application of finite-state automata theory to natural lan-
guage. Natural Language Engineering 2, 1 (1996), 1-20.

[9] Mohri, M. Finite-state transducers in language and speech processing. Computa-
tional Linguistics 23, 2 (1997), 269-311.

[10] Mohri, M. Generic e—removal algorithm for weighted automata. In International
Conference on Implementation and Application of Automata (2000), Daley M.,
Eramian E., and Yu S. pre-proceeding (eds.) 26-35.

[11] Quinlan, R. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[12] Reiter R. On reasoning by default. In Reading in Knowledge Representation
(1985), Brachmann R.J. and Levesque H.J. (eds), Morghan Kaufmann, 402-410.

[13] Rozenberg G. and Salomaa A. (eds.) Handbook of Formal Language. Springer—
Verlag, Berlin Heidelberg, 1997.

76

A Linear Algorithm for the Detection of Evolutive
Tandem Repeats

Richard Groult*!, Martine Léonard! and Laurent Mouchardf?

! LIFAR - ABISS, Faculté des Sciences, 76821 Mont Saint Aignan Cedex, France

2 UMR 6037 - ABISS, Faculté des Sciences, 76821 Mont Saint Aignan Cedex, France
and Dept. Computer Science, King’s College London, London WC2R 2LS, England

e-mail: {Richard.Groult,Martine.Leonard,Laurent.Mouchard}@univ-rouen.fr

Abstract. We present here a linear algorithm for the detection of evolutive
tandem repeats. An evolutive tandem repeat consists in a series of almost con-
tiguous copies, every copy being similar (using Hamming distance in this article)
to its predecessor and successor. From a global view point, evolutive tandem
repeats extend the traditional approximate tandem repeat where each copy has
to be in a neighborhood of a given model. Due to the lack of algorithms, these
repeats have been discovered in genomic sequences only recently. In this article,
we present a two-stage algorithm, where we first compute an array containing all
the Hamming distances between candidates, then we visit this array to build a
complete evolutive tandem repeat from insulated pairs of copies. Moreover, we
explain how it is still consistent with the usual technique devoted to dynamic
programming which consists in filling a comparison matrix and backtracking
through it to find an optimal alignment.

Keywords: linear algorithm, evolutive tandem repeats, Hamming distance

1 Introduction

The notion of approximate tandem repeat is generally well-defined, from the formal
view point [2, 12], it uses a consensus model, every copy participating to this repeat
being very similar to the consensus. An evolutive tandem repeat has no need for
a consensus model, the first and the last copies might be completely different but
every time we are considering two successive copies participating to the repeat, they
are very similar to each other: finding evolutive tandem repeats is obviously much
more complicated than detecting generic tandem repeats for which usual well-known
structures, such as suffix trees, can be used during a preprocessing stage [9].

Evolutive tandem repeats have been phrased by molecular biologists, for example
in [4], and have been observed in real DNA sequences (see Appendix A for a complete
example, detected in A. thaliana). In [5|, we gave a formal definition of evolutive
tandem repeats with jumps then we described a quadratic space and time algorithm

*Supported by a French Ministry of Research grant.
tPartially supported by Programme inter-EPST Bio-informatique and by GenoGRID (ACI
GRID).

7

Proceedings of the Prague Stringology Conference 03

which detects all the maximal. Even if numerous models and algorithms searching
for various kinds of repeats have been developed [1, 3, 10, 11, 8, 12|, none of these
algorithms are able to locate evolutive tandem repeats, as far as we know, we therefore
designed a quadratic algorithm for their detection, it was based on the construction
of two graphs and their visits.

Since we are looking for local repetitions having approximatively the average length
of mini (or even micro) satellites and because we are also looking for a certain number
of copies (having three or less copies in an evolutive tandem repeats is meaningless),
we are here interested in searching for copies whose length may vary from 4 to 64 [6],
that is usually thousands times less than the size of the sequences we are studying.
We present in this article a O((4paz — lmin + 1) X (Jmaz — Jmin + 1) X |w])-time and
O (Jmaz — Jmin + 1)-space algorithm where and £,,;, and lp00 (v€Sp. Jmin and Jomez)
are the minimal and maximal values of the length of the copies (resp. the jump
between two copies) and w is the studied sequence. More precisely, since length and
jump values are very small (with respect to the length of the sequence which can be
counted in millions of base pairs), we still have an overall linear time-complexity. So
in practice, the time complexity is in O(C x |w]), where C' < (61 X (jmaz — Jmin)-

In section 2, we recall some basic definitions and introduce the evolutive tandem
repeats. In section 3, we present the ideas of our algorithm. In section 4, we explain
the connection with comparison matrices. In section 5, we present experimental
results and finally, in section 6, we conclude.

2 Preliminaries

Let ¥ be an alphabet and ¥* its associated free monoid. A word (resp. non empty
word) over ¥ is an element of X* (resp. £T). The letter of a word w occurring at
position i is denoted by w;. The length |w| of a word w is the number of letters of w,
ie. w = w - wy. We will denote by ¥* the set of all possible words of length ¢
over ¥.. We denote by u.v (or simply uv) the concatenation of two words u and wv.
Consider w = p.f.s for some p, f,s € ¥*. Such p, f, s are respectively prefiz, factor
and suffiz of w. We denote f = w[i, j| = wjwiq---wj_qw; for 1 <i < j <|w|. The
concatenation of n copies of u is denoted by u™.

There exist several distances one can use for the analysis of genomic sequences. In
this article, we will consider the Hamming distance: the Hamming distance between
two words of equal length is the number of positions at which their corresponding
letters differ: for u,v € ¥f, dg(u,v) = Card{i € {1,...,0} | u; # vi}.

Definition 2.1 (Evolutive tandem repeat)

An evolutive tandem repeat with jumps (e.t.r. for short) is a tuple (v, &, (Jmin, Jmaz)
l,n, (pi)i<i<n) where v is a word, ¢ is the maximal number of errors between two
consecutive copies, [jmin, Jmaz] 18 the range of the length of a jump (overlap or gap
between two consecutive copies) with (Jmaz — Jmin + 1) < /2, € is the length of
the copies, n is the number of copies, p; are the starting positions of the copies
¢; = vl[pi, pi + ¢ — 1] and

plzla pn+£_1:|v|a
jmin §p1+1— (pz"_g) Sjmaza Vi € {1,...,77,—1},
dH(CiaCi—i—l) < g, Vi € {]_,,’I’L—]_}

78

A Linear Algorithm for the Detection of Evolutive Tandem Repeats

Example 2.1 Let consider the word v = aaataacagcge.
(v,1,(-1,1),3,4,(1,5,8,10)) is an e.t.r. with jumps: p; = 1, p, = 5 (gap), p3 = 8
and py = 10 (overlap) corresponding to ¢; = aaa, co = aac, c3 = age and ¢y = cge
(see F1G. 1).

<e=1 <e <e
t=3 L t | 4 | co= aaa
o= aac

v = a a a t a a c a g c g c
3= agc
D1 : D2 b3 D4 = cgc
. . .
Sjmaz:]- ijin
gap overlap

F1G. 1: Example of an evolutive tandem repeat with jumps

We will consider only in what follows maximal e.t.r., that is e.t.r. which is not
embedded in a longer one: consider for example a word w = gaaagacgaggcgg and
¢ = 3. The e.t.r. etr; = (aagacgagg, 1,(—1,1),3,3,(1,4,7)) is not maximal in w since
the repeat etr, = (aagacgaggcgg,1,(—1,1),3, 4,(1,4,7,10)) contains more copies. In
this case, we say that etr, “contains” etr; and remark that etry is a maximal e.t.r. in
w.

In a previous article [5], we first considered all factors of w having the same length.
For each factor, we computed the set of its starting positions using an equivalence
relation on positions in w. Then, we built a graph for which nodes are these sets
and there exists an edge between two nodes if the corresponding factors are slightly
different in the meaning of the Hamming distance. Next, we computed a second graph
namely the /-position graph defined as follows:

Definition 2.2 (/-position graph) Let w be a word and ¢ and jump integers. The
(-position graph corresponding to w, € and jump is the oriented graph PG (w,e,
jump) = (N, E) where

N=A{1,.. |lw|—€+1} and

E={(i,ii" — (i +0)) for (i,i!) € N x N, i <
such that |i' — (i + £)| < jump,
dg(wli,i+ 0 —1],w[i', i + € —1]) < e}.

Nodes are labeled with all the positions {1,...,|w|— ¢+ 1} of factors of length ¢ and
there exists an edge labeled with d between two nodes if the corresponding positions
are close in w and if the Hamming distance between their associated factors, denoted
d is not greater than a given €. We used a quadratic time but linear space algorithm
to compute it. In what follows we denote by (i,4’, d) an edge labeled d from the node i
to the node 7'.

Finally, we looked for all the longest paths in the /-position graph to find maximal
e.t.r.

79

Proceedings of the Prague Stringology Conference 03

3 A Linear — Time and Space — Algorithm

In a previous article [5], we described a quadratic space and time algorithm which
detects all maximal e.t.r. in a word w. In what follows, we present a linear time
and space algorithm that starts with the filling of a “position” array and follows on
with the visit of this array in an attempt to find regularities. We will first draw the
“big-picture” and will consolidate the description by explaining the structures we used
and the strategies we developed.

The first important idea consists in considering every f(-mer (factor of length /) as
a sliding window. Since we have to compute the distances between pairs of factors,
we have to use two sliding windows f and f’ (see F1G. 2): one window, f’, ending
at position i will correspond to the right-most factor (moving sequentially from left
to right, one position at a time) while the other window, f, will correspond to the
candidates for a pair (ending at a position in the interval [i — ¢ — jaz, @ — £ — Jmin])-
Therefore, we only have to consider j,ae — Jjmin + 1 possible positions for the left
sliding window, for each given position of the right sliding window and focus on the
computation of (Jmaz — Jjmin+1) X (Jw|—£+1) distances, that is a linear-time and space
construction of a “position” array (emulating the position graph we defined in [5]).

k

l > 14

i—20—k+1 i—l—k i—l+1)

f f
F1G. 2: The two sliding windows f and f’

The second important idea is the computation of the Hamming distance by itself: if
the Hamming distance between the factors of length ¢ ending at position 7 and ' is
known then the Hamming distance between the factors ending at position ¢ + 1 and
i" + 1 can be computed in O(1)-time because (£ — 1) comparisons have already been
done. Tt will speed up the filling of the position array (see F1G. 3).

Witp—1: Wit Wi—1 Wi C Wip

’LUZ'/+4,1§ Wity p - Wir—1 wj Wi 41
dp(wli 4+ € — 1,4], w[i' + £ —1,7") | § |

. g

i l

dy(wli+ £, i+ 1], w[i’ + £,7" + 1)

Y

-~

14
< -
£ — 1 comparisons in common
Fia. 3: Computing Hamming distance on incremental positions

Finally we only have to visit the position array and search for a series of acceptable
values (smaller than &) located at appropriate positions (the distance between two
consecutive positions has to belong to [+ Jmin, £ + Jmaz])-

80

A Linear Algorithm for the Detection of Evolutive Tandem Repeats

A Two-stage Algorithm

We first have to compute the Hamming distances between every possible pairs of
candidates and fill the position array D that contains all these computations.

Definition 3.1 Let w = w; ... w, be a word over ¥, ¢ an integer and k € {jnin, - - -,
Jmaz - We define D"*(3) by

0, Vie{l,...,(+k}
D (i) dy(w[l,i— 0 — k], w[l + k +1,1]), Vie{l+k+1,...,204+k—1}
dy(wli =20 — k41,0 — £ — El,wli — 0+ 1,i]), Vic {20+Fk,...,|w|}

We assume now that D}"‘(i — 1) has been previously computed and we would like to
compute D¥*(4), i.e we know dg(w[i — 20 — ki —(—k — 1], w[i — (,i — 1]) and we
would like to compute dp(w[i — 20 — k+1,i — { — k], w[i — { + 1,1]).

We therefore define two additional functions:

e Va,be X, 1,(b) =0if b =a, 1 otherwise;

o Vi € {mins- - imats EXHG) = My, (w;) if i € {L+k+1,... Jw|}, 0

otherwise.
Lemma 3.1 Let w be a word over ¥, £ an integer and k& € {Jmin, - - -, jmaz - We have:
0, Vie{l,...,l+k},
DY) D — 1) + B (0), Vie{l+k+1,...,204+k—1},
DY (i — 1) + EP'G) — B — 0), Vie {204k, ..., |w}.

Proof 1 Let k € {jmin,---sJmar} and i € {20+ k,... |w|}. If i > 20 + k then
DY —1) =dg(wli — 20 — ki — 0 —k — 1], w[i — £,i — 1]) and therefore
Dy (i)

= dy(wli—20—k+1,i—0—k|,w[i—(+1,i])

= dg(wi—20—k+1,i—0—k—1],w[li—0+1,i—1]) + Ly, _,_, (7)

= dy(wli—20—kyi—0—k—1)wli—t,i—1]) —Ly,_,,_ (i —0)+

NG

= DYi—-1) - E;:)Z(Z —0) + E).
If i = 20 + k then D(i) = dp(w[l,i — ¢ — k], w[l + k + 1,4]) = dg(w([1,i — (-
k—1], [€+k+1 z—l])—i—]l (w;) = DY — 1) + B).
But we have E\"(i — () = wa((ze +k) =0 = EMU+k) =0, s0o D) =
DY —1) — E,ZM(Z—Z) + B (i).
We prove the other case in the same manner. O

The size of the arrays D (where D[k][i] = Di"‘(i)) and E (where E[k][i]] = E\"“(i))
i (Jmaz — Jmin + 1) X Jw|. In order to fill these two arrays, we now use a O((jmar —
Jmin + 1) X |w])-time and space algorithm.

Example 3.1

This example (see F1G. 4) has been obtained with w = aaataagttatcaatccaaatcegtgtea,
C=4, Jmin = =1, jmae = 1 and € = 2:

For example D“Y(7) = dp(w[l,4], w[4,7]) = dy(aaat, taag) = 2, DY (17) = dy(
w(10, 13], w[14,17]) = dy(atca, atec) = 1 and D¥*(28) = dp(w[20, 23], w[25, 28]) =
dy(ateg, gtca) = 2.

81

Proceedings of the Prague Stringology Conference 03

a a g
2 0 0 0 1 =1 1 0 0 1 =z
a t c ¢ g t c a
157 20 j 28
S
NN

i

w o QalaReAR " S\ \\\\“\\\\\\\\\\ a
overlap® i() 0 0 o \\\\\&\\\\ 11 1 0o 1 o 1 1 1 1 1 1 1 1 1 1 o0 1 1 1 1
D"","(i) 0 0 o 1 1N® 2 3 4 3 3 2 2 3 3 4 4 4 4 4 4 4 3 3 3 3 4
conca=E0"() ¢ 00 0o 0o 0o 1 0o 1 0 1 1 1 &\\&\\\\\\\\\‘\\\ o1 11 1 1 1 1 1 1 1
tenatiorety 9 o 0 0 0 0 1 1 2 2 3 33 2 N 1 2 3 3 4 4 4 4 4 4 4
EPYNG) 0 o o 0o 1 1
80 2

33

A
93P puag;

Fi1G. 4: D and F arrays

The space complexity can be improved as follows.

Since the values F[k][i] are independent, we can decrease the space complexity by
ignoring the filling of the array E and by computing E[k][i] only when needed without
increasing the time complexity.

Moreover, for a given /, we only need the last value D}:’é(i — 1) in order to com-
pute D'(i) (see Lemma 3.1), thus we will only store the last column of the ar-
ray D. Finally (see FI1G. 5), we obtain a O((Jmez — Jmin + 1) X |w])-time and
O (Jmaz — Jmin + 1)-space algorithm (D is an array of size O(jmaz — Jmin + 1)) If
we are looking for all e.t.r. for copies of length ¢ € [lpin, lmaz),the complexity is
O((Umaz — limin + 1) X (Jmaz — Jmin + 1) X |w]). From a practical point of view,
(Urmaz — lmin +1) < 61 is much lower than |w| and the time complexity is still linear:
O(C x |w|), where C' < 61 X (Jmaz — Jmin)-

Construction of the Longest Paths

The two arrays are compact representations of the graphs we depicted in [5], and if
we refer to the traditional graph vocabulary, we can associate a cell in the position
array and a node in the position graph.

CONSTRUCTION OF THE ARRAY CONTAINING THE LONGEST PATHS(w, £, jmin, Jmaz, €)

1 for ¢« ¢,,;, to {,,,. do
2 for i<+ 1to |w|do
Cli] + -1
L[i] + 0
for k < jmin tO Jmaes do

if (1 <{+k) then

DIk« 0

elseif (i < 20+ k) then

9 D[k] A D[k] + ﬂwi_e_k(wi)
10 else D[k] A D[k] + ﬂwi—[—k (wl) -]lwi—N—k(wi*Z)
11 if (i > 20+ k) and (D[k] <¢)and (L[i =20 —k+1]4+1> L[i — ¢+ 1]) then
12 Li—t+1]« Lli—20—k+1]+1
13 Cli— 041« i—20—k+1
14 return (C, D)

CO 1O O i W

F1G. 5: Construction of the array containing the longest paths

When D(i) < ¢ and i > 20+ k, the arc between nodes (i —2¢ —k+1) and (i —(+1)
is added only if it creates a longest path to node (i — £+ 1), moreover the previously

82

A Linear Algorithm for the Detection of Evolutive Tandem Repeats

existing, previously unique arc ending in i — ¢ + 1 is removed: let a path of length ¢
ending in (i —£-+1), if the length of the path ending in (i —2¢ —k+1) plus 1 is greater
than ¢, then thearc ending in (i — ¢+ 1) is removed and the arc from (i —2¢ — &k + 1)
to (i — £+ 1) is created.

Finally each node 7 has at most one arc ending in 7 and therefore the /-position graph
is stored in an array C' of integers, where C[i] is the index of the head of the arc (C/[i],
i), and —1 otherwise. We use an array L of integers, where L[i] is the length of the
longest path ending in i.

Let C and L be arrays of integers of size |w| (see algorithm FIG. 5).

The determination of the longest paths, corresponding to the maximal e.t.r., uses the
traditional algorithm.

Computation of the Distance between Two Factors of Length
(+1
w,l+1

Lemma 3.2 (Computation of D, (7)) Let £, jmin, jmaz and k be integers. We
have V& € {Jmins- - - s Jmaz}, 1 € {20+ k, ..., |w|}, DY (@) = DS G) + B (-),
(see F1G. 6).

Proof 2 Let ¢, jmin, jmaz,? and k integers such that & € {jmin, .-+, Jmac} and i €
{20+ k,...,|w|}. We have
D}C”’”l(i) =dg(w[i—2(0+1)—j+1,i—((+1)—kl,w}i—(£+1)+1,i])
=dy(w[i—20—k—1,i—0—k—1],w[i — ¢,i])
=dy(wli —20—k,i—0—k—1,wli —(+1,i]) + Ly, _,,_,_, (wiy)
=dy(wli—20—(k+1)+1,i —0— (k+ 1), w[i — £+ 1,i])+
ﬂwi—zl—k—l(w’i*é)
= D5 (0) + B (0= 0),

r+1 (+1

041 (+1

FIG. 6: Computation of D" (i) F1G. 7: Computation of D" (i + 1)

Lemma 3.3 (Computation of Dz”gﬂ(i + 1)) Let £, jmin and jyqe be integers. We

have V& € {Jmins - - - maz}> i € {204k, ..., |w|} D (i41) = D () +EPL (1),
(see F1G. 7).

Proof 3 According to Lemma 3.2, D" (i +-1) = D} (i +1) + B (i — €4+ 1) and
by Definition 3.1, D" (i + 1) = D (6) — B (i — 0+ 1) + B (6 + 1), therefore,
DY i+ 1) = DL G) + EX G+ 1),

O

83

Proceedings of the Prague Stringology Conference 03

Lemma 3.4 (Computation of Dz”éﬂ(i)) Let £, jmin and jnee be integers. We
have Yk € {Jmin, -+ Jmaz}, 1 € {20+ kK, ... |w|}

DY) = D)+ B~
= Dy (i — 1) + B (4).

4 Evolutive Tandem Repeats and Comparison Ma-
trices

Comparison Matrices

We will now explain the connection between the arrays we are computing and using,
and well-known techniques used by several algorithms devoted to sequence compari-
son.

A traditional technique in sequence comparison consists in the construction and the
visit of the two-dimension matrix, where a cell (i,7') contains the comparison score,
i.e. the distance, between a factor ending at position 7 in one sequence and a factor
ending at position i’ in the other sequence.

Computing the positions of all the approximate repeats in one sequence can be carried
out by comparing the sequence with itself, that is by constructing a specific symmetric
square matrix, like the one we are presenting in FI1G. 8. Note that F1G. 9 represents
the arrays D and F corresponding to the three white diagonals of FiG. 8.

i 1 5 10
w c t a a c a ¢ g a t g
w3

i@ o 0o 1 1 1 1 0o 0 1 1 1 1
D@ o o 1 2 3 3 2 [B 2 3 3
w,3 -

"o 00 0o 1 1 0o 1 1 o0 1
Dy o o o o 1 2 2 2 2 2 2 N
E') o o o o o o1 1 1 1 1 1
D6 0 0 0 0 0 O 3 3 3

F1G. 9: The arrays D and E correspond-
ing to the three white diagonals

dH(s[i],s[i’])—> 1
jump—»«— d (sli-2.il.s[-2.'])

F1G. 8: Matrix and its diagonals for ¢ = 3,
Jmin = —1, Jmaz =1 and ¢ =1

In this matrix, the content of a cell (i,4") contains informations corresponding to
dy(wli — 2,i],w[i’ — 2,4']). One can observe four different kinds of cells: dark gray
cells correspond to undefined distances (i < £ or ¢’ < ¢, the factors are not long enough

84

A Linear Algorithm for the Detection of Evolutive Tandem Repeats

to compute dy(wli — 2,1], w[i' —2,']), therefore only dy(w[i], w[i']) is reported in the
upper left corner), light gray cells correspond to useless cells such that i —i < £+ jin
or ' —i > 0+ jmaz, White cells contain three values as expressed in F1G. 8 and are the
only cells that are really needed and finally dashed cells tick copies participating to a
potential e.t.r. (for example, the dashed cell (3, 7) states that dy(w|[1, 3], w[5,7]) < &,
that is dy (act, aca) < 1, which is correct).

Remark 4.1 Dashed cells contributing to a diagonal indicate a potential larger re-
peat: (3,9) and (4,10) (corresponding respectively to dg(act, acg) < 1 and dy(cta,
cga) < 1) can establish the existence of a longer repeat (in this example dg(acta,
acga) < 1) but more generally, dashed cells (i,i") and (i + 1,4" + 1), that is dg(w[i —
2,i,wli’ —2,4]) < 1 and dg(w[i — 1,7 + 1],w][i’ — 1,7’ + 1]) < 1, does not imply
necessarily that dy(w[i — 2,7+ 1], w[i’ — 2,7 + 1]) < 1 (consider (6,8) and (7,9) for
example).

Assume now that we are searching for approximate tandem repeats of length ¢ = 3,
with an error rate ¢ = 1 and j,,in = —1, Jmaez = 1, once we have built our matrix, the
hunt for the repeats can be carried out by visiting one row at a time and reporting
regions containing cells with a lower right value smaller than ¢ every at least /4 j,,in =
3—1=2and at most ¢ + j = 3+ 1 = 4 positions. In this matrix (see Fig. 10), if
we consider the third row, one can find such cells in columns 3, 7 and 9 and therefore
deduce that there exists an approximate repetition starting at position 1 and ending
at position 9: as a matter of fact, actaacacg is an approximate tandem repeat with
jumps, the letter a located at position 4 corresponds to a gap between copies ¢; = act
and ¢y = aca, the letter a locates at position 7 corresponds to an overlap between
copies ¢, = aca and c3 = acg. This is more or less the concept Sagot and Myers used
in [12] for finding microsatellites.

Evolutive Tandem Repeats

Finding evolutive tandem repeats with jumps is slightly different, the location of a
copy participating to the e.t.r. depends only on the location of its predecessor, /,
the length of the copies and Jin, jmae the acceptable jump between two consecutive
copies.

Consider a copy belonging to the e.t.r. that ends at position ¢, its successor must ends
at a specific position (between i+ ¢+ jpin and i+ 0+ jq,) in the matrix, we therefore
have to search for a dashed cell at positions (i,4") for i + 0+ jmin < 7' < i+l jmaz- If
there exists such a cell, it gives us a significant information about the way the copies
are connected: if ¢ + 0 + jin < i < i+ ¢ — 1 there is an overlap of length i + ¢ — ¢
between the copies, if i = i+ /¢ the copies are contiguous, if i+/+1 < ¢’ < i+l~+ jmaz
there exists a gap of length i — i — ¢ between the copies. Therefore, for every row i,
we only have to consider (jmaz — Jmin) + 1 cells. In order to find e.t.r. we therefore
have to compute and visit the diagonals starting in columns ¢+ £+ j,in t0 i+ €+ Jmaz -
That leads to computing and visiting only O((jmaz — Jmin + 1) X |w]) cells.

The left-most diagonal, starting in cell (1,7 + jm + 1), corresponds to the maximal
authorized overlap, while the right-most diagonal, starting in cell (1,4 4+ jy0e + 1),
corresponds to the maximal authorized gap. We can therefore build a matrix that
sums up all these informations as depicted in F1G. 8. The three white diagonals are

85

Proceedings of the Prague Stringology Conference 03

12

FiGg. 10: Two dimension matrix corresponding to the comparison of actaacacgatg
with itself, for =3 and e =1

the only ones that need to be computed (even if in this matrix, we show all the cells).
Moreover, the computation of the three diagonals is equivalent to the computation of
the D and E arrays.

5 Experimental Results

We have implemented and tested this algorithm on various sequences, we built ran-
dom sequences over the alphabet {a,c, g,t} and no e.t.r. has been detected (for the
same rapameters as below), it appears that this kind of repetition is not an artifact.
Moreover we focused on real sequences from A. thaliana and for testing purpose we
used sequences with length varying from 10kb to 200kb (see F1G. 11).

The average behaviour of the timing curves corresponds to that we were expecting.
Time and space consumptions enabled us to search for e.t.r. in whole chromosomes,
we studied more specifically A. thaliana which possesses five chromosomes (their
length varying from 17 to 29Mb) and an example is presented in Appendix A.

6 Conclusion and Perspectives

In this article, we presented a both space and time linear algorithm for the detection
of evolutive tandem repeats. Furthermore, we implemented this approach, developed
a web interface (see FI1G. 12, http://abiss.crihan.fr/~rgroult/index.php) that

86

A Linear Algorithm for the Detection of Evolutive Tandem Repeats

Execution times on sequences

14 F

Execution times on sequences: length variation

Legend
g =i

T

O % X +

e s 2 o1 g
£ * £
E ost L 4 £
5 % S
z 2 4
S 5 x 3 o016
06 <~ |
%
L 0.14]
04 * . x 1 o
o o Ko P
7 X - 012 et]
0.2 1 - O A b s 2
o e
, ‘ ‘ ‘ ‘ L ‘ ‘ ‘ ‘
0 50000 100000 150000 200000 50000 100000 150000 200000
Length of the sequence (bp) Length of the sequence (bp)
Execution times on sequences: error variation Execution times on sequences: jump variation
0.24 T T T T 0.32 T T T T
+ CET, ¥
x 031 |=7 x ol
022 X x 1=7. * L
s 028 x g
% .
XY * X
02 o] 026 | . - |
2 . x
ek 0.24 %% X B
2 o018 s & * 4 z . x +
° P e 022 . * A
E P E * o o
3 * e
|- . X, e 4
2 o | el | 2 02) .
3} 3 % e
g R o
b 018 | R x £ 4
PRt * 7
3 . x -
014 w 5T b 016 | P g
* X ot
5 0.14 |- P 4
012 | 553;3‘ B K
e 012 | K 1
X S
*2 X
01 k 01 L—*
) 50000 100000 150000 200000 0 50000 100000 150000 200000

Length of the sequence (bp) Length of the sequence (bp)

F1G. 11: Execution times on sequences, where [is the length of the copies, e is the
maximal Hamming distance and j is the jump

presents the copies, the alterations and sums up informations relative to the repeats.
We are now looking for this kind of repeats in complete genomes, we found several
interesting e.t.r. that are not inherited from approximate tandem repeats. We are
still in the process of studying the way it works, from the biologist viewpoint and we
are trying to figure out their role, preferred location and number in different genomes.
Since considering Hamming distance is somehow restrictive, we are moving forward
by designing an algorithm that makes use of Levenshtein distance (which allows indels
as well as substitution) instead of Hamming distance.

References

[1] G. Benson. An algorithm for finding tandem repeats of unspecified pattern size.
In S. Istrail, P. Pevzner, and M. Waterman, editors, Proceedings of the 2nd An-
nual International Conference on Computational Molecular Biology (RECOMB-
98), pages 20-29, New York, Mar.22-25 1998. ACM Press.

G. Benson. Tandem repeats finder: a program to analyze DNA sequences. Nu-
cleic Acids Res., 27(2):573-580, 1999.

2]

O. Elemento, O. Gascuel, and M.-P. Lefranc. Reconstructing the duplication
history of tandemly repeated genes. Molecular Biology and Evolution, (19):278—
288, 2002.

13l

87

Proceedings of the Prague Stringology Conference 03

Result: Finding Evolutive tandem repeats with jump - Mozilla

M
#: Richard Groult - Mozilla <2>
e S1Er) T Eile Edit Wiew Go Bookmarks Iools iindow Help

File Edit View Go Bookmarks Tools Window Help =
v

hitp://ahi o Tt Itfind hy
Q&e ’ R ttp:trabiss impg.pro.fr~rgroulindex php @] e @ ao OO @ [http7abiss impg prd i~ rgroulvindex php @] e @ @@o
-

>

@ [@ Fichard Grout ® @ [@ Result: Finding Evolutive tandem repe...

Finding Evolutive Tandem Repeats With Jumps

Repetition list:

Positions |length | Length of the factors

[Number of elements

124 8

16

14 38 15
13 8 15

Sequence:

& Upload a file from your directory.
507 Gename/al-z0000 7 | BTGHIse.

¢ Cutand paste sequence.

(1 Elt. 1 {positions 5-128, length 8)
H Factor:

aaaccotaaa coo coc tasacctotg astecttaat coctaaatce
ctasatettt aastectaca tog)

o atgaat taaat taattoact,
aaaaa gazac cggtttoter ggtt
Length of the factors: [
Maximal numiber of G
orrors allowed: B Start | End Factor AC|G|T Type
° 5| 12| eaacce ta [4[3[0[1
Maximal jump allowed: [12 19] aaacce ta 4301 overlap=1
Minimum number of o 19 26| aaacce ta [4[3[0[1] overlap=1
elements: 26| 33| azacc tet |3 [3[0[2 overlap=1
Clear the information | Submit sequence 35| 42| aatoctta |3 (2|0 |3 gap-1
1 43 50 teect 3|30 |2 concatenation
1© @ @ @ & |vosment com 35500 | | @ @ @ G G courmr voe 50 —————

[4]

5]

[6]

17l

18]

[9]

[10]

[11]

Fic. 12: HTML interface

D. Golstein and C. Schlotterer.
Oxford University Press, 1999.

Microsatellites: Evolution and Applications.

R. Groult, M. Léonard, and L.. Mouchard. Evolutive tandem repeats using ham-
ming distance. In Proceedings of the 27th International Symposium on Mathe-
matical Foundations of Computer Science, pages 292-304, Warszawa - Otwock,
Poland, Aug. 2002. Lecture Notes in Computer Science 2420, K. Diks, W. Rytter
(Eds.), Springer.

A. Jeffreys. Higly variable minisatellites and DNA fingerprints. Biochem. Soc.
Trans., 15:309-317, 1987.

R. M. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in

linear time. In IEEE Symposium on Foundations of Computer Science, pages
596-604, 1999.

R. M. Kolpakov and G. Kucherov. Finding approximate repetitions under ham-
ming distance. In Proceedings of the 9th FEuropean Symposium on Algorithms
(ESA 2001), volume 2161 of Lecture Notes in Computer Science, pages 170-181,
Aarhus, Denmark, 2001.

S. Kurtz, E. Ohlebusch, C. Schleiermacher, J. Stoye, and R. G. Computation
and visualization of degenerate repeats in complete genome. In Proceedings of

the 8th International Conference on Intelligent Systems for Molecular Biology,
pages 228-238, La Jolla, California, 2000. The AAAT Press.

S. Kurtz and C. Schleiermacher. Reputer - fast computation of maximal repeats
in complete genomes. Bioinformatics, 15(5), 1999.

A. Lefebvre and T. Lecroq. Computing repeated factors with a factor oracle. In
L. Brankovic and J. Ryan, editors, Proceedings of the 11th Australasian Workshop
On Combinatorial Algorithms, pages 145-158, Hunter Valley, Australia, 2000.

88

A Linear Algorithm for the Detection of Evolutive Tandem Repeats

[12] M. Sagot and E. W. Myers. Identifying satellites in nucleic acid sequences. In
S. Istrail, P. Pevzner, and M. Waterman, editors, Proceedings of the 2nd Annual
International Conference on Computational Molecular Biology (RECOMB-98),
pages 234-242, New York, Mar.22-25 1998. ACM Press.

A An Example of e.t.r. Occurring in A. thaliana,
chr 4 (17Mb)

We found numerous e.t.r. in chr 4 (17Mb) of A. thaliana, here is an example appearing
in an exon of the AT4G38590.1 gene.

./evorep -mll -e3 -j1 -r4 -f “/at4.fasta
->

- number of e.t.r.: 662

- time: Om38.758s

Example of found e.t.r.

Fry
H

Parameters: length=11, error=3, jmin=-1, jmax=1, rMin=4
Sequence: > at4.seq (17Mb)
Execution time: 38 sec.

17245698 17245709 17245719 17245731 17245743 17245755 17245767
acaagatgagaagaagaagaaagaagataaagacgaagaggaagaggacgatgaagatgatgatgaagaagaag

[aagaag

17245698 acaagatgaga
17245709 agaagaagaaa
17245719 agaagataaag
17245731 cgaagaggaag
17245743 ggacgatgaag
17245755 tgatgatgaag
17245767 agaagaagaag
H#

"

We investigated this sequence using “tandem repeat finder” [2| and “mreps” [7] and
obtained:

->

Tandem Repeat Finder:

Indices Period Copy Consensus Percent Percent Score A C G T Entropy(0-2)
Size Number Size Matches Indels

No Repeats Found!

->
./mreps -err 3 -minp 2 -from 1 -exp 3.0
* Processing window [1 : 80] *

from -> to : size <per.> [exp.] repetition

1 ->18 : 18 <5> [3.60] acaag atgag aagaa gaa

89

Proceedings of the Prague Stringology Conference 03

25 :
40 :
32 :
33 :
80 :

80 :

80 :

47
80 :

21
33
23
23
61

51

<6> [3.50]
<4> [8.25]
<7> [3.29]
<5> [4.60]
<6> [10.17]

<9> [6.67]

<12> [4.25]

<4> [3.00]
<4> [6.25]

gatgag aagaag aagaaa gaa
gaga agaa gaag aaag aaga taaa gacg aaga g
gaagaag aagaaag aagataa ag
aagaa gaaga aagaa gataa aga
aaagaa gataaa gacgaa gaggaa gaggac gatgaa
[gatgat gatgaa gaagaa gaagaa g
aagacgaag aggaagagg acgatgaag atgatgatg
[aagaagaag aagaag
aagacgaagagg aagaggacgatg aagatgatgatg
[aagaagaagaag aag
aaga ggaa gagg
atga tgaa gaag aaga agaa g

5 ->
8 >
10 ->
11 >
20 ->
30 ->
30 ->
36 ->
60 ->
RESULTS:

There are 10 maximal repetitions in the segment processed

90

Computing the Repetitions in a Weighted Sequence

Costas S. Iliopoulos!, Laurent Mouchard?, Katerina Pedikuri** and
Athanasios K. Tsakalidis®*

! Department of Computer Science, King’s College London Strand,
London WC2R, 2LS, England
e-mail: csi@dcs.kcl.ac.uk

2 ABISS, Atelier Biology, Informatics, Statistics and Sociolinguistics,
Université de Rouen, 76821 Mont Saint Aignan Cedex, France
e-mail: Laurent .Mouchard@univ-rouen. fr

3 Research Academic Computer Technology Institute,
61 Riga Feraiou Str., 26221 Patras, Greece
e-mail: tsakQcti.gr

4 Department of Computer Engineering and Informatics, University of Patras,
26500 Patras, Greece
e-mail: perdikur@ceid.upatras.gr

Abstract. We present an O(nlogn) algorithm for computing the set of repe-
titions in a weighted sequence with probability of appearance larger than 1/k,
where k is a given constant.

1 Introduction

The key problem today in sequencing a large string of DNA is that only a small
amount of DNA can be sequenced in a single read. That is, whether the sequencing is
done by a fully automated machine or by a more manual method, the longest unbroken
DNA substring that can be reliably determined in a single laboratory procedure is
about 300 to 1000 (approximately 500) bases long [Celeral, Celera2|. A longer string
can be used in the procedure but only the initial 500 bases will be determined. Hence
to sequence long strings or an entire genome, the DNA must be divided into many
short strings that are individually sequenced and then used to assemble the sequence
of the full string. The critical distinction between different large-scale sequencing
methods is how the task of sequencing the full DNA is divided into manageable
subtasks, so that the original sequence can be reassembled from sequences of length
500.

Reassembling DNA substrings introduces a degree of uncertainty for various posi-
tions in a biosequence. This notion of uncertainness was initially expressed with the
use of “don’t care” characters denoted as “x”. A don’t care symbol has the property of
matching with any symbol in the given alphabet. For example the string p = AC' «C'x
matches the pattern ¢ = Ax DCT'. In some cases scientists determine the appearance
of a symbol in a position of a sequence by assigning a probability of appearance for

91

Proceedings of the Prague Stringology Conference 03

every symbol. In other words a don’t care symbol is replaced by a list of probabilities
of appearance for a set of characters. Such a sequence is called a weighted sequence.
Other immediate applications in molecular biology include: using sequences contain-
ing degenerate bases, IUB codes [IUB|, where a letter can replace several bases (for
example, a B will represent a G, T or C and a H will represent A, T or C); using logo
sequences [SS90| which are more or less related to consensus: either from assembly
or from blocks obtained by a multiple alignment program.

In this paper we present an efficient algorithm for computing all possible repe-
titions of primitive words in a weighted sequence. The structure of the paper is as
follows. In Section 2 we give all the basic definitions used in the rest of the paper, in
Section 3 we present our algorithm while in Section 4 we give a brief time complexity
analysis of the proposed method. Finally in Section 5 we conclude and discuss our
research interest in open problems of the area.

2 Background

A lot of work has been done for identifying the repetitions in a word. In [Cro81],
[Apo83|, [Mai84] and [Sto98|, authors have presented efficient methods that find
occurrences of squares in a string of length n in time O(nlogn) plus the time to report
the detected squares. Moreover in [Kol99a] and [Kol99b| authors presented efficient
algorithms to find maximal repetitions in a word. In the area of computational
biology, algorithms for finding identical repetitions in biosequences are presented in
[Kur99], [Tsu99] and [Mar83|. In this section we will give all the basic definitions
used in the paper.

2.1 Basic Definitions

Let ¥ be a finite alphabet which consists of a set of characters (or symbols). The
cardinality of an alphabet denoted by |¥| expresses the number of distinct characters
in the alphabet. A string or word is a sequence of zero or more characters drawn
from an alphabet. The set of all words over the alphabet X is denoted by ¥*. A
word w of length n is represented by w[l..n] = w[1|w[2]---w[n], where w[i] € ¥ for
1 < i< n,and n = |w| is the length of w. The empty word is the empty sequence (of
zero length) and is denoted by £; we write ¥* = ¥ U {e}. Moreover a word is said
to be primitive if it cannot be written as v® with v € ¥* and e > 2.

A factor f of length p is said to occur at position i in the word w if f = w[i,---i+
p — 1]. In other words f is a substring of length p occurring at position i in word w.

A word has a repetition when it has at least two consecutive equal factors. More
precisely, a repetition in w is defined as a triple (i, p,) so that w[i,---i+p—1]=w[i+
poi+2%xp—1]=---=w[i+(e—1)*p,---i+exp—1]. The integers p and e are
called respectively the period and exponent of the repetition.

In the case that for a given position of a word w we consider the presence of a
set of characters with a given probability of appearance each we define the sense of a
weighted word w, defined as follow:

Definition 1. A weighted word w = $182---8, @S a continuous set of couples
(s,m;(s)), where m;(s) is the probability of having the character s at position i. For
every position 1 < i <n, Nm;(s) = 1.

92

Computing the Repetitions in a Weighted Sequence

For example, if we consider the DNA alphabet ¥ = {A,C G, T} the word w=
[(A,0.5),(C,0.25),(G,0.25),(T,0)] [(A,0),(C,1),(G,0),(T,0)] [(A,1),(C,0),(G,0),(T,0)],

represents a word having three letters: the first one is either A,C,G with respective
probabilities 0.5, 0.25 and 0.25, the second one is always a C, while the third letter
is necessarily an A, since its probability of presence is 1. That means that in a given
biological sequence one of the following words: ACA, CCA, GCA might appear with
probability 0.5, 0.25 and 0.25 each. We observe that the probability of presence of
a word is the cumulative probability which is calculated by multiplying the relative
probabilities of appearance of each character in every position. For the above example
the probability of the word ACA to appear in positions 1 to 3 can be analyzed as
follows: m(ACA) = m(A) xmo(C) xm3(A)=0.5*1*1=0.5. The definition of a weighted
factor can be easily extended.

A weighted sequence has a repetition when it has at least two identical occurrences
of a factor (weighted or not). The probability of appearance of the factor may vary
according to the position it appears. In biological problems scientists are interested in
discovering all the repetitions of all possible words having a probability of appearance
larger than a predefined constant.

2.2 Equivalent Classes of Repetitions

In our methodology, in order to record the repetitions of all possible words we use
a list (L,),>1 of equivalent repetitions of length p on the positions of a weighted
sequence, defined as follows:

Definition 2. Let x be a weighted sequence of length |x|=n; then (i,j) € L, iff
i+p<n,j+p<nandz; - Titp1 = Tj- - Tjpp_1, While m(x;- - xipp_1) > 1/k and
m(wj - Tjppr) = 1/

So, two positions in x are equivalent when the factors of = of length p starting at
i and j respectively are equal although the respective probabilities of appearance can
vary. The positions of appearance of the factors as well as the respective probabilities
are stored in a set of classes CP.

Definition 3. Let v be a weighted sequence of length |x|=n; then the (C%) class
is the ordered list of at least 2 couples (if,m;(f)), which includes all positions of
appearance of the factor f of length p in the weighted sequence. We exclude all couples
with probability less than 1/k .

Moreover we also define a function on the positions of x, which gives for every
position the next position in the same equivalence class.

Definition 4. D, (i) = the least integer k > 0, so that (i,i+ k) € L,. (If there is
no such & the function is not defined).

One can easily check that any list L, is a refinement of L, (L,;; < L,), since
list L,y contains all possible repetitions of length p that can be extended by one
character. Furthermore there clearly exists a smallest integer N, 1 < N < n, so that
Ly > Ly--- > Ly. Thus the computation of the equivalences L, can be done using
the values of L,_1, the respective classes C?~! and a proper choice function f.

Definition 5. A choicefunction f is a function

fACy,---,C.} — {C4,---,Cr}, with the properties: for any C' € {CY,---,C}}
[/(C") € C" and for any C € {C}, -+, C,}C € C' = |C| < |F(C")])

where {C1,---,C.} and {Cy,---,Cy} the equivalence classes of L,y and L, re-
spectively.

93

Proceedings of the Prague Stringology Conference 03

So f associates to each E,_; — class one of its E, — subclasses of maximal size.
Given a choice function f, each L, class f(C") is called a big_ class; the others are
called small classes. By definition, all the L;-classes are small.

Now we define a new sequence (S,),>; of equivalences on the positions of = as
follows:

Definition 6. (i,7) € S, iff for any small class Ly-class C?, i € C? iff j € CP.

Lemma. Forany p > 1, (i,j) € Ly4y iff (4,5) € L, and (i + 1,5+ 1) € S,.

For more information on the proof of the Lemma the reader can refer to [Cro81|.

3 Computing the Repetitions

In this paper we address the problem of computing the set of repetitions in a weighted
biological sequence. More formally the problem can be stated as follows:

Problem Given a weighted sequence X and an integer k find all the repetitions
of all possible words having a probability of appearance larger than 1/k.

. e O L
c ©2020
: OO

Jiojolole===rololo

Figure 1: Graphical approach of the problem.

In a graphical approach the problem can be represented as in the Figure 1. For
each position of the weighted sequence we write down the probability of appearance
of each character of the alphabet. For the DNA alphabet which constitutes of 4
characters we write down 4 respective probabilities. The probability of appearance
of a word is the cumulative probability calculated following the respective directed
path.When the probability is larger than 1/k, the directed path is a schema that can
be extended by one character, in the following step and graphically we search for
a repeated schema. In the above Figure the red directed path has a probability of
appearance larger than 1/2, (k=2) thus we search for such repeated schemas.

Solution. For every character s in the alphabet we define a class C' as the
ordered list of couples (is, m;(s)), which includes all equivalent positions of appearance
of the character s in the weighted sequence. We exclude all couples with probability
less than 1/k. The set of C' classes forms the Ly list for all possible repetitions of
length one. We continue by computing Dy for each position in the sequence.All L-
classes are small. The process is continued by computing all C? classes for p > 2

94

Computing the Repetitions in a Weighted Sequence

and updating L, thus forming D,. The process stops when we reach the mazimal (in
length) repeated words with probability of appearance larger than 1/k.

The above solution uses ideas from the algorithm presented by Crochemore (see
[Cro81]). The major difference is the choice function that we have used in order to
incorporate the notion of probability of appearance in repetitions. A schema of the
algorithm is presented below.

FIND-WEIGHTED REPETITIONS(X,k)
Compute all possible repetitions of any length with probability larger than 1/k
FOR all s € ¥ DO
create the small classes C! of couples (s, m;(s)),
where 7;(s) is the probability of having the character s at position i.
IF 7;(s) < 1/k exclude it from the respective class
Compute for p =1 L, and D,;
WHILE {J small _classes # 0, DO
report the repetitions of period p.
p<+— p+ 1;if p > |z|/2 return repetitions;
L, «— L, N Sy,; update D,;
small _classes <— {indices of small L, — classes}
END FIND-WEIGHTED REPETITIONS

Example Suppose we want to find all repetitions of the weighted sequence: X =
ACTT[(A,0.5),(C,0.5)]TC[(A,0.5),(C,0.3),(T,0.2)]TTT, with probability larger than
1/4. We will illustrate the steps following the above presented algorithm.

1. For all characters s € Spya = {A,C,G, T} create the C'"' classes.
CY = (14,1)(54,0.5)(8,4,0.5).
CL = (20,1)(5¢,0.5)(7e, 1) (8¢, 0.3).
CL = empty.
Ch = (37,1)(47,1)(67,1)(97,1) (107, 1) (117, 1).

2. Define L, class as the union of C'! classes and the values D;.
L,=Cluc,udik.
Dy ={1,1,1,1,1,1,1,1,1,1, 1}.

3. Since U small _classes # 0 we will compute all possible repetitions of length
p > 2, using the lemma we presented in subsection 2.2.
C3r = (5a7,0.5) (8 41,0.5).
Cér = (2cr,1)(5¢1,0.5)(8¢T,0.3).
CZQ"C’ — (4TC’; 0-5)(6T07 1)
C%T — (3TT;]-)(9TT7].)(]_OTT,].)

4. Define L, class as the union of C? classes and the values Ds.
Dy = {not defined, 1, 1, 1, 1, 2, not defined, 1, 1, not defined, not defined}.

5. Following the above procedure we conclude that the repetitions with probability
larger than 1/k are:.
Ly = CéTT = (2CTT7]-)(SCTTa 0-3)

95

Proceedings of the Prague Stringology Conference 03

Theorem The above algorithm computes all repetitions in a weighted sequence
X of length |n)|.

Proof. It is easy to see that the algorithm stops. The length of ; in the algorithm
is bounded by O(|Z|X1). As far as it concerns the values of the list L, for p > 2, are
computed using the Lemma in subsection 2.2 and the values of L,_; list. Each list of
repetitions p + 1 is at most half the size of the list of repetitions of length p.

4 Time Complexity Analysis

The time complexity analysis of our algorithm is based on the combination of the
following two facts:

1. The well known “smaller-half trick” used also in [Cro81|, [Apo83|, [Sto98],
for finding tandem repeats. According to the “smaller-half trick” each list of
repetitions of length p + 1 is at most half the size of the list of repetitions of
length p.

2. The probability of existence of a factor f in a weighted sequence X is the cumu-
lative probability which is calculated by multiplying the relative probabilities
of appearance of each character/symbol in every position. Note that we inter-
ested in repetitions with probability greater than 1/k. It is not difficult to see
that given a position ¢ of x, then there is only a constant number of different
substrings that can occur at position i with probability greater than 1/k. (The
proof follows).

For every weighted sequence w of length n, w[l..n] = w[lJw[2]- - wn], each
position w[i] for 1 <i < n, is the starting position of a weighted factor iff the
respective character s has m(s;) > 1/k. Therefore the maximum probability of
appearance for the rest of the characters in position i is bounded by p = 1—1/k.
Assume that the number of starting positions inside a weighted factor, produced
from position ¢ is [. In order this factor to be interesting its probability of
appearance must be grater than 1/k. This is mathematically formulated as
follows:

P> 1/k — 1 <logy(k).
That means that the number of weighted positions inside a weighted factor is

bounded by a constant and thus the number of different substrings that can
occur at position i with probability greater than 1/k is also a constant number.

Based on the above two facts the time complexity of our algorithm for computing
the set of repetitions in a weighted sequence with probability of appearance larger

than 1/k is O(nlogn).
5 Conclusions

Our future direction is focused on defining the notion of borders for a weighted se-
quence and developing efficient algorithms for computing the covers and the seeds of
weighted sequences.

96

Computing the Repetitions in a Weighted Sequence

Moreover we are studying the same problem using the suffix tree as the fundamen-
tal data structure. The basic idea behind this approach is to incorporate the notion
of probability of appearance in the path labels and in the leaves in the suffix tree of
a weighted sequence [I1i03].

Another potential application of our algorithm is in defining a basis for the re-
peated motifs of a weighted sequence. In our algorithm we create in an exhaustive
way all possible repetitions with probability larger than 1/k. We can use all primitive
repetitions and a set of allowed operations in order to define a basis that efficiently
produces all repeated motifs. As any repeated word can be expressed as an array of
primitive repetitions, it is often desirable to find only primitive repetitions.

References

[Cro81] Crochemore, M.: An Optimal Algorithm for Computing the Repetitions in
a Word. Information Processing Letters, Vol.12 (5), (1981) 244-250.

[Celeral| Celera Genomics: The Genome Sequence of Drosophila melanogaster, Sci-
ence 287, (2000) 2185-2195

[Celera2| Celera Genomics: The Sequence of the Human Genome, Science 291, (2001)
1304-1351.

[TUB] Nomenclature Committee of the International Union of Biochemistry (NC-
IUB). Nomenclature for incompletely specified bases in nucleic acid se-
quences, Eur. J. Biochem. 150(1985) 1-5.

[SS90] Schneider T. D., Stephens R. M.: Sequence Logos: A New Way to Display
Consensus Sequences, Nucleic Acids Res. 18, (1990) 6097-6100.

[Knu77] Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings,
SIAM J. Comput., (6), (1977) 322-350.

[Apo83] Apostolico, A., Preparata, F.P.;: Optimal off-line detection of repetitions
in a string. Theoretical Computer Science, (22), (1983) 297-315.

[Mai84] Main, M.G., Lorentz, R.J.,;: An O(nlogn) algorithm for finding all repeti-
tions in a string. Journal of Algorithms, (5), (1984) 422-432.

[Sto98] Stoye, J., Gusfield, D.,: Simple and flexible detection of contiguous re-
peats using a suffix tree. In proceedings of the 9th Annual Symposium on
Combinatorial Pattern matching (CPM), volume 1448 of Lecture Notes in
Computer Science, (1998) 140-152.

[Kol99a| Kolpakov, R., Kucherov, G.,: Finding maximal repetitions in a word in
linear time. Proceedings of IEEE Foundations of Computer Science, (1999).

[Kol99b| Kolpakov, R., Kucherov, G.,: On maximal repetitions in words. Proceedings
of Foundamentals of Computation Theory, (1999) 374-385.

[Mar83] Martinez, H.,: An Efficient Method for Finding Repeats in Molecular Se-
quences. Nucleic Acid Research, (11), (1983) 4626-4634.

97

Proceedings of the Prague Stringology Conference 03

[Tsu99] Tsunoda, T., Fukagawa, M., Takagi, T.,: Time and memory efficient algo-
rithm for extracting palindromic and repetitive subsequences in nucleic acid
sequences. Pacific Symposium on Biocomputing, (4), (1999) 202-213.

[Kur99] Kurtz, S., Schleiermacher, C.,: REPuter: fast computation of maximal
repetas in complete genomes. Bioinformatics, (15), (1999) 426-427.

[[1i03] Tiopoulos, C., Makris, Ch., Panagis, 1., Perdikuri, K., Theodoridis, E.,
Tsakalidis, A.,: Computing the Repetitions in a Weighted Sequence using

Weighted Suffix Trees. European Conference On Computational Biology
(ECCB 2003), (accepted).

98

Matching Numeric Strings under Noise

Veli Mikinen'*, Gonzalo Navarro®’, and Esko Ukkonen'*

I Department of Computer Science, P.O Box 26 (Teollisuuskatu 23)

FIN-00014 University of Helsinki, Finland.
e-mail: {vmakinen,ukkonen}@cs.helsinki.fi

2 Center for Web Research, Department of Computer Science, University of Chile
Blanco Encalada 2120, Santiago, Chile.
e-mail: gnavarro@dcc.uchile.cl

Abstract. Numeric string is a sequence of symbols from an alphabet ¥ C
U, where U is some numerical universe closed under addition and subtraction.
Given two numeric strings A = ay---a,, and B = by ---b, and a distance
function d(A, B) that gives the score of the best (partial) matching of A and
B, the transposition invariant distance is mingey{d(A + t,B)}, where A+t =
(a1 + t)(az + t)...(am + t). The corresponding matching problem is to find
occurrences j of Ain B where d(A+t, Bj:. ;) is smaller than some given threshold
and Bj_; is a substring of B. In this paper, we give efficient algorithms for
matching numeric strings — with and without transposition invariance — under
noise; we consider distance functions d(A, B) such that symbolsa € Aand b € B
can be matched if |b—a| < §, or the k largest differences |b—a| can be discarded.

Keywords: approximate matching, transposition invariance, (9,7)-matching

1 Introduction

Transposition invariant string matching is the problem of matching two strings when
all the characters of either of them can be “shifted” by some amount ¢. By “shifting”
we mean that the strings are sequences of numbers and we add number ¢ to each
character of one of them.

Interest in transposition invariant string matching problems has recently arisen in
the field of music information retrieval (MIR) [CIR98, LT00, LUO0O|. In music analysis
and retrieval, one often wants to compare two music pieces to test how similar they
are. A reasonable way of modeling music is to consider the pitches and durations
of the notes. Often the durations are omitted, too, since it is usually possible to
recognize the melody from a sequence of pitches. Hence, our focus is on distance
measures for pitch sequences (of monophonic music) and their computation.

We studied the computation of edit distances under transposition invariance in
[MNUO03]. We noticed that sparse dynamic programming is useful in transposition

*Supported by the Academy of Finland under grant 22584.
tSupported by Millenium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile.

99

Proceedings of the Prague Stringology Conference 03

invariant matching, and obtained e.g. an O(mnloglogm) algorithm for transposition
invariant longest common subsequence problem.

In this paper, we complement our earlier results by studying “non-gapped” distance
measures for numeric strings. That is, we study measures where the ith symbol of
the source is matched with the ith symbol of the target. To allow some noise in the
values to be compared, we study measures that either allow matching symbols that
approximately match (i.e. values are within § distance apart), or allow discarding some
amount (k) of largest differences. We show how to compute the transposition invariant
Hamming distance under noise in O(mlogm) time, and transposition invariant sum of
absolute differences (SAD) and maximum absolute difference (MAD) distances under
noise in O(m + klog k) time, where m is the length of both strings to be compared.

For the corresponding search problems we only give the trivial algorithm that
repeats the distance computation at each of the n text positions. However, the upper
bound obtained this way for SAD distance is in fact the same as what is known without
transposition invariance (see [Mut95], “weighted k-mismatches problem”). We also
consider the combined search problem with SAD and MAD distances, known as the
(0, v)—matching problem; we give an O(mn) algorithm for the transposition invariant
case of this problem. Again the best known upper bound for (4, v)—matching without
transpositions is O(mn) (because of the SAD distance).

In addition to the distance-specific results we introduce a more general approach to
tackle with noise; many distance measures that allow matching two characters a and b
for free when |b—a| < § can be computed easily once the set of possible matches |[M°| =
IM?|(A, B) = {(5,7) | |b; — a;] < &,a; € A,b; € B} has been computed. We show
how to construct this set in O(mlog |S] + nlog|X| + |M? | min(log(d + 2), loglogm))
time, where ¥ is the alphabet of the two strings to be compared. After the set M’ is
constructed, Hamming and MAD distances and (4, y)-matching under noise can be
computed in time linear in the size of the set.

In the transposition invariant case, the construction of the sets of possible matches
for all relevant transpositions is useful as well (e.g. for edit distance under noise). We
show how to do this in linear time in the overall size of these sets (plus some additive
factors of m,n, and log|X|).

Some of the results of this paper appear in a technical report [MNUO02].

2 Definitions

Let ¥ be a finite numerical alphabet, which is a subset of some universe U that is
closed under addition and subtraction. Let A = ajas...a,, and B = biby...b, be
two numeric strings over ¥*, i.e. the symbols (characters) a;,b; of the two strings
are in X forall 1 <i < m,1 <j <n. We will assume w.l.o.g. that m < n. String
A'is a substring of Aif A" = A; ; = a;...a; for some 1 < i < j < m. String A"
is a subsequence of A, denoted by A" C A, if A" = a;,a,, ... i 4, for some indexes
1< <i2<"'<i|A//| <m.

When m = n, the following distances can be defined. The Hamming distance
dy between strings A and B is dg(A,B) = m — [{(4,7) | a; = b;,1 < i < m}|.
The mazimum absolute difference distance dyap between A and B is dyap(A, B) =
maxi<j<m{|a; — b;i| | 1 < i < m}. The sum of absolute differences distance dsap
between A and B is dsap(A4,B) = >, |a; — b;|. Note that dyap is in fact the

100

Matching Numeric Strings under Noise

maximum metric (l,, norm) and dsap the Manhattan metric (I norm) when we
interprete A and B as points in m dimensional Euclidean space.

String A is a transposed copy of B (denoted by A = B) if B = (a; + t)(as +
t)---(ay, +t) = A+t for some t € U= The transposition invariant versions of
the above distance measures d, where x € {H, MAD,SAD} can now be stated as
d' (A, B) = mingey d,(A + t, B).

So far our definitions allow either only exact (transposition invariant) matches
between some characters (dY) or approximate match between all characters (di\p
and di,p). To relax these conditions, we introduce a constant § > 0. We write a =° b
when |a — b] < 6, a,b € ©. By replacing the equality a = b with @ =° b in the
definition of d};, we get a more error-tolerant version of the distance; let us denote
the new distance d}{"s. Similarly, by introducing another constant x > 0, we can define
distances dyfap, dénp, such that the « largest differences |a; — b;| are discarded.

The approximate string matching problem, based on the above distance functions,
is to find the minimum distance between A and any substring of B. In this case we
call A the pattern and denote it P_,, = pip2- - pm, and call B the text and denote
it T, = tity- - - t,, and usually assume that m << n. A closely related problem is
the thresholded search problem where, given P, T, and a threshold value £ > 0, one
wants to find all the text positions j such that d(P, T} ;) < k for some j'. We will
refer collectively to these two closely related problems as the search problem.

Notice that searching under Hamming distance is known as the k-mismatches
problem [Abr87, ALP01, BYGY94, BYP96, GG86, LB86|. Also, a search prob-
lem related to distances dyap and dsap is known as the (¢, y)-matching problem
[CCIMP99, CILPO1, CILPRO2| in which occurrences j are searched for such that
dvian(P, Ty ;) < 6 and dsap (P, Tjr.. ;) < 7.

Our complexity results are different depending on the form of the alphabet 3. We
will distinguish two cases. An integer alphabet is any alphabet ¥ C Z. For integer
alphabets, |X| will denote max(X) — min(X) + 1. A real alphabet will be any other
Y C R, and then |X| denotes the cardinality of ¥. For any string A = a4 ... a,,, we
will call ¥4 = {a; | 1 <i < m} the alphabet of A.

Last, we will need some orders for a set of pairs P = {(7,)}, where a; € A and
b; € B. The row order of P is such that P is sorted first by 7 (in increasing order)
and secondary by j (in increasing order). In column order P is sorted first by j and
secondary by i. In diagonal order P is sorted first by 7 — 4 and secondary by 1.

3 Matching under Noise without Transposition In-
variance

We will now present a general and efficient method that can be used with little
modifications for solving both the k—mismatches problem and the (d,~)-matching
problem. The time complexities will depend on the number of possible matches
between pattern and text characters. A similar approach will also be used later in
the transposition invariant case.

Let M? (P, T) = M = {(i,5) | |pi —t;| < &} be the set of possible matches. Let
us assume that we are given M’ in diagonal order. By one traversal over M’ one can

101

Proceedings of the Prague Stringology Conference 03

easily compute values S(d) and N(d) for each diagonal d, where S(d) = > {|p; — t;| |
(Zaj) S Méaj —i= d} and N(d) = |{(Zaj) | (Zvj) S Mgvd =] - Z}|

Given the arrays S(0...n—m) and N(0...n—m), one can solve various problems.
For example, all values d such that S(d) <+ and N(d) = m, correspond to a (d,)
match starting at position d + 1 of the text. Similarly, if N(d) > m — k when
computed for M, then there is an occurrence starting at position d + 1 of the text
for the k—mismatches problem.

Thus we have an O(]M?| + n) algorithm for several problems, if we just manage
to construct MP in linear time in its size.

Theorem 1 Given numeric strings P (pattern) and T (text) of lengths m and n
(m << n), the set of possible matches M (P,T) = {(i,j) | |pi — t;] < &} can be
constructed in time O(|X| + m + n + |M? | min(log(d + 2),loglogm)) on an integer
alphabet, and in time O(mlog || +nlog ||+ |M? | min(log(d+2), loglogm)) on a real
alphabet. Within the same bounds, the set M? can be constructed in row, column,
or diagonal order.

Proof. Let us first consider the integer alphabet with 6 = 0. We construct an array
L(1...]X]), where each entry L(c) stores an increasing list of all positions of P, where
character ¢ occurs. Array L can obviously be constructed by one traversal over P
in O(|X| + m) time. The set M can then be constructed in column order in one
traversal over T' by concatenating lists L(t;), L(t3),...L(t,). The running time is
O(m+n+ |Z] + [M°]).

For 6 > 0, we construct the array L as above but the traversal over T is now
more complicated. To construct the column j of M® we need to merge the 25 + 1 lists
L(t; —§),...,L(t; + 0) into a single list. This merging can be done using a priority
queue P as follows. Add the first element, say 4, of each list L(c¢) into P by using i
as the priority and c¢ as the key. Then repeat the following until all lists are empty:
Take the element with minimum priority, say (¢, c), from P, and add the next element
from list L(c) into P. Column j of M? is constructed by inserting pair (i, j) at the
end of M’ at each step. The operations on a priority queue can be supported in
O(log(d + 2)) time by using some standard implementation.

Since the priority values that need to be stored are in the range [1,m], we can
implement the priority queue more efficiently using a data structure of van Emde
Boas [VEB77]. Tt supports, among other operations, retrieving the smallest value,
inserting a new value, and deleting the smallest value, in O(loglogm) amortized time
on values in the range [1,m]. We can store the values i using this data structure.
Then we can repeat retrieving and deleting the smallest value ¢ until the structure is
empty, adding (4,7) at the end of M at each step. Thus the claimed bound on the
integer alphabet follows.

When the alphabet is real, we can use exactly the same procedure, expect that
the array L needs to be replaced by a binary search tree. It takes O(mlog|X|) time
to construct this search tree. For each character of T" we need to do a range query
on this tree to retrieve the lists of positions that correspond to characters in range
[t; — 6,t; + 6]. This will take O(nlog|X|) time. Merging can be done similarly as in
the case of an integer alphabet, so the claimed bound follows.

Finally, the set is in column order after the above construction. Other orders can
be constructed easily from the column order in time O(m + n + [M’|). O

102

Matching Numeric Strings under Noise

The above theorem gives e.g. an O(|Z| + m + n + |[M°|) time solution for the
k—mismatches problem on an integer alphabet. This can be ©(mn), but in the ex-
pected case it is much smaller. An expected bound ©(mn/|X]) is easy to prove; see
e.g. [BYP96]|, where the above algorithm was originally proposed for the k-mismatches
problem.

4 Matching under Noise and Transposition Invari-
ance

For this section, let T = {t; = b; —a; | 1 <i < m} = {t;} be the set of transpositions
that make some characters a; and b; match. Note that the optimal transposition does
not need, in principle, to be included in T, but we will show that this is the case for
di and dgip. Note also that |T| = O(||) on an integer alphabet and |T| = O(m) in
any case.

4.1 Hamming Distance

Let A =ay...a, and B = b ...b,,, where a;,b; € X for 1 < i < m. We consider
the computation of transposition invariant Hamming distance d}{"S(A, B). That is, we
search for a transposition ¢ maximizing the size of set {i | |b;—(a;+t)| < 6,1 <i < m}.

Theorem 2 Given two numeric strings A and B, both of length m, there is an
algorithm for computing distance di’ (A4, B) in O(|S|4m) time on an integer alphabet,
or in O(mlogm) time on a general alphabet.

Proof. 1t is clear that the Hamming distance is minimized for the transposition in T
that makes the maximum number of characters match. What follows is a simple voting
scheme, where the most voted transposition wins. Since we allow a tolerance 0 in the
matched values, t; votes for range [t; —0,1; +¢]. Construct sets S = {(¢; — ¢, “open”) |
1 <i<m}and F = {(t; + d,“close”) | 1 <i < m}. Sort SU F into a list I using
order

(') <" (z,y) if o' <zor (2 =2andy <y),

where “open”<“close”. Initialize variable count = 0. Do for i = 1 to |I] if I(i) =
(x,“open”) then count = count+1 else count = count—1. Let maxcount be the largest
value of count in the above algorithm. Then clearly dtﬁ‘s(A, B) = m —maxcount, and
the optimal transposition is any value in the range [z;, x;11], where I(i) = (x;, %), for
any 7 where maxcount is reached. The complexity of the algorithm is O(mlogm).
Sorting can be replaced by array lookup when ¥ is an integer alphabet, which gives
the bound O(|X] 4+ m) for that case. O

4.2 Sum of Absolute Differences Distance

We shall first look at the basic case where xk = 0. That is, we search for a transposition
t minimizing dsap(A + ¢, B) = >, |b; — (a; + t)].

103

Proceedings of the Prague Stringology Conference 03

Theorem 3 Given two numeric strings A and B, both of length m, there is an algo-
rithm for computing distance di, (4, B) in O(m) time on both integer and general
alphabets.

Proof. Let us consider T as a multiset, where the same element can repeat multiple
times. Then |T| = m, since there is one element in T for each b; —a;, where 1 <i < m.
Sorting T in ascending order gives a sequence ¢;, < t;, < ... <t . Let {,, be the
optimal transposition. We will prove by induction that ¢, = ¢;, , ., that is, the
optimal transposition is the median transposition in T.

To start the induction we claim that ¢;, < t,,; < %;,. To see this, notice that
dSAD(A+ (til —6), B) = dSAD(A—l-til, B) +me, and dSAD(A+ (tim —|—6), B) = dSAD(A+
ti. , B) + me, for any € > 0.

Our induction assumption is that #; < f, < t; .., for some k. We
may assume that t;, < #; _,, since otherwise the result follows anyway. First
notice that, independently of the value of %,, in the above interval, the cost
SF by, — (a” + topt)| + Xy [0, — (ay, —|— topt)| will be the same. Then no-
tice that zl k+1 |bu - (aiz + tik+1 -)| - zl k+1 |b’Ll - (aiz + tik+1)| + (m - Zk)€7 and

Sk by, — (ag, + i, +€)| = X7k b, — (ai, +ti,)| + (m —2k)e. This completes
the induction, since we showed that t;, <, <t; .

The consequence is that ¢;, <1, <t; . for maximal k such that ¢; <¢t; .,
that is, kK = [m/2]. When m is odd, it holds m—k-+1 = k and there is only one optimal
transposition, t; When m is even, one easily notices that all transpositions .,

ifm/2] "
bipyn < Topt < ti are equally good. Finally, the median can be found in linear

tm /2417

time [BFPRT72). 0

To get a fast algorithm for dy%;, when x > 0 largest differences can be discarded,
we need a lemma that shows that the distance computation can be incrementalized

from one transposition to another. Let ¢;,,%;,,...,%;, be the sorted sequence of T.

Lemma 4 Once values S; and L; such that dsap(A +¢;,,B) = S; + Lj, S; =
Z;-,_:ll ti; —ti,, and L; = 37,1 t;, — t;;, are computed, the values of S;; and
L;y can be computed in O(1) time.

Proof. Value S;;; can be written as
J
Sjt1 = Z bij =ty = Z bijp = by +ti; — 1y, =](tij+1 - tij) +5j.
i'=1
Similar rearranging gives
Lj+1 = Z ti],, — ti].+1 = (m —])(tlj — tij+1) + Lj.

Thus both values can be computed in constant time given the values of S; and L;
(and t;,,,). O

Theorem 5 Given two numeric strings A and B both of length m, there is an algo-
rithm for computing distance dghp (A, B) in O(m + klog k) time on both integer and
general alphabets. On integer alphabets, time O(|X| 4+ m + k) can also be obtained.

104

Matching Numeric Strings under Noise

Proof. Consider the sorted sequence t;,,t;,,...,%;, as in the proof of Theorem 3.
Clearly the candidates for the outliers (largest differences) are M (k' k") =
{tivs - s tigoti, _unyys---ti, } for some k' + k" = k. The naive algorithm is then to

compute the distance in all these k41 cases: Compute the median of T\ M (k’, k") for
each k' + k" = k and choose the minimum distance induced by these medians. These
k + 1 medians can be found as follows: First select values .., and t,,_, using the
linear time selection algorithm [BFPRT72|. Then collect and sort all values smaller
than ¢,y or larger than t,,_,. After selecting the median my, of T \ M(0,) and
myo of T\ M(k,0), one can collect all medians mys p» of T\ M (k', k") for k' + k" = &,
since the my p» values are those between mg , and m, . The x4 1 medians can thus
be collected and sorted in O(m + rlog k) time, and the additional time to compute
the distances for all of these x + 1 medians is O(km). However, the computation of
distances given by consecutive transpositions can be incrementalized using Lemma 4.
First one has to compute the distance for the median of T\ M (0, k), dsap(A-+my ., B),
and then continue incrementally from dsap(A+my g7, B) to dsap(A+my 11671, B),
until we reach the median of T \ M (k,0), dsan(A + my, B) (this is where we need
the medians sorted). Since the set of outliers changes when moving from one median
to another, one has to add value #;, —;, to Sy and value #; —1; , to Ly, where
Sm and L, are the values given by Lemma 4 (here we need the outliers sorted). The
time complexity of the whole algorithm is O(m + klog). On an integer alphabet,
sorting can be replaced by array lookup to yield O(|X| +m + k). O

Tp00

4.3 Maximum Absolute Difference Distance

We consider now how dyf\p, can be computed. In case x = 0, we search for a trans-
position ¢ minimizing dyiap(A + ¢, B) = max", |b; — (a; + t)|. In case k > 0, we are
allowed to discard the k largest differences |b; — (a; + t)|.

Theorem 6 Given two numeric strings A and B both of length m, there is an algo-
rithm for computing distance dyfy (A4, B) in O(m + klog k) time on both integer and
general alphabets. On integer alphabets, time O(|Z| + m + k) can also be obtained.

Proof. When k = 0 the distance is clearly di; (A, B) = (max;{t;} — min;{¢;})/2,
and the transposition giving this distance is (max;{t;} + min;{¢;})/2. When x > 0,
consider again the sorted sequence t;,,t;,,...,t; asin the proof of Theorem 3. Again
the k outliers are M (k', k") for some k' + k" = k in the optimal transposition. The
optimal transposition is then the value (¢; _,, +t;,,)/2 that minimizes (¢; _,,

tiw,,)/2, where &' +£" = k. The minimum value can be computed in O(x) time, once
the k + 1 smallest and largest ¢; values are sorted. These values can be selected in
O(m) time and then sorted in O(klog k) time, or O(|X| 4 k) on integer alphabets. [J

4.4 Searching

Up to now we have considered distance computation. Any algorithm to compute the
distance between A and B can be trivially converted into a search algorithm for P in
T by comparing P against every text window of the form T};_,, 11 ;. Actually, we do
not have any search algorithm better than this.

105

Proceedings of the Prague Stringology Conference 03

Lemma 7 For distances d’, di%,, and dify, if the distance can be evaluated in

O(f(m)) time, then the corresponding search problem can be solved in O(f(m)n)
time.

On the other hand, it is not immediate how to perform transposition invariant
(0, v)-matching. We show how the above results can be applied to this case.

Note that one can find in O(mn) time all the occurrences {j} such that
diian (P Ti—my1..5) < 0, and all the occurrences {j'} where di,p (P, Tjr—my1..51) < 7.
The (9, v)-matches are a subset of {7} N {;j'}, but identity does not necessarily hold.
This is because the optimal transposition can be different for di;,p, and d,p-

What we need to do is to verify this set of possible occurrences {j} N {j'}. This
can be done as follows. For each possible match j” € {j} N {j'} one can compute
limits s and [such that dyan(P +t, Tjr_mi1.jv) < 6 for all s < ¢ < [: If the distance
d= dMAD(P + topta T’j”—m-i-l...j”) is given, then s = topt — (6 — d) and [= topt + ((S - d)
On the other hand, note that dsap (P +t, Tjr._ jn4m—1), as a function of ¢, is decreasing
until ¢ reaches the median of the transpositions, and then increasing. Thus, depending
on the relative order of the median of the transpositions with respect to s and [, we
only need to compute distance dsap(P +t,Tj#_m11..#) in one of them (¢t = s, t =1,
or t = trm/91). This gives the minimum value for dsap in the range [s,[]. If this value
is < 7, we have found a match.

One can see that using the results of Theorems 3 and 6 with x = 0, the above
procedures can be implemented so that only O(m) time at each possible occurrence
is needed. There are at most n occurrences to test.

Theorem 8 Given two numeric strings P (pattern) and T (text) of lengths m and
n, there is an algorithm for finding all the transposition invariant (d,y)-occurrences
of P in T in O(mn) time on both integer and general alphabets.

4.5 Set of Possible Matches Revisited

Recall that an edit distance between two strings A and B is the cost of single sym-
bol insertions, deletions, and substitutions to convert A into B. The unit cost or
Levenshtein distance [Lev66| assigns cost 1 to each operation. If substitutions are
forbidden and other operations have cost 1 the resulting distance is related to the
longest common subsequence (LCS) of A and B. See e.g. [MNUO03] and the references
therein (like [Sel80]) for an introduction and formal definition of these edit distances.

For the sequel, it is only necessary to know the fact [MNUO03| that the above edit
distances can be computed efficiently once the set of possible matches M = {(i, j) |
a; = bj,a; € Ab; € B} is given. Since we gave an efficient algorithm in Sect. 3
for constructing M° = {(4,5) | |b; — a;| < 0} we immediatedly have algorithms for
edit distances under noise; just use the sparse dynamic programming algorithms of
[MNUO03]| (or others’ cited therein) on M instead of on M. The effect of parameter &
is that two symbols can be matched if their values are close enough. For example, the
method sketched above can be used to compute the longest approrimately common
subsequence of two numeric strings.

Now we focus on the transposition invariant edit distances under noise. Let us
denote the size of M° as r = r(A, B,§) = |[M’ (4, B)|. Let us redefine T in this section
to be the set of those transpositions that make some characters between A and B

106

Matching Numeric Strings under Noise

exactly § apart, that is T = {b; —a; £ | 1 <i <m,1 < j <n}. The match set
corresponding to a transposition ¢ € T is MJ = {(i, j) | |b; — a; —t| < d}. Notice that
there is always some ¢t € T whose match set M{ is equal to M2, where t' € U. For
most edit distances (like Levensthtein distance or LCS) same match set means that
the distance will also be the same.

As noticed in [MNUO3] (in the case 6 = 0) one could compute the above edit
distances by running the basic dynamic programming algorithms [Sel80] over all pairs
(A+t, B), where t € T. In case § > 0, one would just interpret symbols a be b the same
when |b—a| < §. One can obtain a more efficient method using advanced algorithms
at each transposition. Let us first assume that 6 = 0 and let r(A4, B) = r(A, B, 0).
The following connection was shown in [MNUO03|:

Lemma 9 ([MNUO03]) If an algorithm computes a distance d(A4,B) in
O(r(A, B)f(m,n)) time, then there is an algorithm that computes the transposition
invariant distance d*(A, B) = minger d(A + ¢, B) in O(mnf(m,n)) time.

As a consequence of the above lemma, we have O(mn polylog(n)) time algorithms
for different edit distances, since we manage to construct the match sets for all trans-
positions in O(mn polylog(n)) time [MNUO03]. In our noisy case, the above lemma
extends to giving an O(X,er [M2|f(m, n)) algorithm, which equals O (mn polylog(n))
when 6 = 0. To achieve total running time O(X,cr MU |f(m,n)), we still need to
show that the sets M can be constructed in linear time in their overall size.

Theorem 10 The match sets M = {(i,j) | a; +t = b;}, each sorted in the column
order, for all transpositions ¢ € T, can be constructed in time O(|X|+dmn) on an inte-
ger alphabet, and in time O(mlog|X 4| +nlog |Xp| + |2 4||Xp|log(min(|X 4], |X5])) +
et IM2]) on a real alphabet.

Proof. (We extend the proof given in [MNUO03| for the case § = 0.) On an integer
alphabet we can proceed naively to obtain O(|X| 4+ mn) time using array lookup to
get the transposition where each pair (i,) has to be added. For § > 0 each pair (4, j)
is added to entries from b; —a; — ¢ to b; — a; + 0, in O(|X| + dmn) time.

The case of real alphabets is solved as follows. Let us first consider the case § = 0.
Create a balanced tree 74 where every character a = a; of A is inserted, maintaining
for each such a € ¥4 a list £, of the positions ¢ of A, in increasing order, such that
a = a;. Do the same for B and Tg. This costs O(mlog|¥Xa|+nlog|X5]). Now, create
an array R(1...|X4||Xp|), where each R(k) stores the subset of the match set M,
(in column order), where ¢t = b — a, b; = b, and a; = a for all (i,j) € R(k). There is
an entry in R for each possible pair (a,b), where a € ¥4, b € ¥p. Clearly R can be
constructed in O(mn) time once Ty, Tp, and the associated lists £ are given. How-
ever, many pairs can produce the same transposition, thus we have to (i) sort R based
on values t; and (ii) merge the partial match sets that correspond to the same trans-
position. Phase (i) can be implemented to run in O(|X4]|Xg|log(min(|X4], |X5])))
time; consider w.l.o.g. that | 4| < [¥g]|. For fixed a € ¥4, we can get the |Yp| trans-
positions b — a, b € Yp, in increasing order by a depth-first search on 7z. Thus we
have |X,4]| lists, each containing |Yp| transpositions already in order. Merging these
lists (using standard techniques) takes O(|X4||Xp|log|X4|) time. Phase (ii) can be
implemented to run in O(mn) time; we can traverse through B and for each b; add a

107

Proceedings of the Prague Stringology Conference 03

new column to each My, where b; —a =%, a € ¥ 4. The correct set M; can be found
in constant time since we can maintain suitable pointers when sorting R in phase (i).

Finally, let us consider the case where § > 0. As discussed earlier, each pair
(a,b) produces two relevant transpositions, b — a — § and b — a + §. We proceed as
before until array R is constructed and sorted. Consider sliding a window of length
20 over the transpositions t; in R. Let the middle point of current window be at
t. Clearly, the pairs that are included in the current window produce the whole
match set for transposition ¢. That is, partial match sets R(l), R(I + 1),..., R(r)
are merged into match set M?, where ¢, = b; — a; > t — § for (all) (4,5) € R(I),
t, = by —ay < t+6 for (all) (,5') € R(r), and [I, r] is maximal range of R where this
holds. The match sets change only when the middle points of the sliding window are
fromset T={b—a+d|a € Xy,be€ Xp}. We can construct this set in O(|34||X5])
time. After sorting it, we can slide the window of length 24 stopping at each middle
point ¢+ € T, and construct each match set M? by merging the match sets in the
entries of R that are covered by the current window.

What is left is to consider how the merging can be done efficiently. Notice that the
match sets corresponding to consecutive transpositions share a lot in common; the
merging does not have to be done by brute force. We have two cases depending on
whether the consecutive match sets differ (i) only by one entry of R, or (ii) by several
entries. In case (i), the range [[,7] of R is changed either to [l + 1,r] or to [I,r + 1].
Both situations can be handled by one traversal over match set corresponding to [l, r]
and in the latter case also over R(r + 1). In case (ii), the range [l,] of R is changed
either to [l + k,r] or to [, r + k] for some k (by definition both ranges can not change
at the same time). Let us consider the latter situation, since the first is analogous. It
follows that ¢, = - -+ = t, 1, since otherwise there would be a relevant transposition
tror — 0, for some 1 < k' < k, in between ¢, — ¢ and t,,, — d, which conflicts the fact
that we are moving from one relevant transposition to the next. What follows is that
we can preprocess R just like in the case when 0 = 0, merging consecutive entries
of R having exactly the same transposition in O(mn) time. After this is done, case
(ii) can be handled just like case (i). The time complexity of this merging phase is
bounded by 3er [M?|. O

Notice that Y,cr [M¢| < dmn on an integer alphabet. So the bound on a real
alphabet is analogous to the bound on an integer alphabet.

5 Concluding Remarks

The motivation to study transposition invariant distances comes from music infor-
mation retrieval. However, there are also other applications where these distance
measures are useful. For example, in image comparison one could use the trans-
position invariant SAD distance to search for the occurrences of a small template
inside a large image. With gray-level images the search would then be “lighting in-
variant”. Combining other invariances, such as rotation or scaling invariance, with
transposition invariance in a search algorithm, is a major challenge.

108

Matching Numeric Strings under Noise

References

[Abr87]

[ALPO1]

[BYGO4]

[BYP96]

[BFPRT72

[CCTMP99]

[CIR9S]

[CILPO1]

[CILPR02]

(GGS6|

[LTOO]

[LUOO]

[Lev66]

K. Abrahamson. Generalized string matching. SIAM J. Computing,
16(6):1039-1051, 1987.

A. Amir, M. Lewenstein, and E. Porat. Approximate Subset Matching
with Don’t Cares. In Proc. 12th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’01), pp. 279-288, 2001.

R. Baeza-Yates and G. Gonnet. Fast string matching with mismatches.
Information and Computation, 108(2):187-199, 1994.

R. Baeza-Yates and C. Perleberg. Fast and Practical Approximate
String Matching. Information Processing Letters, 59:21-27, 1996.

M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time bounds
for selection. J. Computer and System Sciences, 7:448-461, 1972.

E. Cambouropoulos, M. Crochemore, C.S. Tliopoulos, .. Mouchard, and
Yoan J. Pinzon. Algorithms for computing approximate repetitions in
musical sequences. In Proc. 10th Australian Workshop on Combinato-
rial Algorithms, AWOCA’99, R. Raman and J. Simpson, eds., Curtin
University of Technology, Perth, Western Australia, pp. 129-144, 1999.

T. Crawford, C.S. Iliopoulos, and R. Raman. String matching tech-
niques for musical similarity and melodic recognition. Computing in
Musicology 11:71-100, 1998.

M. Crochemore, C.S. Tliopoulos, T. Lecroq, and Y.J. Pinzén. Approx-
imate string matching in musical sequences. In Proc. Prague Stringoly
Club (PSC 2001), M. Baliik and M. Simanek, eds, Czech Technical
University of Prague, pp. 26-36, DC-2001-06, 2001.

M. Crochemore, C.S. Tliopoulos, T. Lecroq, W. Plandowski, and W.
Rytter. Three Heuristics for é—Matching: §-BM Algorithms. In
Proc. 13th Annual Symposium on Combinatorial Pattern Matching
(CPM’02), Springer-Verlag LNCS 2373, pp. 178-189, 2002.

Z. Galil and R. Giancarlo. Improved string matching with k mismatches.
SIGACT News, 17:52-54, 1986.

K. Lemstrom and J. Tarhio. Searching monophonic patterns within
polyphonic sources. In Proc. RIAO 2000, pp. 1261-1279 (vol 2), 2000.

K. Lemstrom and E. Ukkonen. Including interval encoding into edit
distance based music comparison and retrieval. In Proc. AISB 2000,
pp. 53-60, 2000.

V. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady 6:707-710, 1966.

109

Proceedings of the Prague Stringology Conference 03

[LBS6]|

[Mut95]

[MNU02|

[MNUO03]

[Sel80]

[VEB77]

G. Landau and U. Vishkin. Efficient string matching with £ mismatches.
Theoretical Computer Science, 43:239-249, 1986.

S. Muthukrishnan. New results and open problems related to non-

standard stringology. In Proc. 6th Annual Symposium on Combinatorial
Pattern Matching (CPM’95), LNCS 937, pp. 298-317, 1995.

V. Mikinen, G. Navarro, and E. Ukkonen. Algorithms for Transposition
Invariant String Matching. TR/DCC-2002-5, Dept. of CS, Univ. Chile,
July 2002,

“ftp:/ /ftp.dcc.uchile.cl/pub/users/gnavarro/ti_matching.ps.gz”

V. Mékinen, G. Navarro and E. Ukkonen. Algorithms for Transposition
Invariant String Matching (Extended Abstract). In Proc. 20th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS
2003), Springer-Verlag LNCS 2607, pp. 191-202, Berlin, February, 2003.

P. Sellers. The theory and computation of evolutionary distances: Pat-
tern recognition. J. of Algorithms, 1(4):359-373, 1980.

P. van Emde Boas. Preserving order in a forest in less than logarithmic
time and linear space. Inf. Proc. Letters 6(3):80-82, 1977.

110

Operation L-INSERT on Factor Automaton*®

Bortivoj Melichar and Milan Simanek

Department of Computer Science & Engineering
Faculty of Electrical Engineering
Czech Technical University Prague

e-mail: melichar@fel.cvut.cz, simanek@fel.cvut.cz

Abstract. The factor automaton is used for time-optimal searching for sub-
strings in text. In general, if the text is changed the new factor automaton has
to be constructed. When the text change is simple enough we can change the
original factor automaton to reflect the changes of the text and save the time of
the new factor automaton construction.

This paper deals with operation L-INSERT and describes the algorithm modi-
fying the factor automaton when a new symbol is prepended to the text. This
algorithm can be also used for on-line backward construction of factor automa-
ton.

Keywords: factor automaton, DAWG, operation on factor automaton, con-
struction of factor automaton, finite automaton.

1 Introduction

The factor automaton is a finite automaton accepting the set of all factors (substrings)
of the given text (string) 7. The factor automaton can be constructed for arbitrary
text by one of the common construction algorithms. The time complexity of the
construction is linear to the size of the text 7', while pattern matching for pattern P
is linear to the size of the pattern P and is independent of the size of text T". So, in
the most common case the factor automaton is once constructed and many time used
for pattern matching. However, when we change the text 7T the factor automaton
must be dropped and new factor automaton has to be constructed.

If the changes in the text are simple enough then we can find an algorithm mod-
ifying the original factor automaton according text 7. The time complexity of this
algorithm is often better then the complete construction of the new factor automaton
for the changed text.

A nice example of such algorithm is the APPEND algorithm described in [1, Chap-
ter 6.3], which can modify given factor automaton when a new symbol is appended to
the text 7. The authors use this algorithm as a part of their on-line factor automa-
ton construction algorithm for text T" = ¢ty - - -t,: they start with one-node factor

*This research has been partialy supported by the Ministry of Education, Youth, and Sports
of the Czech Republic under research program No. J04/98:212300014 (Research in the area of
information technologies and cummunications) and by Grant Agency of Czech Republic grant No.
201/01/1433.

111

Proceedings of the Prague Stringology Conference 03

automaton for empty text ¢ and compute successively factor automata for texts ¢,
tity, titots, « -+, tite - ty.

Another known factor automaton modifying algorithm is the L-DELETE algo-
rithm [2]. It can make desired changes to the factor automaton when the text 7 is
reduced by deleting the leftmost symbol. The L-DELETE algorithm can be used in
conjunction with the APPEND algorithm to implement fast substring matching in
sliding window data compression method.

This paper describes an L-INSERT algorithm modifying the factor automaton
when the text T is prepended by a new symbol. Like the APPEND algorithm,
this algorithm can also be used for the construction of the factor automaton. The
well-known construction using operation APPEND creates the factor automaton by
appending symbols of the text T from left to right. On the contrary, the construction
based on L-INSERT creates the factor automaton starting with the rightmost symbol
to the left.

2 Basic Definitions

The factor automaton for text 7' is defined as a finite automaton M accepting the
language L(M) = Fac(T) of all factors of T. There is an infinite number of such
automata, hence we select one with very regular structure of its transition diagram
(Figure 1). All its states are both initial and final.

Figure 1: Canonical nondeterministic factor automaton (CNFA)

Definition 2.1 — Canonical nondeterministic factor automaton (CNFA)
Canonical nondeterministic factor automaton CNFA for text T = tytals---1, is a
nondeterministic finite automaton M = (Q, A, d, I, F) which satisfies:

1. Q - {%:‘ha‘ha o qn}

q; Vi<n,a=t
2.V, € Q,ac A: §(g;,a) = { é) = in other caseSJrl

3.1=Q
4. F=Q

We cannot directly use CNFA because of a nondeterminism. Each nondetermin-
istic finite automaton can be transformed to deterministic one accepting the same
language. The transformation can be done by subset construction [3]. We use the
variant of the transformation which does not insert inaccesible states into the resulting
DFA [4, algorithm 3.6] and we denote it as the standard determinization method.

The standard determinization method is based on the following state-sets con-
struction: For each nondeterministic finite automaton M = (@, A,d,I,F) we can

112

Operation L-INSERT on Factor Automaton

~ A

find a deterministic finite automaton M = (Q,A, d,qo, F') accepting the same lan-
guage satisfying the following conditions:

e Q CP(Q) such that Q = {¢: § = 6*(I,w);w € A*}

° 5isamapping5:§2
Ve Q,aeA: 6

X A — Q
((ja (Z) - qutj 5((]7 Cl),

e GHeEQ Go=1,
e FCQ F={GeQ:GNnF#0}.

We use the hat accent to denote deterministic automaton, its states and transition
function. States of CDFA are sets of CNFA. Note, that that CDFA contains only
reachable states.

Definition 2.2 — Canonical deterministic factor automaton (CDFA)
Canonical deterministic factor automaton CDFA for text T is a deterministic au-
tomaton given as the result of the standard determinization of the canonical nonde-
terministic factor automaton for the same text 7'.

The L-INSERT algorithm modifying CNFA is very simple (it just inserts a new
state and one transition). We use that algorithm and the standard determinization to
find L-INSERT algorithm modifying CDFA. To keep the relationship between states
of CNFA and CDFA automata we use several adjacent data structures.

3 Adjacent Data Structures

To enable efficient algorithm modifying CDFA we extend CDFA by following addi-
tional information:

e suffix links,
e text pointers,

e in-degree of nodes.

3.1 Suffix Links

Each state ¢ of the CDFA represents a set of active states of the CNFA — after
accepting any string w the active state ¢, = 0*(go, w) of CDFA represents a set of
active states @, = 0*(I, w) of CNFA, formally G, = Q.-

Lemma 3.1 If two states ¢,, ¢, € Q have nonempty intersection, ¢, N ¢, # 0, then
one of them is a subset of the other (G, C ¢,).

113

Proceedings of the Prague Stringology Conference 03

“. “ﬁb . R N o N L &)

T = t1t2t3 . tn

N
7
w

N
7z
Figure 2: If state ¢, = 5*(@0, w) contains a state ¢; then string w ends at position i

Proof:

If both two states ¢, and ¢, contain state ¢; then both represent the CNFA
active state ¢;. Because of very regular structure of CNFA the state g;
becomes active only if the accepted string is a factor of the text 7" ending
at position i (see Figure 2). It means that both strings v and w (leading
to states ¢, and ¢,) are factors of the text 7" ending on the same position
i. Therefore one of them must be a suffix of the other (Figure 3). Let

“. “ﬁb . R N o N L &)

N
7

N
7z
Figure 3: Strings u and w end in the same position.

u be a suffix of w. The state §,, represents states G, = {q;,, ¢j»> @5, -}
where j; are ending positions of all occurrences of the string w in the text.
The string u is a suffix of w so that it occurs at least on the same ending
positions, therefore ¢, C ¢, (Figure 4). o

T - tltgtg v tn

Figure 4: String u ends at least on the same ending positions as string w.

From the lemma above, any pair of CDFA states containing any common CNFA
state ¢; are ordered by set inclusion. Therefore all CDFA states representing any
CNFA state ¢; create ordered set (chain of states). The initial state §o = I = Q =
{qo, q1," - - ¢, } containing all CNFA states is a superset of any set of CNFA states and
it is the biggest set of any chain of sets. We can say that all states of CDFA are

114

Operation L-INSERT on Factor Automaton

ordered in a rooted tree with the root ¢;. The common name for such tree is suffix
tree.

Positions in text 1" gaibabsay

state ‘ words ‘ ending pos. ‘
Q{QO,Q1,Q2,Q3,Q4} € 0,1,2, 3,4
(j{lh,tm} a 1,4
q{‘lz,qg} b 2,3
G{g2) ab 2
Q{45 bb 3
abb
U{gs} ba 4
bba
abba

Figure 5: An example of suffix tree for "= abba

This suffix tree (as a data structure) can be implemented by pointers from each
state ¢ € Q to its parent p in the suffix tree. We call such pointer as suffix link and
denote p = suf[g]. The state suf¥[G] means ki iteration of suffix link and suf*[q]
(transitive closure) denotes a set of all iterations of suffix link of the state ¢.

suf*ld] = {q, sufldl, suf*[d], suf’ldl, -}

Lemma 3.2 If two nonequal states p, § € Q differ by a one state ¢ € Q i.e. p = GU{q}
then there exists a direct suffix link between them: p = suf[q].

115

Proceedings of the Prague Stringology Conference 03

Proof:

Any two states p,§ € Q where § is a proper subset of p (0 c ¢ C p) are
connected by a suffix link iff there does not exist another state r such that
g C 7 C p. As states p and ¢ differ only by one state, no such state 7 may
exist. o

p

e

—>
T - t1t2t3 - tn

N
7

q;

Figure 6: The state p has no incoming suffix link iff it contain only one state

Lemma 3.3 State p € Q has no incoming suffix link if and only if the set ¢ contains
exactly one state ¢ €).

Proof:

We divide the proof of equivalence to proofs of the both implications. The
proof of the first implication (the state p has no incoming suffix link =
the set p contains only one state) follows from this contradiction:

p q
‘ U W o

> >.
H
H
H
H
H
H

N
7

q; ij
D :{ qi, QJa }
q={ U }

Figure 7: If the state p contains two states then it has incoming suffix link.

If the set p would contain more than one state (see Figure 7) then there
would exist the longest factor w of the text T', which would end at ending
positions represented by members of p. Not all occurrences of string w are
preceded by the same symbol (because w is the longest string with these
endings) and therefore there would exist a string aw which is a factor of
the text T" and would end at positions ¢ where ¢ C p. Due to this inclusion
both states p and ¢ would share the same branch of suffix tree which would
lead from ¢ to p. The state p would have at least one incoming suffix link,
which gives the contradiction.

116

Operation L-INSERT on Factor Automaton

The second part, the proof of backward implication (the set p contains
only one state = the state p has no incoming suffix link) is trivial because
a suffix link can lead only from a subset to a superset and a set with just
only one state has no regular subsets. o

Lemma 3.4 If a state p € Q has just one incoming suffix link and w is the longest
string leading to this state p = 0*(do, w) (see Figure 8) then

a) there are at least two occurrences of the string w in the text T
b) the string w is a prefix of the text T,

¢) all occurrences of w in T except the very first one (the prefix of T') are preceded
by the same symbol.

4/4/(1\\)

— Wy AWy — AW — AW
T - t1t2t3 t tn

N
7

4i
Cj = {qU Ak s ks Qs }

Figure 8: The only one incoming suffix link leads to a state p.

Proof:
The proof of part a) follows from the Lemma 3.3.

There are no couple of occurrences of string w following two different
symbols. If two strings aw and bw (where a # b) would occur in text
T then both states ¢, and ¢y, would be disjunct subsets of p and their
suffix links would lead to state p. At least one occurrence of w must not
be preceded by the same symbol as others because w is the longest string
leading to state p. Therefore w occurs at the beginning of 7" and all next
occurrences are preceded by the same symbol. w is a prefix of T. This
proves parts b) and c). o

Lemma 3.5 If a suffix link suf[¢] = p is the only suffix link leading to state p then
set p is larger then ¢ by just one state ¢; (i.e. p = {g;} U q).

Proof:

Let w be a string leading to the state p = 6*(go, w) (see Figure 8). Due to
Lemma 3.4, string w is a prefix of the text T" and all other occurrences of
w in the text T" are preceded by the same symbol a. The string aw occurs
at the same ending positions as string w except the very first one (w is a
prefix of T'). We can divide the set p into the first occurrence (the state
¢;) and the rest (occurrences of aw): p = {g;} Ud*(Go,aw). Due to Lemma
3.2 it holds p = suf[g*(dg,aw)]. There is only one suffix link leading to p
so that states §* (Go,aw) and ¢ are identical and we can write p = {¢;} U q.

o

117

Proceedings of the Prague Stringology Conference 03

3.2 Text Pointers

Most of algorithms operating on factor automaton need to resolve which states of
CDFA represent given state ¢ of CNFA. Since all relevant CDFA states contain ¢ they
create a separate branch in the suffix tree. We can store only the starting state of the
branch and continue over the suffix tree to its root. Text pointers is a data structure
which keeps the information about the starting state. It can be implemented as an
array TextPos[i] of CDFA states indexed by position 7 in text. In factor automata it
holds TextPos[i] = 5*(@0, tity - -+ t;). An example of text pointers array for T' = abba
is on Figure 9.

text pointers suffix tree

{ position 0) 01234
~~~~~~~~~~~~~ ()

.....

""""

(pos.0) (pos.l) (pos.2> (pos.3> (pos.4>

Text positions: T' = gaibybsay
text pointers table

position | state
0 ‘j{qo,ql,qz,qs,m}
1 U{q1,04}
2 U{g2}
3 Ugs}
4 Uqa}

Figure 9: An example of the suffix tree and the automaton with text pointers for
T = abba.

Note that the number of states is often larger then the number of positions in
the text. Therefore, there exist states which are not the value of any TextPos. An
example of that is on Figure 9. Although the state ¢4, ,) represents ending positions
2 and 3 for string b, it is neither a value of TextPos|2| nor TextPos[3]. We can get
all states representing the ending position 2 by inspecting the whole branch of suffix
tree (a sequence of suffix links) from the state §rq,y = TextPos[2].

118



Operation L-INSERT on Factor Automaton

3.3 Node In-degree

We use the number of transitions leading to this state (incoming transitions) as a
reference counter for detecting unreachable states. If the automaton has unreachable
states then one of them must have in-degree equal to zero because the CDFA has no
loops. After its removing it holds that either another unreachable state becomes zero
in-degree or we are sure there are no unreachable states in the automaton.

3.4 Operation L-INSERT

The canonical nondeterministic factor automata (CNFA) for the texts T' = t1tots - - -y,
and aT = attyts - - - t,, are shown on the Figure 10.

Figure 10: The change in CNFA when a new symbol is prepended.

The operation L-INSERT creates a new state ¢x, which is both initial and final
and a new transition from the state ¢y into the state ¢.

The algorithm modifying CDFA follows from the relationship between nondeter-
ministic and deterministic factor automaton.

When the new initial state ¢y is created, CDFA’s initial state ¢, — see Figure 11
(step 1) — is changed to the new state ¢, = ¢o U {¢x}. The outgoing transitions from
this state are still the same as from Gy (step 2). Now, we create a new transition
in CNFA leading from ¢x to ¢o for symbol a. In the CDFA, we should redirect the
transition leading from ¢ labeled by a symbol a to another state which contains
similar set of states extended by the state ¢y, because ¢y = 0(qx,a) is the new
transition (step 3).

The algorithm is based on the recursive function GetExtendedState(q, i), which
takes the set of states ¢ and integer i as arguments, and finds a state ¢ = U {¢;}. If
there is no such state in the automaton, it is created by the function. The value of
the function is the state ¢’ (Figure 12).

Using this function the whole algorithm can be written in five steps:

1. create a new state ¢, with the same outgoing transitions as gy,
2. get the old target of the first transition: § = 3((}6, a),
3. compute new state for that transition: ¢’ = GetExtendedState(q,0),

4. redirect the transition: 5((}6, a) = ¢,

ot

change the initial state to .

119



Proceedings of the Prague Stringology Conference 03

(step 1)

(step 2)

(step 3)

Figure 11: The change in CDFA when symbol « is inserted.

(L T =titots - -t i

Qi\\ ; 7’/)

Figure 12: The state ¢’ contains state ¢; and all states from ¢

120



Operation L-INSERT on Factor Automaton

We assume any unreachable state is removed as soon as it looses the last incoming
transition (or the last reference).

Let us concern the function GetExtendedState(q,7). It assumes that the string
w = atytats---t; leads to the state ¢ (i.e. ¢ = 5*((}0,11))). It is the shortest string
leading to this state because the text shorter by the first symbol a would be a prefix
of T an would occur in advance at ending position .

Note that the string w = atitot3 -+ -t; may not be a factor of the text T". In this
case the state ¢ may be ¢ = {} = (). In such case, the solution is a state ¢’ = {¢;}.
Of course, this state may or may not be present in the current automaton. We can
find it by inspecting the text pointer at position i. The value of TextPos[i] may be
the required state ¢’ = {¢;} or its superset. According to Lemma 3.3: if there is no
suffix link leading to this state then it contains only one CNFA state {¢;} and it is
the result value of the function GetExtendedState (Figure 13). If there exists a

TextPos]i

|
|
OO0~
‘,’ A:

ry 'y
ad A

A
<« aa 4 qaant .
AR suffix links

Figure 13: The focused state has no incoming suffix links therefore it contains only
one state g;

suffix link leading to this state then we must create a new state ¢ = {¢;} and set its
outgoing transitions. In this case the state ¢’ will have only one outgoing transition
for the symbol ¢; leading to state {g;11} (which can be obtained by recursive calling
the function GetExtendedState(nil,i + 1)). In addition, we should set up the suffix
link of this state to lead to TextPos[i] and update TextPos[i] to new value — state
¢'. (See Figure 14).

Now, we concern the case when ¢ is an already existing state of CDFA. The
function GetExtendedState should locate the state representing the set ¢ U {¢;}. If
there is no such state, it should be created. Due to the Lemma 3.2 if there exists
such state it must be the target of the suffix link from state ¢. But the suffix parent
p = suf(q) of the state ¢ may not be the required state in any case, of course. We can
test it by inspecting the number of suffix links leading to it. There are two disjunct
cases:

e only one suffix link leads to state p,
e the state p is a target of more suffix links.

At first we assume the suffix link from the state ¢ to the state p is the only link
leading to p (Figure 15). As the string w = atitals - - - t; is the shortest string leading
to ¢ then the first suffix — string u = ttot3 - - - ¢; leads to state suf(q) = p. We are
sure that string ttst3---t; occurs at position 7 and therefore p contain the required

121



Proceedings of the Prague Stringology Conference 03

TextPos|i

____x_____

4 Y94q4q4e
d4q 444“ . v

Figure 14: If any suffix link leads to the state found by TextPtr[i] then we have
to create a new state ¢, connect its suffix link, outgoing transition and redirect
TextPtrli|

. suffix tree

;
/
©

PR > 2T = tityty :
(j = { Ak, ks Qi }
p={4a Tk, ks Ty}

Figure 15: § +— p is the only suffix link leading to p therefore p = U {¢;} = p’

122



Operation L-INSERT on Factor Automaton

state ¢;. On the other side, the state p does not contain any other state then {¢;} or
¢ (see Lemma 3.5) therefore state p is the value of the function GetExtendedState .

Now, assume there exist at least two suffix links leading to the state p. One of
them is the link from ¢ and let another one lead from a state ¢, (Figure 16). The

o — suffx tree
(w) w w
o o ; o (7)
a u au bu au
1 1 ] o 4 4 »
T—tltgtg"'tn a4 e
> & S
‘ & Y »
q; D) q
R ‘4 ,,’r ,,,,,, o b’
p = { qi Gk, Gk, ks } :"“ ’,’
ol SO
4 =A{ 2 }
ad={a Ty Qs }

Figure 16: If the state p receives more suffix links then it is unusable. A new state ¢’
has to be created.

sets ¢ and ¢, are disjunct because they are in the different branches of the suffix tree.
The state p is the superset of both sets. Therefore, the set p contains more states
then ¢ U {¢;} and will be unusable for us. The resulting state is still not in the set of
states of the automaton and we have to create it.

We create a new state ¢’ which should represent the set ¢ U {¢;} and therefore
it inherits the same outgoing transition as ¢. However the transition for the symbol
ti+1 should be redirected to the state (the set of CNFA states) extended by the state
gi+1- We can lookup this state using the function GetExtendedState in recursion.
The redirection is made by assigning (¢, ;1) = GetExtendedState(0(¢,i),i + 1).
Finally, we should update suffix links. The new state ¢’ is a subset of p and a superset
of ¢ therefore we include it between states p and ¢: suf[§’] = p and suf[j] = ¢

Algorithm 3.1 — Operation L-INSERT using function GetExtendedState
INPUT: CDFA automaton M = (Q, A, d, Gy, F) with suffix links, text 7" and
text pointers
symbol a
OuTpPUT: CDFA automaton M with suffix links, text T" and text pointers
LOCAL: integer n
state p
state ¢
state ¢

state ¢
REQUIRE: M accepts factors of T' = tytotz---t,

ENSURE: M will accept factors of T = atytqats---t,

1. function GetExtendedState(state G, integer i)
2: if (§ == nil) then

123



Proceedings of the Prague Stringology Conference 03

3: 1= TextPtr[i]

4: n= |Suf71(tA)| { the number of suffix links incomming to t }
5. if (n==0) then

6: q = t

7: return ¢

8: else

9: ¢’ =new state

10: 6(§', a) = GetExtendedState (nil,i 4 1)
11: sufld] =1

12: return ¢

13:  end if

14: else

15: p=suflq]
16: n=|suf~'(p)|
17: if (n==1) then

18: q=p

19: return ¢’

20: else

21: ¢ = duplicate(q)

22: 6(q',t;11) = GetExtendedState (0(¢, tiy1),i + 1)
23: suflq'] =p

2 suflg = d

25: return ¢’

26: end if

27: end if

28: endfunction

29: Gy = duplicate(do)

30: 0(G}, a) = GetExtendedState (o, a),0)
31: SetInitial State(qp)

4 FEfficiency of the Algorithm

4.1 Time Complexity

The best case from the time complexity point of view appears when the new inserted
symbol a is equal to each symbol in the text: 7" = a". In such case, the recursive
function GetExtendedState is called only once. Neither this function nor the main
algorithm contain loop, therefore the time complexity is constant O(1) — independent
on the size of the text T

The worst case occurs if all symbols in text 7" are the same but different from the
new inserted symbol a: T' = 0". In such case, the original automaton has n+ 1 states
and the new automaton will have 2n — 1 states, and so the algorithm have to create
n — 2 states and it has asymptotically time complexity linear O(n) with respect to
the size of the text T

124



Operation L-INSERT on Factor Automaton

CNFA:

old CDFA:

new CDFA:

Figure 17: The worst case

4.2 Space Complexity

The algorithm requires extra space for following data structures:
e text pointers,
e suffix links,
e states,
e transitions,
e stack for recursion.

Text pointers is an array indexed by the position in text 7. The size of the array is
linear to the size of text 1. Text pointers are more useful for other operations with fac-
tor automata. In the case of L-INSERT algorithm, text pointers can be substituted by
text T, because we need successively the values TextPos|0], TextPos[1], TextPos[2], ...
and TextPosi] = 0(TextPos|i—1], ;) while TextPos[0] = go. So that we could com-
pute the values of T'ext Pos during recursion of the function GetExtendedState.

Both suffix links and states take the same space complexity because there is just
one outgoing suffix link per a state. The number of states is at most 2n (proved in
).

The number of transitions in the factor automaton is less than 3n (proved in [1]).

The size of the stack required for the recursion is limited by the number of recursive
calls. As a new states is created before any recursive call, the total number of recursive
calls is limited by the number of inserted states. Moreover, the recursion function
GetExtendedState can be transformed into an iteration loop without a need of an
extra data space.

As the all data structures require space at most linear to the size of the automaton,
we can say the L-INSERT algorithm is space-linear.

125



Proceedings of the Prague Stringology Conference 03

5 Conclusion

This paper deals with the factor automaton and its modifications when the text often
changes. We discuss several operations on the text and cite algorithms reflecting
these operations into the factor automaton. Moreover we describe some adjacent
data structures (suffix links and text pointers) used in algorithms modifying the factor
automaton. We present a new algorithm of operation L-INSERT. The algorithm can
efficiently modify a factor automaton when a new symbol is inserted before the first
symbol of the text. This algorithm can be also used for on-line backward construction
of the factor automata. This means that the text grows from right to left while
constructing the automaton. Finally, the time and space complexity of the L-INSERT
algorithm is also discussed.

References

[1] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[2] M. Simének. The factor automaton. In J. Holub and M. Simanek, editors, Pro-
ceedings of the Prague Stringologic Club Workshop ’98, pages 102-106, Czech
Technical University, Prague, Czech Republic, 1998. Collaborative Report DC—
98-06.

[3] J. E. Hopcroft and J. D. Ullman. Introduction to automata, languages and com-
putations. Addison-Wesley, Reading, MA, 1979.

[4] J. Holub. Simulation of nondeterministic finite automata in approximate string
and sequence matching. Technical Report DC-98-04, Department of Computer
Science and Engineering, Czech Technical University, Prague, Czech Republic,
1998.

126



An Efficient Mapping for Score of String Matching

Tetsuya Nakatoh!, Kensuke Baba?, Daisuke Ikeda!, Yasuhiro Yamada?,
and Sachio Hirokawa!

! Computing and Communications Center, Kyushu University
Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
e-mail: {nakatoh,daisuke,hirokawa}@cc.kyushu-u.ac.jp

2 PRESTO, Japan Science and Technology Corporation
Honcho 4-1-8, Kawaguchi City, Saitama 332-0012, Japan
e-mail: baba@i.kyushu-u.ac. jp

3 Graduate School of Information Science and Electrical Engineering
Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
e-mail: yshiro@cc.kyushu-u.ac. jp

Abstract. This paper proposes an efficient algorithm to solve the problem of
string matching with mismatches. For a text of length n and a pattern of length
m over an alphabet X, the problem is known to be solved in O(|X|nlogm)
time by computing a score by the fast Fourier transformation (FFT). Atallah
et al. introduced a randomized algorithm in which the time complexity can
be decreased by the trade-off with the accuracy of the estimates for the score.
The algorithm in the present paper yields an estimate with smaller variance
compared to that the algorithm by Atallah et al., moreover, and computes the
exact score in O(|X|nlogm) time. The present paper also gives two methods to
improve the algorithm and an exact estimation of the variance of the estimates

for the score.

Keywords: string matching with mismatches, FFT, convolution, deterministic
algorithm, randomized algorithm.

1 Introduction

String matching [4, 5] is the problem to obtain all the occurrences of a (short) string
called a pattern in a (long) string called a text. We consider string matching with
mismatches which allows inexact match introduced by substitution. Let ¥ be an
alphabet and ¢ the Kronecker function from ¥ x ¥ to {0,1}, that is, for a,b € ¥,
d(a,b) is 1 if a = b, 0 otherwise. The problem with mismatches is generally solved
by computing the score vector C'(T, P) between a text T = t;---t, and a pattern
P =p---p, as follows:

C(T, P) = (Cl, ey Gy Cn—m-l—l)a where c;, = Z 6(ti+j—17pj)-
7=1

127



Proceedings of the Prague Stringology Conference 03

We can compute the score vector using the fast Fourier transform (FFT) in
O(nlogm) time, if the score vector is represented as a convolution, that is, if the
Kronecker function is expressed by a product of two mappings from ¥ to a set of
numbers. This approach was developed by Fischer and Paterson [6] and is simply
summarized in Gusfield [7]. However, practically, the time complexity of the algo-
rithm depends on the number of alphabets. One of the reason for the difficulties is
that the Kronecker function can not be written as a product of mappings directly.
For example, if ¥ = {a, b, c}, the generalized algorithm in [7] needs three mappings
b1, ¢2, and ¢3 which convert symbols into {1,0} as the following table.

o1 P2 @3
a 1 0 0
b 0 1 0
c 0 0 1

Then, we have §(a,b) = S5_, ¢s(a) - ¢¢(b) and the score vector is obtained by com-
puting the convolution 37, ¢y(tiy;-1) - ¢e(p;) for 1 <7 < n three times.

Atallah et al. [1] introduced a randomized algorithm where the time complexity has
a trade-off with the accuracy of the estimates for the score vector. In this algorithm,
symbols are converted into complex numbers with a primitive o-th root w of unity
and the Hermitian inner product is used for the convolution. Then, the score vector
is obtained as the average of the results of convolutions with respect to all possible
mappings ¢, from X to {0, ..., |X| — 1}, that is,

1 12l m

— 3] Z Z w‘ﬂl(tiﬂfl)*ﬁﬂl(?’j)’

/=1j5=1

C;

where @ is the set of all mappings ¢,. (A deterministic algorithm constructed by those
mappings requires the computation of the convolution |Z|* times.) An estimate
for the score vector is the average of the results with respect to some mappings
chosen independently and uniformly from ®. Let £ be the number of randomly
chosen samples. Then, the time complexity is O(knlogm). They showed that the
expectation of the estimates equals to the score vector and the variance is bounded
by (m — ¢;)?/k. Baba et al. [2] improved this algorithm by simplifying the mappings
which converts the strings into numbers. The codomain of the mappings is the set
{—1,1} instead of the set of complex numbers. Then, the score vector is

1 2] m

= 13 > eltivj1) - de(p;)-

(=1j=1

Baba et al. [3] pointed out that the algorithms which compute the score vector by
FFT are distinguished by the mappings which convert strings into numbers in each
algorithm, and the exact score is obtained by repeating the O(nlogm) operation |®|
times.

In this paper, we propose an efficient algorithm to solve string matching in which
the variance of the estimates is not greater than (m — ¢;)?/k. Moreover, the exact
score vector is computed in O(|X|nlogm) time. We also give a strict evaluation of
the variance and introduce two methods to improve our algorithm.

128



An Efficient Mapping for Score of String Matching

2 Efficient Algorithm

We propose an efficient algorithm for string matching with mismatches. The time
complexity of a deterministic algorithm and the variance of the estimates for the
score vector are obtained by analyzing the mappings which convert the symbols to
the numbers. Let p be the smallest prime number which is greater than or equal to the
cardinality || of the alphabet. The codomain of the mappings is the p-adic number
field Z,. Since such a prime number is less than 2|X| — 2 (Chebyshev’s theorem), a
deterministic algorithm with this mappings computes the score vector between a text
of length n and a pattern of length m in O(|X|nlogm) time. Moreover, in the same
way as the algorithm by Atallah et al, we can construct a randomized algorithm in
which the variance of the estimates for the score vector is independent to |X|.

2.1 Efficient Mapping

Let ¢ be a bijective mapping from ¥ to {0,1,---|X| —1}. For 0 < x < p—1 and
a € ¥, we define a mapping ¢, as

$u(a) = W™, (1)
where w is a primitive p-th root of unity. Then, we have the following lemma.

Lemma 1 For any a,b € ¥,

1”1

Zqﬁz Pu(

where w9 = w Y.

Proof. If a = b, we have ¢,(a) - ¢,(b) = w® = 1 for any 0 < 2 < p — 1. Hence,
the right side of the equation is equal to 1. If a # b, the difference p(a) — ¢(b) is an
element of Z,\{0}. Therefore, z - (gp(a) — (b)) is valued 0,...,p — 1 modulo p for
0 <z <p—1. Thus, we have 327§ ¢,(a) - ¢, (b) = TPy w @@ —¢®) = (. O

Lemma 2 By using the mapping ¢,, the score vector between a text of length n and
a pattern of length m over an alphabet ¥ can be computed in O(|X|nlogm) time.

Proof. By the definition of the score vector and Lemma 1, the score vector is
1R
Z Z ¢x i+j— 1 ¢x(pj)- (2)

zO]l

Therefore, the score vector is obtained by computing the convolution

FG) =3 baltivi1) - dalpy) (1 <i<n)
i=1
p times. Since p = O(|X|), we have the lemma. O

129



Proceedings of the Prague Stringology Conference 03

2.2 Analysis of Variance

In the same way as the algorithm by Atallah et al. [1], we can construct a randomized
algorithm in which an estimate for the score vector is obtained by choosing some
mappings from ®. We define a sample s; of an element ¢; of the score vector to be

m

i =Y buo)(tisj-1) - ba(e)(p))-

=1

Let £ be the number of chosen samples. Then, an estimate §; for the element ¢; of
the score vector is defined by

1
S; = — S;.

By Eq. (2), it is clear that the mean of the estimates is equal to ¢;. The following
lemma gives the upper-bound of the variance of the estimates.

Lemma 3 In a randomized algorithm constructed with the mapping ¢, the variance
of the estimates for the score vector is bounded by (m — ¢;)?/k.

Proof. We denote by V(X) the variance of a random variable X. By the definition
of the estimate and the basic property of variance, we have V(s;) = V (s;)/k. Since

ba(e)(a) - Paey(a) = 1 and [py() (@) - o) (b)| = 1 for any 1 < ¢ < |®| and any a,b € X,
the variance of the samples is V'(s;) = Z‘;;'l( Ty bae) (tirj=1) - ooy (p;) — ci)?/|@| <

(m —¢;)?. O

2.3 Description of Algorithm

We describe the algorithm which uses the mapping ¢, in detail. The input is a text
string T' =ty - - - t,,, a pattern string P = py - - - p,, over an alphabet X, and a number &
of iterations in this algorithm. The output is an estimate for the score vector C(T, P)
if £ < p, the exact score vector if k& = p, where p is the smallest prime number such
that |X| < p. By the standard technique [4] of partitioning the text, we can assume
n = (1+ a)m for « = O(m). The algorithm is constructed by iterations of the
following operations.

e convert the text into a numerical sequences ¢, (T) = w#=) ... e=ltatam) by
the mapping ¢, from 3 to {w° ... wP1};

e convert the pattern into ¢,(P) = w=?=(P1) ... y=%=(Pn) by ¢, and pad with am
7€108;

e compute the sample s; for 1 < i < (1 + a)m as the convolution of ¢,(7) and
the reverse of the padded ¢, (P) by FFT.

The output is computed as the average of the results of the convolution for 1 <
xr < k. If K = p, by Lemma 2, the output is equal to the score vector. If k < p,
the output is regarded as an estimate for the score vector obtained by a randomized
algorithm with “sampling without replacement”. Therefore, by Lemma 3 the variance
of the estimates is ((p — k)/(p — 1)) - (V(s:)/k).

130



An Efficient Mapping for Score of String Matching

Theorem 1 By the algorithm with the mapping ¢,, the exact score between a text of
length n and a pattern of length m over an alphabet ¥ is computed in O(|X|nlogm)
time. Moreover, an estimate for the score vector is computed in O(knlogm) time,
where k is the number of iterations in the algorithm and the variance of the estimates
is bounded by (p — k)(m — ¢;)*/(p — 1)k.

In generally, the variance of the estimates obtained by sampling without replace-
ment is
|P] — K
@] -1

V(3:)

where @ is the set of all mappings which convert symbols into numbers. The cardi-
nality |®| of the set is |X| in the algorithm by Atallah et al [1]. and 2*' in one
by Baba et al [2|. Hence, the finite-size correction term (|®| — k)/(|®| — 1) is not so
effective.

A key distinguishing feature of our algorithm is that the exact score can be com-
puted in a practical time. Since |®| is large in the two randomized algorithms, their
deterministic versions constructed in a similar way as our algorithm are not practical
for a large alphabet. Although the deterministic algorithm generalized by Gusfield [7]
can be extended to a randomized algorithm in the same way as our algorithm, the
variance of the estimates depends on the number of alphabets.

3 Improvement of Algorithm

We propose two techniques to improve the algorithm in the previous section.

3.1 Removal of Defective Mapping

Our mappings convert the different symbols to the distinct numerical values. But
only the mapping ¢y converts all symbols to 0. Therefore, we remove the mapping
¢o from the set ®. That is possible without computing convolution.

By Eq. (1), 6(a,b) = + 5070 ¢a(a) - 6.(0) = 2 (071 dala) - 62 (b) + do(a) - do(h)) =
%(Z’;;i (@) - ¢z(b) + 1). Therefore, the score vector is ¢; = 37", %(ZZ; (tivj—1) -

o(pj)+1) =5 SPTL ST Bultivj—1) - bulps) + ™. To randomize the computation of ¢;,
we define ¢} as follows: ¢, = zﬁ Pl Ty Ga(tivi 1) - d2(pj). Hence, ¢; = %cg + 7
/

We define a sample s of an element ¢, to be

St = bultivi1) - 02(p)).
=1

And an estimate s/ is defined by

where 1 < k <p—1.

131



Proceedings of the Prague Stringology Conference 03

And an estimate §; for the element ¢; of the score vector is defined by

Z i_l: (tivj—1) - dz(pj) +

SAE

(3)

E’?‘I»—l

where 1 < k <p-—1.
2
By the difinition of a variance, V' (s;) = (pp%l)V(s;). Moreover, because the number
of mappings decrease by one, the variance in consideration of that is bounded by

p—1)? p—1—k (m—g¢)
»”  p-2 kO )

3.2 Removal of Imaginary Part

The magnitude of ¢,(a) - ¢,(b) in Eq. (1) is 1. We used this magnitude for the
analysis of the variance until this point. However, the real part is independent of the
imaginary part. Therefore, those parts of Eq. (1) can be computed separately.
Let R(v) be a real part of a complex number v. By Lemma 1, Il) S8 dala) - o (b)
returns 0 or 1. Therefore, we can remove the imaginary part. Then, §(a,b) =
(1 P dala ) ¢.(b)) for any a,b € X. By the definition of the score, ¢; =

( S o @x(tivj—1) - ¢2(pj)). Since the order of addition is not restricted, the
score vector is

1?’1 m

Z% Z¢x 1+j— 1 d)x(p]))
0 =

The computation of the complex number is necessary to compute convolution with
FFT. We only have to omit the imaginary part after the computation of FFT. By this
omission, the computation of both the sum of the imaginary part and the magnitude
of complex number become unnecessary.

The variance is the poorest when inconsistent m — ¢ characters are each a kind
of symbol on the text and the pattern. In such a case, ¢;(a) ¢4—@) is fixed without
influence of j. By Eq. (1), R(¢4(a) - ¢5(b)) = cos B, where 6, = M. Then,
the random variable s; is following.

m

si= > R(pe(a) - ¢e(b)) =3 cosy = c; cos 0+ (m—c;) cos Oy = ¢;+(m—c;) cos Oy

j:l j 1

The variance V' (s;) of this random variable s; are followings.

Ms

Visi) = (ci+ (m —¢;) cos by — ;) -~

~
Il

1

= = i((m — ¢;) cos f)?

P =1
P
(m —¢;)* > cos® b,
=1

. (m—g)? i 1+ cos b,
B 2

p =1

—

=

132



An Efficient Mapping for Score of String Matching

N2 P P

_ (m—a) D1+ cosby)

2p —1 —1
2
m — c;

= %(p +0)

B (m —¢;)?
By V(8;) = V(s;)/k, the variance of the estimates §; is bounded by

(m — ¢;)?

3.3 Variance of Improved Algorithm

We showed two improvement points. That both can be applied to the basic algorithm
at a time.

Now, the change point of the algorithm from the basis one shown in Subsection 2.3
is showed in the followings.

e We remove ¢g, and choose a sample from the remaining mappings.
e An estimate §, is computed using that samples.

e Only a real part is used for a computation of an estimate from the result of
FFT.

e We compute §; by Eq. (3), and make it the estimate of ¢;.

When these improvements are applied, by Eq. (4) and Eq. (6), the variance of the
estimates is bounded by
(p—1? p=1-k (m—c)
P2 p—2 2k

It is smaller than one in the algorithm of Section 2.

4 Exact Estimation of Variance

Atallah et al. presented an upper bound of the variance of the estimates for the score
in their algorithm as (m — ¢;)2/k. The reason for this variance is that their set of
mappings includes many mappings which convert some different symbols into same
numerical value. One of the features of our mappings is that it does not convert some
different symbols into same numerical value because a single exceptional mapping
was removed in Subsection 3.1. Using this feature, we give an exact estimation of the
variance based on our mappings.

Let a,b be symbols in X. If a product ¢(a) - ¢(b) in one position is independent
of it in other position, the estimate of ng_ci) ¢u(t) - ¢x(p;) is 0. The two following
conditions must be satisfied for that. One of those conditions is that a symbol in one
position is independent of symbols in other positions. In this paper, we suppose that
condition. The independence can not be expected in the general English text much.
But, we expect high independence about the comparison of the product ¢(a) @*

*In this paper, we did not get to the verification of that point. It is a future work.

133



Proceedings of the Prague Stringology Conference 03

Another condition is the following lemma.

Lemma 4 If all mappings convert different symbols into distinct numerical values,
then the product ¢(a) - ¢(b) in one position is independent of that in other position.

Proof. Let tq,t5, p1, p2 be symbols in ¥, x a value which can be returned by mappings
and r the number of kinds of z. Let ®, be a set of the mappings which convert more
than one of some symbols into z, and ®,, denotes ®, N ®,. We define D, as the
difference between the number of x which the mappings convert a given symbol into
and the number of mappings used for it. The number of certain value x which a
certain symbol a convert to is @ because Z';I;‘l ¢¢(a) = 0. Then, the number of
certain value x which all the symbols convert to is ®. Therefore, |®,| = |®| — D,. In
the mapping that converts the different symbols to the distinct numerical values, @,
equal to P.

Pr(X) denotes the probability of event X. Let A be the event ¢(t;) - ¢(p1) = =
and B the event ¢(t3) - ¢(ps) = z. And let A’ be the event ¢(t;) = dy, A” the event
d(p1) = da, B’ the event ¢(t2) = d3, and B” the event ¢(ps) = dy.

If a certain event occurred, that a result of a mapping was value z, the mapping in
the next event is restricted to mappings which return value z. After the event A, a set
of mappings is ®4,4, because the mapping returned d; and dy were used in the event
A. A probability that a mapping return a value z is (the number of combinations
of the mapping and the symbol which can return x)/(the product of the number of
mappings and the number of symbols). Then we have

el Bl
Pr(B) = r ' "1~
"B = @ T
N D]
P BII Bl — r —
WIAB) = sl T el
r—1 r—1 1 |®| 1 r—1 |(P|
Pr(B) = S Pr(B)Pr(B"|B)= Y (- y= Ly 2y
dgz:O dgzzo rer: |q)d3| r? d3Z:0 |(I>d3|
and
S o 1 jep
PI“BA == . —_ — .
( | ) d32—0(r'|q)d1d2| r'|q)d1d2d3| r d3:0(|®d1d2|'|®d1d2d3|)

We get Pr(B|A) # Pr(B), hence ¢(t;) - ¢(p1) is not independent of ¢(ts) - ¢(p2).
However, if ® = &4 4, = P4, 4,45, then Pr(B|A) = Pr(B). This condition is satis-
fied only when all mappings should convert different symbols into distinct numerical
values. O

Other two mappings can not satisfy the condition of Lemma 4 while only our
mappings can satisfy it in case of |X| = p. Therefore, we add a dummy symbol in
case of |X| < p. Then we can correct a sampling bias because we can know that by
the dummy symbol in advance.

When ¢, is drawn uniformly randomly from &, the random variable § is § =
% Yo 2 Ge(t;) - Ge(py)-

Then, we get the following lemma.

134



An Efficient Mapping for Score of String Matching

Lemma 5 Given that the product ¢(a)-¢(b) in one position is independent of that in
other position. When ¢ symbols align in the m symbols, the variance V'(§) of random

variable s are
m — c;

V(%) =

Proof. Let s; be the random variable as ¢,(t;) - ¢s(p;), then s; = @u(t;) - de(p;) =
wili i) where d(t;,p;) =z - (¥(t;) — ¥(p;)). Su,=p,) denotes that s in ¢; = p; and
S(t;#p;) denotes that s in t; # p;.

If t; = p;, s; = 1. If t; # pj, s; = w¥% ). Then, those means are E(s(t;=p;)) =
L E(5(t;2p,)) = TP o wdltipi) . % = 0. And those Variancle are V(s=p;)) = (S(t;=p;) —
E(st=p))? -1 = (1= 1)* - 1 = 0,V(sg,) = LazolStt;n,) — E(st,))? '1_1) -
Ly n ()2 = Lynin =1,

Because we assume that the product ¢(a) - ¢(b) in one position is independent of
that in other position, a variance V'(s) of s are the simple total of a variance of every
position. Then, V(s) = XV (s4,—p,)) + X7 “ V(5@ 2p)) = 20+ 1 =m—c;.

Using k samples s, a variance V(8) of the estimate s is V(8) = £V (s). Then

A m— ¢
V(s) = T

This analysis can be applied to the algorithm which improvement in Section 3 was
added to.
Then Eq. (5) changes as follow,

p—1

Visjtr) = 2 (Sit2p) — B(Sje, )
=0

ISR

S
8
g
=

1 2mg(a,b)
1 P11+ cos —

59L‘0 2
= 21+Zcos (a.

=3 (7)

By Eq. (7), we analyze the variance as the proof of Lemma 5.

b))

V() = o (®)

By Eq. (4) and Eq. (8), we get the following theorem.

Theorem 2 The variance of the estimates for the score in our algorithm is
—1)? p—-1—k m-—g¢
p? p—2 2k

V() = 2

135



Proceedings of the Prague Stringology Conference 03

Conclusion

We gave an efficient randomized algorithm for string matching with mismatches. This
randomized algorithm uses convolution with FFT, like that proposed by Atallah et
al. and Baba et al. We used the mappings which convert the symbols to the p-
adic number field. One of the features of our mappings is that it does not convert
some different symbols into same numerical value. By that feature, the variance of the
estimate of the score vector is smaller. The other feature of our mappings is that there
are not so many mappings. The number of mapping is p— 1 where || < p < 2|3| 2.
We analyzed the variance of the estimates for the score in this algorithm. And it
is very small as compared to the randomized algorithms proposed in the past. The
variance in this algorithm is (p;Ql)z : ”;Sk - I Its time complexity is O(knlogm)
where k£ is the number of samples, and the upper bound of k£ is p — 1. When £k is
p — 1, this algorithm is deterministic, and the estimate becomes the real value.
Experiments with read texts and the evaluation of computation time are future
work. We have a plan to apply the method for pattern extraction from Web pages [8].

References

[1] Atallah, M. J., Chyzak, F., and Dumas, P.: A Randomized Algorithm for
Approximate String Matching. Algorithmica 29, 468-486. 2001.

[2] Baba, K., Shinohara, A., Takeda, M., Inenaga, S., and Arikawa, S.: A
Note on Randomized Algorithm for String Matching with Mismatches.
Nordic Journal of Computing 10, 2-12. 2003.

[3] Baba, K., Tanaka, Y., Nakatoh, T., Shinohara, A.: A Unification of FFT
Algorithm for String Matching. Proc. International Symposium on Infor-
mation Science and Electrical Engineering 2003, to appear.

[4] Crochemore, M. and Rytter, W.: Text Algorithms. Oxford University
Press, New York. 1994.

rochemore, M. an ytter, W.: Jewels of Stringology. Wor cientific.
5| Croch M d R W.: Jewels of Stringol World Scientifi
2003.

[6] Fischer, M. J. and Paterson, M. S.: String-matching and other products.
In Complexity of Computation (Proceedings of the STAM-AMS Applied
Mathematics Symposium, New York, 1973), 113-125. 1974.

[7] Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, New York. 1997.

[8] Taguchi, T., Koga, Y. and Hirokawa, S.: Integration of Search Sites of
the World Wide Web. Proc. of International Forum cum Conference on
Information Technology and Communication, Vol. 2, pp. 25-32, 2000.

136



