
Resear
h Report

Pro
eedings

of the Prague Stringology Conferen
e '03

Edited by Milan �imánek

September 2003

Department of Computer S
ien
e and Engineering

Fa
ulty of Ele
tri
al Engineering

Cze
h Te
hni
al University

Karlovo nám. 13

121 35 Prague 2

Cze
h Republi

Program Committee

Gabriela Andrejková, Jun-i
hi Aoe, Maxime Cro
hemore, Jan Holub,

Costas S. Iliopoulos, Thierry Le
roq, Bo°ivoj Meli
har (
hair), Bru
e W. Watson,

Geraint Wiggins

Organizing Committee

Miroslav Balík, Jan Holub, Bo°ivoj Meli
har, Milan �imánek

URL

http://
s.felk.
vut.
z/ps

Pro
eedings of the Prague Stringology Conferen
e '03

Published by Vydavatelství �VUT, Zikova 4, 16635 Praha 6, Cze
h Republi

Edited by Milan �imánek

Conta
t: Prague Stringology Club

Katedra po£íta£ �u, �VUT�FEL

Karlovo nám. 13, Praha 2, Cze
h Republi
.

E-mail: ps
�
s.felk.
vut.
z Phone: +420-2-2435-7470

Printed by Edi£ní st°edisko �VUT, Zikova 4, Praha 6

 Cze
h Te
hni
al University, Prague, Cze
h Republi
, 2003

ISBN 80-01-02823-2

ii

Table of Contents

The Transformation Distan
e Problem Revisited by Behshad Behzadi and

Jean-Mar
 Steyaert 1

Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String

Mat
hing Algorithm by Domeni
o Cantone and Simone Faro 10

Approximate Seeds of Strings by Manolis Christodoulakis and Costas S. Il-

iopoulos and Kunsoo Park and Jeong Seop Sim 25

Constru
ting Fa
tor Ora
les by Loek Cleophas and Gerard Zwaan and Bru
e

W. Watson 37

Computing the Minimum k-Cover of a String by Ri
hard Cole , Costas S.

Iliopoulos , Manal Mohamed , W. F. Smyth and Lu Yang 51

Learning the Morphologi
al Features of a Large Set of Words by Abolfazl

Fatholahzadeh 65

A Linear Algorithm for the Dete
tion of Evolutive Tandem Repeats by

Ri
hard Groult, Martine Léonard and Laurent Mou
hard 77

Computing the Repetitions in a Weighted Sequen
e by Costas S. Iliopou-

los, Laurent Mou
hard, Katerina Pedikuri and Athanasios K. Tsakalidis 91

Mat
hing Numeri
 Strings under Noise by Veli Mäkinen, Gonzalo Navarro,

and Esko Ukkonen 99

Operation L-INSERT on Fa
tor Automaton by Bo°ivoj Meli
har and Milan

�imánek 111

An E�
ient Mapping for S
ore of String Mat
hing by Tetsuya Nakatoh,

Kensuke Baba, Daisuke Ikeda, Yasuhiro Yamada, and Sa
hio Hirokawa 127

iii

iv

Prefa
e

The Prague Stringology Conferen
e 2003 (PSC'03) was held at the Department of

Computer S
ien
e and Engineering of the Cze
h Te
hni
al University in Prague,

Cze
h Republi
, on September 22�24, 2003. The
onferen
e fo
used on stringology

and related topi
s. Stringology is a dis
ipline
on
erned with algorithmi
 pro
essing

of strings and sequen
es.

The papers submitted were reviewed by the programme
ommittee and eleven

were sele
ted for presentation at the
onferen
e, based on originality and quality.

This volume
ontains these sele
ted papers.

In the years 1996�2000 the Prague Stringology Club Workshops (PSCW's) and

the Prague Stringology Conferen
es in 2001 and 2002 pre
eded this
onferen
e. The

pro
eedings of these workshops and the
onferen
es had been published by Cze
h

Te
hni
al University and are available on WWW pages of the Prague Stringology

Club (PSC). Sele
ted
ontributions were published in a spe
ial issue of the journal

Kybernetika and those sele
ted from PSC'02 were published in a spe
ial issue of the

Nordi
 Journal of Computing.

The Prague Stringology Club was founded in 1996 as a resear
h group at the

Department of Computer S
ien
e and Engineering of the Cze
h Te
hni
al University

in Prague. The goal of PSC is to study algorithms on strings and sequen
es with em-

phasis on �nite automata theory. The �rst event organized by PSC was the workshop

PSCW'96 featuring only a handful invited talks. However, sin
e PSCW'97 the papers

and talks are sele
ted by a rigorous peer review pro
ess. The obje
tive is not only to

present new results in stringology, but also to fa
ilitate personal
onta
ts among the

people working on these problems.

I would like to thank all those who had submitted papers for PSC'03 as well as

the reviewers. Spe
ial thanks goes to all the members of the programme
ommittee,

without whose e�orts it would not have been possible to put together su
h a stimu-

lating program of PSC'03. Last, but not least, my thanks go to the members of the

organizing
ommittee for ensuring su
h a smooth running of the
onferen
e.

In Hamilton, Ontario, Canada

on August 2003

Jan Holub

v

vi

The Transformation Distan
e Problem Revisited

Behshad Behzadi and Jean-Mar
 Steyaert

LIX, É
ole Polyte
hnique

Palaiseau
edex 91128, Fran
e

e-mail: {behzadi,steyaert}�lix.polyte
hnique.fr

Abstra
t. Evolution a
ts in several ways on biologi
al sequen
es: either by mu-

tating an element, or by inserting, deleting or
opying a segment of the sequen
e.

Varré et al. [VDR98℄ de�ned a transformation distan
e for the sequen
es, in

whi
h the evolutionary operations are
opy, reverse
opy and insertion of a seg-

ment. They also proposed an algorithm to
al
ulate the transformation distan
e.

This algorithm is O(n

4

) in time and O(n

4

) in spa
e, where n is the size of the

sequen
es. In this paper, we propose an improved algorithm whi
h
osts O(n

2

)

in time and O(n

2

) in spa
e. Furthermore, we extend the operation set by adding

point deletions. We present an algorithm whi
h is O(n

3

) in time and O(n

2

) in

spa
e for this extended
ase.

Keywords: dynami
 programming, pattern mat
hing

1 Introdu
tion

Building models and tools to quantify evolution is an important domain of biology.

Evolutionary trees or diagrams are based on statisti
al methods whi
h exploit
om-

parison methods between genomi
 sequen
es. Many
omparison models have been

proposed a

ording to the type of physi
o-
hemi
al phenomena that underly the evo-

lutionary pro
ess [Do81℄. Di�erent evolutionary operation sets are studied. Mutation,

deletion and insertion were the �rst operations dealt with [SaKr83℄. Dupli
ation and

ontra
tion were then added to the operation set [BeRi02, BeSt03℄. All these oper-

ations were a
ting on single letters, representing bases, aminoa
ids or more
omplex

sequen
es: they are
alled point transformations. Segment operations are also very

important to study. In a number of papers [VDR97, VDR98, VDR99℄, Varré et al.

have studied an evolutionary distan
e based on the amount of segment moves that

Nature needed (or is supposed to have needed) to transfer a sequen
e from one spe
ies

to the equivalent sequen
e in another one. Their model is
on
erned with segments

opy with or without reversal and on segment insertion: it is thus a very simple and

robust model whi
h
an easily be explained from biologi
al me
hanisms. They devel-

oped this study on DNA sequen
es, but the basi

on
epts and algorithms apply as

well to proteins or satellites.

The algorithm they propose to
ompute the minimal transformation sequen
e is

based on an en
oding into a graph formalism, from whi
h one
an get the solution

by
omputing shortest paths. This gives an O(n

4

) answer both in spa
e and time

1

.

1

Even O(n

6

) in the last fren
h version [Va00℄.

1

Pro
eedings of the Prague Stringology Conferen
e '03

In fa
t it is possible to give a dire
t solution based on dynami
 programming whi
h

osts only O(n

2

) in time and spa
e. This solution is obviously more e�
ient for long

sequen
es and makes the problem tra
table even for very long sequen
es.

In the se
ond se
tion we des
ribe the model and the problem des
ription.

In the third se
tion our algorithm for
al
ulating the transformation distan
e is

presented. Firstly, in the prepro
essing part we show how to �nd e�
iently the

existen
e of all the substrings of one string in another one. Then the
ore of the

algorithm is presented, whi
h is basi
ally a dynami
 programming algorithm.

In se
tion 4, we introdu
e the point deletions in our model and we give an al-

gorithm to solve the transformation distan
e problem in presen
e of point deletions:

this algorithm runs in time O(n

3

) and spa
e O(n

2

).

Finally, se
tion 5 is dedi
ated to
on
lusions and remarks.

2 Model and Problem Des
ription

The symbols are elements from an alphabet �. The set of all �nite-length strings

formed using symbols from alphabet � is denoted by �

�

. In this paper, we use the

letters x, y, z,... for the symbols in � and S, T , P , R, ... for strings over �

�

.

The empty string is denoted by �. The length of a string S is denoted by jSj. The

on
atenation of a string P and R, denoted PR, has length jP j+ jRj and
onsists of

the symbols from P followed by the symbols from R.

We will denote by S[i℄ the symbol in position i of the string S (the �rst symbol of

a string S is S[1℄). The substring of S starting at position i and ending at position

j is denoted by S[i::j℄ = S[i℄S[i + 1℄ : : : S[j℄. The reverse of a string S is denoted

by S

�1

. Thus, if n is the length of S, S

�1

[i::j℄ = S[(n � j + 1)::(n � i + 1)℄

�1

and

S[i::j℄

�1

= S

�1

[(n� j + 1)::(n� i+ 1)℄. We say that a string P is a pre�x of a string

S, denoted P v S, if S = PR for some string R 2 �

�

. Similarly, we say that a

string P is a su�x of a string S, denoted by P w S, if S = RP for some R 2 �

�

.

For brevity of notation, we denote the k-symbol pre�x P [1::k℄ of a string pattern

P [1::m℄ by P

k

. Thus, P

0

= � and P

m

= P = P [1::m℄. We re
all the de�nition of

a subsequen
e: Given a string S[1::n℄, another string R[1::k℄ is a subsequen
e of S,

denoted by R � S, if there exists a stri
tly in
reasing sequen
e < i

1

; i

2

; : : : ; i

k

> of

indi
es of S su
h that for all j = 1; 2; : : : ; k, we have S[i

j

℄ = R[j℄. For example, if

S = xxyzyyzx, R = zzxx and P = xxzz, then P is a subsequen
e of S, while R is

not a subsequen
e of S. When a string S is a subsequen
e of a string T , T is
alled

a supersequen
e of S, denoted by T � S. In the last example, S is a supersequen
e

of P .

Varré et al. [VDR98, VDR99℄ propose a new measure whi
h evaluates segment-

based dissimilarity between two strings: the sour
e string S and the target string T .

This measure is related to the pro
ess of
onstru
ting the target string T with segment

operations

2

. The
onstru
tion starts with the empty string � and pro
eeds from left

to right by adding segments (
on
atenation), one segment per operation. The left-to-

right generation is not a restri
tion but a fa
t that
an be formally proved. A list of

operations is
alled a s
ript. Three types of segment operations are
onsidered: the

opy adds segments that are
ontained in the sour
e string S, the reverse
opy adds

2

In this paper we use segment as an equivalent word for substring.

2

The Transformation Distan
e Problem Revisited

the segments that are
ontained in S in reverse order, and the insertion adds segments

that are not ne
essarily
ontained in S. The measure depends on a parameter that

is the Minimum Fa
tor Length (MFL); it is the minimum length of the segments

that
an be
opied or reverse
opied. Depending on the number of
ommon segments

between S and T , there exist several s
ripts for
onstru
ting the target T . Among

these s
ripts, some are more likely; in order to identify them, we introdu
e a
ost

fun
tion for ea
h operation. InsertCost(T [i::j℄) is the
ost of insertion of substring

T [i::j℄. CopyCost(T [i::j℄) is the
ost of
opying the segment T [i::j℄ from S if it is

ontained in S. Finally RevCopyCost(T [i::j℄) is the
ost of
opying substring T [i::j℄

from S if the reverse of this substring is
ontained in the sour
e S. The
ost of a

s
ript is the sum of the
osts of its operations. The minimal s
ripts are all s
ripts of

minimum
ost and the transformation distan
e

3

(TD) is the
ost of a minimal s
ript.

The problem whi
h we solve in this paper is the
omputation of the transformation

distan
e. It is
lear that it is also possible to get a minimal s
ript.

3 Algorithm

In this se
tion we des
ribe the algorithm to determine the transformation distan
e

between two strings. The algorithm
onsists of two parts. The �rst part is a prepro-

essing part in whi
h we determine for ea
h substring of target string T , whether it

exists in the sour
e string S or not. In the se
ond part, whi
h is the
ore algorithm, we

determine the transformation distan
e with help of the information that we obtained

in the prepro
essing part. This
ore algorithm is a dynami
 programming algorithm.

3.1 Prepro
essing

De
iding whether a given substring exists in S or not, and �nding its position in the

ase of presen
e, needs to apply a string mat
hing algorithm. For this aim, we design

an algorithm based on KMP (Knutt-Moris-Pratt) string mat
hing algorithm with

some
hanges. Let FP [i; j℄ be the the �rst position of o

urren
e of the substring

T [i::j℄ in S if su
h an o

urren
e exists and 1 otherwise. Similarly FPR[i; j℄ is the

�rst position of an o

urren
e of T

�1

[i::j℄ in S. We need to re
all the de�nition of

pre�x fun
tion � (adapted from the original KMP one), whi
h is needed for pre
om-

putation. Given a pattern P [1::m℄, the pre�x fun
tion for pattern P is the fun
tion

� : f1; 2; : : : ; mg ! f0; 1; : : : ; m� 1g su
h that �[q℄ = maxfk : k < q and P

k

w P

q

g.

That is, �

q

is the length of the longest pre�x of P that is a proper su�x of P

q

. We

have the following lemma for the pre�x fun
tions.

Lemma 1 The pre�x fun
tion of P

k

is a restri
tion of pre�x fun
tion of P to the set

f1; 2; : : : ; kg.

Proof: The proof is immediate by the de�nition of the pre�x fun
tion be
ause �[i℄

for a given i
an be obtained only from P

i�1

= P [1::(i� 1)℄ and P [i℄.

Although simple, this lemma is a
orner-stone of the algorithm. It shows that, one

an sear
h for the presen
e of the pre�xes of a pattern string in the sour
e string, in the

3

Although this measure is not a mathemati
al distan
e but we will use the term transformation

distan
e whi
h was introdu
ed by Varré et al. [VDR98, VDR99℄.

3

Pro
eedings of the Prague Stringology Conferen
e '03

Algorithm 1 Pre�x-Mat
her(A, S, P, index) %% index = jT j+ 1� length of the

1. n length[S℄ %% su�x P being sear
hed in S

2. m length[P ℄ %% A

[n�n℄

: A[i; i+ q℄ 6=1 i� the pre�x

3. q 0 %% of P of length q+1 o

urs in S

4. for i 1 to n

5. do while q > 0 and P [q + 1℄ 6= S[i℄

6. do q �[q℄

7. if P [q + 1℄ = S[i℄ then

8. q q + 1

9. if A[index; index + q℄ =1 then

10. A[index; index + q℄ = i� q

11. if q = m then

12. Exit %% the su�x P has been dis
overed

Figure 1: Pre�x-Mat
her

Algorithm 2 PrePro
essing(S, T)

1. FillArray(FP;1)

2. FillArray(FPR;1)

3. n length[T ℄

4. for k 1 to n

5. do P T [k::n℄

6. Pre�x-Mat
her(FP; S; P; k) %% dire
t pattern

7. PR T

�1

[k::n℄

8. Pre�x-Mat
her(FPR; S; PR; k) %% reverse pattern

Figure 2: PrePro
essing

same time of sear
hing for the
omplete pattern, without in
reasing the
omplexity

of the sear
h. The algorithm is given in pseudo
ode in �gure 1 as the pro
edure

Pre�x-Mat
her. The
omplexity of the Pre�x-Mat
her algorithm is O(n) in time.

For the proof of the
omplexity and
orre
tness of this algorithm, see
hapter 34.4 of

[CLR90℄. Pre�x-Mat
her �nds the position of the �rst o

urren
e of all pre�xes of a

pattern string P in string S. In the PrePro
essing algorithm (�gure 2), we
all the

Pre�x-Mat
her with patterns T [1::n℄; T [2::n℄; :::; T [n℄. Thus, we have the position of

the �rst o

urren
es of all of the substrings of T in S. Similarly, the �rst position of

all substrings of T

�1

are found in S. The total
omplexity the prepro
essing part is

O(n

2

) in time and O(n

2

) in spa
e.

3.2 Core Algorithm

As the s
ripts
onstru
t the target string T from left to right by adding segments,

dynami
 programming is an ideal tool for
omputing the transformation distan
e.

The
ore part of the algorithm determines the transformation distan
e between S

and T by a dynami
 programming algorithm. Let C[k℄ be the minimum produ
tion

ost of T [1::k℄ using the segments of S. The algorithm is given in �gure 3. We make

use of generi
 fun
tions CopyCost, RevCopyCost and InsertCost as de�ned at the end

of se
tion 2. These fun
tions are de�ned using the PrePro
essing algorithm: arrays

4

The Transformation Distan
e Problem Revisited

Algorithm 3 TransformationDistan
e(S, T)

1. PrePro
essing(S, T)

2. C[0℄ 0

3. for k 1 to jT j

4 : C[k℄ min

0<i�k

8

>

>

>

<

>

>

>

:

C[i� 1℄ + CopyCost(T [i::k℄) if FP [i; k℄ <1

C[i� 1℄ +RevCopyCost(T [i::k℄) if FPR[n� k + 1; n� i+ 1℄ <1

C[i� 1℄ + InsertCost(T [i::k℄)

1

5. return C[n℄

Figure 3: Transformation Distan
e: a dynami
 programming solution

FP and FPR. In order to �x ideas, one
an
onsider that these
osts are proportional

to the length of the sear
hed segment (and 1 if this segment does not o

ur in S).

In fa
t any sub-additive fun
tion would be
onvenient.

Proposition 1 The re
urren
e relations of Algorithm 3,
orre
tly determine the

transformation distan
e of S and T .

Proof: We prove by indu
tion on k that after the algorithm exe
ution, C[k℄
ontains

the minimum produ
tion
ost of target T [1::k℄ with the sour
e string S. C[0℄ is

initialized to 0, be
ause the
ost of produ
tion of � from S is zero.

Now, we suppose that C[i℄ is
al
ulated
orre
tly for all i < k for some positive

value of k. Let us
onsider the
al
ulation of C[k℄. The last operation in a minimal

s
ript whi
h generates T [1::k℄,
reates a su�x of T [1::k℄. Let this su�x be T [i::k℄.

As the s
ript is minimal, the s
ript without its last operation is a minimal s
ript for

T [1::(i� 1)℄. The minimum
ost of the s
ript for T [1::(i� 1)℄ is C[i� 1℄ by indu
tion

hypothesis. If T [i::k℄ exists in S and the last operation of the minimal s
ript is

a
opy operation, the minimal
ost of the s
ript is C[i � 1℄ + CopyCost(T [i::k℄).

Similarly, if the reverse of T [i::k℄ exists in S and the last operation in the minimal

s
ript of T [1::k℄ is a reverse
opy operation, the minimal
ost of the s
ript is C[i �

1℄ + RevCopyCost(T [i::k℄). Finally, if the last operation in the minimal s
ript of

T [1::k℄ is an insertion, the minimal
ost of the s
ript is C[i� 1℄+ InsertCost(T [i::k℄)

(see �gure 4). Thus, C[n℄ is the minimum
ost of produ
tion of T = T [1::n℄ and the

algorithm determines
orre
tly the transformation distan
e of S and T .

Note that when the length of the substring T [i::k℄ is smaller than MFL, Copy-

Cost(T [i::k℄) and RevCopyCost(T [i::k℄) are equal to 1.

The
omplexity of Algorithm 3 is O(n

2

) in time and O(n) in spa
e. So the total

omplexity of our algorithm (prepro
essing +
ore algorithm) is O(n

2

) in time and

O(n

2

) in spa
e.

4 An Additional Operation: Point Deletion

In this se
tion, we extend the set of evolutionary operations by adding the point dele-

tion operation. During a point deletion (or simply deletion) operation, a symbol of

the string whi
h is under evolution is eliminated. This is an important operation from

5

Pro
eedings of the Prague Stringology Conferen
e '03

T

ki

Insertion

C[i� 1℄ + InsertCost(T [i::k℄)

T

S

ki

6

FPR[i; k℄

Reverse Copy

C[i� 1℄ +RevCopyCost(T [i::k℄)

T

S

ki

6

FP [i; k℄

Copy

C[i� 1℄ + CopyCost(T [i::k℄)

Figure 4: The three di�erent possibilities for generation of a su�x of T [1::k℄

the biologi
al point of view; in the real evolution of biologi
al sequen
es, in several

ases after or during the
opy operations some bases (symbols) are eliminated. We

denote the
ost of deletion of a symbol by DelCost. For simpli
ity, we suppose that

the
ost of deletion of every unique symbol is the same. Sin
e we have only point

deletions, deleting a segment of k symbols amounts to delete the k symbols one by

one, whi
h will
ost k � DelCost. As before, our obje
tive is to �nd the minimum

ost for a s
ript generating a target string T , with the help of segments of a sour
e

string S. As the
osts are independent of time, we
onsider that the deletions are

applied only in the latest added segment (rightmost one), at any moment during the

evolution. It should be
lear that in an optimal transformation, deletions are not

applied into an inserted substring (a substring whi
h is the result of an insertion

operation). Depending on the assigned
osts, deletions
an be used after the
opy

or reverse
opy operations. We
onsider a
opy operation together with all deletions

whi
h are applied to that
opied segment as a unit operation. So we have a new op-

eration
alled NewCopy whi
h is a
opy operation followed by zero or more deletions

on the
opied segment. In �gure 5 a s
hema of a NewCopy operation is illustrated.

Similarly, NewRevCopy is a reverse
opy operation followed by zero or more deletions.

Solving the extended transformation distan
e with the point deletions, amounts to

solve the transformation distan
e with the following three operations: Insertion, New-

Copy and NewRevCopy. A substring T [i::j℄ of the target string
an be produ
ed by

a unique NewCopy operation if and only if T [i::j℄ is a subsequen
e string of sour
e

S. Conversely, T [i::j℄
an be produ
ed by a unique NewRevCopy operation if and

only if T [i::j℄

�1

is a subsequen
e string of the sour
e S. In a prepro
essing part, the

algorithm determines the minimum generation
ost by a NewCopy or NewRevCopy

operation, for any substring of the target string T . Very similar to the last se
tion

6

The Transformation Distan
e Problem Revisited

T

S

l

1

l

2

l

3

l

4

l

5

l

6

ki

Copy(S[l

1

::l

6

℄)

+

Delete(S[l

2

::l

3

℄)

+

Delete(S[l

4

::l

5

℄)

NewCopy(T [i::k℄)

6 6

Deleted segments

Figure 5: The illustration of NewCopy operation: A
opy operation + zero or more

deletions

algorithm, a dynami
 programming algorithm
al
ulates the extended transformation

distan
e in the new
ore algorithm.

4.1 New Prepro
essing

In the prepro
essing part, we
ompute the
osts of these new operations for any sub-

string of the target: NewCopyCost[i; j℄ is the minimum
ost of generating the T [i::j℄

by a NewCopy operation. Similarly, NewRevCopyCost[i; j℄ is the minimum
ost of

generating T [i::j℄ by a NewRevCopy operation. Computing the NewCopyCost[i; j℄

amounts to �nd the shortest substring (with minimum length) of the sour
e string

whi
h
ontains T [i::j℄ as a subsequen
e string. By this way, the number of deletions

whi
h are needed for this NewCopy operation is minimized. ForNewRevCopyCost[i; j℄,

we need to �nd the shortest substring in S

�1

whi
h
ontains T [i::j℄ as a subsequen
e.

In the NewPrePro
essing algorithm listed in �gure 6, the
ost tables New-

CopyCost and LastO

 are initially �lled with1 (lines 1-2). The algorithm s
ans the

sour
e from left to right to �nd the shortest supersequen
e for ea
h segment of the

target. The algorithm uses an auxiliary table LastO

 for this aim.

After the k-th letter of S is pro
essed (loop of line 3), the following is true:

LastO

[i; j℄ is the largest l � k su
h that S[l::k℄ is a supersequen
e of T [i::j℄. The loop

on T (line 4) is pro
essed with de
reasing indi
es for memory optimization. Whenever

the letter S[k℄ o

urs in j-th position in T (line 5), then there is an opportunity of

obtaining a better supersequen
e for some of T [i::j℄'s, i � j. LastO

[i; j℄ takes the

value LastO

[i; j � 1℄ (
omputed for k � 1) sin
e S[LastO

[i; j � 1℄::k℄ is now the

rightmost supersequen
e for T [i::j℄ (line 9). Its
ost is
ompared to the
ost of the

best previous one; if better, the new
ost is stored in NewCopyCost (lines 11-13). One

should observe that rightmost sequen
es are updated only when a new
ommon letter

is s
anned. This is ne
essary and su�
ient as stated in the following lemma:

Lemma 2 If S[l::k℄ is the best supersequen
e for T [i::j℄ over S[1::N ℄, then it is the

rightmost supersequen
e for T [i::j℄ on S[1::k℄.

Proof: S[l::k℄ is the best sequen
e for T [i::j℄ over S[1::k℄ then it is better than

all S[l

0

::k℄ for l

0

< l and no S[l

00

::k℄
an be a supersequen
e for l

00

< l.

7

Pro
eedings of the Prague Stringology Conferen
e '03

Algorithm 4 NewPrePro
essing(S, T)

1. FillArray(NewCopyCost;1)

2. FillArray(LastO

;1) %% LastO

 is a sub-diagonal array: LastO

[i; j℄ =1 for i > j

3. for k 1 to jSj %% Sour
e s
anned left to right

4. for ea
h j jT j downto 1 %% �nd mat
hes in T for S[k℄

%% for a �xed k: LastO

[i; j℄ =largest l su
h that S[l::k℄ � T [i::j℄

5. if S[k℄ = T [j℄ then

6. LastO

[j; j℄ k

7. NewCopyCost[j; j℄ CopyCost(T [j℄) %% deletions are not needed

8. for i 1 to j � 1 %% for all su�xes of T[1..j℄

9. LastO

[i; j℄ LastO

[i; j�1℄ %% S[LastO

[i; j�1℄::k�1℄℄ � T [i::j�1℄

10. NumDel k � LastO

[i; j℄� i� j %% di�eren
e in lengths

11. ThisCost DelCost�NumDel+CopyCost(S[LastO

[i; j℄::k℄)

12. if ThisCost < NewCopyCost[i; j℄ then

13. NewCopyCost[i; j℄ ThisCost

Figure 6: NewPrePro
essing (simpli�ed: reverse
opies have been omitted)

Algorithm 5 NewTransformationDistan
e(S, T)

1. NewPrePro
essing(S,T)

2. C[0℄ 0

3. for k 1 to n

4 : C[k℄ min

0<i�k

8

>

>

>

<

>

>

>

:

C[i� 1℄ +NewCopyCost[i; k℄ if FP [i; k℄ <1

C[i� 1℄ +NewRevCopyCost[i; k℄ if FPR[i; k℄ <1

C[i� 1℄ + InsertCost(T [i::k℄)

1

5. return C[n℄

Figure 7: New Transformation Distan
e: dynami
 programming

4.2 New Core Algorithm

In the
ore algorithm, the minimum generation
osts of the pre�xes of the target

string T are determined from left to right. This is realized by a dynami
 programming

algorithm: Let C[k℄ be the minimum produ
tion
ost of T [1::k℄ using the segments of

S. The algorithm is given in �gure 7. The proof of the following proposition is very

similar to the proof of proposition 1:

Proposition 2 The re
urren
e relations of Algorithm 5,
orre
tly determine the ex-

tended transformation distan
e of S and T .

The
omplexity of the prepro
essing part, is O(n

3

) in time and O(n

2

) in spa
e.

The
omplexity of the
ore algorithm is O(n

2

) both in time and spa
e. Therefore, the

whole
omplexity of the new algorithm for the
al
ulation of extended transformation

distan
e is O(n

3

) in time and O(n

2

) in spa
e.

8

The Transformation Distan
e Problem Revisited

Remarks and Con
lusion

In this paper, we presented a new improved algorithm for
al
ulation of the transfor-

mation distan
e problem. We also gave an algorithm for the transformation distan
e

problem in presen
e of the deletion operations. In this version,
osts have been given

a spe
ial additive form for
larity. In fa
t a number of variations are possible within

our framework: the main property needed on
osts seems to be their subadditivity.

In this paper, we state that Algorithm 3
omplexity is O(n

3

); this stands for

the worst
ase
omplexity; in fa
t only a small proportion of pairs (S[k℄; T [j℄) imply

running the inner loop. Under
ertain additional statisti
al hypotheses the average

omplexity
ould be less than O(n

3

).

Referen
es

[BeSt03℄ Behzadi B. and Steyaert J.-M.: An Improved Algorithm for Generalized

Comparison of Minisatellites. CPM 2003.

[BeRi02℄ Bérard, S., Rivals, E.: Comparison of Minisatellites. Pro
eedings of the 6th

Annual International Conferen
e on Resear
h in Computational Mole
ular

Biology. ACM Press, 2002.

[CLR90℄ Cormen, T.H., Leiserson, C.E., Rivest R.L.: Introdu
tion to Algorithms.

MIT Press, 1990.

[Do81℄ Doolittle, R.F.: Similar amino a
id sequen
es:
han
e or
ommon an
es-

try?, S
ien
e,214,149-159, 1981.

[SaKr83℄ Sanko�, D. and Kruskal, J.B: Time Warps, String Edits and Ma
ro-

mole
ules: The Theory and Pra
ti
e of Sequen
e Comparison. Addison-

Wesley, 1983.

[Va00℄ Varré, J.S.: Con
epts et algorithmes pour la
omparaison de séquen
es

génétiques : une appro
he informationnelle. PhD thesis, 2000.

[VDR99℄ Varré, J.S., Delahaye, J.P., Rivals, E.: Transformation Distan
es: a family

of dissimilarity measures based on movements of segments. Bioinformati
s,

vol. 15, no. 3, pp 194-202, 1999.

[VDR98℄ Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distan
e : A

Dissimilarity Measure Based On Movements Of Segments,German Confer-

en
e on Bioinformati
s, Koel - Germany, 1998.

[VDR97℄ Varré, J.S., Delahaye, J.P., Rivals, E.: The Transformation Distan
e.

Genome Informati
s Workshop, Tokyo, Japan, 1997.

9

Forward-Fast-Sear
h: Another Fast Variant of the

Boyer-Moore String Mat
hing Algorithm

Domeni
o Cantone and Simone Faro

Dipartimento di Matemati
a e Informati
a, Università di Catania, Italy

e-mail: {
antone, faro}�dmi.uni
t.it

Abstra
t. We present a variation of the Fast-Sear
h string mat
hing algorithm,

a re
ent member of the large family of Boyer-Moore-like algorithms, and we
om-

pare it with some of the most e�e
tive string mat
hing algorithms, su
h as Hor-

spool, Qui
k Sear
h, Tuned Boyer-Moore, Reverse Fa
tor, Berry-Ravindran, and

Fast-Sear
h itself. All algorithms are
ompared in terms of run-time e�
ien
y,

number of text
hara
ter inspe
tions, and number of
hara
ter
omparisons.

It turns out that our new proposed variant, though not linear, a
hieves very

good results espe
ially in the
ase of very short patterns or small alphabets.

Keywords: string mat
hing, experimental algorithms, text pro
essing.

1 Introdu
tion

Given a text T and a pattern P over some alphabet �, the string mat
hing prob-

lem
onsists in �nding all o

urren
es of the pattern P in the text T . It is a very

extensively studied problem in
omputer s
ien
e, mainly due to its dire
t appli
a-

tions to su
h diverse areas as text, image and signal pro
essing, spee
h analysis and

re
ognition, information retrieval,
omputational biology and
hemistry, et
.

Several string mat
hing algorithms have been proposed over the years. The Boyer-

Moore algorithm [BM77℄ deserves a spe
ial mention, sin
e it has been parti
ularly

su

essful and has inspired mu
h work. It is based upon three simple ideas: right-to-

left s
anning, bad
hara
ter heuristi
s, and good su�x heuristi
s. We will review it

at length in Se
tion 2.1.

Many subsequent algorithms have been based on variations on how to apply the

two mentioned heuristi
s. For instan
e, the Fast-Sear
h algorithm, re
ently introdu
ed

by the authors [CF03℄, requires that the bad
hara
ter heuristi
s is used only if the

mismat
hing
hara
ter is the last
hara
ter of the pattern, otherwise the good su�x

heuristi
s is to be used.

In this paper, we present a variation of the Fast-Sear
h algorithm in whi
h the good

su�x heuristi
s uses also a look-ahead
hara
ter to determine larger advan
ements.

We also propose a pra
ti
al algorithm to pre
ompute the table en
oding su
h an

extended good su�x rule.

Before entering into details, we need a bit of notations and terminology. A string

P is represented as a �nite array P [0 :: m � 1℄, with m � 0. In su
h a
ase we say

10

Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

that P has length m and write length(P) = m. In parti
ular, for m = 0 we obtain

the empty string, also denoted by ". By P [i℄ we denote the (i+ 1)-st
hara
ter of P ,

for 0 � i < length(P). Likewise, by P [i :: j℄ we denote the substring of P
ontained

between the (i + 1)-st and the (j + 1)-st
hara
ters of P , for 0 � i � j < length(P).

Moreover, for any i; j 2 Z, we put

P [i :: j℄ =

(

" if i > j

P [max(i; 0);min(j; length(P)� 1)℄ otherwise:

For any two strings P and P

0

, we write P

0

= P to indi
ate that P

0

is a su�x of P , i.e.,

P

0

= P [i :: length(P)� 1℄, for some 0 � i < length(P). Similarly, we write P

0

< P to

indi
ate that P

0

is a pre�x of P , i.e., P

0

= P [0 :: i� 1℄, for some 0 � i � length(P).

In addition, we write P:P

0

to denote the
on
atenation of P and P

0

.

Let T be a text of length n and let P be a pattern of lengthm. When the
hara
ter

P [0℄ is aligned with the
hara
ter T [s℄ of the text, so that the
hara
ter P [i℄ is aligned

with the
hara
ter T [s+ i℄, for i = 0; : : : ; m� 1, we say that the pattern P has shift

s in T . In this
ase the substring T [s :: s+m� 1℄ is
alled the
urrent window of the

text. If T [s :: s+m�1℄ = P , we say that the shift s is valid. Thus the string mat
hing

problem
an be rephrased as the problem of �nding all valid shifts of a pattern P

relative to a text T .

Most string mat
hing algorithms have the following general stru
ture. First, dur-

ing a prepro
essing phase, they
al
ulate useful mappings, in the form of tables,

whi
h later are a

essed to determine nontrivial shift advan
ements. Next, start-

ing with shift s = 0, they look for all valid shifts, by exe
uting a mat
hing phase,

whi
h determines whether the shift s is valid and
omputes a positive shift in
rement

�s. Su
h in
rement �s is used to produ
e the new shift s + �s to be fed to the

subsequent mat
hing phase. Observe that for the
orre
tness of the algorithm it is

plainly ne
essary that ea
h shift in
rement �s
omputed is safe, namely the interval

fs+ 1; : : : ; s+�s� 1g
ontains no valid shifts.

For instan
e, in the
ase of the naive string mat
hing algorithm, there is no pre-

pro
essing phase and the mat
hing phase always returns a unitary shift in
rement,

i.e., all possible shifts are a
tually pro
essed.

The paper is organized as follows. In Se
tion 2 we survey some of the most e�e
tive

string mat
hing algorithms. Next, in Se
tion 3, we introdu
e a new variant of the Fast-

Sear
h algorithm. Experimental data obtained by running under various
onditions

all the algorithms reviewed are presented and
ompared in Se
tion 4. Finally, we

draw our
on
lusions in Se
tion 5.

2 Some Very Fast String Mat
hing Algorithms

In this se
tion we brie�y review the Boyer-Moore algorithm and some of its most e�-

ient variants that have been proposed over the years. In parti
ular, we present the

Horspool [Hor80℄, Tuned Boyer-Moore[HS91℄, Qui
k-Sear
h[Sun90℄, Berry-Ravindran

[BR99℄, and the Fast-Sear
h [CF03℄ algorithms.

We also review the Reverse Fa
tor algorithm [CCG

+

94℄, whi
h is based on the

smallest su�x automaton of the reverse pattern.

11

Pro
eedings of the Prague Stringology Conferen
e '03

2.1 The Boyer-Moore Algorithm

The Boyer-Moore algorithm [BM77℄ is the progenitor of several algorithmi
 variants

whi
h aim at
omputing
lose to optimal shift in
rements very e�
iently. Spe
i�
ally,

the Boyer-Moore algorithm
he
ks whether s is a valid shift by s
anning the pattern P

from right to left and, at the end of the mat
hing phase,
omputes the shift in
rement

as the maximum value suggested by the good su�x rule and the bad
hara
ter rule

below, using the fun
tions gs

P

and b

P

respe
tively, provided that both of them are

appli
able.

If the �rst mismat
h o

urs at position i of the pattern P , the good su�x rule

suggests to align the substring T [s + i + 1 : : : s + m � 1℄ = P [i + 1 : : :m � 1℄ with

its rightmost o

urren
e in P pre
eded by a
hara
ter di�erent from P [i℄. If su
h an

o

urren
e does not exist, the good su�x rule suggests a shift in
rement whi
h allows

to mat
h the longest su�x of T [s+ i+ 1 : : : s+m� 1℄ with a pre�x of P .

More formally, if the �rst mismat
h o

urs at position i of the pattern P , the good

su�x rule states that the shift
an be safely in
remented by gs

P

(i+1) positions, where

gs

P

(j) =

Def

minf0 < k � m j P [j � k ::m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ 6= P [j � 1� k℄)g ;

for j = 0; 1; : : : ; m. (The situation in whi
h an o

urren
e of the pattern P is found

an be regarded as a mismat
h at position �1.)

The bad
hara
ter rule states that if
 = T [s + i℄ 6= P [i℄ is the �rst mismat
hing

hara
ter, while s
anning P and T from right to left with shift s, then P
an be safely

shifted in su
h a way that its rightmost o

urren
e of
, if present, is aligned with

position (s+ i) in T . In the
ase in whi
h
 does not o

ur in P , then P
an be safely

shifted just past position (s + i) in T . More formally, the shift in
rement suggested

by the bad
hara
ter rule is given by the expression (i� b

P

(T [s+ i℄)), where

b

P

(
) =

Def

max(f0 � k < m j P [k℄ =
g [f�1g) ;

for
 2 �, and where we re
all that � is the alphabet of the pattern P and text

T . Noti
e that there are situations in whi
h the shift in
rement given by the bad

hara
ter rule
an be negative.

It turns out that the fun
tions gs

P

and b

P

an be
omputed during the pre-

pro
essing phase in time O(m) and O(m + j�j), respe
tively, and that the overall

worst-
ase running time of the Boyer-Moore algorithm, as des
ribed above, is linear

(
f. [GO80℄).

2.2 The Horspool Algorithm

Horspool suggested a simpli�
ation of the original Boyer-Moore algorithm, de�ning a

new variant whi
h, though quadrati
, performed better in pra
ti
al
ases (
f. [Hor80℄).

He just dropped the good su�x rule and proposed to
ompute the shift advan
ement

in su
h a way that the rightmost
hara
ter T [s+m� 1℄ is aligned with its rightmost

o

urren
e on P [0 :: m � 2℄, if present; otherwise the pattern is advan
ed just past

the window. This
orresponds to advan
e the shift by hb

P

(T [s+m� 1℄) positions,

where

hb

P

(
) =

Def

min(f1 � k < m j P [m� 1� k℄ =
g [fmg) :

12

Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

The resulting algorithm performs well in pra
ti
e and
an be immediately translated

into programming
ode (see Baeza-Yates and Régnier [BYR92℄ for a simple imple-

mentation in the C programming language).

2.3 The Tuned Boyer-Moore Algorithm

The Tuned Boyer-Moore algorithm [HS91℄
an be seen as an e�
ient implementation

of the Horspool algorithm. Again, let P be a pattern of length m. Ea
h iteration

of the Tuned Boyer-Moore algorithm
an be divided into two phases: last
hara
ter

lo
alization and mat
hing phase. The �rst phase sear
hes for a mat
h of P [m�1℄, by

applying rounds of three blind shifts (based on the
lassi
al bad
hara
ter rule) until

needed. The mat
hing phase tries then to mat
h the rest of the pattern P [0 :: m� 2℄

with the
orresponding
hara
ters of the text, pro
eeding from right to left. At

the end of the mat
hing phase, the shift advan
ement is
omputed a

ording to the

Horspool bad
hara
ter rule. Moreover, to begin with, the algorithm adds m
opies

of P [m� 1℄ at the end of the text, as a sentinel, to
ompute the last shifts
orre
tly.

The fa
t that the blind shifts require no
omparison is at the heart of the very

good pra
ti
al behavior of the Tuned Boyer-Moore, despite its quadrati
 worst-
ase

time
omplexity (
f. [Le
00℄).

2.4 The Qui
k-Sear
h Algorithm

The Qui
k-Sear
h algorithm, presented in [Sun90℄, uses a modi�
ation of the original

heuristi
s of the Boyer-Moore algorithm, mu
h along the same lines of the Horspool

algorithm. Spe
i�
ally, it is based on the following observation: when a mismat
h

hara
ter is en
ountered, the pattern is always shifted to the right by at least one

hara
ter, but never by more than m
hara
ters. Thus, the
hara
ter T [s + m℄ is

always involved in testing for the next alignment. So, one
an apply the bad
hara
ter

rule to T [s + m℄, rather than to the mismat
hing
hara
ter, obtaining larger shift

advan
ements. This
orresponds to advan
e the shift by qb

P

(T [s + m℄) positions,

where

qb

P

(
) =

Def

min(f0 < k � m j P [m� k℄ =
g [fm+ 1g) :

Experimental tests have shown that that the Qui
k-Sear
h algorithm is very fast

espe
ially for short patterns (
f. [Le
00℄).

2.5 The Berry-Ravindran Algorithm

The Berry-Ravindran algorithm [BR99℄ extends the Qui
k-Sear
h algorithm in that

its bad
hara
ter rule uses the two
hara
ters T [s+m℄ and T [s+m+ 1℄ rather than

just the last
hara
ter T [s+m℄ of the window, where m is the size of the pattern P .

Thus, at the end of ea
h mat
hing phase with shift s, the Berry-Ravindran algorithm

advan
es the pattern so that the substring of the text T [s+m :: s+m+1℄ is aligned

with its rightmost o

urren
e in P .

The pre
omputation of the table used by the bad
hara
ter rule requires O(j�j

2

)-

spa
e and O(m + j�j

2

)-time
omplexity, where � is the alphabet of the text and

pattern. Experimental results [BR99℄ show that the Berry-Ravindran algorithm is

fast in pra
ti
e and performs a low number of text/pattern
hara
ter
omparisons.

13

Pro
eedings of the Prague Stringology Conferen
e '03

2.6 The Fast-Sear
h Algorithm

Again, let P be a pattern of lengthm and let T be a text of length n over a �nite alpha-

bet �. The main observation upon whi
h the Fast-Sear
h algorithm [CF03℄ is based

is the following: the Horspool bad
hara
ter rule leads to larger shift in
rements than

the good su�x rule if and only if a mismat
h o

urs immediately, while
omparing

the pattern P with the window T [s :: s+m�1℄, namely when P [m�1℄ 6= T [s+m�1℄,

where 0 � s � m� n is a shift.

In agreement with the above observation, the Fast-Sear
h algorithm
omputes its

shift in
rements by applying the Horspool bad
hara
ter rule only if a mismat
h

o

urs during the �rst
hara
ter
omparison. Otherwise it uses the good su�x rule.

Noti
e that hb

P

(a) = b

P

(a), whenever a 6= P [m � 1℄, so that to
ompute the

shift advan
ement one
an use the traditional bad
hara
ter rule, b

P

, rather then

the Horspool bad
hara
ter rule, hb

P

.

A more e�e
tive implementation of the Fast-Sear
h algorithm is obtained along

the same lines of the Tuned Boyer-Moore algorithm: the bad
hara
ter rule
an be

iterated until the last
hara
ter P [m� 1℄ of the pattern is mat
hed
orre
tly against

the text. At this point it is known that T [s+m�1℄ = P [m�1℄, so that the subsequent

mat
hing phase
an start with the (m � 2)-nd
hara
ter of the pattern. At the end

of the mat
hing phase the algorithm uses the good su�x rule for shifting.

As in the
ase of the Tuned Boyer-Moore algorithm, the Fast-Sear
h algorithm

bene�ts from the introdu
tion of an external sentinel, whi
h allows to
ompute
or-

re
tly the last shifts with no extra
he
ks.

Experimental results [CF03℄ show that the Fast-Sear
h algorithm obtains the best

run-time performan
es in most
ases and, sporadi
ally, it is se
ond only to the Tuned

Boyer-Moore algorithm. Con
erning the number of text
hara
ter inspe
tions, it turns

out that the Fast-Sear
h algorithm is quite
lose to the Reverse Fa
tor algorithm,

whi
h generally shows the best behavior. We noti
e, though, that in the
ase of very

short patterns the Fast-Sear
h algorithm rea
hes the lowest number of text
hara
ter

a

esses.

2.7 The Reverse Fa
tor Algorithm

Unlike the variants of the Boyer-Moore algorithm summarized above, the Reverse

Fa
tor algorithm
omputes shifts whi
h mat
h pre�xes of the pattern, rather than

su�xes. This is made possible by the smallest su�x automaton of the reverse of the

pattern P , whi
h is a deterministi
 �nite automaton S(P) whose a

epted language

is the set of su�xes of P (for a
omplete des
ription see [CCG

+

94℄).

The Reverse Fa
tor algorithm has a quadrati
 worst-
ase time
omplexity, but it

is very fast in pra
ti
e (
f. [Le
00℄). Moreover, it has been shown that on the average

it inspe
ts O(n log(m)=m) text
hara
ters, rea
hing the best bound shown by Yao in

[Yao79℄.

3 The Forward-Fast-Sear
h Algorithm

In this se
tion we present a new e�
ient variant of the Boyer-Moore algorithm ob-

tained by modifying the Fast-Sear
h algorithm presented in Se
tion 2.6.

14

Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

The new algorithmi
 variant, that we
all Forward-Fast-Sear
h, mantains the same

stru
ture of the Fast-Sear
h algorithm, but is based upon a modi�ed version of the

good su�x rule,
alled forward good su�x rule, whi
h uses a look-ahead
hara
ter to

determine larger shift advan
ements.

The forward good su�x requires a pre
omputed table of size (m � j�j), where m

is the length of the pattern and � is the alphabet of the text and pattern.

Con
erning the running time, the forward good su�x rule
an be pre
omputed by

j�j iterations of the standard linear pre
omputation of the Boyer-Moore good su�x

rule, yielding a O(m � j�j) time
omplexity. Nevertheless, we propose an alternative,

more dire
t approa
h whi
h behaves very well in pra
ti
e, though it requires O(m �

max(m; j�j)) time in the worst
ase.

3.1 Strengthening the Good Su�x Rule

3.1.1 The Ba
kward Good Su�x Rule

A �rst natural way to strengthen the good su�x rule, whi
h yields the ba
kward good

su�x rule,
an be obtained by merging it with the bad
hara
ter rule as follows.

As usual, let us assume that we are
omparing a pattern P of length m with the

window T [s :: s +m � 1℄ at shift s of a given text T , s
anning it from right to left.

If the �rst mismat
h o

urs at position i of the pattern P , i.e. P [i + 1 :: m � 1℄ =

T [s + i + 1 :: s + m � 1℄ and P [i℄ 6= T [s + i℄, then the ba
kward good su�x rule

proposes to align the substring T [s+ i+ 1 :: s+m� 1℄ with its rightmost o

urren
e

in P pre
eded by the ba
kward
hara
ter T [s + i℄. If su
h an o

urren
e does not

exist, the ba
kward good su�x rule proposes a shift in
rement whi
h allows to mat
h

the longest su�x of T [s + i + 1 :: s +m � 1℄ with a pre�x of P . More formally, this

orresponds to in
rement the shift s by

 �

gs

P

(i + 1; T [s+ i℄), where

 �

gs

P

(j;
) =

Def

minf0 < k � m j P [j � k : : :m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ =
)g ;

for j = 0; 1; : : : ; m and
 2 �.

3.1.2 The Forward Good Su�x Rule

As observed by Sunday [Sun90℄, after a mat
hing phase with shift s, the forward

hara
ter T [s+m℄ is always involved in the subsequent mat
hing phase. Thus, another

possible variant of the good su�x rule, whi
h we
all forward good su�x rule,
onsists

in mat
hing the forward
hara
ter T [s +m℄, rather than the mismat
hed
hara
ter

T [s + i℄. More pre
isely, if as above the �rst mismat
h o

urs at position i of the

pattern P , the forward good su�x rule suggests to align the substring T [s+ i+1 :: s+

m℄ with its rightmost o

urren
e in P pre
eded by a
hara
ter di�erent from P [i℄.

If su
h an o

urren
e does not exist, the forward good su�x rule proposes a shift

in
rement whi
h allows to mat
h the longest su�x of T [s+ i+1 :: s+m℄ with a pre�x

of P . This
orresponds to advan
e the shift s by

�!

gs

P

(i+1; T [s+m℄) positions, where

�!

gs

P

(j;
) =

Def

min(f0 < k � m j P [j � k ::m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ 6= P [j � 1� k℄)

and P [m� k℄ =
g [fm+ 1g) ;

for j = 0; 1; : : : ; m and
 2 �.

15

Pro
eedings of the Prague Stringology Conferen
e '03

3.1.3 Comparing the Good Su�x Rule with its Variants

We
omputed the average shift advan
ement suggested by the good su�x rule and

its ba
kward and forward variants on four Rand� problems, for � = 2; 4; 8; 20, with

pattern lengths 2; 4; 6; 8; 10; 20; 40; 80, and 160, where a Rand� problem
onsists in

sear
hing, for ea
h assigned value of the pattern length, a set of 200 random patterns

over an alphabet � of size � in a 20Mb random text over the same alphabet �.

Experimental results, presented in the tables below, show that the forward and

ba
kward good su�x rules propose on the average mu
h larger shift advan
ements

than the standard good su�x rule (up to 400% better). In addition, the forward

good su�x rule shows always a slightly better behavior than the ba
kward one, whi
h

be
omes more sensible in the
ase of very small alphabets. This is partly due to the

fa
t that the forward
hara
ter is always used by the forward good su�x rule to

ompute shift advan
ements, whereas there are
ases in whi
h the ba
kward good

su�x rule does not exploit the ba
kward
hara
ter.

� = 2 2 4 6 8 10 20 40 80 160

gs 1.540 2.762 3.869 4.765 5.468 8.464 12.254 16.137 21.807

 �

gs 1.540 2.762 3.869 4.765 5.468 8.464 12.254 16.137 21.807

�!

gs 2.269 3.642 5.026 6.310 7.394 12.21 18.200 25.586 34.798

� = 4 2 4 6 8 10 20 40 80 160

gs 1.750 3.062 4.334 5.196 6.079 8.697 12.382 16.857 22.645

 �

gs 1.750 3.540 5.170 6.691 8.097 13.62 21.604 30.540 42.891

�!

gs 2.687 4.407 6.114 7.696 9.245 15.55 25.149 36.584 51.398

� = 8 2 4 6 8 10 20 40 80 160

gs 1.880 3.453 4.833 5.399 6.656 10.05 13.613 19.510 25.807

 �

gs 1.880 3.857 5.692 7.441 9.294 17.63 31.570 51.010 75.734

�!

gs 2.860 4.775 6.671 8.399 10.24 18.72 33.225 54.825 81.334

� = 20 2 4 6 8 10 20 40 80 160

gs 1.930 3.714 5.238 6.684 8.512 12.81 19.078 25.169 33.975

 �

gs 1.930 3.956 5.892 7.919 9.867 19.47 38.167 72.950 136.45

�!

gs 2.946 4.929 6.896 8.868 10.85 20.44 39.206 74.084 138.22

Average advan
ements for some Rand� problems

3.1.4 Implementing the Forward Good Su�x Rule

Given a pattern P of length m over an alphabet �, we have plainly

�!

gs

P

(j;
) = gs

P:

(j) ;

for j = 0; 1; : : : ; m and
 2 �, where P:
 is the string obtained by
on
atenating the

hara
ter
 at the end of P . Thus, a natural way to
ompute the forward good su�x

fun
tion

�!

gs

P

onsists in
omputing the standard good su�x fun
tions gs

P:

, for all

 2 �, by means of the O(m) tri
ky algorithm �rstly given in [KMP77℄ and then

orre
ted in [Rit80℄.

Su
h a pro
edure is asymptoti
ally optimal, as it has O(m � j�j) spa
e and time

omplexity.

In Figure 1 we propose an alternative pro
edure to
ompute the forward good

su�x fun
tion whi
h, despite its O(m � max(m; j�j)) worst-
ase time
omplexity,

turns out to be very e�
ient in pra
ti
e, even for large values of m.

16

Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

pre
ompute-forward-good-su�x(P)

Initialization:

1. m = length(P)

2. for i = 0 to m do

3. for
 2 � do

4.

�!

gs[i;
℄ = m+ 1

5. for i = 0 to m� 1 do

6. next [i℄ = i� 1

Computation:

7. for slen = 0 to m� 1 do

8. last = m� 1

9. i = next [last ℄

10. while i � 0 do

11. if

�!

gs[m� slen; P [i+ 1℄℄ > m� 1� i then

12. if (i� slen < 0 or

13 (i� slen � 0 and P [i� slen℄ 6= P [m� 1� slen℄)) then

14.

�!

gs[m� slen; P [i+ 1℄℄ = m� 1� i

15. if (i� slen � 0 and P [i� slen℄ = P [last � slen℄) or

16. (i� slen < 0) then

17. next [last ℄ = i

18. last = i

19. i = next [i℄

20. if

�!

gs[m� slen; P [0℄℄ > m then

21.

�!

gs[m� slen; P [0℄℄ = m

22. next [last ℄ = �1

23. return

�!

gs

Figure 1: The fun
tion for
omputing forward good su�xes

After an initialization phase whi
h takes O(m � j�j) spa
e and time
omplexity,

the pre
ompute-forward-good-su�x pro
edure
arries out m iterations of its main for-

loop, starting at line 7. During the k-th iteration, for k = 1; 2; : : : ; m, it
omputes

the sequen
e S

k

(P) of all o

urren
es in P of the su�x P [m� k ::m� 1℄ of length k,

impli
itly represented by means of the array next :

S

k

(P) = h P [next [m� 1℄� k + 1 :: next [m� 1℄℄ ;

P [next

(2)

[m� 1℄� k + 1 :: next

(2)

[m� 1℄℄;

: : : : : :

P [next

(r

k

)

[m� 1℄� k + 1 :: next

(r

k

)

[m� 1℄℄ i ;

(1)

where r

k

is su
h that next

(r

k

+1)

[m�1℄ = �1. For that purpose, lines 15-18 implement

the re
urren
e

S

k

(P) = hP [j � k + 1 :: j℄ jP [j � k + 2 :: j℄ 2 S

k�1

(P) and P [j � k + 1℄ = P [m� k℄i ;

where S

0

(P) is also formally given by (1), thanks to the way the array next is ini-

tialized in lines 5-6. Moreover, during the k-th iteration of the for-loop, for ea
h

17

Pro
eedings of the Prague Stringology Conferen
e '03

P [j � k + 1 :: j℄ 2 S

k

(P), the pro
edure updates, if ne
essary, the value

�!

gs(m � k �

1; P [j + 1℄) by setting it to (m� 1� j) (lines 11-14).

Plainly, the pro
edure in Figure 1 requires O(m � j�j) spa
e. To
ompute its

time
omplexity, it is enough to observe that the k-th exe
ution of the while-

loop in lines 10-19, for k = 1; 2; : : : ; m, takes O(jS

k�1

(P)j) time, giving a total

of O(

P

m�1

j=0

jS

j

(P)j) = O(m

2

) time in the worst
ase. This leads to an overall

O(m �max(m; j�j)) worst-
ase time
omplexity, taking into a

ount also the initizial-

ization phase.

Experimental results show that the sum

P

m�1

j=0

jS

j

(P)j has on the average an al-

most linear behavior. For instan
e, the following tables report the average of the

sum

P

m�1

j=0

jS

j

(P)j
omputed for 100; 000 random patterns of size m over an alphabet

of size �, for � = 2; 4; 8; 20 and m = 2; 4; 6; 8; 10; 20; 40; 80; 160. The tests relative

to a natural language bu�er NL have been
omputed by randomly sele
ting 100; 000

substrings for ea
h given pattern length over the 3.13Mb �le obtained by dis
arding

the nonalphabeti

hara
ters from the WinEdt spelling di
tionary.

m 2 4 6 8 10 20 40 80 160

m

2

(worst
ase) 4 16 36 64 100 400 1600 6400 25600

Average for � = 2 2.50 7.38 13.07 19.01 25.02 55.09 114.89 234.98 474.57

Average for � = 4 2.24 5.46 8.76 12.10 15.45 32.09 65.34 132.06 264.98

Average for � = 8 2.12 4.67 7.23 9.81 12.40 25.24 50.93 102.45 204.98

Average for � = 20 2.04 4.25 6.46 8.68 10.89 21.96 44.00 88.21 176.63

Average on NL 2.04 4.23 6.47 8.84 11.99 28.57 57.97 111.61 208.00

For the same set of random tests, we also
omputed the total time taken to
on-

stru
t the forward good su�x fun
tion

�!

gs, using the two implementations des
ribed

earlier, namely the one whi
h has a O(m � j�j) worst-
ase time and spa
e
omplexity

and the pro
edure pre
ompute-forward-good-su�x. Su
h implementations are denoted

respe
tively �

�!

gs (I)� and �

�!

gs (II)� in the tables below, where experimental results are

expressed in hundredths of se
onds.

� = 2 2 4 6 8 10 20 40 80 160

�!

gs (I) 58.1 60.1 63.1 66.1 68.1 81.1 103.2 149.2 239.3

�!

gs (II) 3.0 6.0 11.0 15.1 18.0 37.0 74.1 145.3 288.4

� = 4 2 4 6 8 10 20 40 80 160

�!

gs (I) 113.2 117.1 121.2 124.2 128.2 142.2 174.2 235.4 357.5

�!

gs (II) 3.0 6.0 10.0 13.0 16.0 33.1 64.1 126.2 250.3

� = 8 2 4 6 8 10 20 40 80 160

�!

gs (I) 225.3 230.4 237.3 240.4 243.3 268.4 313.4 401.6 577.9

�!

gs (II) 4.0 7.0 11.0 14.0 19.0 36.1 72.1 141.2 289.4

� = 20 2 4 6 8 10 20 40 80 160

�!

gs (I) 558.8 573.9 580.8 589.8 598.9 642.9 733.1 905.3 1250.8

�!

gs (II) 5.0 11.0 16.0 20.1 26.0 50.1 98.1 195.3 394.6

NL 2 4 6 8 10 20 40 80 160

�!

gs (I) 553.8 565.8 573.8 583.8 592.8 636.9 725.0 895.3 1238.8

�!

gs (II) 5.0 10.0 16.0 19.0 23.1 48.1 95.1 189.3 379.5

18

Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

Forward-Fast-Sear
h(P , T)

1. n = length(T)

2. m = length(P)

3. T

0

= T:P [m� 1℄

m+1

4. b
 = pre
ompute-bad-
hara
ter(P)

5.

�!

gs = pre
ompute-forward-good-su�x(P)

7. s = 0

8. while b
[T

0

[s +m� 1℄℄ > 0 do

9. s = s+ b
[T

0

[s+m� 1℄℄

10. while s � n�m do

11. j = m� 2

12. while j � 0 and P [j℄ = T

0

[s+ j℄ do

13. j = j � 1

14. if j < 0 then

15. print(s)

16. s = s+

�!

gs[j + 1; T [s+m℄℄

17. while b
[T

0

[s+m� 1℄℄ > 0 do

18. s = s+ b
[T

0

[s+m� 1℄℄

Figure 2: The Forward-Fast-Sear
h algorithm

The analysis of the above experimental results show that for alphabets of size at least

4 the pro
edure pre
ompute-forward-good-su�x is on the average always faster than

the implementation of the forward good su�x fun
tion des
ribed at the beginning

the present se
tion.

3.2 Building up the Forward-Fast-Sear
h Algorithm

The implementation of the Forward-Fast-Sear
h algorithm
an be obtained along the

same lines of the Fast-Sear
h and the Tuned Boyer-Moore algorithms.

In the �rst phase,
alled
hara
ter lo
alization phase, the algorithm iterates the

bad
hara
ter rule until the last
hara
ter P [m�1℄ of the pattern is mat
hed
orre
tly

against the text. More pre
isely, starting from a shift position s, if we denote by j

i

the total shift advan
ement after the i-th iteration of the bad
hara
ter rule, then we

have the following re
urren
e:

j

i

= j

i�1

+ b

P

(T [s+ j

i�1

+m� 1℄) :

Therefore, the bad
hara
ter rule is applied k times in a row, where k = minfi j T [s+

j

i

+m� 1℄ = P [m� 1℄g, with an overall shift advan
ement of j

k

.

At this point we have that T [s+ j

k

+m� 1℄ = P [m� 1℄, so that the subsequent

mat
hing phase
an test for an o

urren
e of the pattern by
omparing only the

remaining (m � 1)
hara
ters of the pattern. At the end of the mat
hing phase the

algorithm applies the forward good su�x rule instead of the traditional good su�x

rule.

As in the
ase of the Fast-Sear
h and Tuned Boyer-Moore algorithms, the Forward-

Fast-Sear
h algorithm bene�ts from the introdu
tion of an external sentinel: sin
e the

19

Pro
eedings of the Prague Stringology Conferen
e '03

forward good su�x rule looks at the
hara
ter T [s+m℄ just after the
urrent window,

m+ 1
opies of the
hara
ter P [m� 1℄ are added at the end of the text T , obtaining

a new text T

0

= T:P [m� 1℄

m+1

. This allows to
ompute
orre
tly the last shifts with

no extra
he
ks. Plainly, all the valid shifts of P in T are the valid shifts s of P in T

0

su
h that s � n�m, where, as usual, n and m denote respe
tively the lengths of T

and P . The
ode of the Forward-Fast-Sear
h algorithm is presented in Figure 2.

4 Experimental Results

We present next experimental data whi
h allow to
ompare the following string mat
h-

ing algorithms under various
onditions: Horspool (HOR), Qui
k-Sear
h (QS), Barry-

Ravidran (BR), Tuned Boyer-Moore (TBM), Reverse Fa
tor (RF), Fast-Sear
h (FS),

and Forward-Fast-Sear
h (FFS).

We have
hosen to
ompare the algorithms in terms of running time, number of

text
hara
ter inspe
tions, and number of
hara
ter
omparisons.

All algorithms have been implemented in the C programming language and were

used to sear
h for the same strings in large �xed text bu�ers on a PC with AMD

Athlon pro
essor of 1.19GHz. In parti
ular, the algorithms have been tested on four

Rand� problems, for � = 2; 4; 8; 20, and on a natural language text bu�er NL with

patterns of length m = 2; 4; 6; 8; 10; 20; 40; 80, and 160.

We re
all that ea
h Rand� problem
onsists in sear
hing a set of 200 random

patterns of a given length in a 20Mb random text over a
ommon alphabet of size �.

The tests on the natural language text bu�er NL have been performed on a 3.13Mb

�le obtained by dis
arding the nonalphabeti

hara
ters from the WinEdt spelling

di
tionary. For ea
h pattern length m, we have sele
ted 200 random substrings of

length m in the �le whi
h subsequently have been sear
hed for in the same �le.

4.1 Running Times

Experimental results show that the Forward-Fast-Sear
h algorithm obtains the best

run-time performan
e in most
ases and, sporadi
ally, it is se
ond only to the Fast-

Sear
h algorithm, in the
ase of natural language texts and long patterns, and to the

Berry-Ravidran algorithm, in the
ase of large alphabets and patterns.

In the following tables, running times are expressed in hundredths of se
onds.

� = 2 2 4 6 8 10 20 40 80 160

HOR 42.01 44.18 42.86 42.02 46.57 40.24 39.51 38.83 39.95

QS 34.33 41.12 38.35 39.30 42.80 37.42 36.77 36.42 36.54

BR 44.84 49.36 44.42 43.48 47.69 40.66 40.70 40.74 40.54

TBM 33.96 36.54 36.88 36.65 40.53 35.98 36.05 35.54 36.30

RF 249.2 200.0 145.9 114.2 107.3 57.95 36.84 27.95 22.36

FS 41.79 35.36 28.72 25.32 26.15 20.40 18.40 17.99 17.31

FFS 31.08 28.87 25.28 22.37 23.15 18.05 16.78 16.62 15.82

Running times for a Rand2 problem

20

Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

� = 4 2 4 6 8 10 20 40 80 160

HOR 34.66 25.57 22.05 20.76 20.27 19.68 20.05 19.54 20.20

QS 26.49 22.10 19.87 19.35 18.98 18.58 19.05 18.73 19.04

BR 32.20 25.68 22.08 20.31 19.24 17.29 16.66 16.36 16.51

TBM 25.53 20.68 19.15 18.85 18.76 18.50 18.81 18.38 18.78

RF 156.1 98.60 74.84 62.28 53.79 34.73 24.26 20.34 16.67

FS 28.60 20.58 18.91 18.26 17.86 17.22 16.53 16.18 15.82

FFS 24.87 20.06 18.35 17.65 17.22 16.23 15.61 15.33 14.40

Running times for a Rand4 problem

� = 8 2 4 6 8 10 20 40 80 160

HOR 27.71 20.19 18.40 17.43 16.84 15.70 15.56 15.62 15.71

QS 20.91 18.27 17.17 16.59 16.25 15.36 15.22 15.23 15.35

BR 25.19 20.55 18.77 17.74 17.02 15.33 14.55 14.55 13.96

TBM 21.09 17.78 16.78 16.77 16.22 15.14 15.11 15.05 15.18

RF 114.8 70.75 54.97 46.27 40.62 27.26 20.58 18.17 15.01

FS 20.66 17.75 16.75 16.41 16.01 15.02 14.89 14.80 14.81

FFS 20.20 17.58 16.60 16.17 15.82 14.87 14.54 14.52 13.92

Running times for a Rand8 problem

� = 20 2 4 6 8 10 20 40 80 160

HOR 23.45 18.17 16.58 16.21 15.89 15.21 14.90 14.84 14.98

QS 18.67 16.84 15.78 15.69 15.49 14.98 14.74 14.73 14.79

BR 21.83 18.88 17.32 16.89 16.47 15.47 14.90 14.42 12.60

TBM 18.76 16.78 15.64 15.44 15.39 14.85 14.82 14.65 14.65

RF 92.44 54.83 41.67 35.57 31.61 23.12 19.25 17.69 14.72

FS 19.11 16.59 15.57 15.49 15.24 14.81 14.66 14.65 14.58

FFS 18.76 16.51 15.51 15.44 15.24 14.83 14.64 14.65 14.35

Running times for a Rand20 problem

NL 2 4 6 8 10 20 40 80 160

HOR 3.40 2.65 2.45 2.36 2.36 2.22 2.15 2.11 1.98

QS 2.73 2.42 2.35 2.24 2.20 2.14 2.09 2.09 2.01

BR 3.28 2.87 2.66 2.59 2.47 2.33 2.25 2.21 1.95

TBM 2.77 2.39 2.27 2.25 2.18 2.19 2.09 2.12 1.93

RF 13.94 8.33 6.48 5.46 4.87 3.35 2.79 2.68 4.67

FS 2.79 2.45 2.22 2.24 2.19 2.14 2.06 2.09 1.91

FFS 2.70 2.35 2.26 2.26 2.18 2.15 2.13 2.11 2.24

Running times for a natural language problem

4.2 Average Number of Text Chara
ter Inspe
tions

For ea
h test, the average number of
hara
ter inspe
tions has been obtained by

taking the total number of times a text
hara
ter is a

essed, either to perform a

omparison with a pattern
hara
ter, or to perform a shift, or to
ompute a transition

in an automaton, and dividing it by the length of the text bu�er.

It turns out that the Forward-Fast-Sear
h algorithm is always very
lose the best

results whi
h are generally obtained by the Fast-Sear
h algorithm, for short patterns,

and by Reverse-Fa
tor algorithm, for long patterns. We noti
e, however, that the

Forward-Fast-Sear
h algorithm obtains in most
ases the se
ond best result and is

better than Reverse-Fa
tor, for short patterns, and Fast-Sear
h, for long patterns.

21

Pro
eedings of the Prague Stringology Conferen
e '03

� = 2 2 4 6 8 10 20 40 80 160

HOR 1.00 1.15 1.26 1.26 1.28 1.24 1.27 1.23 1.27

QS 1.54 1.67 1.63 1.67 1.64 1.61 1.65 1.61 1.60

BR 1.28 1.25 1.20 1.20 1.19 1.19 1.19 1.18 1.16

TBM 1.23 1.35 1.46 1.46 1.47 1.43 1.46 1.42 1.46

RF 1.43 1.06 .799 .615 .519 .294 .169 .096 .054

FS 1.00 .929 .806 .698 .632 .460 .348 .270 .213

FFS 1.15 .993 .833 .703 .621 .410 .289 .210 .161

� = 4 2 4 6 8 10 20 40 80 160

HOR .714 .510 .435 .404 .392 .373 .389 .365 .392

QS 1.03 .817 .700 .675 .645 .610 .650 .622 .633

BR .949 .713 .569 .488 .429 .307 .264 .244 .251

TBM .841 .591 .504 .468 .454 .432 .450 .422 .446

RF .886 .528 .387 .316 .264 .154 .089 .051 .028

FS .714 .489 .398 .356 .330 .273 .239 .200 .177

FFS .768 .526 .418 .367 .330 .241 .182 .136 .105

� = 8 2 4 6 8 10 20 40 80 160

HOR .600 .350 .263 .222 .198 .158 .153 .149 .152

QS .842 .575 .456 .393 .358 .291 .282 .278 .277

BR .844 .582 .443 .360 .305 .179 .109 .072 .057

TBM .663 .386 .291 .245 .218 .174 .168 .164 .167

RF .674 .381 .278 .225 .191 .112 .063 .036 .020

FS .600 .348 .260 .217 .193 .150 .137 .126 .117

FFS .627 .368 .274 .227 .201 .146 .117 .093 .075

� = 20 2 4 6 8 10 20 40 80 160

HOR .538 .285 .199 .157 .132 .083 .061 .054 .053

QS .734 .463 .346 .282 .242 .157 .118 .104 .104

BR .787 .528 .397 .318 .266 .146 .078 .042 .023

TBM .563 .297 .208 .164 .137 .086 .063 .056 .056

RF .565 .302 .214 .170 .143 .084 .049 .027 .014

FS .538 .284 .198 .156 .131 .082 .060 .053 .052

FFS .550 .293 .205 .161 .135 .082 .060 .049 .043

NL 2 4 6 8 10 20 40 80 160

HOR .550 .300 .211 .171 .144 .091 .059 .042 .032

QS .759 .489 .375 .309 .261 .175 .125 .086 .066

BR .795 .538 .411 .335 .278 .155 .085 .050 .028

TBM .584 .318 .226 .182 .153 .096 .062 .044 .034

RF .588 .321 .231 .185 .153 .084 .045 .024 .013

FS .550 .299 .211 .171 .143 .087 .055 .038 .027

FFS .565 .312 .220 .180 .152 .088 .054 .036 .026

Average number of text
hara
ter inspe
tions for some Rand� problems and for

a natural language problem

4.3 Average Number of Comparisons

For ea
h test, the average number of
hara
ter
omparisons has been obtained by

taking the total number of times a text
hara
ter is
ompared with a
hara
ter in the

pattern and dividing it by the total number of
hara
ters in the text bu�er.

It turns out that the Forward-Fast-Sear
h algorithm a
hieves the best results in

most
ases. Sporadi
ally our algorithm is se
ond only to the Berry-Ravindran al-

gorithm whi
h obtains very good results for short patterns and small alphabets.

Moreover we observe that Tuned Boyer-Moore, Fast-Sear
h and Forward-Fast-Sear
h

22

Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

algorithms perform a very low number of
hara
ters
omparisons in the
ase of large

alphabets.

� = 2 2 4 6 8 10 20 40 80 160

HOR 1.000 1.159 1.260 1.269 1.281 1.244 1.272 1.235 1.270

QS .9588 1.109 1.088 1.119 1.095 1.073 1.104 1.079 1.080

BR .2631 .3766 .3916 .3989 .3962 .3973 .3969 .3940 .3893

TBM .3333 .6044 .6995 .7154 .7249 .7082 .7215 .7024 .7205

FS .3333 .4767 .4466 .3925 .3573 .2609 .1967 .1530 .1248

FFS .3076 .4224 .3875 .3324 .2962 .1964 .1377 .1003 .0766

� = 4 2 4 6 8 10 20 40 80 160

HOR .7143 .5100 .4356 .4041 .3922 .3732 .3890 .3652 .3928

QS .6053 .4864 .4109 .3908 .3716 .3491 .3719 .3556 .3742

BR .2747 .2353 .1898 .1628 .1432 .1025 .0883 .0813 .0837

TBM .1429 .1445 .1264 .1175 .1140 .1085 .1131 .1062 .1141

FS .1429 .1373 .1141 .1024 .0949 .0784 .0690 .0577 .0526

FFS .1323 .1272 .1041 .0913 .0822 .0601 .0454 .0341 .0263

� = 8 2 4 6 8 10 20 40 80 160

HOR .6000 .3501 .2639 .2222 .1985 .1586 .1531 .1490 .1522

QS .4631 .3189 .2505 .2139 .1943 .1559 .1504 .1487 .1524

BR .2711 .1940 .1479 .1202 .1018 .0598 .0364 .0243 .0190

TBM .0667 .0482 .0365 .0307 .0274 .0219 .0212 .0206 .0210

FS .0667 .0477 .0359 .0300 .0267 .0207 .0190 .0175 .0167

FFS .0634 .0459 .0345 .0287 .0252 .0184 .0148 .0117 .0095

� = 20 2 4 6 8 10 20 40 80 160

HOR .5385 .2844 .1991 .1569 .1316 .0828 .0608 .0541 .0537

QS .3837 .2427 .1805 .1476 .1263 .0817 .0607 .0538 .0534

BR .2608 .1760 .1323 .1061 .0887 .0490 .0263 .0141 .0079

TBM .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0028

FS .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0027

FFS .0251 .0147 .0103 .0081 .0068 .0042 .0030 .0025 .0022

NL 2 4 6 8 10 20 40 80 160

HOR .5501 .3000 .2117 .1716 .1445 .0913 .0595 .0420 .0329

QS .4031 .2605 .2002 .1646 .1393 .0914 .0654 .0455 .0364

BR .2599 .1794 .1371 .1118 .0927 .0519 .0286 .0168 .0094

TBM .0345 .0245 .0171 .0142 .0123 .0089 .0061 .0046 .0042

FS .0345 .0245 .0171 .0141 .0121 .0066 .0043 .0030 .0025

FFS .0333 .0244 .0168 .0153 .0140 .0058 .0032 .0020 .0014

Average number of
omparisons for some Rand� problems and for a natural language problem

5 Con
lusion

We presented a new e�
ient variant of the Boyer-Moore string mat
hing algorithm,

named Forward-Fast-Sear
h. As its progenitor Fast-Sear
h, the Forward-Fast-Sear
h

algorithm applies repeatedly the bad
hara
ter rule until the last
hara
ter of the

pattern is mat
hed
orre
tly and then it begins to mat
h the pattern against the

text from right to left. At the end of ea
h mat
hing phase, it
omputes the shift

advan
ement as a fun
tion of the mat
hed su�x of the pattern and the �rst
hara
ter

of the text past the
urrent window (forward good su�x rule).

It turns out that, despite the O(m � j�j)-spa
e and O(m �max(m; j�j))-time
om-

plexity required in the worst
ase to pre
ompute the forward good su�x fun
tion, the

23

Pro
eedings of the Prague Stringology Conferen
e '03

Forward-Fast-Sear
h algorithm is very fast in pra
ti
e and
ompares well with other

fast variants of the Boyer-Moore algorithm.

We plan to evaluate theoreti
ally the average time
omplexity of the Forward-Fast-

Sear
h algorithm, and to adapt it to s
anning strategies depending on the
hara
ter

frequen
ies.

Referen
es

[BM77℄ R. S. Boyer and J. S. Moore. A fast string sear
hing algorithm. Commun.

ACM, 20(10):762�772, 1977.

[BR99℄ T. Berry and S. Ravindran. A fast string mat
hing algorithm and experi-

mental results. Pro
. of the Prague Stringology Club Workshop '99 Cze
h

Te
hni
al University, Prague, Cze
h Republi
, Collaborative Report DC�

99�05, pp. 16�28, 1999.

[BYR92℄ R. A. Baeza-Yates and M. Régnier. Average running time of the Boyer-

Moore-Horspool algorithm. Theor. Comput. S
i., 92(1):19�31, 1992.

[CF03℄ D. Cantone and S. Faro. Fast-Sear
h: a new variant of the Boyer-Moore

string mat
hing algorithm. In K. Jansen et al. (Eds.), Pro
. of WEA 2003,

LNCS 2647, pp. 47�58, 2003.

[CCG

+

94℄ M. Cro
hemore, A. Czumaj, L. G�asienie
, S. Jarominek, T. Le
roq,

W. Plandowski, and W. Rytter. Speeding up two string mat
hing al-

gorithms. Algorithmi
a, 12(4/5):247�267, 1994.

[GO80℄ L. J. Guibas and A. M. Odiyzko. A new proof of the linearity of the

Boyer-Moore string sear
hing algorithm. SIAM J. Comput., 9(4):672�682,

1980.

[Hor80℄ R. N. Horspool. Pra
ti
al fast sear
hing in strings. Softw. Pra
t. Exp.,

10(6):501�506, 1980.

[HS91℄ A. Hume and D. M. Sunday. Fast string sear
hing. Softw. Pra
t. Exp.,

21(11):1221�1248, 1991.

[KMP77℄ D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern mat
hing in

strings. SIAM J. Comput., 6:323-350, 1977.

[Le
00℄ T. Le
roq. New experimental results on exa
t string-mat
hing. Rapport

LIFAR 2000.03, Université de Rouen, Fran
e, 2000.

[Rit80℄ W. Rytter. A
orre
t prepro
essing algorithm for Boyer-Moore string

sear
hing. SIAM J. Comput., 9:509-512, 1980.

[Sun90℄ D. M. Sunday. A very fast substring sear
h algorithm. Commun. ACM,

33(8):132�142, 1990.

[Yao79℄ A. C. Yao. The
omplexity of pattern mat
hing for a random string. SIAM

J. Comput., 8(3):368�387, 1979.

24

Approximate Seeds of Strings

Manolis Christodoulakis

1

and Costas S. Iliopoulos

1

and

Kunsoo Park

2�

and Jeong Seop Sim

3

1

Department of Computer S
ien
e,

King's College London

e-mail: {manolis,
si}�d
s.k
l.a
.uk

2

S
hool of Computer S
ien
e and Engineering,

Seoul National University

e-mail: kpark�theory.snu.a
.kr

3

Ele
troni
s and Tele
ommuni
ations Resear
h Institute

Daejeon 305-350, Korea

e-mail: simjs�etri.re.kr

Abstra
t. In this paper we study approximate seeds of strings, that is, sub-

strings of a given string x that
over (by
on
atenations or overlaps) a super-

string of x, under a variety of distan
e rules (the Hamming distan
e, the edit

distan
e, and the weighted edit distan
e). We solve the smallest distan
e ap-

proximate seed problem and the restri
ted smallest approximate seed problem

in polynomial time and we prove that the general smallest approximate seed

problem is NP-
omplete.

Keywords: regularities, seeds, approximate seeds, Hamming distan
e, edit dis-

tan
e, weighted edit distan
e, penalty matrix.

1 Introdu
tion

Finding regularities in strings is useful in a wide area of appli
ations whi
h involve

string manipulations. Mole
ular biology, data
ompression and
omputer-assisted

musi
 analysis are
lassi
 examples. By regularities we mean repeated strings of an

approximate nature. Examples of regularities in
lude repetitions, periods,
overs and

seeds. Regularities in strings have been studied widely the last 20 years.

There are several O(n logn)-time algorithms [11, 6, 27℄ for �nding repetitions, that

is, equal adja
ent substrings, in a string x, where n is the length of x. Apostoli
o and

Breslauer [2℄ gave an optimal O(log logn)-time parallel algorithm (i.e., total work is

O(n logn)) for �nding all the repetitions.

The prepro
essing of the Knuth-Morris-Pratt algorithm [22℄ �nds all periods of

x in linear time� in fa
t, all periods of every pre�x of x. Apostoli
o, Breslauer

and Galil [3℄ derived an optimal O(log logn)-time parallel algorithm for �nding all

periods.

�

Work supported by IMT 2000 Proje
t AB02, MOST grant M1-0309-06-0003, and Royal So
iety

grant.

25

Pro
eedings of the Prague Stringology Conferen
e '03

The fa
t that in pra
tise it was often desirable to relax the meaning of �repetition�,

has led more re
ently to the study of a
olle
tion of related patterns��
overs� and

�seeds�. Covers are similar to periods, but now overlaps, as well as
on
atenations, are

allowed. The notion of
overs was introdu
ed by Apostoli
o, Fara
h and Iliopoulos

in [5℄, where a linear-time algorithm to test superprimitivity, was given (see also

[8, 9, 18℄). Moore and Smyth [29℄ and re
ently Li and Smyth [25℄ gave linear time-

time algorithms for �nding all
overs of a string x. In parallel
omputation, Iliopoulos

and Park [19℄ obtained an optimal O(log logn) time algorithm for �nding all
overs

of x. Apostoli
o and Ehrenfeu
ht [4℄ and Iliopoulos and Mou
hard [17℄
onsidered

the problem of �nding maximal quasiperiodi
 substrings of x. A two-dimensional

variant of the
overing problem was studied in [12, 15℄, and a minimum
overing by

substrings of a given length in [20℄.

An extension of the notion of
overs, is that of seeds; that is,
overs of a superstring

of x. The notion of seeds was introdu
ed by Iliopoulos, Moore and Park [16℄ and an

O(n logn)-time algorithm was given for
omputing all seeds of x. A parallel algorithm

for �nding all seeds was presented by Berkman, Iliopoulos and Park [7℄, that requires

O(logn) time and O(n logn) work.

In appli
ations su
h as mole
ular biology and
omputer-assisted musi
 analysis,

�nding exa
t repetitions is not always su�
ient. A more appropriate notion is that

of approximate repetitions ([10, 13℄); that is, �nding strings that are �similar� to a

given pattern, by allowing errors. In this paper, we
onsider three di�erent kinds of

�similarity� (approximation): the Hamming distan
e, the edit dis
tan
e [1, 35℄ and a

generalization of the edit distan
e, the weighted edit distan
e, where di�erent
osts

are assigned to ea
h substitution, insertion and deletion for ea
h pair of symbols.

Approximate repetitions have been studied by Landau and S
hmidt [24℄, who

derived an O(kn logk logn)-time algorithm for �nding approximate squares whose

edit distan
e is at most k in a text of length n. S
hmidt also gave an O(n

2

logn)

algorithm for �nding approximate tandem or nontandem repeats in [31℄ whi
h uses an

arbitrary s
ore for similarity of repeated strings. More re
ently, Sim, Iliopoulos, Park

and Smyth provided polynomial time algorithms for �nding approximate periods [33℄

and, Sim, Park, Kim and Lee solved the approximate
overs problem in [34℄.

In this paper, we introdu
e the notion of approximate seeds, an approximate

version of seeds. We solve the smallest distan
e approximate seed problem and the

restri
ted smallest approximate seed problem and we prove that the more general

smallest approximate seed problem is NP-
omplete.

The paper is organized as follows. In se
tion 2, we present some basi
 de�nitions.

In se
tion 3, we des
ribe the notion of approximate seeds and we de�ne the three

problems studied in this paper. In se
tion 4, we present the algorithms that solve the

�rst two problems and the proof that the third problem is NP-
omplete. Se
tion 5

ontains our
on
lusion.

2 Preliminaries

A string is a sequen
e of zero or more symbols from an alphabet �. The set of all

strings over � is denoted by �

�

. The length of a string x is denoted by jxj. The

empty string, the string of length zero, is denoted by ". The i-th symbol of a string

x is denoted by x[i℄.

26

Approximate Seeds of Strings

A string w is a substring of x if x = uwv, where u; v 2 �

�

. We denote by x[i::j℄

the substring of x that starts at position i and ends at position j. Conversely, x is

alled a superstring of w. A string w is a pre�x of x if x = wy, for y 2 �

�

. Similarly,

w is a su�x of x if x = yw, for w 2 �

�

. We
all a string w a subsequen
e (also
alled

a subword [14℄) of x (or x is a supersequen
e of w) if w is obtained by deleting zero or

more symbols at any positions from x. For example, a
e is a subsequen
e of aab
def .

For a given set S of strings, a string w is
alled a
ommon supersequen
e of S if s is

a supersequen
e of every string in S.

The string xy is a
on
atenation of the strings x and y. The
on
atenation of k

opies of x is denoted by x

k

. For two strings x = x[1::n℄ and y = y[1::m℄ su
h that

x[n � i + 1::n℄ = y[1::i℄ for some i � 1 (that is, su
h that x has a su�x equal to

a pre�x of y), the string x[1::n℄y[i + 1::m℄ is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring y of x is
alled a repetition in x, if x = uy

k

v, where u; y; v are

substrings of x and k � 2, jyj 6= 0. For example, if x = aababab, then a (appearing in

positions 1 and 2) and ab (appearing in positions 2, 4 and 6) are repetitions in x; in

parti
ular a

2

= aa is
alled a square and (ab)

3

= ababab is
alled a
ube.

A substring w is
alled a period of a string x, if x
an be written as x = w

k

w

0

where k � 1 and w

0

is a pre�x of w. The shortest period of x is
alled the period of

x. For example, if x = ab
ab
ab, then ab
, ab
ab
 and the string x itself are periods

of x, while ab
 is the period of x.

A substring w of x is
alled a
over of x, if x
an be
onstru
ted by
on
atenating

or overlapping
opies of w. We also say that w
overs x. For example, if x = ababaaba,

then aba and x are
overs of x. If x has a
over w 6= x, x is said to be quasiperiodi
;

otherwise, x is superprimitive.

A substring w of x is
alled a seed of x, if w
overs one superstring of x (this
an

be any superstring of x, in
luding x itself). For example, aba and ababa are some

seeds of x = ababaab.

We
all the distan
e Æ(x; y) between two strings x and y, the minimum
ost to

transform one string x to the other string y. There are several well known distan
e

fun
tions, des
ribed in the next paragraph. The spe
ial symbol � is used to represent

the absen
e of a
hara
ter.

2.1 Distan
e fun
tions

The edit distan
e between two strings is the minimum number of edit operations

that transform one string into another. The edit operations are the insertion of an

extraneous symbol (e.g., � ! a), the deletion of a symbol (e.g., a ! �) and the

substitution of a symbol by another symbol (e.g., a ! b). Note that in the edit

distan
e model we only
ount the number of edit operations,
onsidering the
ost of

ea
h operation equal to 1.

The Hamming distan
e between two strings is the minimum number of substitu-

tions (e.g., a ! b) that transform one string to the other. Note that the Hamming

distan
e
an be de�ned only when the two strings have the same length, be
ause it

does not allow insertions and deletions.

We also
onsider a generalized version of the edit distan
e model, the weighted

edit distan
e, where the edit operations no longer have the same
osts. It makes use

27

Pro
eedings of the Prague Stringology Conferen
e '03

a b
 a e �

j j j

a b � d e g

Figure 1: Alignment example

of a penalty matrix, a matrix that spe
i�es the
ost of ea
h substitution for ea
h pair

of symbols, and the insertion and deletion
ost for ea
h
hara
ter. A penalty matrix

is a metri
 when it satis�es the following
onditions for all a; b;
 2 � [f�g:

� Æ(a; b) � 0,

� Æ(a; b) = Æ(b; a),

� Æ(a; a) = 0, and

� Æ(a;
) � Æ(a; b) + Æ(b;
) (triangle inequality).

The similarity between two strings
an be seen by using an alignment ; that is, any

pairing of symbols subje
t to the restri
tion that if lines were drawn between paired

symbols, as in Figure 1, the lines would not
ross. The equality of the lengths
an be

obtained by inserting or deleting zero or more symbols. In our example, the string

�ab
ae� is transformed to �abdeg� by deleting, substituting and inserting a
hara
ter

at positions 3, 4 and 6, respe
tively. Note that this is not the only possible alignment

between the two strings.

We say that a distan
e fun
tion Æ(x; y) is a relative distan
e fun
tion if the lengths

of strings x and y are
onsidered in the value of Æ(x; y); otherwise it is an absolute

distan
e fun
tion. The Hamming distan
e and the edit distan
e are examples of

absolute distan
e fun
tions. There are two ways to de�ne a relative distan
e between

x and y:

� First, we
an �x one of the two strings and de�ne a relative distan
e fun
tion

with respe
t to the �xed string. The error ratio with respe
t to x is de�ned to

be d=jxj, where d is an absolute distan
e between x and y.

� Se
ond, we
an de�ne a relative distan
e fun
tion symmetri
ally. The symmetri

error ratio is de�ned to be d=l, where d is an absolute distan
e between x and

y, and l = (jxj+ jyj)=2 [32℄. Note that we may take l = jxj+ jyj, in whi
h
ase

everything is the same ex
ept that the ratio is multiplied by 2.

If d is the edit distan
e between x and y, the error ratio with respe
t to x or the

symmetri
 error ratio is
alled a relative edit distan
e. The weighted edit distan
e
an

also be used as a relative distan
e fun
tion be
ause the penalty matrix
an
ontain

arbitrary
osts.

3 Problem De�nitions

De�nition 1 Let x and s be strings over �

�

, Æ be a distan
e fun
tion and t be

a number. We
all s a t-approximate seed of x if and only if there exist strings

s

1

; s

2

; : : : ; s

r

(s

i

6= ") su
h that

28

Approximate Seeds of Strings

(i) Æ(s; s

i

) � t, for 1 � i � r, and

(ii) there exists a superstring y = uxv, juj < jsj and jvj < jsj, of x that
an be

onstru
ted by overlapping or
on
atenating
opies of the strings s

1

; s

2

; : : : ; s

r

.

Ea
h s

i

, 1 � i � r, will be
alled a seed blo
k of x.

Note that y
an be any superstring of x, in
luding x itself (in whi
h
ase, s is

an approximate
over). Note, also, that there
an be several versions of approximate

seeds a

ording to the de�nition of distan
e fun
tion Æ.

An example of an approximate seed is shown in Figure 2. For strings x =

BABACCB and s = ABAB, s is an approximate seed of x with error 1 (ham-

ming distan
e), be
ause there exist the strings s

1

= ABAB; s

2

= ABAC; s

3

=

CBAB, su
h that the distan
e between s and ea
h s

i

is no more than 1, and by

on
atenating or overlapping the strings s

1

; s

2

; s

3

we
onstru
t a superstring of x,

y = ABABACCBAB.

A B A B A C C B A B

s

1

s

2

s

3

Figure 2: Approximate Seed example.

We
onsider the following three problems related to approximate seeds.

Problem 1 Smallest Distan
e Approximate Seed Let x be a string of length

n, s be a string of length m, and Æ be a distan
e fun
tion. Find the minimum number

t su
h that s is a t-approximate seed of x.

In this problem, the string s is given a priori. Thus, it makes no di�eren
e whether

Æ is an absolute distan
e fun
tion or an error ratio with respe
t to s. If a threshold

k � jsj on the edit distan
e is given as input to Problem 1, the problem asks whether

s is a k-approximate seed of x or not (the k-approximate seed problem). Note that if

the edit distan
e is used for Æ, it is trivially true that s is an jsj-approximate seed of

x.

Problem 2 Restri
ted Smallest Approximate Seed Given a string x of

length n, �nd a substring s of x su
h that: s is a t-approximate seed of x and there

is no substring of x that is a k-approximate seed of x for all k < t.

Sin
e any substring of x
an be a
andidate for s, the length of s is not (a priori)

�xed in this problem. Therefore, we need to use a relative distan
e fun
tion (i.e.,

an error ratio or a weighted edit distan
e) rather than an absolute distan
e fun
tion.

For example, if the absolute edit distan
e is used, every substring of x of length 1 is

a 1-approximate seed of x. Moreover, we assume that s is of length at most jxj=2,

be
ause, otherwise the longest proper pre�x of x (or any long pre�x of x)
an easily

be
ome an approximate seed of x with a small distan
e. This assumption will be

applied to Problem 3, too.

29

Pro
eedings of the Prague Stringology Conferen
e '03

Problem 3 Smallest Approximate Seed Given a string x of length n, �nd a

string s su
h that: s is a t-approximate seed of x and there is no substring of x that

is a k-approximate seed of x for all k < t.

Problem 3 is a generalization of Problem 2; s
an now be any string, not ne
essarily

a substring of x. Obviously, this problem is harder than the previous one; we will

prove that it is NP-
omplete.

4 Algorithms and NP-Completeness

4.1 Problem 1

Our algorithm for Problem 1
onsists of two steps. Let n = jxj and m = jsj.

1. Compute the distan
e between s and every substring of x.

We denote by w

ij

the distan
e between s and x[i::j℄, for 1 < i � j < n. Note

that, by de�nition of approximate seeds, x[i::n℄
an be mat
hed to any pre�x

of s, and x[1::j℄
an be mat
hed to any su�x of s (be
ause s has to
over

any superstring of x). Thus, we denote w

in

the minimum value of the distan
es

between all pre�xes of s and x[i::n℄, and w

1j

the minimum value of the distan
es

between all su�xes of s and x[1::j℄.

2. Compute the minimum t su
h that s is a t-approximate seed of x.

We use dynami
 programming to
ompute t as follows. Let t

i

be the minimum

value su
h that s is a t

i

-approximate seed of x[1::i℄. Let t

0

= 0. For i = 1 to n,

we
ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg (1)

The value t

n

is the minimum t su
h that s is a t-approximate seed of x.

To
ompute the distan
e between two strings, x and y, in step 1, a dynami

programming table,
alled the D table, of size (jxj + 1) � (jyj + 1), is used. Ea
h

entry D[i; j℄; 0 � i � jxj and 0 � j � jyj, stores the minimum
ost of transforming

x[1::i℄ to y[1::j℄. Initially, D[0; 0℄ = 0; D[i; 0℄ = D[i� 1; 0℄ + Æ(x[i℄;�) and D[0; j℄ =

D[0; j�1℄+Æ(�; y[j℄). Then we
an
ompute all the entries of the D table in O(jxjjyj)

time by the following re
urren
e:

D[i; j℄ = min

8

>

<

>

:

D[i� 1; j℄ + Æ(x[i℄;�)

D[i; j � 1℄ + Æ(�; y[j℄)

D[i� 1; j � 1℄ + Æ(x[i℄; y[j℄)

where Æ(a; b) is the
ost of substituting
hara
ter a with
hara
ter b, Æ(a;�) is the

ost of deleting a and Æ(�; a) is the
ost of inserting a.

The se
ond step of the algorithm is
omputed as shown in Figure 3. For every h,

we
over x[h+1::i℄ with one
opy of s, with error w

h+1;i

. What is left to be
overed is

x[1::h℄. We obtain this by
overing either x[1::h℄, with error t[h℄, or x[1::h + 1℄, with

error t[h+ 1℄, : : : or x[1::i� 1℄, with error t[i� 1℄, (in general x[1::j℄, with error t[j℄);

we
hoose the x[1::j℄ (the shaded box) that gives the smallest error. Note that, this

box
overs a superstring of x[1::j℄.

30

Approximate Seeds of Strings

x

1
i

h+ 1

n

s

j

Figure 3: The se
ond step of the algorithm.

Theorem 1 Problem 1
an be solved in O(mn

2

) time when a weighted edit distan
e

is used for Æ. If the edit or the Hamming distan
e is used for Æ, it
an be solved in

O(mn) time.

Proof. For an arbitrary penalty matrix, step 1 takes O(mn

2

) time, sin
e we make a

D table of size (m+1)�(n�i+2) for ea
h position i of x. The fa
t that a superstring

of x, rather than x itself, has to be �
overed� does not in
rease the time
omplexity,

if we use the following pro
edure: instead of
omputing a new D-table between ea
h

s[1::k℄ (resp. s[k::m℄) and x[i::n℄ (resp. x[1::j℄), we just make one D-table between

s and x[i::n℄ (resp. s

R

(x[1::j℄)

R

) and take the minimum value of the last
olumn of

this table.

In step 2, we
an
ompute the minimum t in O(n

2

) time as follows. The inner

min loop of formula (1)
an be
omputed in
onstant time by reusing the min values

omputed in the previous round. The outer min loop is repeated i times, for 1 � i �

n, i.e., O(n

2

) repetitions.

Thus, the total time
omplexity is O(mn

2

).

When the edit distan
e is used for the measure of similarity, this algorithm for

Problem 1
an be improved. In this
ase, Æ(a; b) is always 1 if a 6= b and Æ(a; b) = 0

otherwise. Now it is not ne
essary to
ompute the edit distan
es between s and the

substrings of x whose lengths are larger than 2m be
ause their edit distan
es with

s will ex
eed m. (It is trivially true that s is an m-approximate seed of x.) Step 1

now takes O(m

2

n) time sin
e we make a D table of size (m+ 1)� (2m+ 1) for ea
h

position of x. Also, step 2
an be done in O(mn) time sin
e we
ompare O(m) values

at ea
h position of x. Thus, the time
omplexity is redu
ed to O(m

2

n).

However, we
an do better. Step 1
an be solved in O(mn) time by the algorithm

due to Landau, Myers and S
hmidt [23℄. Given two strings x and y and a forward

(resp. ba
kward) solution for the
omparison between x and y, the algorithm in [23℄

in
rementally
omputes a solution for x and by (resp. yb) in O(k) time, where b is an

additional
hara
ter and k is a threshold on the edit distan
e. This
an be done due

to the relationship between the solution for x and y and the solution for x and by.

When k = m (i.e., the threshold is not given) we
an
ompute all the edit distan
es

between s and every substring of x whose length is at most 2m in O(mn) time using

this algorithm. Re
ently, Kim and Park [21℄ gave a simpler O(mn)-time algorithm

for the same problem. Therefore, we
an solve Problem 1, in O(mn) time if the edit

distan
e is used for Æ. When the threshold k is given as input for Problem 1, it
an

be solved in O(kn) time be
ause ea
h step of the above algorithm takes O(kn) time.

If we use the Hamming distan
e for Æ, in step 1 we
onsider only the substrings

of x of length m. (Re
all that the Hamming distan
e is de�ned only between strings

of equal length) Sin
e there are O(n) su
h substrings, and we need O(m) time to

ompute the distan
e between ea
h substring and s, step 1 takes O(mn) time. Also,

as in the
ase of the edit distan
e, step 2
an be done in O(mn) time (we
ompare

O(m) values at ea
h position of x). Thus, the overall time
omplexity is O(mn). �

31

Pro
eedings of the Prague Stringology Conferen
e '03

x

x

x[j::n℄

s

i

i+m-2

s = x[i::i +m� 2℄

(Previous D table)

Newly
omputed

row

x

x

x[j::n℄

s

i

i+m-1

s = x[i::i +m� 1℄

(New D table)

Figure 4: Computing new D tables

4.2 Problem 2

In this problem, we are not given a string s. Any substring of x is now a
andidate

for approximate seed. Let s be su
h a
andidate string. Re
all that, sin
e the length

of s is not �xed in this
ase, we need to use a relative distan
e fun
tion (rather than

an absolute distan
e fun
tion); that is, an error ratio, in the
ase of the Hamming or

edit distan
e, or a weighted edit distan
e.

When the relative edit distan
e is used for the measure of similarity, Problem 2

an be solved in O(n

4

) time by our algorithm for Problem 1. If we take ea
h substring

of x as s and apply the O(mn) algorithm for Problem 1 (that uses the algorithm in

[23℄), it takes O(jsjn) time for ea
h s. Sin
e there are O(n

2

) substrings of x, the

overall time is O(n

4

).

For weighted edit distan
es (as well as for relative edit distan
es), we
an solve

Problem 2 in O(n

4

) time, without using the somewhat
ompli
ated algorithm in [23℄.

Like before, we
onsider every substring of x as
andidate string s, and we solve

Problem 1 for x and s. But, we do this, by pro
essing all the substrings of x that

start at position i, at the same time, as follows.

Let T be the minimum distan
e so far. Initially, T = 1. For ea
h i; 1 � i � n,

we pro
ess the n� i + 1 substrings that start at position i as
andidate strings. Let

m be the length of a
hosen substring of x as s. Initially, m = 1.

1. Take x[i::i + m � 1℄ as s and
ompute w

hj

, for all 1 � h � j � n. This

omputation
an be done by making n D tables with s and ea
h of the n

su�xes of x. By adding just one row to ea
h of previous D tables (i.e., n D

tables when s = x[i::i +m� 2℄), we
an
ompute these new D tables in O(n

2

)

time. See Figure 4. (Note that when m = 1, we
reate new D tables.)

2. Compute the minimum distan
e t su
h that s is a t-approximate seed of x. This

step is similar to the se
ond step of the algorithm for Problem 1. Let t

i

be the

minimum value su
h that s is a t

i

-approximate seed of x[1::i℄ and t

0

= 0. For

i = 1 to n, we
ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg

The value t

n

is the minimum t su
h that s is a t-approximate seed of x. If t

n

is

smaller than T , we update T with t

n

. If m < n� i+ 1, in
rease m by 1 and go

to step 1.

When all the steps are
ompleted, the �nal value of T is the minimum distan
e

and the substring s that is a T -approximate seed of x is an answer to Problem 2.

32

Approximate Seeds of Strings

(Note that there
an be more than one substring s that are T -approximate seeds of

x).

Theorem 2 Problem 2
an be solved in O(n

4

) time when a weighted edit distan
e

or a relative edit distan
e is used for Æ. When a relative Hamming distan
e is used

for Æ, Problem 2
an be solved in O(n

3

) time.

Proof. For a weighted edit distan
e, we make n D tables in O(n

2

) time in step 1

and
ompute the minimum distan
e in O(n

2

) time in step 2. For m = 1 to n� i+ 1,

we repeat the two steps. Therefore, it takes O(n

3

) time for ea
h i and the total time

omplexity of this algorithm is O(n

4

). If a relative edit distan
e is used, the algorithm

an be slightly simpli�ed, as in Problem 1, but it still takes O(n

4

) time.

For a relative Hamming distan
e, it takes O(n) time for ea
h
andidate string and

sin
e there are O(n

2

)
andidate strings, the total time
omplexity is O(n

3

). �

4.3 Problem 3

Given a set of strings, the shortest
ommon supersequen
e (SCS) problem is to �nd

a shortest
ommon supersequen
e of all strings in the set. The SCS problem is NP-

omplete [26, 30℄. We will show that Problem 3 is NP-
omplete by a redu
tion from

the SCS problem. In this se
tion we will
all Problem 3 the SAS problem (abbreviation

of the smallest approximate seed problem). The de
ision versions of the SCS and SAS

problems are as follows:

De�nition 2 (SCS) Given a positive integer m and a �nite set S of strings from �

�

where � is a �nite alphabet, the SCS problem is to de
ide if there exists a
ommon

supersequen
e w of S su
h that jwj � m.

De�nition 3 (SAS) Given a number t, a string x from (�

0

)

�

where �

0

is a �nite

alphabet, and a penalty matrix, the SAS problem is to de
ide if there exists a string

u su
h that u is a t-approximate seed of x.

Theorem 3 The SAS problem is NP-
omplete.

5 Con
lusions

In this paper, we solved the smallest distan
e approximate seed problem, in O(mn)

time for the Hamming and edit distan
e and O(mn

2

) for the weighted edit distan
e,

and the restri
ted smallest approximate seed problem, in O(n

4

) time for the edit and

weighted edit distan
e and O(n

3

) for the Hamming distan
e. We also proved that the

smallest approximate seed problem is NP-
omplete.

The signi�
an
e of our work
omes from the fa
t that we solved the �rst two

problems for approximate seeds, with exa
tly the same time
omplexities as those

for approximate periods [33℄ and approximate
overs [34℄, despite the fa
t that seeds

allow overlaps, as well as
on
atenations, and
over a superstring of a string x (rather

than
overing the string x itself).

33

Pro
eedings of the Prague Stringology Conferen
e '03

Referen
es

[1℄ A. Aho and T. Peterson. A minimum distan
e error-
orre
ting parser for
ontext-

free languages. SIAM J. Computing, 1:305�312, 1972.

[2℄ A. Apostoli
o and D. Breslauer. An optimalO(log logN)-time parallel algorithm

for dete
ting all squares in a string. SIAM Journal on Computing, 25(6):1318�

1331, 1996.

[3℄ A. Apostoli
o, D. Breslauer, and Z. Galil. Optimal parallel algorithms for peri-

ods, palindromes and squares. Pro
. 19th Int. Colloq. Automata Languages and

Programming, 623:296�307, 1992.

[4℄ A. Apostoli
o and A. Ehrenfeu
ht. E�
ient dete
tion of quasiperiodi
ities in

strings. Theoreti
al Computer S
ien
e, 119(2):247�265, 1993.

[5℄ A. Apostoli
o, M. Fara
h, and C. S. Iliopoulos. Optimal superprimitivity testing

for strings. Information Pro
essing Letters, 39(1):17�20, 1991.

[6℄ A. Apostoli
o and F. P. Preparata. Optimal o�-line dete
tion of repetitions in a

string. Theoreti
al Computer S
ien
e, 22:297�315, 1983.

[7℄ O. Berkman, C. S. Iliopoulos, and K. Park. The subtree max gap problem

with appli
ation to parallel string
overing. Information and Computation,

123(1):127�137, 1995.

[8℄ D. Breslauer. An on-line string superprimitivity test. Information Pro
essing

Letters, 44(6):345�347, 1992.

[9℄ D. Breslauer. Testing string superprimitivity in parallel. Information Pro
essing

Letters, 49(5):235�241, 1994.

[10℄ T. Crawford, C. S. Iliopoulos, and R. Raman. String mat
hing te
hniques for

musi
al similarity and melodi
 re
ognition. Computing in Musi
ology, 11:73�100,

1998.

[11℄ M. Cro
hemore. An optimal algorithm for
omputing repetitions in a word.

Information Pro
essing Letters, 12(5):244�250, 1981.

[12℄ M. Cro
hemore, C. S. Iliopoulos, and M. Korda. Two-dimensional pre�x string

mat
hing and
overing on square matri
es. Algorithmi
a, 20:353�373, 1998.

[13℄ M. Cro
hemore, C. S. Iliopoulos, and H. Yu. Algorithms for
omputing evolu-

tionary
hains in mole
ular and musi
al sequen
es. In Pro
. 9th Australasian

Workshop on Combinatorial Algorithms, pages 172�185, 1998.

[14℄ M. Cro
hemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[15℄ C. S. Iliopoulos and M. Korda. Optimal parallel superprimitivity testing on

square arrays. Parallel Pro
essing Letters, 6(3):299�308, 1996.

[16℄ C. S. Iliopoulos, D. Moore, and K. Park. Covering a string. Algorithmi
a, 16:288�

297, 1996.

34

Approximate Seeds of Strings

[17℄ C. S. Iliopoulos and L. Mou
hard. An O(n logn) algorithm for
omputing all

maximal quasiperiodi
ities in strings. In Pro
. Computing: Australasian Theory

Symposium, pages 262�272. Le
ture Notes in Computer S
ien
e, 1999.

[18℄ C. S. Iliopoulos and K. Park. An optimal O(log logn)-time algorithm for parallel

superprimitivity testing. J. Korea Inform. S
i. So
., 21:1400�1404, 1994.

[19℄ C. S. Iliopoulos and K. Park. A work-time optimal algorithm for
omputing all

string
overs. Theoreti
al Computer S
ien
e, 164:299�310, 1996.

[20℄ C. S. Iliopoulos and W. F. Smyth. On-line algorithms for k-
overing. In Pro-

eedings of the 9th Australasian Workshop On Combinatorial Algorithms, pages

97�106, Perth, WA, Australia, 1998.

[21℄ S. Kim and K. Park. A dynami
 edit distan
e table. In Pro
. 11th Symp.

Combinatorial Pattern Mat
hing, volume 1848, pages 60�68. Springer, Berlin,

2000.

[22℄ D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern math
ing in strings.

SIAM Journal on Computing, 6(1):323�350, 1977.

[23℄ G. M. Landau, E. W. Myers, and J. P. S
hmidt. In
remental string
omparison.

SIAM Journal on Computing, 27(2):557�582, 1998.

[24℄ G. M. Landau and J. P. S
hmidt. An algorithm for approximate tandem repeats.

In Pro
eedings of the 4th Annual Symposium on Combinatorial Pattern Mat
hing,

number 684, pages 120�133, Padova, Italy, 1993. Springer-Verlag, Berlin.

[25℄ Y. Li and W. F. Smyth. An optimal on-line algorithm to
ompute all the
overs

of a string.

[26℄ D. Maier. The
omplexity of some problems on subsequen
es and supersequen
es.

Journal of the ACM, 25(2):322�336, 1978.

[27℄ M. G. Main and R. J. Lorentz. An algorithm for �nding all repetitions in a

string. Journal of Algorithms, 5:422�532, 1984.

[28℄ M. Middendorf. More on the
omplexity of
ommon superstring and superse-

quen
e problems. Theoreti
al Computer S
ien
e, 125(2):205�228, 1994.

[29℄ D. Moore and W. F. Smyth. A
orre
tion to �An optimal algorithm to
ompute

all the
overs of a string�. Information Pro
essing Letters, 54(2):101�103, 1995.

[30℄ K. J. Räihä and E. Ukkonen. The shortest
ommon supersequen
e problem

over binary alphabet is NP-
omplete. Theoreti
al Computer S
ien
e, 16:187�

198, 1981.

[31℄ J. P. S
hmidt. All highest s
oring paths in weighted grid graphs and its appli
a-

tion to �nding all approximate repeats in strings. SIAM Journal on Computing,

27(4):972�992, 1998.

[32℄ P. H. Sellers. Pattern re
ognition geneti
 sequen
es by mismat
h density. Bulletin

of Mathemati
al Biology, 46(4):501�514, 1984.

35

Pro
eedings of the Prague Stringology Conferen
e '03

[33℄ J. S. Sim, C. S. Iliopoulos, K. Park, and W. F. Smyth. Approximate periods of

strings. Theoreti
al Computer S
ien
e, 262:557�568, 2001.

[34℄ J. S. Sim, K. Park, S. Kim, and J. Lee. Finding approximate
overs of strings.

Journal of Korea Information S
ien
e So
iety, 29(1):16�21, 2002.

[35℄ R. Wagner and M. Fisher. The string-to-string
orre
tion problem. Journal of

the ACM, 21:168�173, 1974.

36

Constru
ting Fa
tor Ora
les

Loek Cleophas

1

and Gerard Zwaan

1

and Bru
e W. Watson

1;2

1

Department of Mathemati
s and Computer S
ien
e, Te
hnis
he Universiteit

Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

2

Department of Computer S
ien
e, University of Pretoria,

Pretoria 0002, South Afri
a

e-mail: loek�loek
leophas.
om, g.zwaan�tue.nl, bru
e�bru
e-watson.
om

Abstra
t. A fa
tor ora
le is a data stru
ture for weak fa
tor re
ognition. It is

an automaton built on a string p of length m that is a
y
li
, re
ognizes at least

all fa
tors of p, has m+1 states whi
h are all �nal, and has m to 2m� 1 transi-

tions. In this paper, we give two alternative algorithms for its
onstru
tion and

prove the
onstru
ted automata to be equivalent to the automata
onstru
ted

by the algorithms in [1℄. Although these new O(m

2

) algorithms are pra
ti
ally

ine�
ient
ompared to the O(m) algorithm given in [1℄, they give more insight

into fa
tor ora
les. Our �rst algorithm
onstru
ts a fa
tor ora
le based on the

su�xes of p in a way that is more intuitive. Some of the
ru
ial properties of

fa
tor ora
les, whi
h in [1℄ need several lemmas to be proven, are immediately

obvious. Another important property however be
omes less obvious. A se
ond

algorithm gives a
lear insight in the relationship between the trie or dawg re
-

ognizing the fa
tors of p and the fa
tor ora
le re
ognizing a superset thereof.

We
onje
ture that an O(m) version of this trie-based algorithm exists.

Keywords: fa
tor ora
le, �nite automaton, weak fa
tor re
ognition, algorithm

derivation, pattern mat
hing.

1 Introdu
tion

A fa
tor ora
le is a data stru
ture for weak fa
tor re
ognition. It
an be des
ribed

as an automaton built on a string p of length m that (a) is a
y
li
, (b) re
ognizes

at least all fa
tors of p, (
) has m + 1 states (whi
h are all �nal), and (d) has m to

2m�1 transitions (
f. [1℄). Some example fa
tor ora
les are given in Figures 1 and 2.

0 1
a

2

b

4

c

b
3

b

c

c

Figure 1: Fa
tor ora
le for abb
 (re
ognizing ab
 62 fa
t(p))

37

Pro
eedings of the Prague Stringology Conferen
e '03

0 1
a

2

b

4

c

b
3

b

c

c
5

c
6

a

a

Figure 2: Fa
tor ora
le for abb

a (re
ognizing ab
; ab

; ab

a; ab
a; abb
a; bb
a; b
a 62

fa
t(p))

Fa
tor ora
les are introdu
ed in [1℄ as an alternative to the use of exa
t fa
tor

re
ognition in many on-line keyword pattern mat
hing algorithms. In su
h algorithms,

a window on a text is read ba
kward while attempting to mat
h a keyword fa
tor.

When this fails, the window is shifted using the information on the longest fa
tor

mat
hed and the mismat
hing
hara
ter.

Instead of an automaton re
ognizing exa
tly the set of fa
tors of the keyword,

it is possible to use a fa
tor ora
le: although it re
ognizes more strings than just

the fa
tors and thus might read ba
kwards longer than ne
essary, it
annot miss any

mat
hes. The advantage of using fa
tor ora
les is that they are easier to
onstru
t

and take less spa
e to represent
ompared to the automata that were previously used

in these fa
tor-based algorithms, su
h as su�x, fa
tor and subsequen
e automata.

This is the result of the latter automata la
king one or more of the four essential

properties of the fa
tor ora
le.

The fa
tor ora
le is introdu
ed in [1℄ by means of an O(m

2

)
onstru
tion algorithm

that is used as its de�nition. Furthermore, an O(m) sequential
onstru
tion algorithm

is des
ribed. It is not obvious by just
onsidering the algorithms that it re
ognizes

at least all fa
tors of p and has m to 2m� 1 transitions (i.e. that (b) and (d) hold).

For both algorithms, a number of lemmas are needed to prove this. In this paper, we

give two alternative algorithms for the
onstru
tion of a fa
tor ora
le.

Our �rst algorithm, in Se
tion 2,
onstru
ts a fa
tor ora
le based on the su�xes

of p. This algorithm is O(m

2

) and thus not of pra
ti
al interest, but it is more in-

tuitive to understand and properties (b) and (d)�two important properties of fa
tor

ora
les�are immediately obvious from the algorithm. The a
y
li
ity of the fa
tor or-

a
le however�
orresponding to property (a)�is not immediately obvious. Our proof

of this property (part of Property 6) is rather involved, whereas the property is imme-

diately obvious from the algorithms in [1℄. We prove that the alternative
onstru
tion

algorithm and those given in [1℄
onstru
t equivalent automata in Se
tion 3.

In Se
tion 4 we present our se
ond algorithm, whi
h
onstru
ts a fa
tor ora
le

from the trie re
ognizing the fa
tors of p. Although this algorithm is O(m

2

) as well,

it gives a
lear insight in the relationship between the trie and dawg re
ognizing the

fa
tors of p and the fa
tor ora
le re
ognizing a superset thereof. In addition, we

onje
ture that an O(m) trie-based algorithm exists.

Finally, Se
tion 5 gives a summary and overview of future work.

1.1 Related Work

An earlier version of this paper appears as [3, Chapter 4℄. In that thesis, some

properties of the language of a fa
tor ora
le are dis
ussed as well. The thesis also

38

Constru
ting Fa
tor Ora
les

dis
usses pattern mat
hing algorithms�among them those using fa
tor ora
les�and

the implementation of the fa
tor ora
le as part of the SPARE Time pattern mat
hing

toolkit, a revised and extended version of SPARE Parts ([9℄).

As mentioned before, fa
tor ora
les were introdu
ed in [1℄ as an alternative to the

use of exa
t fa
tor re
ognition in many on-line keyword pattern mat
hing algorithms.

A pattern mat
hing algorithm using the fa
tor ora
le is des
ribed in that paper as

well.

Apart from their use in pattern mat
hing algorithms, fa
tor ora
les have been

used in a heuristi
 to
ompute repeated fa
tors of a string [6℄ as well as to
ompress

text [7℄. An improvement for those uses of fa
tor ora
les is introdu
ed in [8℄ in the

form of the repeat ora
le.

Related to the fa
tor ora
le, the su�x ora
le�in whi
h only those states
orre-

sponding to a su�x of p are marked �nal�is introdu
ed in [1℄. In [2℄ the fa
tor ora
le

is extended to apply to a set of strings.

1.2 Preliminaries

A string p = p

1

:::p

m

of length m is a sequen
e of
hara
ters from an alphabet V . A

string u is a fa
tor (resp. pre�x, su�x) of a string v if v = sut (resp. v = ut, v = su),

for s; t 2 V

�

. We will use pref(p), su�(p) and fa
t(p) for the set of pre�xes, su�xes

and fa
tors of p respe
tively. A pre�x (resp. su�x or fa
tor) is a proper pre�x (resp.

su�x or fa
tor) of a string p if it does not equal p. We write u �

s

v to denote that u

is a su�x of v, and u <

s

v to denote that u is a proper su�x of v.

2 Constru
tion Based on Su�xes

Our �rst alternative algorithm for the
onstru
tion of a fa
tor ora
le
onstru
ts a

`skeleton' automaton for p�re
ognizing pref(p)�and then
onstru
ts a path for

ea
h of the su�xes of p in order of de
reasing length, su
h that eventually at least

pref(su�(p)) = fa
t(p) is re
ognized. If su
h a su�x of p is already re
ognized, no

transition needs to be
onstru
ted. If on the other hand the
omplete su�x is not yet

re
ognized there is a longest pre�x of su
h a su�x that is re
ognized. A transition on

the next, non-re
ognized symbol is then
reated, from the state in whi
h this longest

pre�x of the su�x is re
ognized, to a state from whi
h there is a path leading to state

m that spells out the rest of the su�x.

Build_Ora
le_2(p = p

1

p

2

:::p

m

)

1: for i from 0 to m do

2: Create a new �nal state i

3: end for

4: for i from 0 to m� 1 do

5: Create a new transition from i to i + 1 by p

i+1

6: end for

7: for i from 2 to m do

8: Let the longest path from state 0 that spells a pre�x of p

i

:::p

m

end in state j

and spell out p

i

:::p

k

(i� 1 � k � m)

9: if k 6= m then

39

Pro
eedings of the Prague Stringology Conferen
e '03

10: Build a new transition from j to k + 1 by p

k+1

11: end if

12: end for

Note that this algorithm is O(m

2

) (sin
e the operation on line 6
an be implemented

using a while loop). The fa
tor ora
le on p built using this algorithm is referred to

as Ora
le(p) and the language re
ognized by it as fa
tora
le(p).

The �rst two properties we give are obvious given our algorithm. They
orrespond

to (b) and (
)-(d) respe
tively as mentioned in Se
tion 1.

Property 1 fa
t(p) � fa
tora
le(p).

Proof: The algorithm
onstru
ts a path for all su�xes of p and all states are �nal.

Property 2 For p of length m, Ora
le(p) has exa
tly m + 1 states and between m

and 2m� 1 transitions.

Proof: States
an be
onstru
ted in steps 1-2 only, and exa
tly m + 1 states are

onstru
ted there. In step 4 of the algorithm, m transitions are
reated. In steps 5-8,

at most m� 1 transitions are
reated.

Property 3 (Glushkov's property) All transitions rea
hing a state i of Ora
le(p)

are labeled by p

i

.

Proof: The only steps of the algorithm that
reate transitions are steps 4 and 8. In

both, transitions to a state i are
reated labeled by p

i

.

Property 4 (Weak determinism) For ea
h state of Ora
le(p), no two outgoing

transitions of the state are labeled by the same symbol.

Proof: The algorithm never
reates an outgoing transition by some symbol if su
h a

transition already exists.

We now de�ne fun
tion po

ur(u; p) to give the end position of the leftmost o

urren
e

of u in p (equivalent to the same fun
tion in [1℄):

De�nition 1 Fun
tion po

ur 2 V

�

� V

�

! N is de�ned as

po

ur(u; p) = minfjtuj; p = tuvg (p; t; u; v 2 V

�

)

Note that if u 62 fa
t(p), po

ur(u; p) =1.

Property 5 For su�xes and pre�xes of fa
tors we have:

uv 2 fa
t(p)) po

ur(v; p) � po

ur(uv; p) (p; u; v 2 V

�

)

uv 2 fa
t(p)) po

ur(u; p) � po

ur(uv; p)� jvj (p; u; v 2 V

�

)

We introdu
e min(i) for the minimum length string re
ognized in state i�either in

a partially
onstru
ted or in the
omplete automaton.

In the following property, we use j

i

and k

i

to identify the values j and k attain

when
onsidering su�x p

i

:::p

m

of p in steps 5-8 of the algorithm.

40

Constru
ting Fa
tor Ora
les

Property 6 For the partial automaton
onstru
ted a

ording to algorithmBuild_-

Ora
le_2 with all su�xes of p of length greater than m� i + 1 already
onsidered

in steps 5-8 (2 � i � m+ 1), we have that

i. it is a
y
li

ii. for ea
h h with 1 � h < i, all pre�xes of p

h

:::p

m

are re
ognized

iii. for ea
h state n and outgoing transition to a state q 6= n+ 1,

q � k

max

+ 1 holds where k

max

= maxfk

h

; 1 < h < i ^ k

h

< mg

iv. for ea
h state n, min(n) is an element of fa
t(p), min(n) is a su�x of ea
h

string re
ognized in n, and n = po

ur(min(n); p)

v. if u 2 fa
t(p) is re
ognized, it is re
ognized in a state n � po

ur(u; p)

vi. for ea
h state n and ea
h symbol a su
h that there is a transition from n to a

state q by a, min(n) � a 2 fa
t(p) and q = po

ur(min(n) � a; p)

vii. for ea
h pair of states n and q, if min(n) �

s

min(q), then n � q, and as a

result, if min(n) <

s

min(q), then n < q

viii. if w is re
ognized in state n, then for any su�x u of w, if u is re
ognized, it is

re
ognized in state q � n

Proof: See Appendix A.

Note that Property 6, i.
orresponds to property (a) in Se
tion 1.

3 Equivalen
e to Original Algorithms

A fa
tor ora
le as introdu
ed in [1℄ is built by the following algorithm:

Build_Ora
le(p = p

1

p

2

:::p

m

)

1: for i from 0 to m do

2: Create a new �nal state i

3: end for

4: for i from 0 to m� 1 do

5: Create a new transition from i to i + 1 by p

i+1

6: end for

7: for i from 0 to m� 1 do

8: Let u be a minimal length word in state i

9: for all � 2 �; � 6= p

i+1

do

10: if u� 2 Fa
t(p

i�juj+1

:::p

m

) then

11: Build a new transition from i to

�

i� juj+ po

ur(u�; p

i�juj+1

:::p

m

) by �

12: end if

13: end for

�

Note that in [1℄ the term �juj is missing in the algorithm, although from the rest of the paper

it is
lear that it is used in the
onstru
tion of the automata

41

Pro
eedings of the Prague Stringology Conferen
e '03

14: end for

To prove the equivalen
e of the automata
onstru
ted by the two algorithms, we need

the following properties.

Property 7 For any state i of both Ora
le(p) (i.e. the fa
tor ora
le
onstru
ted a
-

ording to algorithm Build_Ora
le_2 and the fa
tor ora
le
onstru
ted a

ording

to algorithm Build_Ora
le), if u = min(i) then

u� 2 fa
t(p

i�juj+1

:::p

m

) � u� 2 fa
t(p)

Proof:): Trivial. (: By Property 6, iv. (for Build_Ora
le_2) and [1, Lemma

1℄ (for Build_Ora
le), i = po

ur(u; p). By Property 5, po

ur(u�; p) � i, hen
e

u� 2 fa
t(p

i�juj+1

:::p

m

).

Property 8 For any state i of an automaton
onstru
ted by either algorithm, if

u = min(i) and u� 2 fa
t(p) then

i� juj+ po

ur(u�; p

i�juj+1

:::p

m

) = po

ur(u�; p)

Proof:

i� juj+ po

ur(u�; p

i�juj+1

:::p

m

)

= { de�nition po

ur }

i� juj+minfjtu�j; p

i�juj+1

:::p

m

= tu�vg

= { u = min(i), hen
e re
ognized in i = po

ur(u; p) }

i� juj+minfjtu�j � (i� juj); p = tu�vg

= { u� 2 fa
t(p), property of min }

i� juj+minfjtu�j; p = tu�vg � (i� juj)

= {
al
ulus, de�nition po

ur }

po

ur(u�; p)

Property 9 The algorithms Build_Ora
le_2 and Build_Ora
le

onstru
t equivalent automata.

Proof: We prove this by indu
tion on the states. Our indu
tion hypothesis is that

for ea
h state j (0 � j < i), min(j) is the same in both automata, and the outgoing

transitions from state j are equivalent for both automata.

If i = 0, u = min(i) = " in both automata. Consider a transition
reated

by Build_Ora
le_2, say to state k by � 6= p

i+1

. Sin
e this transition exists,

u� 2 fa
t(p) and k = po

ur(u�; p) (due to Property 6, vi.). Using Properties 7

and 8, su
h a transition was
reated by Build_Ora
le as well. Similarly,
onsider

a transition
reated by Build_Ora
le, say to state k by �. This transition, say

on symbol �, leads to state k = i � juj + po

ur(u�; p

i�juj+1

:::p

m

) and was
reated

sin
e u� 2 fa
t(p

i�juj+1

:::p

m

) (see the algorithm). Using Properties 7 and 8, su
h a

transition was
reated by Build_Ora
le_2 as well.

42

Constru
ting Fa
tor Ora
les

If i > 0, using the indu
tion hypothesis and a
y
li
ity of the automata, i has

the same in
oming transitions and as a result min(i) is the same for both automata.

Using the same arguments as in
ase i = 0, the outgoing transitions from state i are

equivalent for both automata.

As a result, the two automata are equivalent.

4 Constru
tion Based on Trie

0 1
a

5

b

9

c

2
b

3
b

4
c

6
b

8

c
7

c

Figure 3: Trie re
ognizing fa
t(abb
)

0 1
a

5
b

4

c

2
b

3
b c
b

c

Figure 4: DAWG re
ognizing fa
t(abb
)

0 1
a

2

b

4

c

b
3

b

c

c

Figure 5: Fa
tor ora
le re
ognizing fa
t(abb
) [fab
g

There is a
lose relationship between the data stru
tures Trie(fa
t(p)) �the trie

([5℄) on fa
t(p)�re
ognizing exa
tly fa
t(p), DAWG(fa
t(p)) �the dire
ted a
y
li

word graph ([4℄) on fa
t(p)�re
ognizing exa
tly fa
t(p), and Ora
le(p)�the fa
tor

ora
le on p�whi
h re
ognizes at least fa
t(p).

It is well known that DAWG(fa
t(p))
an be
onstru
ted from Trie(fa
t(p)) by

merging states whose right languages are identi
al (see for example [4℄). The fa
tor

ora
le as de�ned by Ora
le(p)
an also be
onstru
ted from Trie(fa
t(p)), by merging

states whose right languages have identi
al longest strings (whi
h are su�xes of p).

An example of a trie, DAWG and fa
tor ora
le for the fa
tors of abb

an be seen in

Figures 3-5.

43

Pro
eedings of the Prague Stringology Conferen
e '03

De�nition 2 We de�ne Trie(S) as a 5-tuple <Q, V , Æ, ", F> where S is a �nite

set of strings, Q = pref(S) is the set of states, V is the alphabet, Æ is the transition

fun
tion, de�ned by

Æ(u; a) =

(

ua if ua 2 pref(S)

? if ua 62 pref(S)

(u 2 pref(S); a 2 V);

" is the single start state and F = S is the set of �nal states.

Property 10 For u; v 2 fa
t(p) we have :

uv 2 fa
t(p) ^ (8w : uw 2 fa
t(p) : jwj � jvj)) uv 2 su�(p)

uv

1

2 fa
t(p) ^ (8w : uw 2 fa
t(p) : jwj � jv

1

j)

^ uv

2

2 fa
t(p) ^ (8w : uw 2 fa
t(p) : jwj � jv

2

j)) v

1

= v

2

Property 11 For u 2 fa
t(p) and C 2 N,

(8w : uw 2 fa
t(p) : jwj � C) � (8w : uw 2 su�(p) : jwj � C)

Proof:): trivial. (: Let ux 2 fa
t(p), then (9y : : uxy 2 su�(p)), hen
e (9y : :

jxyj � C), and sin
e jyj � 0, jxj � C.

Using Properties 10 and 11, max

p

(u)
an be de�ned as the unique longest string v

su
h that uv 2 su�(p):

De�nition 3 De�ne max

p

(u) = v where v is su
h that

uv 2 su�(p) ^ (8w : uw 2 su�(p) : jwj � jvj)

We now present our simple trie-based
onstru
tion algorithm for fa
tor ora
les:

Trie_To_Ora
le(p = p

1

p

2

:::p

m

)

1: Constru
t Trie(fa
t(p))

2: for i from 2 to m do

3: Merge all states u for whi
h max

p

(u) = p

i+1

:::p

m

into the single state p

1

:::p

i

4: end for

The order in whi
h the values of i are
onsidered is not important. In addition, note

that it is not ne
essary to
onsider the states u for whi
h max

p

(u) = p

2

:::p

m

sin
e

there is pre
isely one su
h state u in Trie(fa
t(p)), u = p

1

. Due to Property 10, it is

su�
ient to only
onsider su�xes of p as longest strings.

Also note that the intermediate automata may be nondeterministi
, but the �nal

automaton will be weakly deterministi
 (as per Property 4).

The above algorithm has
omplexity O(m

2

) (assuming that max

p

(u) was
om-

puted during
onstru
tion of the trie). The
onstru
tion of a Trie
an be done in

O(m) time however, and the merging of the states is similar to minimization of an

44

Constru
ting Fa
tor Ora
les

a
y
li
 automaton, whi
h
an also be done in O(m). We therefore
onje
ture that an

O(m) trie-based fa
tor ora
le
onstru
tion algorithm exists.

To prove that algorithm Trie_To_Ora
le
onstru
ts Ora
le(p), we de�ne a

partition on the states of the trie, indu
ed by an equivalen
e relation on the states.

De�nition 4 Relation �

p

on states of Trie(fa
t(p)) is de�ned by

t �

p

u � max

p

(t) = max

p

(u) (t; u 2 fa
t(p))

Note that relation �

p

is an equivalen
e relation.

We now show that the partitioning into sets of states of Trie(fa
t(p)) indu
ed by �

p

,

is the same as the partitioning of Trie(fa
t(pa)) indu
ed by �

pa

, restri
ted to the

states of Trie(fa
t(p)), i.e.

Property 12

t �

p

u � t �

pa

u (t; u 2 fa
t(p); a 2 V)

Proof:

t �

p

u

� { de�nition �

p

}

max

p

(t) = max

p

(u)

� { }

max

p

(t)a = max

p

(u)a

� { (?) }

max

pa

(t) = max

pa

(u)

� { de�nition �

pa

}

t �

pa

u

where we prove (?) by

v = max

pa

(u)

� { de�nition max

pa

}

uv 2 su�(pa) ^ (8w : uw 2 su�(pa) : jwj � jvj)

� { u 2 fa
t(p), hen
e (9x : : uxa 2 su�(pa)),

hen
e jxaj > 0 and jvj > 0; su�(pa) = su�(p)a [f"g }

uv 2 su�(p)a ^ (8w : uw 2 su�(pa) : jwj � jvj)

� { jvj > 0 }

uv 2 su�(p)a ^ (8w : w 6= " ^ uw 2 su�(pa) : jwj � jvj) ^ v = v

0

a

� { su�(pa) = su�(p)a [f"g }

uv 2 su�(p)a ^ (8w : w 6= " ^ uw 2 su�(p)a : jwj � jvj) ^ v = v

0

a

45

Pro
eedings of the Prague Stringology Conferen
e '03

� { w = w

0

a }

uv 2 su�(p)a ^ (8w

0

: uw

0

a 2 su�(p)a : jw

0

aj � jv

0

aj) ^ v = v

0

a

� { }

uv 2 su�(p)a ^ (8w

0

: uw

0

2 su�(p) : jw

0

j � jv

0

j) ^ v = v

0

a

� { v = v

0

a }

uv

0

2 su�(p) ^ (8w

0

: uw

0

2 su�(p) : jw

0

j � jv

0

j) ^ v = v

0

a

� { de�nition max

p

}

v

0

= max

p

(u) ^ v = v

0

a

� { }

v = max

p

(u)a

Property 13 Algorithm Trie_To_Ora
le
onstru
ts Ora
le(p).

Proof: By indu
tion on jpj = m. If m = 0, p = ", and Trie(fa
t(")) = Ora
le(").

If m = 1, p = a (a 2 V), and Trie(fa
t(a))=Ora
le(a). If m > 1, p = xa

(x 2 V

�

; a 2 V), and we may assume the algorithm to
onstru
t part Ora
le(x)

of Ora
le(xa)
orre
tly (using fa
t(ua) = fa
t(u) [su�(u)a, Trie(fa
t(xa)) being

an extension of Trie(fa
t(x)), and Ora
le(xa) being an extension of Ora
le(x) (whi
h

is straightforward to see from algorithm Build_Ora
le_2 as well as [1, page 57,

after Corollary 4℄), and Property 12). Now
onsider the states of this partially
on-

verted automaton in whi
h su�xes of x are re
ognized. By
onstru
tion of the trie,

there are transitions from these states by a. The fa
tor ora
le
onstru
tion a

ord-

ing to algorithm Ora
le_Sequential in [1℄
reates Ora
le(xa) from Ora
le(x)+a

(i.e. the fa
tor ora
le for x extended with a single new state m rea
hable from state

m� 1 by symbol p

m

= a) by
reating new transitions to state m from those states in

whi
h su�xes of x are re
ognized and that do not yet have a transition on a. Sin
e

Trie_To_Ora
le merges all states t for whi
h max

xa

(t) = a into the single state

m, Ora
le(xa) is
onstru
ted
orre
tly from Trie(fa
t(xa)).

5 Con
lusions and Future Work

We have presented two alternative
onstru
tion algorithms for fa
tor ora
les and

shown the automata
onstru
ted by them to be equivalent to those
onstru
ted by

the algorithms in [1℄. Although both our algorithms are O(m

2

) and thus pra
ti
ally

ine�
ient
ompared to the O(m) sequential algorithm given in [1℄, they give more

insight into fa
tor ora
les.

Our �rst algorithm is more intuitive to understand and makes it immediately

obvious, without the need for several lemmas, that the fa
tor ora
le re
ognizes at

least fa
t(p) and has m to 2m� 1 transitions.

Our se
ond algorithm gives a
lear insight into the relationship between the trie

or dawg re
ognizing fa
t(p) and the fa
tor ora
le re
ognizing a superset thereof. We

46

Constru
ting Fa
tor Ora
les

onje
ture that an O(m) trie-based algorithm for the
onstru
tion of fa
tor ora
les

exists.

0 1
a

2

b

3

c

6

d

9

e

b
5

c

c
4

a

d

e

c d

e

7
a

8
c e

Figure 6: Fa
tor ora
le re
ognizing a superset of fa
t(p) (in
luding for example
a
e 62

fa
t(p)), for p = ab
a
da
e.

0 1
a

2

b

3

c

6

d

9

e

b

c

c
4

a

d

e

5
c d

7
a

8
c e

Figure 7: Alternative automaton with m + 1 states satisy�ng Glushkov's property

yet re
ognizing a di�erent superset of fa
t(p) than the fa
tor ora
le for p (in
luding

for example a
a
da
e 62 fa
tora
le(p), but not
a
e) and having less transitions, for

p = ab
a
da
e.

As stated in [1℄, the fa
tor ora
le is not minimal in terms of number of transitions

among the automata with m+ 1 states re
ognizing at least fa
t(p). We note that it

is not even minimal among the subset of su
h automata having Glushkov's property

(see Figures 6 and 7).

We are working on an automaton-independent de�nition of the language re
og-

nized by the fa
tor ora
le. Su
h a
hara
terization would enable us to
al
ulate how

many strings are re
ognized that are not fa
tors of the original string. This
ould

be useful in determining whether to use a fa
tor ora
le-based algorithm in pattern

mat
hing or not.

A
knowledgements

We would like to thank Mi
hiel Frishert for reading and
ommenting on earlier ver-

sions of this paper, and the anonymous referees for their helpful
omments and sug-

gestions.

47

Pro
eedings of the Prague Stringology Conferen
e '03

Referen
es

[1℄ Cyril Allauzen, Maxime Cro
hemore, and Mathieu Ra�not. E�
ient Experi-

mental String Mat
hing by Weak Fa
tor Re
ognition. In Pro
eedings of the 12th

onferen
e on Combinatorial Pattern Mat
hing, volume 2089 of LNCS, pages 51�

72, 2001.

[2℄ Cyril Allauzen and Mathieu Ra�not. Ora
le des fa
teurs d'un ensemble de mots.

Te
hni
al Report 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée,

June 1999.

[3℄ Loek G.W.A. Cleophas. Towards SPARE Time: A New Taxonomy and Toolkit

of Keyword Pattern Mat
hing Algorithms. MS
 thesis, Te
hnis
he Universiteit

Eindhoven, August 2003.

[4℄ Maxime Cro
hemore and Woj
ie
h Rytter. Text Algorithms. Oxford University

Press, 1994.

[5℄ E. Fredkin. Trie memory. Communi
ations of the ACM, 3(10):490�499, 1960.

[6℄ Arnaud Lefebvre and Thierry Le
roq. Computing repeated fa
tors with a fa
tor

ora
le. In L. Brankovi
 and J. Ryan, editors, Pro
eedings of the 11th Australasian

Workshop on Combinatorial Algorithms, pages 145�158, 2000.

[7℄ Arnaud Lefebvre and Thierry Le
roq. Compror: on-line losless data
ompression

with a fa
tor ora
le. Inf. Pro
ess. Lett., 83(1):1�6, 2002.

[8℄ Arnaud Lefebvre, Thierry Le
roq, and J. Alexandre. Drasti
 improvements over

repeats found with a fa
tor ora
le. In E. Billington, D. Donovan, and A. Khodkar,

editors, Pro
eedings of the 13th Australasian Workshop on Combinatorial Algo-

rithms, pages 253�265, 2002.

[9℄ Bru
e W. Watson and Loek Cleophas. SPARE Parts: A C++ toolkit for String

PAttern RE
ognition. Software: Pra
ti
e and Experien
e, 2003. To be published.

A Proof of Property 6

We �rst
onsider the automaton
onstru
ted in steps 1-4 of the algorithm. It is

straightforward to verify that the properties hold for i = 2.

Now assume that the properties hold for the automaton with all su�xes of p of

length greater than m � i + 1 already
onsidered. We prove that they also hold for

the automaton after the su�x of length m� i+ 1, p

i

:::p

m

, has been
onsidered.

If k = m in step 6, su�x p

i

:::p

m

is already re
ognized, no new transition will be

reated, the automaton does not
hange and the properties still hold.

If k < m, then we need to prove that ea
h of the properties holds for the new

automaton.

Ad i: By v., string p

i

:::p

k

is re
ognized in state j � po

ur(p

i

:::p

k

; p). Sin
e

p

i

:::p

k

�

s

p

1

:::p

k

and po

ur(p

1

:::p

k

; p) = k, po

ur(p

i

:::p

k

; p) � k due to Property 5.

Sin
e j � k, the transition
reated from j to k + 1 is a forward one.

48

Constru
ting Fa
tor Ora
les

Ad ii: Trivial.

Ad iii: We prove that the property holds for the new automaton by showing that

k = k

i

� k

max

, i.e. k will be
ome the new k

max

.

If k

max

= �1, k � k

max

learly holds.

If k

max

> �1, assume that k

max

> k, then there is an h su
h that 1 < h < i ^

k

h

< m ^ k

h

= k

max

. Fa
tor p

h

:::p

k

is re
ognized in g � k due to ii. and v.

If g = k, then p

h

:::p

k

is re
ognized in k and p

h

:::p

m

is re
ognized in m; so k

h

= m

whi
h
ontradi
ts k

h

< m.

If g < k, then p

h

:::p

k

is re
ognized in g < k. Sin
e p

i

:::p

k

is re
ognized in j = j

i

and p

i

:::p

k

�

s

p

h

:::p

k

, due to viii., j � g.

If j = g, then p

h

:::p

k

is the longest pre�x of p

h

:::p

m

re
ognized by the old automa-

ton, whi
h
ontradi
ts ii.

If j < g, then j < g < k. We know that min(g) �

s

p

h

:::p

k

(using iv.), min(j) �

s

p

h

:::p

k

(using iv. and p

i

:::p

k

�

s

p

h

:::p

k

) and therefore that min(j) <

s

min(g) (due

to vii.). Let l be the state to whi
h the transition by p

k+1

from g leads, i.e. l is the state

in whi
h p

h

:::p

k+1

is re
ognized. Using vi., we have that l = po

ur(min(g) � p

k+1

; p).

Using Property 5 we have that l � po

ur(p

h

:::p

k+1

; p) and the latter is � k + 1 due

to the de�nition of po

ur (sin
e k + 1 marks the end of an o

urren
e of p

h

:::p

k+1

).

We have po

ur(min(j) � p

k+1

; p) � po

ur(min(g) � p

k+1

; p) = l sin
e min(j) �

s

min(g). We want to prove that k + 1 � po

ur(min(j) � p

k+1

; p). Assume that

po

ur(min(j) � p

k+1

; p) < k + 1. If the �rst o

urren
e of min(j) � p

k+1

starts before

position i of p, then it is a pre�x of a su�x of p longer than p

i

:::p

m

and thus by ii.

min(j) � p

k+1

is re
ognized. Sin
e min(j) is re
ognized in j, a transition from j by

p

k+1

must exist and we have a
ontradi
tion. If the �rst o

urren
e of min(j) � p

k+1

starts at or after position i of p, then there exists a shortest string x su
h that

x �min(j) � p

k+1

2 pref(p

i

:::p

k

) and x �min(j) � p

k+1

is re
ognized in a state � j. But

then x �min(j) is re
ognized in a state n < j. By viii., sin
e min(j) �

s

x �min(j),

this means that min(j) is re
ognized in state s � n < j and we have a
ontradi
tion.

Thus k+1 � po

ur(min(j)�p

k+1

; p) � l and therefore, sin
e l � k+1 holds, l = k+1.

In that
ase, p

h

:::p

k+1

is re
ognized in l = k + 1 and p

h

:::p

m

is re
ognized in m. But

then k

h

= m, and we have a
ontradi
tion.

Thus, k

max

= k

h

� k = k

i

and iii. holds for the new automaton.

Ad iv: Let s = min(j), t = min(k + 1) and u = min(h) (k + 1 � h � m)

respe
tively in the old automaton. Due to the proof of iii., k = k

i

� k

max

and

therefore a unique path between k + 1 and h exists, labeled r, and�due to iv�

u �

s

tr.

If jsp

k+1

rj � juj, u remains the minimal length string re
ognized in state h. Sin
e

s �

s

p

i

:::p

k

, sp

k+1

r �

s

p

i

:::p

k+1

r. Sin
e u �

s

tr, tr �

s

p

1

:::p

k+1

r and jsp

k+1

rj � juj,

u �

s

sp

k+1

r and�due to iv.�u �

s

s

0

p

k+1

r as well for any s

0

re
ognized in state j.

If jsp

k+1

rj < juj, sp

k+1

r is the new minimal length string re
ognized in state

h. Sin
e s �

s

p

i

:::p

k

, sp

k+1

r �

s

p

i

:::p

k+1

r. Sin
e u �

s

tr, tr �

s

p

1

:::p

k+1

r and

jsp

k+1

rj < juj, sp

k+1

r �

s

u and�due to iv.�sp

k+1

r �

s

s

0

p

k+1

r as well for any s

0

re
ognized in state j.

Sin
e p

i

:::p

k+1

r was not re
ognized before, it is not a pre�x of p, p

2

:::p

m

, ...,

p

i�1

:::p

m

(using ii.), hen
e po

ur(p

i

:::p

k+1

r; p) = k + 1 + jrj. Sin
e s �

s

p

i

:::p

k

,

po

ur(sp

k+1

r; p) � k + 1 + jrj. Assume that po

ur(sp

k+1

r; p) < k + 1 + jrj, then

p

i

:::p

k+1

r = usp

k+1

rv (u; v 2 V

�

, v 6= ", juj minimal), sin
e sp

k+1

r
annot start before

49

Pro
eedings of the Prague Stringology Conferen
e '03

p

i

be
ause in that
ase it would have already been re
ognized by the old automaton.

Fa
tor us is re
ognized in state g < j (using i.) and�sin
e viii. holds�s �

s

us is

re
ognized in a state o � g < j. This
ontradi
ts s being re
ognized in j. As a result

po

ur(sp

k+1

r; p) = k + 1 + jrj.

Ad v: Any new fa
tor of p re
ognized after
reation of the transition from j to

k+1 has the form vp

k+1

r and is re
ognized in k+1+ jrj with v 2 fa
t(p) re
ognized

in state j. Sin
e k + 1 + jrj = po

ur(min(k + 1)r; p) (using iii., iv. holding for the

new automaton plus the fa
t that k is the new k

max

) and min(k+1) �r �

s

vp

k+1

r due

to iv. holding for the new automaton, k+1+ jrj � po

ur(vp

k+1

r; p) using Property 5.

Ad vi: The states n we have to
onsider are n = j and n = h for k + 1 � h � m.

For n = j, a new transition to k+1 is
reated and by iv., min(j) �

s

p

i

:::p

k

., hen
e

we have min(j) � p

k+1

�

s

p

i

:::p

k+1

, p

k+1�jmin(j)j

:::p

k+1

= min(j) � p

k+1

, min(j) � p

k+1

2

fa
t(p) and po

ur(min(j) �p

k+1

; p) � k+1. Sin
e min(j) �p

k+1

is re
ognized in state

k + 1, due to v. for the new automaton, k + 1 � po

ur(min(j) � p

k+1

; p). Therefore

k + 1 = po

ur(min(j) � p

k+1

; p).

For n = h with k + 1 � h � m, min(h)
hanges to sp

k+1

r if and only if

jsp

k+1

rj < juj (with r; s; u as in the proof of iv.). We know that ua 2 fa
t(p) and

q = po

ur(ua; p). Sin
e sp

k+1

r �

s

u, sp

k+1

ra �

s

ua, hen
e sp

k+1

ra 2 fa
t(p) as well

and po

ur(sp

k+1

ra; p) � po

ur(ua; p) = q, but due to v., q � po

ur(sp

k+1

ra; p)

hen
e q = po

ur(sp

k+1

ra; p).

Ad vii: Assume min(n) �

s

min(q). We have po

ur(min(n); p) � po

ur(min(q);

p) due to Property 5, whi
h a

ording to iv. is equivalent to n � q.

Ad viii: By indu
tion on jwj. It is true if jwj = 0 or jwj = 1. Assume that it

is true for all strings x su
h that jxj < jwj. We will show that it is also true for w,

re
ognized in n.

Let w = xa (x 6= "), x is re
ognized in h (0 < h < n). Consider a proper su�x of

w, re
ognized in state q. It either equals " and is re
ognized in state 0 � n or it
an

be written as va where v <

s

x.

Su�x va of w is re
ognized, therefore su�x v of x is re
ognized and a

ording

to the indu
tion hypothesis, v is re
ognized in state l � h. Let �x = min(h) and

�v = min(l). Due to iv. for the new automaton, �x �

s

x and �v �

s

v. We now prove

that �v �

s

�x. If l = h, then �v = �x. Now
onsider the
ase l < h. Sin
e v �

s

x and

�v �

s

v, �v �

s

x. Due to vii., �x 6�

s

�v. Thus, sin
e �v and �x both are su�xes of x, �v �

s

�x.

Sin
e �x is re
ognized in h and there is a transition by a from h to n, by vi. for the new

automaton we have that �xa 2 fa
t(p) and n = po

ur(�xa; p). Sin
e �v is re
ognized

in l and there is a transition by a from l to q, �va 2 fa
t(p) and q = po

ur(�va; p) due

to vi. for the new automaton. Sin
e �va �

s

�xa, po

ur(�va; p) � po

ur(�xa; p) due to

Property 5 and hen
e q � n.

We have shown that the properties hold for every partial automaton during the

onstru
tion. Consequently, they hold for the
omplete automaton Ora
le(p).

50

Computing the Minimum k-Cover of a String

Ri
hard Cole

1x

, Costas S. Iliopoulos

2y

, Manal Mohamed

2z

,

W. F. Smyth

3{

and Lu Yang

4

1

Computer S
ien
e Department, Courant Institute of Mathemati
al S
ien
es,

New York University, New York, NY 10012-1185 U.S.A.

ole�
s.nyu.edu

2

Algorithm Design Group, Department of Computer S
ien
e,

King's College London, London WC2R 2LS, England

{
si,manal}�d
s.k
l.a
.uk

3

Algorithms Resear
h Group, Department of Computing & Software,

M
Master University, Hamilton ON L8S 4K1, Canada &

S
hool of Computing, Curtin University, Perth WA 6845, Australia

smyth�m
master.
a

4

IBM Canada Limited, 8200 Warden Avenue, Markham ON L6G 1C7, Canada

luyang�
a.ibm.
om

Abstra
t. We study the minimum k-
over problem. For a given string x of

length n and an integer k, the minimum k-
over is the minimum set of k-

substrings that
overs x. We show that the on-line algorithm that has been

proposed by Iliopoulos and Smyth [IS92℄ is not
orre
t. We prove that the

problem is in fa
t NP-hard. Furthermore, we propose two greedy algorithms

that are implemented and tested on di�erent kind of data.

Keywords: string algorithm, k-
over, data
ompression, NP-
omplete, greedy algo-

rithm.

1 Introdu
tion

The minimum k-
over problem is to
ompute, for a given string x and an integer

k < jxj, a set U = fu

1

; u

2

; : : : ; u

m

g of substrings of x su
h that:

(i) every u

i

is of length k;

(ii) the set U
overs the string x;

(iii) the number m = jU j of su
h substrings is the smallest possible.

x

Work supported in part by NSF grant CCR-0105678.

y

Partially supported by a Marie Curie fellowship,Well
ome and Royal So
iety grants.

z

Supported by an EPSRC studentship.

{

Supported by a grant from the Natural S
ien
es & Engineering Resear
h Coun
il of Canada.

51

Pro
eedings of the Prague Stringology Conferen
e '03

This problem was studied by Iliopoulos and Smyth [IS92℄, where they designed an

O(n

2

(n� k)) on-line algorithm. The idea of a k-
over is a generalization of the idea

of a
over, where a string w is
alled a
over of a string x if x
an be
onstru
ted

by
on
atenations and superpositions of w. For example, if x = ababaaba, then aba

and x are the
overs of x. If w 6= x
overs x then w is
alled a proper
over of a

overable string x. The notion of a
over was introdu
ed by Apostoli
o et al. [AFI91℄,

where they gave a linear time algorithm for the shortest
overs problem. Breslauer

[B92℄ presented an on-line algorithm for the same problem. Moore and Smyth [MS94℄

presented a linear time algorithm to
ompute all the
overs of every pre�x of a string.

An on-line algorithm for the same problem was developed by Li and Smyth [LS02℄.

Two O(n logn) algorithms for
omputing all maximal
overable substrings of a given

string were also presented, one by Iliopoulos and Mou
hard [IM93℄ and the other by

Brodal and Pederson [BP00℄. A lot of work has been done on parallel
omputation

of
overs; see for example [B94℄ and [IP94℄.

A minimum k-
over provides a theoreti
al
lassi�
ation of strings a

ording to

approximate periodi
ity. For every k, some strings have a minimum k-
over of
ar-

dinality 1, some a minimum k-
over of
ardinality 2, and so on. Thus for a range of

k, a minimum k-
over
an provide a measure of how
lose to periodi
 every string

x is. Pra
ti
ally, a minimum k-
over has a potential appli
ation in data
ompres-

sion of nonrandom strings. A minimum k-
over may also be useful in DNA sequen
e

analysis. A DNA sequen
e is based on a four-letter alphabet for example fa;
; g; tg.

Hen
e, �nding the k-
over of a DNA sequen
e
ould be helpful for the analysis of its

stru
ture.

In this paper, we brie�y present Iliopoulos and Smyth's on-line algorithm. Their

algorithm
omputes the minimum k-
overs for all pre�xes of a given string x in

O(n

2

(n� k)) time. We show why the algorithm does not work
orre
tly (Se
tion 3).

In the rest of the paper we
onsider two
losely-related problems:

(Problem 1) for given x, k and m, de
ide whether there exists a k-
over of x of

ardinality m;

(Problem 2)
ompute a minimum k-
over of x.

For m = 1, Problem 1
an be solved in �(n) time simply by
omputing all

the
overs of x [MS94, MS95, LS02℄ while at the same time testing to determine

whether or not ea
h one is of length k. For m > 1 we show by redu
tion to 3-SAT

that Problem 1 is NP-hard (Se
tion 4). We then des
ribe two e�
ient algorithms

that yield approximate solutions to Problem 2 (Se
tion 5). These approximation

algorithms have been tested and shown to provide good results (Se
tion 6). More

approximation algorithms were proposed in [Y00℄.

2 Preliminaries

A string is a sequen
e of zero or more symbols drawn from an alphabet �. The set

of all strings over � is denoted by �

�

. The string of length zero is the empty string �;

a string x of length n > 0 is represented by x

1

x

2

� � �x

n

, where x

i

2 � for 1 � i � n.

A string w is a substring of x if x = uwv for u; v 2 �

�

. More pre
isely, let i � n and

j � n denote nonnegative integers: if 1 � i � j, x[i::j℄ denotes the substring of x

52

Computing the Minimum k-Cover of a String

that starts at position i and has length j � i+ 1; otherwise, x[i::j℄ = �. A string w is

a pre�x of x if x = wu for some u 2 �

�

. Similarly, w is a su�x of x if x = uw for

some u 2 �

�

.

The string xy is a
on
atenation of two strings x and y. The
on
atenation of k

opies of x is denoted by x

k

. For two strings x = x

1

� � �x

n

and y = y

1

� � �y

m

su
h

that x

n�i+1

� � �x

n

= y

1

� � � y

i

for some i � 1 (that is, su
h that x has a su�x equal to

a pre�x of y), the string x

1

� � �x

n

y

i+1

� � � y

m

is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring w is said to be a
over of a given string x if every position of x lies

within an o

urren
e of a string w within x. Additionally, if jwj < jxj then w is
alled

a proper
over of x. For example, x is always a
over of x, and w = aba is a proper

over of x = abaababa.

For a given a nonempty string x of length n and a set

U = fu

1

; u

2

; : : : ; u

m

g

of m strings ea
h of length k, we say that U is a k-
over of x if and only if every

position of x lies within an o

urren
e of some u

i

, 1 � i � m. If m is the minimum

integer for whi
h su
h a set U exists, then U is said to be a minimum k-
over of x. To

avoid trivialities we suppose throughout that 1 < k < n=2. Note that 1 � m � dn=ke.

Next we state some basi
 fa
ts about the minimum k-
over.

Fa
t 1 The pre�x x[1::k℄ and the su�x x[n� k+1::n℄ are both ne
essarily elements

of every minimum k-
over of x.

Fa
t 2 The
ardinality of a minimum k-
over of a string of length n is at most dn=ke.

Fa
t 3 A minimum k-
over of a string x is not unique.

For example, if x = ab
defg, then the sets

fab
; b
d; efgg; fab
;
de; efgg; fab
; def; efgg

are all minimum 3-
overs of x.

In [IS92℄, the number of distin
t minimum k-
overs of a given string x of length

n has been proved to be exponential in n. This is a major
ompli
ating fa
tor in the

design of polynomial time algorithm for
omputing the minimum k-
overs of a given

string.

3 Iliopoulos & Smyth On-Line Algorithm

Re
all that in [IS92℄, Iliopoulos and Smyth designed an O(n

2

(n � k)) time on-line

algorithm for
omputing a minimum k-
over of a given string x of length n. Their

algorithm s
ans a given string x from left to right and iteratively
al
ulates a minimum

k-
over for every pre�x of x. The algorithm is based upon the following two main

ideas:

1. Fa
t 1 states that a minimum k-
over of x[1::i + 1℄ must in
lude the su�x

x[i� k + 2::i+ 1℄. This is used as a yardsti
k to �nd a minimum k-
over.

53

Pro
eedings of the Prague Stringology Conferen
e '03

2. For i � k, a minimum k-
over of x[1::i + 1℄ depends only on the minimum

k-
overs of the previous k positions; that is, the minimum k-
over of x[1::i �

k + 1℄; : : : ; x[1::i� 1℄; x[1::i℄.

To a
hieve e�
ien
y, the algorithm stores for ea
h positions i in x an array whi
h

identi�es all the k-substrings that o

ur in at least one of the minimum k-
overs.

Let

i

be the
ardinality of this set. At step i + 1, the algorithm
he
ks for ea
h

position j 2 i�k+1::i, whether the
urrent su�x x[i�k+2::i+1℄ has already been

in
luded in the stored minimum k-
over of x[1::j℄. If so then the set
overs x[1::i+1℄,

otherwise the
urrent su�x has to be added to the set. Among these k
andidates,

the algorithm
hooses a set with the smallest
ardinality as a minimum k-
over of

x[1::i + 1℄. For more details see [IS92℄.

Lemma 3.1 For i � 2k and l; l

0

= 1; 2; : : :, let U

i;l

denotes the distin
t minimum

k-
over for x[1::i℄. Then every minimum set U

i+1;l

is a superset of some minimum set

U

j;l

0

, i� k + 1 � j � i.

The above lemma is stated in [IS92℄ and it follows dire
tly from the two ideas

stated at the beginning of this se
tion. The algorithm as we brie�y des
ribed also

relies on the
orre
tness of the lemma. In the next example we will show that the

lemma is not
orre
t and
onsequentially nor is the algorithm. The following example

illustrates just one of the situations where the algorithm fails to
ompute a minimum

k-
over.

Example: If x = ba
aababbaaa

aabbabbbaaaa
 and k = 3 then when i + 1 = 27,

j 2 24::26, and position 27 should form its minimum k-
over from position 24 be
ause

24

= min(

j

); j 2 24::27. The minimum k-
overs of position 24 are as follows:

U

24;1

= fba
; aab; abb; baa;

ag;

U

24;2

= fba
; aab; abb; baa; a

g:

Neither of them
ontains the su�x aa
, so we get

27

=

24

+ 1 = 6, and a

ordingly

the minimum k-
overs of position 27 are as follows:

U

27;1

= fba
; aab; abb; baa;

a; aa
g;

U

27;2

= fba
; aab; abb; baa; a

; aa
g:

But we
an �nd at least one minimum k-
over that is di�erent from U

27;1

and U

27;2

;

namely:

U

27;3

= fba
; aab; abb; baa;
aa; aa
g:

U

27;3

is a k-
over of position 24, but not the minimum. However it will
ontribute to

the minimum when position 27 is rea
hed. There is a potential problem for future

al
ulations if we lose U

27;3

at position 27; for example if we extend x by adding aa to

the end. As we
an see, U

27;3

an be a minimum k-
over of x[1::29℄. Without keeping

U

27;3

, we shall get

29

= 7, one greater than the minimum.

The above suggests that in order to
ompute a minimum k-
over of the
urrent

position, we have to refer to every single k-
over of the previous positions. Sin
e

the number of minimum k-
overs of a string may be exponential, we doubt that the

problem of
omputing a minimum k-
over
an be solved in polynomial time.

54

Computing the Minimum k-Cover of a String

4 Problem 1 and NP-Completeness

The k-
over problem is to �nd a set
over of minimum size for a given string. Restating

this optimization problem as a de
ision one, we wish to determine whether a given

string has a k-
over of a given size m.

k

m

-COVER = fhx; k;mi : string x has a k-
over of size mg.

The following theorem shows that this problem is NP-
omplete.

Theorem 4.1 The k

m

-COVER 2 NP.

Proof. To show that k

m

-COVER 2 NP, for a given string x, we use the set U

m

of m

substrings all of length k as a
erti�
ate for x. Che
king whether U

m

is a k-
over
an

be a

omplished in O(n logn) time by
he
king whether, for ea
h position 1 � i � n,

i is
overed by at least one of the k-substrings in U

m

.

We next prove that 3-SAT �

p

k

m

-COVER, whi
h shows that a minimum k-
over

problem is NP-hard. 3-SAT is well-known to be NP-
omplete [C71℄. We transform 3-

SAT to k

m

-COVER. Let V = fv

1

; v

2

; : : : ; v

p

g be a set of variables, C = f

1

;

2

; : : : ;

q

g

be the set of
lauses and F =

1

^

2

^ : : :^

q

be a 3-SAT formula with

i

= `

i

1

_`

i

2

_`

i

3

,

1 � i � q.

We shall show how to
onstru
t from F a string x su
h that x will have a k-
over

of size m if and only if F is satis�able. We
hoose k = 3 and note that there is an

easy redu
tion to 2-CNF for k = 2. The string x is build of substrings separated by

sequen
es of sssss; hen
e sss is one of the
hosen
overing k-strings, and thus we
an

fo
us on the individual substrings. The
onstru
tion will be made up of truth-setting

omponents, and satisfa
tion testing
omponents.

Variable Choi
e

For ea
h variable v 2 V , we
onstru
t the following 6 substrings (ea
h substring is

pro
eeded and followed by sssss); ea
h
hara
ter is indexed by v:

(i) #

a

r r $ v � � r r #

a

(ii)#

b

t t $ �v � � t t #

b

(iii)#

a

(iv) #

b

(v)#

a

#

b

(vi)#

b

#

a

The only ways to
over the above strings with 9 or fewer length 3 strings, are one of

the following (noti
e the uninteresting �exibility in (v) and (vi)):

1. fss#

a

; rr$; v��; rr#

a

;#

b

tt; $�v�; �tt;#

b

ssg and one of fs#

b

#

a

;#

b

#

a

sg.

2. f#

a

rr; $v�; �rr;#

a

ss; ss#

b

; tt$; �v��; tt#

b

g and one of fs#

a

#

b

;#

a

#

b

sg.

To see this,
onsider
overing string (iii). It
an be done by one of ss#

a

, #

a

ss,

s#

a

s, but only the �rst two
ould be used elsewhere, so one of them may as well be

hosen. Clearly, 8 strings at least are needed to
over (i) and (ii) as they have no

length 3 substring in
ommon. Thus, to use only 1 additional string to
over (v) and

(vi) we need to
hoose either ss#

a

;#

b

ss or #

a

ss; ss#

b

.

The
hoi
e v�� and $�v� (given by
hoosing ss#

a

)
orresponds to v = T while the

hoi
e �v�� and $v� (given by
hoosing #

a

ss)
orresponds to v = F .

55

Pro
eedings of the Prague Stringology Conferen
e '03

Clause Satis�ability

For ea
h
lause
 2 C, where
 = `

1

_`

2

_`

3

, the following substrings are
reated, again

pre
eded and followed by sssss. The
hara
ters, ex
ept for $

i

; �

i

; �

i

; `

i

; i = 1; 2; 3 are

indexed by
 also; $

i

; �

i

; �

i

; `

i

arry the index for the literal.

(i)$

1

`

1

�

1

�

1

h

1

(ii) $

2

`

2

�

2

�

2

h

2

(iii) $

3

`

3

�

3

�

3

h

3

(iv)$

1

(v)$

2

(vi)$

3

(vii)h

1

(viii)h

2

(ix)h

3

(x)�

1

�

1

h

1

d

1

�

2

�

2

h

2

(xi)�

2

�

2

h

2

d

2

�

3

�

3

h

3

(xii)�

3

�

3

h

3

d

3

�

1

�

1

h

1

(xiii)�

1

(xiv)�

2

(xv)�

3

To
over (iv)-(ix) and (xiii)-(xv) we may as well
hoose ss$

i

; h

i

ss and ss�

i

as these

are the only reusable substrings.

If `

i

is true, then `

i

�

i

�

i

was already
hosen; otherwise $

i

`

i

�

i

was
hosen. Thus, if

`

i

is false; in (i)-(iii), �

i

remains to be
overed. The only reusable
overing string is

�

i

�

i

h

i

.

Consider strings (x)-(xii) and suppose at least one `

i

is true. Without loss of

generality let it be `

1

. Then it is not hard to see that 5 more strings that in
lude

�

2

�

2

h

2

and �

3

�

3

h

3

thereby
overing �

2

in (ii) and �

3

in (iii) su�
e. We
hoose:

�

2

�

2

h

2

; �

3

�

3

h

3

; �

1

h

1

d

1

; d

2

�

3

�

3

and d

3

�

1

�

1

. It is not hard to see that 5
overing strings

are needed: 3 to
over d

1

; d

2

and d

3

, but this
an only
ompletely
over one of �

1

; �

2

and �

3

as ea
h o

urs twi
e, and hen
e two more
overing strings are needed for the

remaining pair among �

1

; �

2

and �

3

.

If no `

i

is true, we are obliged to
hoose �

1

�

1

h

1

; �

2

�

2

h

2

and �

3

�

3

h

3

as well as 3

strings to
over d

1

; d

2

and d

3

. At least 6
overing strings in all are needed. Thus, if

F is satis�able then the full string
an be
overed by

m = 9p+ 6p+ 3q + 5q + 1 = 15p+ 8q + 1

overing strings, where p is the number of variables in F and q is the number of

lauses. Otherwise, it needs at least 15p+ 8q + 2
overing strings. 2

5 Approximate Minimum k-Cover

In this se
tion we introdu
e two greedy algorithms to
ompute a minimum k-
over.

The greedy method works by pi
king, at ea
h stage, the k-substring whi
h
overs the

greatest number of un
overed positions. The �rst algorithm works globally while the

se
ond algorithm follows a lo
al strategy. To
al
ulate all possible k-substrings in a

given string x, both greedy algorithms use Cro
hemore's partitioning algorithm [C81℄

to prepro
ess the input string x.

Originally, Cro
hemore's algorithm was designed to
ompute the repetitions in a

string inO(n logn) time. A string has a repetition when it has at least two
onse
utive

equal substrings. For example, abab is a repetition in aababba = a(ab)

2

ba. We shall

use the algorithm in another way � to �nd the sets of the starting positions of all

the distin
t substrings of length k in a given string x. This idea
an be expressed

more pre
isely as follows:

56

Computing the Minimum k-Cover of a String

Given a string x[1::n℄ and an integer k, Cro
hemore's algorithm is used to
ompute

the equivalen
e
lasses of all equal substrings of length k in x. We denote these equiv-

alen
e
lasses by e

1

; e

2

; :::; e

m

, where the elements in e

i

are sorted integers denoting

starting positions of equal substrings, and m is the number of possible equivalen
e

lasses returned by the algorithm.

These elements are stored using a global array L[1::n℄, su
h that L[i℄ is the next

position in the same equivalen
e
lass of equal substrings of length k. That is, L[i℄ = j

if L[i::i+ k� 1℄ = x[j::j + k� 1℄ and the
ir
ular sequen
e i; L[i℄; L[L[i℄℄; : : : ; L

`

[i℄ = i

identi�es all ` k-substrings in x that are equal to x[i::i + k � 1℄.

For example, if x = abaababaabaab and k = 3 then e

1

= f3; 8; 11g; e

2

=

f1; 4; 6; 9g; e

3

= f2; 7; 10g; and e

4

= f5g are the equivalen
e
lasses. Where aab; aba;

baa; bab are the
orresponding 3-substrings. Hen
e, the value of array L is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a b a a b a b a a b a a b

L[i℄ 4 7 8 6 5 9 10 11 1 2 3

Eid[i℄ 2 3 1 2 4 2 3 1 2 3 1

In the above, Eid[i℄ identi�es the equivalen
e
lass
ontaining position i. In the

following subse
tions, we shall present two approximation algorithms. We
all the

�rst Global-Un
overed and the se
ond Lo
al-Un
overed.

5.1 Global-Un
overed Algorithm

Re
all that the greedy algorithmworks by sele
ting one k-substring at a time that
ov-

ers the most positions among the un
overed ones. Our greedy algorithm is
omparable

to the greedy one [J74℄ to
onstru
t the minimum set
over. The
ost of a greedy

solution is known to
ome always within a multipli
ative fa
tor of H(max

j

jEC

j

j),

where EC

j

is the number of positions that
ould be
overed by the k-substring j.

Here, H(d) =

P

d

i=1

1

i

is the dth harmoni
 number and is bounded by 1 + log d. This

was shown by Johnson [J74℄ and Lovasz [L75℄ for the general SET COVER problem.

The key to Algorithm Global-Un
overed is �nding the equivalen
e
lass whi
h
an

over the maximum number of so-far-un
overed positions e�
iently. The details of

the algorithm are provided in Figure 1. To a
hieve e�
ien
y, the algorithm uses the

following data stru
tures:

1. An array Ebu
ket[1::n℄ indexed by the number of so-far-un
overed positions

that
ould be
overed by a single equivalen
e
lass. Ea
h element (bu
ket) of

the array is doubly-linked list of the equivalen
e
lasses that
ould
over equal

number of so-far-un
overed positions. Thus, every element of the doubly linked

list
ontains an index of an equivalen
e
lass in addition to the left and the right

pointers to the adja
ent elements.

2. A two dimensional array Eptr[1::m℄ indexed by the equivalen
e
lass j. Where

Eptr[j℄[bu
ket℄ identi�es the bu
ket that in
ludes j in its doubly linked list.

In other words, equivalen
e
lass j
ould
over Eptr[j℄[bu
ket℄ so-far-un
overed

positions. Additionally Eptr[j℄[ptr℄ is a pointer to the
orresponding element

of the doubly linked list Ebu
ket[Eptr[j℄[bu
ket℄℄. Thus, any elements of the

doubly linked lists
an be referen
ed in
onstant time by using Eptr.

57

Pro
eedings of the Prague Stringology Conferen
e '03

Algorithm Global-Un
overed(x; k)

Input: A string x of length n, an integer 0 < k < n

Output: An approximate minimum k-
over U

g

1. (L[1::n℄; Eid[1::n℄; start[1::m℄;m) Cro
hemorePar(x; k)

2.
over_so_far[1::n℄ F; F; : : : ; F

3. initialization:

4. U

g

 ;

5. for e 1 to m do

6. Eun
ov[e℄ 0 **number of positions that
ould be
overed by equivalen
e
lass e**

7. for i 1 to n� k + 1

8. if i < L[i℄

9. then Eun
ov[Eid[i℄℄ + = min(k; L[i℄� i)

10. else Eun
ov[Eid[i℄℄ + = k

11. (Ebu
ke
t; Eptr) Bu
ket-Sort(Eun
ov)

12. The algorithm:

13. k_prefix; k_suffix Eid[1℄; Eid[n� k + 1℄

14. GU-Cover(k_prefix; Ebu
ket; Eptr)

15. Add(U

g

; k_prefix)

16. if k_suffix 6= k_prefix

17. then GU-Cover(k_suffix; Ebu
ket; Eptr)

18. Add(U

g

; k_suffix)

19. e Head(Ebu
ket)

20. while e 6= 0

21. GU-Cover(e; Ebu
ket; Eptr)

22. Add(U

g

; e)

23. e Head(Ebu
ket)

24. return U

g

25. Fun
tion GU-Cover(e; Ebu
ket; Eptr)

26. i start[e℄ **the �rst element in the equivalen
e
lass e**

27. repeat

28. for j 1 to k do

29. if
over_so_far[i+ j � 1℄ = F then

30.
over_so_far[i+ j � 1℄ T

31. for every l 2 Eid[(i+ j � 1)� k + 1℄; : : : Eid[i+ j � 1℄ do

32. Delete(Ebu
ket[Eptr[l℄[bu
ket℄℄,Eptr[l℄[ptr℄)

33. if Eptr[l℄[bu
ket℄ 6= 1

34. then Insert(Ebu
ket[Eptr[l℄[bu
ket� 1℄℄,Eptr[l℄[ptr℄)

35. Eptr[l℄[bu
ket℄ Eptr[l℄[bu
ket℄� 1

36. i L[i℄

37. until (i = start[e℄)

Figure 1: Global-Un
overed Algorithm.

58

Computing the Minimum k-Cover of a String

On
e Ebu
ket is established, the k-pre�x and the k-su�x are the �rst elements

to be in
luded in the approximate minimum k-
over. The algorithm then iteratively

hoose a head element of Ebu
ket as an element of the approximate minimum k-

over. The head element is an equivalen
e
lass that
overs the largest number of so

far un
overed positions. Finding su
h equivalen
e
lasses
osts O(n) time throughout

the
al
ulations.

The algorithm requires O(n logn) time to run Cro
hemore's algorithm and an

additional O(n) time to
onstru
t and initialize Ebu
ket and Eptr. Note that a

linear time Bu
ket-Sort has been used be
ause the number of positions that
ould be

overed by any equivalen
e
lass is bounded.

For ea
h position i,
over_so_far[i℄ is initialized to F and set to T on
e during

the
al
ulation. When
over_so_far[i℄ is set from F to T , O(k) elements in Ebu
ket

may need to be deleted from the
urrent bu
ket and inserted to the next bu
ket.

Ea
h rearrangement
osts O(1) time. Thus, the total time required to maintain the

elements in Ebu
ket throughout the
al
ulation is O(kn). Summing the above gives

the total running time: O(n logn) + O(n) + O(kn) = maxfO(n logn); O(kn)g time,

whi
h for a �xed k, asymptoti
ally approa
hes O(n logn) as n in
reases to 1.

5.2 Lo
al-Un
overed Algorithm

Algorithm Lo
al-Un
overed
hooses its
andidate element, of the approximate mini-

mum k-
over, in a range of Eid[left_un
over�k+1℄::Eid[left_un
over℄; the integer

left_un
over keeps tra
k of the leftmost so-far-un
overed position. The algorithm

uses the array un
over_no. The array un
over_no[1::m℄ is indexed by the equiva-

len
e
lasses, where un
over_no[j℄ is the number of positions
orresponding to equiv-

alen
e
lass j that have not been
overed. Hen
e, the values of the array need to be

updated dynami
ally during the
omputation. The details of the algorithm are pro-

vided in Figure 2.

The initialization is just the same as in Global-Un
overed. However, we need to

update un
over_no. As in Global-Un
overed, the k-pre�x and the k-su�x are the

�rst two elements to be in
luded in the approximate minimum k-
over. The algorithm

then tries to
over the leftmost un
overed position with the k-substring
orresponding

to the equivalen
e
lass whi
h
an
over the maximum number of un
overed positions.

That is, let j = left_un
over if j < n, then the
hosen k-substring is the one

orresponding to equivalen
e
lass satisfying

maxfun
over_no[Eid[j � k + 1℄; un
over_no[j � k + 2℄; : : : ; un
over_no[Eid[j℄℄g:

A brief analysis of the algorithm shows that the algorithm requires:

� O(n logn): to run Cro
hemore's algorithm;

� O(n): Step 2, the loop on (Steps 6-9), and the total time spent in Add();

� O(k): the loop on (Steps 19-23);

� O(kn): is the total time of the LU-Cover subroutine.

Summing the above gives the total running time O(n logn)+O(n)+O(k)+O(kn) =

maxfO(n logn); O(kn)g time.

59

Pro
eedings of the Prague Stringology Conferen
e '03

Algorithm Lo
al-Un
overed(x; k)

Input: A string x of length n, an integer 0 < k < n

Output: An approximate minimum k-
over U

l

1. (L[1::n℄; Eid[1::n℄;m) Cro
hemorePar(x; k)

2.
over_so_far[1::n℄ F; F; : : : ; F

3. initialization:

4. U

l

 ;

5. left_un
over 1

6. for i 1 to n� k + 1 do

7. if i < L[i℄

8. then un
over_no[Eid[i℄℄ + = min(k; L[i℄� i)

9. else un
over_no[Eid[i℄℄ + = k

10. The algorithm:

11. k_prefix; k_suffix Eid[1℄; Eid[n� k + 1℄

12. LU-Cover(k_prefix; 1; un
over_no; left_un
over)

13. Add(U

l

; k_prefix)

14. if k_suffix 6= k_prefix then

15. LU-Cover(k_suffix; n� k + 1; un
over_no; left_un
over)

16. Add(U

l

; k_suffix)

17. while left_un
over < n do

18. max = 0

19. for j 1 to k do

20. if un
over_no[Eid[left_un
over � j + 1℄℄ > max then

21. max un
over_no[Eid[left_un
over � j + 1℄℄

22. e Eid[left_un
over � j + 1℄

23. s left_un
over � j + 1

24. LU-Cover(e; s; un
over_no; left_un
over)

25. Add(U

l

; e)

26. return U

l

27. Fun
tion LU-Cover(e; start; un
over_no; left_un
over)

28. i start

29. repeat

30. for j 1 to k do

31. if
over_so_far[i+ j � 1℄ = F then

32.
over_so_far[i+ j � 1℄ T

33. for every l 2 Eid[(i+ j � 1)� k + 1℄; : : : Eid[i+ j � 1℄ do

34. un
over_no[l℄ � = 1

35. i L[i℄

36. until (i = start)

37. while left_un
over � n and
over_so_far[left_un
over℄ do

38. left_un
over ++

Figure 2: Lo
al-Un
overed Algorithm.

60

Computing the Minimum k-Cover of a String

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

100 12 11 11 11 9.09 0 0

200 14 14 14 14 0 0 0

300 14 15 15 14 0 7.14 7.14

400 16 15 17 15 6.67 0 13.3

500 17 17 17 17 0 0 0

600 16 16 16 16 0 0 0

700 18 16 16 16 12.5 0 0

800 17 17 19 17 0 0 11.8

900 18 16 18 16 12.5 0 12.5

1000 18 17 16 16 12.5 6.25 0

Average (%) = / / / 5.33 1.34 4.47

Table 1: Pseudo-Random Strings on Alphabet fa; b;
g, and k = 3

6 Experimental Results

We used four types of strings: sturmian strings, pseudo random strings on the al-

phabets: fa; bg, fa; b;
g, fa; b;
; dg, DNA sequen
es

�

, and English text. In order

to
ompare our approximate methods in term of e�e
tiveness, we developed a naive

algorithm based on the Iliopoulos and Smyth algorithm. This naive algorithm �nds

the minimum k-
over at position i+ 1 by testing ea
h position j 2 i� k + 1::i in the

same way as in Iliopoulos and Smyth's. However, the key di�eren
e is that the algo-

rithm stores not only the
overs that are minimum but also those that are one more

than minimum at every position. Thus, the aim here is to store as mu
h informa-

tion as possible taking into
onsideration the limitation of the
omputer's resour
es.

The implementation results show that the naive algorithm does not always yield the

best k-
over - in most
ases the two approximate algorithms yield better results. Let

U

min

be the minimum k-
over of a string x, U

N

be the result
omputed by our naive

method, U

GU

be the result
omputed by Global-Un
overed algorithm, and U

LU

be

the result
omputed by Lo
al-Un
overed algorithm. Then the following simplifying

assumption has been made:

jU

min

j � jU

best

j = minfjU

N

j; jU

GU

j; jU

LU

jg

Table 1, 2, 3 show that Algorithm Global-Un
overed yields the best result in most

ases, the naive algorithm never ex
eed a deviation of 7:83%, and Algorithm Lo
al-

Un
overed never ex
eed 6:24%. The following observations are also worth mentioning:

� The Sturmian strings are very well-stru
tured. For the tested Sturmian strings,

from length of 20 to 1000, for every k 2 3; 4; 5, jU

best

j = 2.

� For the tested pseudo-random strings and DNA sequen
es, jU

best

j in
reases as

the values of k, the length n, and the alphabet size are in
reasing.

� Let jU

best�DNA

j denotes the
ardinality of the approximate minimum k-
over

of DNA sequen
e and jU

best�ab
d

j denotes the
ardinality of the approximate

�

ex
erpted from www.
bs.dtu.dk/databases/DNA2protSS/nu
all.seq.

61

Pro
eedings of the Prague Stringology Conferen
e '03

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

100 19 19 19 19 0 0 0

200 25 26 27 25 0 4.00 8.00

300 32 29 29 29 10.3 0 0

400 37 34 36 34 8.80 0 5.88

500 36 36 35 35 2.86 2.86 0

600 37 36 37 36 2.78 0 2.78

700 37 35 38 35 5.71 0 8.57

800 42 37 39 37 16.2 0 5.41

900 42 35 42 35 20 0 20

1000 42 38 39 38 10.5 0 2.63

Average (%) / / / / 7.71 0.68 5.32

Table 2: Pseudo-Random Strings on Alphabet fa; b;
; dg, and k = 3

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

60 13 13 13 13 0 0 0

126 21 22 23 21 0 4.76 9.52

171 23 22 23 22 4.54 0 4.54

234 25 24 26 24 4.17 0 8.33

312 32 29 30 29 10.3 0 3.45

432 26 27 29 26 0 3.85 11.5

591 34 31 35 31 9.68 0 12.9

771 40 34 36 34 17.6 0 5.89

1233 43 38 37 37 24.3 2.70 0

Average (%) / / / / 7.83 1.26 6.24

Table 3: DNA Sequen
es, and k = 3

62

Computing the Minimum k-Cover of a String

minimum k-
over of pseudo-random strings on alphabet fa; b;
; dg. For the

same value of k and n, jU

best�DNA

j < jU

best�ab
d

j. We
an make a
onje
ture

that DNA sequen
es are better stru
tured than pseudo-random strings on an

alphabet of size 4.

Con
lusions

We have shown that for k � 2, the k-
over problem (Problem1) is NP-Complete. We

have then proposed two O(n logn) greedy algorithms that
an be used to
al
ulate an

approximate minimum k-
over. The results obtained by the algorithms are believed

to
ome within a multipli
ative fa
tor of the minimum. Prove this has been left as

an open problem.

Referen
es

[AFI91℄ A. Apostoli
o, M. Fara
h & C. S. Iliopoulos,Optimal superprimitivity

testing for strings, Information Pro
essing Letters 39-1 (1991) 17-20.

[B92℄ D. Breslauer, An on-line string superprimitivity test, Information

Pro
essing Letters 44 (1992) 345-347.

[B94℄ D. Breslauer, Testing string superprimitivity in parallel, Informa-

tion Pro
essing Letters 49-5 (1994) 235-241.

[BP00℄ G. S. Brodal & C. Pederson, Finding maximal quasiperiodi
ities in

strings. In Pro
eedings of the 11th Annual Symposium on Combinatorial

Pattern Mat
hing (CPM) (2000) 397-411.

[C71℄ Stephen A. Cook, The
omplexity of theorem-proving pro
edures,

Pro
. Third Annual ACM Symp. on Theory of Computing (1971) 151-158.

[C81℄ M. Cro
hemore, An optimal algorithm for
omputing all the repe-

titions in a word, Information Pro
essing Letters 12-5 (1981) 244-248.

[IM93℄ C. S. liopoulos & L. Mou
hard, An O(n logn) algorithm for
omput-

ing all maximal quasiperiodi
ities in strings, Theorati
al Computer

S
ien
e 119-2 (1993) 247-265.

[IP94℄ C. S. Iliopoulos & K. Park, An optimal O(log logn)-time algorithm

for parallel superprimitivity testing, Journal of the Korea Informa-

tion S
ien
e So
iety 21-8 (1994) 1400-1404.

[IS92℄ C. S. Iliopoulos & W. F. Smyth, An on-line algorithm of
omputing

a minimum set of k-
overs of a string, Pro
. Ninth Australasian

Workshop on Combinatorial Algorithms (AWOCA), (1998) 97-106.

[J74℄ D. S. Johnson, Approximation algorithms for
ombinatorial prob-

lems, Journal of Computer and System S
ien
e 9 (1974) 256-278.

63

Pro
eedings of the Prague Stringology Conferen
e '03

[MS94℄ D. Moore & W. F. Smyth, An optimal algorithm to
ompute all the

overs of a string, Information Pro
essing Letters 50-5 (1994) 239-246.

[MS95℄ D. Moore & W. F. Smyth, A
orre
tion to: An optimal algorithm

to
ompute all the
overs of a string, Information Pro
essing Letters

54 (1995) 101-103.

[L75℄ L. Lovasz, On the ratio of optimal integral and fra
tional
overs,

Dis
rete Mathemati
s 13 (1975) 383-390.

[LS02℄ Y. Li & W. F. Smyth, Computing the
over array in linear time,

Algorithmi
a 32-1, (2002) 95-106.

[Y00℄ Lu Yang, Computing the Minimum k-Cover of a String, M. S
.

thesis, M
Master University, (2000).

64

Learning the Morphologi
al Features of a Large Set

of Words

�

Abolfazl Fatholahzadeh

Supéle
 - Campus de Metz

2, rue Édouard Belin, 57078 Metz, Fran
e.

e-mail: Abolfazl.Fatholahzadeh�supele
.fr

Abstra
t. Given K - a large set of words - this paper presents a new method

for learning the morphologi
al features of K. The method, LMF, has two
om-

ponents : prepro
essing and pro
essing. The �rst
omponent makes use of two

separate methods, namely, re�nement and time�spa
e optimization. The for-

mer is a method that uses the
losed world assumption of the default logi
 for

partitioning K into a set of hierar
hi
al languages. The latter is for e�
iently

learning the morphologi
al features of ea
h language outputted by the former

method. Although, the �nite-state transdu
ers or the two-trie stru
ture
an be

used to map a language onto a set of values, but we use our own
ompetitor

whi
h has re
ently been proposed for su
h a mapping,
onsisting of asso
iating

a �nite-state automaton a

epting the input language with a de
ision tree (dt)

representing the output values. The advantages of this approa
h are that it

leads to more
ompa
t representations than transdu
ers, and that de
ision trees

an easily be synthesized by ma
hine learning te
hniques.

In the pro
essing phase, given an input string (x), thanks to the hierar
hi
al

languages establishing the preferen
y order for the utilization of the
urrent

automaton(g

i

) among the multiple ones, if x
an be spelled out using g

i

, then

the output is returned using its
ounterpart namely dt

i

, otherwise, we inspe
t

other alternative until an output or failure be done. LMF has learned good

strategies for the large sets of the words whi
h are
onsuming tasks form spa
e

and times point of views e.g., all the verbs in Fren
h, in
luding all the
onjugated

forms of ea
h verb.

Keywords: morphologi
al features, automata, de
ision trees, learning.

1 Introdu
tion

The morphologi
al features (i.e., mode, tense, person and gender) are supposed to

be the important ingredients of the lexi
ons whi
h are widely used in the pro
ess

of determining for a word (e.g., �livre�) its output values (e.g., Verb+IND-PRES-

1-SING, Verb+IND-PRES-3-SING, Verb+IMP-PRES-3-SING, Noun+MASC-SING

and Noun+FEM-SING).

�

This work is partially supported by le Conseil Régional de Lorrain.

65

Pro
eedings of the Prague Stringology Conferen
e '03

0

1

2

3

4

5

6

7

8

9

10

11

12

 : x

 : y

a : x

a : y

a : y

b : x

b : z

b : x

b : y

b : y

b : y

 : x

 : y

a : x

a : y

Figure 1: Example of ambiguous �nite-

state transdu
er shown by a (13,16) au-

tomaton [4, Page 158℄.

0 1 2 3

4

5

6

 a b

b

a

a

Figure 2: Our alternative - a (7,7) un-

labeled automaton along with two de-

ision rules. If b2 = 'b' Then v1 =

[xxxxx,xxyyx,xtzyx℄. If b2 = '
' Then

v2 = [yzxxy,yzyyy℄. b

2

stands for the

se
ond
hara
ter from right to left of

the input language.

An obvious solution to su
h a task is to store all the desired words along with

their asso
iated output values in a large-s
ale di
tionary. But in this
ase two major

problems have to be solved: fast lookup and
ompa
t representation. Two modern

and e�
ient methods
an a
hieve fast lookup by determination and
ompa
t repre-

sentation by minimization. The �rst method is the te
hnique of two�tries proposed

by Aoe et al [1℄. This method has the advantage of being appli
able to a dynami

set of keys but unfortunately it has the disadvantage (Please refer to the page 488

of [1℄) of
ontaining more than states (hen
e the transitions) representing the data

ompared to its
ompetitor, namely, the automata [13℄.

The se
ond method is the transdu
ers (i.e., automata with outputs) [6, 8, 9℄

whi
h have proved to be a very formal and robust exe
ution framework for linguisti

phenomena, but there are still some aspe
ts that should be investigated. In parti
ular,

as shown in Figures 1, the transdu
ers assign the unne
essary labels to some ar
s of the

graph representing the automaton. That is why, in our re
ent work, we have proposed

a method to avoid su
h unne
essary labels (hen
e the states and the transitions) as

pi
tured in Figure 2. Our solution for mapping a language onto a set of values is

based on asso
iating a �nite-state automaton a

epting the input language with a

de
ision tree representing the output values. The advantages of this approa
h are

that it leads to more
ompa
t representations than transdu
ers, and that de
ision

trees
an easily be synthesized by ma
hine learning te
hniques.

For the sake of
larity, we
onsider only the verbs in a given language and will

show how our alternate approa
h
an be
ombined with the
losed world assumptions

of the default reasoning. We show that the representation developed here provides a

ri
her language for dealing with a set of strings where ea
h of whi
h is asso
iated with

one or more set of strings while keeping in the
ore of our system the two mentioned

desiderata:
ompa
t representation and fast lookup. After presenting the default

reasoning and its appli
ability to the morphology, we illustrate in Se
tion 3
ombining

the automata and the de
ision tree. In Se
tion 4 the re�nement is des
ribed. The

main algorithm of LMF along with examples in four languages
loses: Azeri, English,

Fren
h and Persian are des
ribed in Se
tion 5. Finally, the
on
luding remarks
lose

the paper.

2 Using Default Logi
 in Morphology

Default reasoning is a spe
ial but very important form of non�monotoni
 reasoning [5℄.

The term �default reasoning� is used to denote the pro
ess of arriving at
on
lusions

66

Learning the Morphologi
al Features of a Large Set of Words

based upon patterns of inferen
es of the form �In the absen
e of any information to

the
ontrary assume . . . � (e.g., if all elephants we have seen had a trunk, we might

think that all elephants have a trunk). Of
ourse, the possible
ir
umstan
es in whi
h

any �presumed�
orre
t line of reasoning
an be defeated astound, and we are doomed

to make mistakes when our experien
es does not support the
urrent situation. If we

assume that the morphology world of the natural languages is
losed one then there

is a great
han
e that the rate of the
lassi�
ation noise be lower, even zero.

Example 1: w.r.t. the world of the verbs in Fren
h, even if there is no indi
ations

about the verb �zaper� in our system, LMF is able to learn 95 morphologi
al features

asso
iated with the
onjugated forms (e.g., �zapons�) of that verb.

Remark 1: The number 95
ame from the fa
t that LMF is designed to learn the

morphologi
al features of all modes, namely indi
ative (IND), subjun
tive (SUB),

onditional (COND), imperative (IMP), in�nitive(INF) and parti
ipate (PART). IND

mode has 48 forms in eight tenses: present, imperfe
t, past, future, et
. Ea
h of whi
h

allows to generate six forms a

ording to: (1) gender (singular and plural); and (2)

the person (1, 2, and 3). SUB mode has 24 forms in four tenses. COND mode has 24

forms in two tenses. IMP, INF modes has two and three forms, respe
tively. PART

mode has usually three forms, two for some irregular verbs.

2.1 The Closed World Assumption

It seems not generally re
ognized that the reasoning
omponents of many natural

language understanding systems have default assumption built into them. The repre-

sentation of knowledge upon whi
h the reasoner
omputes does not expli
itly indi
ate

ertain default assumptions. Rather, these default are realized as part of the
ode of

the reasoner's pro
ess stru
ture
ontaining the hierar
hies.

The starting point of the default reasoning is a set of inferen
e rules(axioms) pos-

sibly along with some fa
ts of the domain at hand
olle
ted in database whi
h we
all

axiomal database (noted by G

ax

). Given G

ax

, the task based on the �spe
i�
ity� and

�inheritan
e� is to draw a plausible inferen
e for the input. These
an be illustrated

by the
lassi
al Tweety example as follows: Consider the database
ontaining four de-

faults: �penguins are birds�, �penguins do not �y�, �birds �y� and �birds have wings�.

�Spe
i�
ity� tell us Tweety is a penguin, then Tweety doesn't �y be
ause penguin is

a more spe
i�

lassi�
ation of Tweety than bird . �Inheritan
e� on the other hand,

does equip Tweety with wings, by virtue of being a bird, albeit an ex
eptional bird

w.r.t. �ying ability.

From e�
ient implementation of the reasoner's pro
ess stru
ture point of view, if

the
lass �Spe
i�
ity� lies �above� the generi

lass i.e., there is some pointer leading

from penguin's to node bird in G

ax

, then given a parti
ular penguin we
an
on
lude

that it doesn't �y. Noti
e that the reasoner's pro
ess stru
ture of G

ax

an be either

a network - the graph of the taxonomy - or a set of �rst order formulae. The se
ond

option has been
hosen to form G

ax

of the morphology world in our work. In that

option for fast inferen
e purpose, G

ax

is organized a

ording to priorities whi
h are

given as ordering of predi
ates formulae, or default rules: in
on�i
ting situations

preferen
e is given to item with high priority. That is to say, the data are added

in G

ax

in the following orders: (1) the fa
ts of the ex
eptional data; (2) the fa
ts

67

Pro
eedings of the Prague Stringology Conferen
e '03

asso
iated with generi
 axioms; (3) the ex
eptional axioms des
ribing the spe
i�
ity;

and �nally (4) the generi
 axioms.

Example 2: w.r.t. Tweety the orders of G

ax

is as follows: (1) Penguin(tweety); (2)

Bird(tweety); (3) (8x)Penguin(x)! :F lies(x); (4) (8x)Bird(x)! F lies(x):

(3)
an be paraphrased as �penguins usually
annot �y�. If a parti
ular penguin

(say Foo)
an �y, this is obviously a
ounter ex
eptional data (or insensitivity to

spe
i�
ity) w.r.t. to (3). Although, how the representation of the insensitivity to

spe
i�
ity
an be done in the open world (i.e., the data related to the ex
eptions and

in parti
ular those of the
ounter ex
eptions are not known in advan
e), but this is

not a limitation for our work be
ause the databases of LMF is
omposed only using

three predi
ates : regular, ex
eptional and
ounter-ex
eptional. The sele
tion of the

ounter ex
eptional data is based on the fast inferen
e purpose.

The LMF poli
y for su
h above purpose is to take into a

ount both the high

priority of usage in the text of a given language (e.g., the auxiliary verbs of a given

language su
h as �avoir� - to have - or �être� - to be -) and the seldom of data w.r.t.

ex
eptional data (e.g., �aller� -to go - the only member of the
lass 22 of the irregular

verbs) or its spe
i�
ity w.r.t. the general data (e.g., �Haïr� meaning to hate, whi
h

is also a unique member of the 20th
lass of the regular verb).

3 Combing the Automata and the De
ision Trees

In what follows, we summarize our re
ent work [3℄
on
erning the
ombination of the

automata and the de
ision trees. We assume the reader to be familiar with both the

theory of �nite automaton and the de
ision tree learning as presented in standard

books e.g., [13℄ and [7℄, respe
tively. We refer to a key and a value denoted by k

and kv, respe
tively, as a sequen
e of
hara
ters surrounded by empty spa
es whi
h

may have one or more internal spa
es. We may use key and word (in
luding verbs),

inter
hangeably, as well as, the value, key�value and the morphologi
al features.

The input of our algorithm for su
h above
ombination is the following
ustomary

form: f = f(k

i

; v

i

)ji = 1; : : : ; ng for representation and fast lookup. The point of our

idea is as follows: If an input string(x)
an be re
ognized using the unlabeled �nite-

state-automaton (g) asso
iated with the keys (of f) - hen
e having less states and

transitions
ompared to the transdu
er as shown in Figures 1 and 2 - then use the learn

de
ision tree (dt) for outputting the value asso
iated with x. Table 1 shows a sim-

ple de
ision tree (dt) of f1 = f(Iran; Tehran); (Iraq; Baghdad); (Ireland;Dublin)g.

Note that the dt w.r.t. f

2

= f(Iran,Asia),(Iraq,Asia)g has a unique solution-path i.e.

(kvAsia) - no
ondition (i.e., question) is required to dis
riminate the key-value.

3.1 A
y
li
 Finite-state Automaton

Re
all that an a
y
li
 �nite-state automaton is a graph of the form g = (Q;�; Æ; q

0

; F)

where Q is a �nite set of states, � is the alphabet, q

0

is the start state, F � Q is the

a

epting states. Æ is a partial mapping Æ : Q � � �! Q denoting transition. If

a 2 �, the notation Æ(q; a) = ? is used to mean that Æ(q; a) is unde�ned. Let �

?

denotes the set
ontaining all strings over � in
luding zero-length string,
alled the

68

Learning the Morphologi
al Features of a Large Set of Words

Table 1: Ba
kward attribute-based Data and De
ision Tree.

b

7

b

6

b

5

b

4

b

3

b

2

b

1

KV Solution-Path Question KV

? ? ? I r a n Tehran (b

1

n kv Tehran) b

1

= n? Tehran

? ? ? I r a q Baghdad (b

1

q kv Baghdad) b

1

= q? Baghdad

I r e l a n d Dublin (b

1

d kv Dublin) b

1

= d? Dublin

Table 2: Ten keys of the same lengths along with asso
iated values.

Key onC myC mnH onH nnH nnC mnC nyC myH oyC

Value down down up down up up up up down down

empty string ". The extension of the partial Æ mapping with x 2 �

?

is a fun
tion

Æ

?

: Q� �

?

�! Q and de�ned as follows:

Æ

?

(q; ") = q

Æ

?

(q; ax) =

(

Æ

?

(Æ(q; a); x) if Æ(q; a) 6= ?

? otherwise.

A �nite automaton is said to be (n,m)�automaton if jQj = n and jEj = m where E

denotes the set of the edges (transitions) of g. The property Æ

?

allows fast retrieval for

variable-length strings and qui
k unsu

essful sear
h determination. The pessimisti

time
omplexity of Æ

?

is O(n) w.r.t. a string of length n.

3.2 De
ision Tree Learning

De
ision tree learning is a method for approximating dis
rete�valued target fun
tions,

in whi
h the learned fun
tion is represented by a de
ision tree (dt). Learned de
ision

trees
an also be re-represented as a set of if�then rules to improve human readability.

Example 3: Below we list the if�then rules representing the de
ision tree asso
iated

with data of Table 2.

If f

1

= `o' Then KV = `down';

If f

1

= `m

0

^ f

2

=

0

y

0

Then KV = `down';

If f

1

= `m

0

^ f

2

=

0

n

0

Then KV = `up';

If f

1

= `n

0

Then KV = `up';

where f

1

and f

2

denote �rst
hara
ter and s
eond
hara
ter (of the key from left to

right), respe
tively. De
ision trees
lassify instan
es by sorting them down the tree

from the root to some leaf node, whi
h provides the
lassi�
ation of the instan
es.

Ea
h node in the tree spe
i�es a test of some attribute (e.g., b1 of Table 1) instan
e,

and ea
h bran
h des
ending from that node
orresponds to one of the possible values

for this attribute. An instan
e is
lassi�ed by starting at the root of the tree, testing

the attribute value by this node, then moving down the tree bran
h
orresponding to

the value of the attribute in the given example. This pro
ess is then repeated for the

subtree rooted at the new node. Noti
e that the implementation of the de
ision tree

is based on m-array tree rather than the binary one. The former allows to save the

de
ision tree in a less spa
e
ompared to the latter. Figure 4 shows su
h a learned

tree representing the values of the keys of Table 2.

69

Pro
eedings of the Prague Stringology Conferen
e '03

0

1

2

3

4 5

m

n

o

n

y

n

y

H

C

C

Figure 3: A (6,10) unlabeled automa-

ton for re
ognizing the keys of Table 2.

1 : omn

0 : down 2 : yn 0 : up

0 : down 0 : up

o

m

n

y

n

Figure 4: Learned de
ision tree for de-

termining the value of any re
ognized

key of Table 2.

Table 3: Distribution of Fren
h regular verbs a

ording to the
lass and the frequen
y

noted by C and F, respe
tively.

C 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F 3875 156 165 342 69 114 19 12 9 254 26 49 2 302 1

4 Re�nement

The re�nement pro
ess has the following tasks to perform:

1. Transform the input of LMF, namely our input, namely f = f(k

i

; v

i

)ji =

1; : : : ; ng into axiomal database D

ax

, as des
ribed in Se
tion 2.1.

2. Partition D

ax

into the
ounter-ex
eptional, ex
eptional and general axioms.

The transformation is based on the
losed world assumption of the morphology

assuming that the set of the words of (f) noted by K
an be divided into two subsets

of so-
alled regular and irregular words. The regular forms follows the fa
t that their

derivate/in�e
tional forms (ea
h noted by d

k

)
an be generated using those axioms

spe
i�ed by the linguists whi
h are usually further re�ned in a set of �ner regular

axioms (axiom). Using a root (of the word) ea
h axiom allows to generate all d

k

s of

the word. The root is obtained by removing a parti
ular substring of used axiom.

Example 4: The regular forms of the verbs in Fren
h is divided into the �rst group

ontaining 13
lasses (ranged from 6 to 18) and the se
ond group whi
h is
omposed of

two
lasses (ranged from 19 to 20), where ea
h number stands for an axiom. Below

the repartition of 5189 in�nitives (of the regular verbs) used in our experiment is

shown in Table 3.

Remark 2: As appear from Table 3, 20th
lass has only one member, namely �Haïr�.

However, as we mentioned earlier, it is not
onsidered is a a regular data. Indeed,

w.r.t. to the inferen
e pro
ess, it is wise to
onsider it as a
ounter-ex
eptional data.

The reason is to speed up the inferen
e pro
essing by mentioning expli
itly the data

and axioms is the following order:
ounter-ex
eptional, ex
eptional and general. This

pro
ess
onstitutes the well known pra
ti
al tri
k of the default logi
. So, 5188 (i.e.,

5189 -1) roots along with 19
lasses will be used as the reservoir for learning the

extended database of 492860 (i.e., 5188� 95) d

k

s of the lexi
ographers expressed in

a raw database.

An axiom
an be des
ribed using a two dimensional ve
tor of size r, where r

stands for the number of morphologi
al features in use. The �rst row of su
h a ve
tor

70

Learning the Morphologi
al Features of a Large Set of Words

Table 4: Information on size of 13943 verbs of the third group in Fren
h and mor-

phologi
al information along with the forest of the de
ision trees obtained by the

partitive learning mode. Ent. refers to number of
all to the entropy fun
tion.

Data De
ision Tree Gain

Len. Freq.

2 11

4 183

5 412

6 943

7 1480

8 2160

9 2317

10 2115

11 1729

12 1168

13 733

14 389

15 183

16 72

17 25

18 7

Inodes Leaves Ent.

9 3 15

133 40 371

225 66 904

460 131 2149

578 202 3388

727 240 5065

692 342 6664

582 252 6531

445 207 6361

318 125 4980

164 69 3472

106 50 2620

59 22 1624

36 18 1063

9 4 288

3 2 83

K% V%

66% 19%

81% 23%

88% 44%

91% 47%

93% 57%

94% 62%

95% 67%

96% 70%

96% 72%

97% 70%

97% 75%

97% 70%

97% 68%

95% 50%

97% 64%

96% 58%

is
omposed of r the values. The se
ond row
ontain di�erent substrings related to

d

k

s. Usually, the lexi
ographers are used to add the word in expli
it database in

whi
h ea
h entry is
omposed one d

k

and a value. Sin
e it may happen that for a d

k

di�erent values be asso
iated with it (e.g., aime IND-PRES-1-SING, IMP-PRES-3-

SING, et
.) therefore, the learning pro
ess should assure to
olle
t them into a set of

morphologi
al features representing a set of unique ambiguity
lass. In summary, the

entire lexi
on
an viewed as follows. First on
an form the the four following reservoir

f

g

, s

g

, f

e

and f

representing: (1) f

g

: Database related to the general axioms; (2) s

g

:

Database of su�xes of the regular (general) words; (3) f

e

: Database of derivate forms

expressed as the ex
eptional data; (4) f

: Database of derivate forms based on the

high priority relating the
ounter ex
eptional data. Noti
e that f

g

along with s

g

will

be used to re
ognize the derivate forms of the words governed by the general axioms.

4.1 More Re�nement: Learning by Partitive Mode

As we mentioned earlier, the input of de
ision tree learning is a �xed attributes the

size of this table is `+1�n, where ` denotes the length of the longest keys of f and n

is the number of keys. Usually, we have to use the dummy
hara
ters (noted by ? see

Table 1). Using the dummy
hara
ters augment the size of the input table. Be
ause

of the very re
ursive nature of the learning pro
ess, in
luding the
hara
terization of

the de
ision tree may be a time
onsuming task for the large data. An alternative to

the a unique table is to employ multiple tables as follows. First f is divided into q

71

Pro
eedings of the Prague Stringology Conferen
e '03

user-inputs (f

i

) su
h that the length of the keys of ea
h f

i

be identi
al, then form the

orresponding de
ision trees. So, in the partitive mode, we have to learn a forest of

the de
ision tress :
omposed a ve
tor of r positive integers. ith number is pointed

to the ith de
ision tree.

Sear
hing a value for an input string (x of length y) works as follows. If y belongs

to the ve
tor of above mentioned numbers, �rst we spell out x this time using the

automaton asso
iated with entire keys of K. If x spelled out
orre
tly, then we use

the y

th

de
ision tree to output the value.

Example 5: The value of x = abababad
an not be learned w.r.t.
urrent f =

f(ab
; 1); (ababba
; 2)(ababab
; 3)g. We have length(x) = 8 whi
h is not member of

{3,5,7}. In the
ontrary, for x = ab
 the value is 1 i.e., (1) length(x) 2 f3; 5; 7g, (2)

x is re
ognized using the automaton asso
iated with K = fab
; abab
; ababab
g and

(3) no question is required for f

3

the value is 1. Table 4 shows the Information on

size of 13943 verbs of the third group in Fren
h and morphologi
al information along

with the forest of the de
ision trees obtained by the partitive learning mode.

5 Main Algorithm

Below the algorithm for learning morphologi
al features is given whi
h is
omposed of

two
omponents: prepro
essing and pro
essing. In the �rst
omponent four automata

and two de
ision trees along with a forest de
ision trees
ontaining r de
ision trees are

formed, where r stands for the number of partitions of the ex
eptional data a

ording

to the same key-length
riterion. In the se
ond
omponent, if an user-input (x)
an

be re
ognized by one of the four automata (see below for the order in use) then the

orresponding de
ision tree will be inspe
ted to output the value. The argument of

main fun
tion are:

1. f

g

= f(root

i

; axiom

i

)ji = 1 : : : ; n

1

g i.e., Database related to the general axioms;

2. s

g

= f(suf

i

; mf

i

ji = 1 : : : ; m

1

g i.e., Database of su�xes of the regular (general)

words; mf stands for a morphologi
al features or a set of alternate morpholog-

i
al features;

3. f

e

= f(d

i

; mf

i

)ji = 1 : : : ; n

2

g i.e., Database of derivate forms expressed as the

ex
eptional data; d

i

refers to a derivate form of a base word (e.g., in�nitive);

4. f

= f(d

i

; mf

i

)ji = 1 : : : n

3

g i.e., Database of derivate forms based on the high

priority relating the
ounter ex
eptional data.

fun
 LearningMorphologi
alFeatures(f

g

; s

g

; f

e

; f

)

K

g

 Colle
tKeys(f

g

): K

 Colle
tKeys(f

):

g

kg

 FormAutomaton(K

g

); g

k

 FormAutomaton(K

):

ApplyPrepro
essingPartitiveMode(f

e

).

g

Ke

 FormAutomaton(K

e

):

table

 FormInputForLearning(f

):

t

 LearnDe
isionTree(table

):

t

s

 LearnDe
esionTreeOfSuffixes(s

g

):

72

Learning the Morphologi
al Features of a Large Set of Words

ApplySear
h(x).{Pro
essing
omponent, x is an input string.}

nuf

The fun
tion FormAutomaton() follows the elegant algorithms des
ribed in [2℄ for

the in
remental
onstru
tion of minimal a
y
li
 �nite state automata and transdu
ers

from both sorted and unsorted data We adapted the former one su
h that the length

of the longest key be
al
ulated for being used later in the
onstru
tion of suitable

input for learning the dt of the
ounter ex
eptional data. Please refers to [3℄ for the

des
ription of the fun
tion FormInputForLearning() and LearnDe
isionTree().

The
onstru
tion of the forest of the de
ision trees works as follows.

fun
 ApplyPrepro
essingPartitionMode(f

e

)

S

`

x

i=`

1

f

ei

 Partition(f

e

)

for i 2 (`

1

; : : : `

x

) do

K

ei

 Colle
tKeys(f

ei

); g

kei

 FormAtuomaton(f

ei

).

Table

ei

 FormInputForLearning(f

ei

)

t

ei

 LearnDe
isionTree(Table

ei

):

end for

nuf

Sin
e the sear
h order is based on looking at the following order : (1)
ounter

ex
eptional, (2) ex
eptional and general data, then pro
essing
omponent is as follows:

fun
 ApplySear
h(x)

return(Sear
hValue(x, g

k

, t

) OR Sear
hValueUsingPartitionMode(x, g

ke

, forest)

OR Sear
hByMismat
h(x, g

kg

, s

g

, t

s

)).

nuf

For knowing how Sear
hValue() works, again
onsider Figure 4 where zero used

in a node indi
ates that node is a leaf one. A positive integer number used in a node

has its own meaning indi
ating the test to be done taking into a

ount the
ontent

of the
urrent node under inspe
tion e.g., �1:omn� means that if the �rst
hara
ter

of x is 'm' then gets the value by des
ending in the sub-tree of �rst
hild. Sin
e the

sub-tree has only one node - a leaf - then value is 'down'. If the �rst
hara
ter of x

is 'm' this time the value has to be sele
ted using the sub-tree of the se
ond
hild.

Depending on the se
ond
hara
ter (�2:yn�) of x the output value is either �down� or

�up�.

fun
 Sear
hValue(x, g, dt)

if Æ

?

(q

0

; x) = q su
h that q 2 F (ofg) then

kv GetValue(x,dt).

else

kv nil; {x is unknown w.r.t. the
urrent g}

end if

nuf

73

Pro
eedings of the Prague Stringology Conferen
e '03

The fun
tion Sear
hByMismat
h() uses the automaton asso
iated with the general

data to know if the root of (the base) word
an be re
ognized by that automaton.

If the input string
an be spelled out using a given position then there is a
han
e

that the su�x of the input string be re
ognized using the automaton of the available

su�xes (s

g

), if so, then GetValue will be a
tivated to output the output value.

fun
 Sear
hByMismat
h(x, g

kg

, t

s

)

pos MisMat
hPosition(x; g

kg

); s substr(x; pos): {s stands for the su�x}

return(GetValue(s, t

s

)).

nuf

5.1 Examples

Below we illustrate the tra
es of LMF applied to the verbs in English and Fren
h,

Azeri and Persian.

Example 6 (Fren
h): Let us
onsider the following phrase: �Il livre un livre.� i.e.,

He is providing a book. Suppose that we are interested in learning the morpholog-

i
al features of the word �livre�. The
urrent word
annot be spelled out neither

using the automaton asso
iated with the
ounter ex
eptional automaton nor with the

ex
eptional automaton. Therefore, the automaton asso
iated with f

g

(database of

regular roots in Fren
h
orresponding to the �rst group) will be
alled to partially

spell out the word �livre�. Using fun
tion Sear
hByMismat
h tell us to stop at the

fourth
hara
ter (from left to right). The remaining part of the
urrent word - �e� -

will then be used as the entry of the de
ision tree asso
iated with the su�xes of f

g

outputting the desired result: Verb+IND-PRES-1-SING, Verb+IND-PRES-3-SING,

Verb+IMP-PRES-3-SING, Noun+MASC-SING and Noun+FEM-SING.

Remark 3: The reason for whi
h it is preferable to divide the set of words (of

a language) into several �les, ea
h of whi
h
ontaining the same synta
ti

ategory

ould better be illustrated using our previous example. Indeed, one
ould use the rules

of lo
al grammar e.g., (1) pronoun+verb as in �il livre� and (2) determinant+noun,

as in �un livre�, for the e�
ient tagging purpose while learning the morphologi
al and

right features of used word in a text.

Example 7 (Fren
h): In the the following phrase: �Bush hait Saddam et vi
e-versa.

i.e., Bush hates Saddam and vi
e-versa.� Learning the morphologi
al features of the

word �hait� is immediate be
ause this word belongs to the ex
eptional data
ontaining

the verbs of 20th
lass.

Example 8 (English): The morphologi
al features of the word �stood� in the fol-

lowing phrase: �He stood the
hild�,
an also be learned immediately, be
ause it

belongs to the ex
eptional data w.r.t. the verbs in English.

Example 9 (Azeri): Like in Turkish, the order of
onstituents may
hange rather

freely without a�e
ting the grammati
ality of a senten
e. Due to various synta
ti

and pragmati

onstraints, di�erent orderings are not just stylisti
 variants of the

anoni
al order. For instan
e, a
onstituent that is to be emphasized is generally

pla
ed immediately before the verb. This a�e
ts the pla
es of all the
onstituents in

74

Learning the Morphologi
al Features of a Large Set of Words

a senten
e ex
ept that of the verb:

Man o³haxlara ketabi verdim. I gave the book to

I
hildren+DAT book+ACC give+P1S the
hildren.

O³haxlara man ketabi verdim. It was me who gave

hildren+DAT I book+ACC give+P1S the
hildren the book.

Man ketabi o³haxlara verdim. It was the
hildren to

I book+ACC
hildren+DAT give+P1S them I gave the book.

The �rst above senten
e is an example of the
anoni
al word order whereas in

the se
ond one the subje
t, man, is emphasized. Similarly, in the last one the dire
t

obje
t, o³haxlara, is emphasized.

Remark 4: Although, Azeri has some similarity with old Turkish, but their stru
-

tures di�er in several aspe
ts, notably w.r.t. new Turkish. This is parti
ularly true

for the the vo
abularies and the morphology. All together, this makes the pro
essing

of Azeri di�erent from Turkish, in
luding our learning pro
ess.

Example 10 (Persian): If we
on
ern ourselves with the unmarked order of
on-

stituents, like in Turkish and Azeri, Persian
an be
hara
terized as a subje
t-obje
t-

verb language: (a) �Man be baçeha ketab ra dadam.� (i.e., I gave the book to the

hildren.) and (b) �Lazat bordand.� (i.e., (They) enjoyed). In (a) the morphologi
al

features of the verb �dadam� is determined by what we
all the
ounter ex
eptional

data whereas in (b) the segment �Lazat (adje
tive) bordan (verb)� have to be
onsid-

ered as a
ompound verb. So, the
ombination of the morphologi
al features of two

words would determine the morphologi
al feature of the mentioned segment.

6 Con
luding Remarks

LMF is written in C and applied for learning of the large set of the verbs in Fren
h

and very limited ones in Persian and Azeri. The experiments show that
ombing

the
losed world assumption, the automata and the de
ision trees is a good approa
h

sin
e our tests provide the right results for more than half million verbs - in
luding the

onjugated form - in Fren
h. Note that the transdu
ers [8℄, as the the best available

method, have been used in the morphology world. However, the advantages of
omb-

ing the automata with the de
ision trees are that it leads to
ompa
t representations

than transdu
ers, and the de
ision trees
an easily synthesize by ma
hine learning

te
hniques. This is emphasized in this work by Figure 2.

It must be stressed that using automata is appropriate when there is no need

for frequent updates of one or more databases. This is due to the fa
t that it is

di�
ult to update qui
kly the automaton. However, w.r.t. our present work, this is

not ne
essarily a limitation be
ause we are dealing with stati
 keys originated from

the morphology world. From update viewpoint, using the two-trie stru
ture of Aoe

et al. [1℄ instead of the automata is preferred where there is the need for frequent

updates. But in this
ase, the
ost of spa
e (number of states and transitions) is

(slightly) expensive
ompared to the automaton.

An interesting extension is the question of addressing how to learn the regular

and irregular data from pure Stringology viewpoint i.e., without atta
hing a domain

to the values of the keys. That is to say, we have to dis
over the axioms along with

possible ex
eptional and/or
ounter ex
eptional ones.

75

Pro
eedings of the Prague Stringology Conferen
e '03

A
knowledgments

I thank the anonymous referees for their
onstru
tive
omments.

Referen
es

[1℄ Aoe, J�I., Morimoto, K., Shishibori, M., and Park, K. A trie
ompa
tion algorithm

for a large set of keys. IEEE Transa
tion on Knowledge and Data Engineering 8,

3 (1996), 476�491.

[2℄ Da
iuk, J., Mihov, S., Watson, B. W., and Watson, R. E. In
remental
onstru
tion

of �nite-state automata. Asso
iation for Computational Linguisti
s 26, 1 (2000),

3�16.

[3℄ Fatholahzadeh, A. Implementation of di
tionaries via automata and de
ision trees.

Champarnaud J. M. and Maurel D. (eds.): Seventh International Conferen
e on

Implementation of Automata (CIAA02). In LCNS Le
ture notes on Computer

S
ien
e, vol. 2608. Springer, Berlin Heidelberg, (2003), 95�105.

[4℄ Kempe, A. Fa
torizations of ambiguous �nite-state transdu
ers. In International

Conferen
e on Implementation and Appli
ation of Automata (2000), Daley M.,

Eramian M., and Yu S. pre-pro
eeding (eds.), 157�164.

[5℄ M
Carthy J., and Hayes, P.J. Some Philosophi
 problems from the standpoint

of Arti�
ial Intelligen
e. In Ma
hine Intelligen
e (1969), vol. 4, Meltzer B. and

Mi
hie D. (eds), Edinburgh University Press, 463�502.

[6℄ Mihov, S., and Maurel, D. Dire
t
onstru
tion of minimal a
y
li
 sub-sequential

transdu
ers. In International Conferen
e on Implementation and Appli
ation of

Automata (2000), Daley M., Eramian E., and S.Yu pre-pro
eeding (eds.), 150�156.

[7℄ Mit
hell, T. M. Ma
hine Learning. M
 Graw-Hill, 1997.

[8℄ Mohri, M. On some appli
ation of �nite-state automata theory to natural lan-

guage. Natural Language Engineering 2, 1 (1996), 1�20.

[9℄ Mohri, M. Finite-state transdu
ers in language and spee
h pro
essing. Computa-

tional Linguisti
s 23, 2 (1997), 269�311.

[10℄ Mohri, M. Generi
 ��removal algorithm for weighted automata. In International

Conferen
e on Implementation and Appli
ation of Automata (2000), Daley M.,

Eramian E., and Yu S. pre-pro
eeding (eds.) 26�35.

[11℄ Quinlan, R. C4.5: Programs for Ma
hine Learning. Morgan Kaufmann, 1993.

[12℄ Reiter R. On reasoning by default. In Reading in Knowledge Representation

(1985), Bra
hmann R.J. and Levesque H.J. (eds), Morghan Kaufmann, 402�410.

[13℄ Rozenberg G. and Salomaa A. (eds.) Handbook of Formal Language. Springer�

Verlag, Berlin Heidelberg, 1997.

76

A Linear Algorithm for the Dete
tion of Evolutive

Tandem Repeats

Ri
hard Groult

�1

, Martine Léonard

1

and Laurent Mou
hard

y2

1

LIFAR - ABISS, Fa
ulté des S
ien
es, 76821 Mont Saint Aignan Cedex, Fran
e

2

UMR 6037 - ABISS, Fa
ulté des S
ien
es, 76821 Mont Saint Aignan Cedex, Fran
e

and Dept. Computer S
ien
e, King's College London, London WC2R 2LS, England

e-mail: {Ri
hard.Groult,Martine.Leonard,Laurent.Mou
hard}�univ-rouen.fr

Abstra
t. We present here a linear algorithm for the dete
tion of evolutive

tandem repeats. An evolutive tandem repeat
onsists in a series of almost
on-

tiguous
opies, every
opy being similar (using Hamming distan
e in this arti
le)

to its prede
essor and su

essor. From a global view point, evolutive tandem

repeats extend the traditional approximate tandem repeat where ea
h
opy has

to be in a neighborhood of a given model. Due to the la
k of algorithms, these

repeats have been dis
overed in genomi
 sequen
es only re
ently. In this arti
le,

we present a two-stage algorithm, where we �rst
ompute an array
ontaining all

the Hamming distan
es between
andidates, then we visit this array to build a

omplete evolutive tandem repeat from insulated pairs of
opies. Moreover, we

explain how it is still
onsistent with the usual te
hnique devoted to dynami

programming whi
h
onsists in �lling a
omparison matrix and ba
ktra
king

through it to �nd an optimal alignment.

Keywords: linear algorithm, evolutive tandem repeats, Hamming distan
e

1 Introdu
tion

The notion of approximate tandem repeat is generally well-de�ned, from the formal

view point [2, 12℄, it uses a
onsensus model, every
opy parti
ipating to this repeat

being very similar to the
onsensus. An evolutive tandem repeat has no need for

a
onsensus model, the �rst and the last
opies might be
ompletely di�erent but

every time we are
onsidering two su

essive
opies parti
ipating to the repeat, they

are very similar to ea
h other: �nding evolutive tandem repeats is obviously mu
h

more
ompli
ated than dete
ting generi
 tandem repeats for whi
h usual well-known

stru
tures, su
h as su�x trees,
an be used during a prepro
essing stage [9℄.

Evolutive tandem repeats have been phrased by mole
ular biologists, for example

in [4℄, and have been observed in real DNA sequen
es (see Appendix A for a
omplete

example, dete
ted in A. thaliana). In [5℄, we gave a formal de�nition of evolutive

tandem repeats with jumps then we des
ribed a quadrati
 spa
e and time algorithm

�

Supported by a Fren
h Ministry of Resear
h grant.

y

Partially supported by Programme inter-EPST Bio-informatique and by GenoGRID (ACI

GRID).

77

Pro
eedings of the Prague Stringology Conferen
e '03

whi
h dete
ts all the maximal. Even if numerous models and algorithms sear
hing

for various kinds of repeats have been developed [1, 3, 10, 11, 8, 12℄, none of these

algorithms are able to lo
ate evolutive tandem repeats, as far as we know, we therefore

designed a quadrati
 algorithm for their dete
tion, it was based on the
onstru
tion

of two graphs and their visits.

Sin
e we are looking for lo
al repetitions having approximatively the average length

of mini (or even mi
ro) satellites and be
ause we are also looking for a
ertain number

of
opies (having three or less
opies in an evolutive tandem repeats is meaningless),

we are here interested in sear
hing for
opies whose length may vary from 4 to 64 [6℄,

that is usually thousands times less than the size of the sequen
es we are studying.

We present in this arti
le a O((`

max

� `

min

+ 1)� (j

max

� j

min

+ 1)� jwj)-time and

O(j

max

� j

min

+ 1)-spa
e algorithm where and `

min

and `

max

(resp. j

min

and j

max

)

are the minimal and maximal values of the length of the
opies (resp. the jump

between two
opies) and w is the studied sequen
e. More pre
isely, sin
e length and

jump values are very small (with respe
t to the length of the sequen
e whi
h
an be

ounted in millions of base pairs), we still have an overall linear time-
omplexity. So

in pra
ti
e, the time
omplexity is in O(C � jwj), where C � (61� (j

max

� j

min

).

In se
tion 2, we re
all some basi
 de�nitions and introdu
e the evolutive tandem

repeats. In se
tion 3, we present the ideas of our algorithm. In se
tion 4, we explain

the
onne
tion with
omparison matri
es. In se
tion 5, we present experimental

results and �nally, in se
tion 6, we
on
lude.

2 Preliminaries

Let � be an alphabet and �

�

its asso
iated free monoid. A word (resp. non empty

word) over � is an element of �

�

(resp. �

+

). The letter of a word w o

urring at

position i is denoted by w

i

. The length jwj of a word w is the number of letters of w,

i.e. w = w

1

� � �w

jwj

. We will denote by �

`

the set of all possible words of length `

over �. We denote by u:v (or simply uv) the
on
atenation of two words u and v.

Consider w = p:f:s for some p; f; s 2 �

�

. Su
h p; f; s are respe
tively pre�x, fa
tor

and su�x of w. We denote f = w[i; j℄ = w

i

w

i+1

� � �w

j�1

w

j

for 1 � i � j � jwj. The

on
atenation of n
opies of u is denoted by u

n

.

There exist several distan
es one
an use for the analysis of genomi
 sequen
es. In

this arti
le, we will
onsider the Hamming distan
e: the Hamming distan
e between

two words of equal length is the number of positions at whi
h their
orresponding

letters di�er: for u; v 2 �

`

, d

H

(u; v) = Cardfi 2 f1; : : : ; `g j u

i

6= v

i

g:

De�nition 2.1 (Evolutive tandem repeat)

An evolutive tandem repeat with jumps (e.t.r. for short) is a tuple (v; "; (j

min

; j

max

);

`; n; (p

i

)

1�i�n

) where v is a word, " is the maximal number of errors between two

onse
utive
opies, [j

min

; j

max

℄ is the range of the length of a jump (overlap or gap

between two
onse
utive
opies) with (j

max

� j

min

+ 1) � `=2, ` is the length of

the
opies, n is the number of
opies, p

i

are the starting positions of the
opies

i

= v[p

i

; p

i

+ `� 1℄ and

8

>

<

>

:

p

1

= 1; p

n

+ `� 1 = jvj;

j

min

� p

i+1

� (p

i

+ `) � j

max

; 8i 2 f1; : : : ; n� 1g;

d

H

(

i

;

i+1

) � "; 8i 2 f1; : : : ; n� 1g:

78

A Linear Algorithm for the Dete
tion of Evolutive Tandem Repeats

Example 2.1 Let
onsider the word v = aaataa
ag
g
.

(v; 1; (�1; 1); 3; 4; (1; 5; 8; 10)) is an e.t.r. with jumps: p

1

= 1, p

2

= 5 (gap), p

3

= 8

and p

4

= 10 (overlap)
orresponding to

1

= aaa,

2

= aa
,

3

= ag
 and

4

=
g

(see Fig. 1).

gap overlap

a a a

g g

` `

`

� j

min

� " � "

p

1

p

2

p

3

p

4

` = 3

� j

max

= 1

� " = 1

v =

a

g

g

a

1

=

4

=

3

=

2

=

aaa

a

a a a t

Fig. 1: Example of an evolutive tandem repeat with jumps

We will
onsider only in what follows maximal e.t.r., that is e.t.r. whi
h is not

embedded in a longer one:
onsider for example a word w = gaaaga
gagg
gg and

` = 3. The e.t.r. etr

1

= (aaga
gagg; 1; (�1; 1); 3; 3; (1; 4; 7)) is not maximal in w sin
e

the repeat etr

2

= (aaga
gagg
gg; 1; (�1; 1); 3; 4; (1; 4; 7; 10))
ontains more
opies. In

this
ase, we say that etr

2

�
ontains� etr

1

and remark that etr

2

is a maximal e.t.r. in

w.

In a previous arti
le [5℄, we �rst
onsidered all fa
tors of w having the same length.

For ea
h fa
tor, we
omputed the set of its starting positions using an equivalen
e

relation on positions in w. Then, we built a graph for whi
h nodes are these sets

and there exists an edge between two nodes if the
orresponding fa
tors are slightly

di�erent in the meaning of the Hamming distan
e. Next, we
omputed a se
ond graph

namely the `-position graph de�ned as follows:

De�nition 2.2 (`-position graph) Let w be a word and " and jump integers. The

`-position graph
orresponding to w, " and jump is the oriented graph PG

`

(w; ";

jump) = (N;E) where

8

>

>

>

<

>

>

>

:

N = f1; :::; jwj � `+ 1g and

E = f(i; i

0

; i

0

� (i + `)) for (i; i

0

) 2 N �N; i < i

0

su
h that ji

0

� (i + `)j � jump;

d

H

(w[i; i+ `� 1℄; w[i

0

; i

0

+ `� 1℄) � "g:

Nodes are labeled with all the positions f1; : : : ; jwj� `+1g of fa
tors of length ` and

there exists an edge labeled with d between two nodes if the
orresponding positions

are
lose in w and if the Hamming distan
e between their asso
iated fa
tors, denoted

d is not greater than a given ". We used a quadrati
 time but linear spa
e algorithm

to
ompute it. In what follows we denote by (i; i

0

; d) an edge labeled d from the node i

to the node i

0

.

Finally, we looked for all the longest paths in the `-position graph to �nd maximal

e.t.r.

79

Pro
eedings of the Prague Stringology Conferen
e '03

3 A Linear � Time and Spa
e � Algorithm

In a previous arti
le [5℄, we des
ribed a quadrati
 spa
e and time algorithm whi
h

dete
ts all maximal e.t.r. in a word w. In what follows, we present a linear time

and spa
e algorithm that starts with the �lling of a �position� array and follows on

with the visit of this array in an attempt to �nd regularities. We will �rst draw the

�big-pi
ture� and will
onsolidate the des
ription by explaining the stru
tures we used

and the strategies we developed.

The �rst important idea
onsists in
onsidering every `-mer (fa
tor of length `) as

a sliding window. Sin
e we have to
ompute the distan
es between pairs of fa
tors,

we have to use two sliding windows f and f

0

(see Fig. 2): one window, f

0

, ending

at position i will
orrespond to the right-most fa
tor (moving sequentially from left

to right, one position at a time) while the other window, f , will
orrespond to the

andidates for a pair (ending at a position in the interval [i� `� j

max

; i� `� j

min

℄).

Therefore, we only have to
onsider j

max

� j

min

+ 1 possible positions for the left

sliding window, for ea
h given position of the right sliding window and fo
us on the

omputation of (j

max

�j

min

+1)�(jwj�`+1) distan
es, that is a linear-time and spa
e

onstru
tion of a �position� array (emulating the position graph we de�ned in [5℄).

������������
������������
������������
������������

�������������
�������������
�������������
�������������

``

i� 2`� k + 1 i� `+ 1

k

i� `� k i

f f

0

Fig. 2: The two sliding windows f and f

0

The se
ond important idea is the
omputation of the Hamming distan
e by itself: if

the Hamming distan
e between the fa
tors of length ` ending at position i and i

0

is

known then the Hamming distan
e between the fa
tors ending at position i + 1 and

i

0

+ 1
an be
omputed in O(1)-time be
ause (`� 1)
omparisons have already been

done. It will speed up the �lling of the position array (see Fig. 3).

`

`

`� 1
omparisons in
ommon

w

i+`

: : : w

i�1

w

i

d

H

(w[i+ `; i+ 1℄; w[i

0

+ `; i

0

+ 1)

d

H

(w[i+ `� 1; i℄; w[i

0

+ `� 1; i

0

)

w

i

0

+`

: : : w

i

0

�1

w

i

0

w

i+`�1

w

i

0

+`�1

w

i+1

w

i

0

+1

Fig. 3: Computing Hamming distan
e on in
remental positions

Finally we only have to visit the position array and sear
h for a series of a

eptable

values (smaller than ") lo
ated at appropriate positions (the distan
e between two

onse
utive positions has to belong to [`+ j

min

; `+ j

max

℄).

80

A Linear Algorithm for the Dete
tion of Evolutive Tandem Repeats

A Two-stage Algorithm

We �rst have to
ompute the Hamming distan
es between every possible pairs of

andidates and �ll the position array D that
ontains all these
omputations.

De�nition 3.1 Let w = w

1

: : : w

n

be a word over �, ` an integer and k 2 fj

min

; : : : ;

j

max

g. We de�ne D

w;`

k

(i) by

D

w;`

k

(i) =

8

>

<

>

:

0; 8i 2 f1; : : : ; `+ kg

d

H

(w[1; i� `� k℄; w[`+ k + 1; i℄); 8i 2 f`+ k + 1; : : : ; 2`+ k � 1g

d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄); 8i 2 f2`+ k; : : : ; jwjg

We assume now that D

w;`

k

(i� 1) has been previously
omputed and we would like to

ompute D

w;`

k

(i), i.e we know d

H

(w[i � 2` � k; i � ` � k � 1℄; w[i � `; i � 1℄) and we

would like to
ompute d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄).

We therefore de�ne two additional fun
tions:

� 8a; b 2 �; 11

a

(b) = 0 if b = a, 1 otherwise;

� 8k 2 fj

min

; : : : ; j

max

g; E

w;`

k

(i) = 11

w

i�`�k

(w

i

) if i 2 f` + k + 1; : : : ; jwjg, 0

otherwise.

Lemma 3.1 Let w be a word over �, ` an integer and k 2 fj

min

; : : : ; j

max

g. We have:

D

w;`

k

(i) =

8

>

<

>

:

0; 8i 2 f1; : : : ; `+ kg;

D

w;`

k

(i� 1) + E

w;`

k

(i); 8i 2 f`+ k + 1; : : : ; 2`+ k � 1g;

D

w;`

k

(i� 1) + E

w;`

k

(i)� E

w;`

k

(i� `); 8i 2 f2`+ k; : : : ; jwjg:

Proof 1 Let k 2 fj

min

; : : : ; j

max

g and i 2 f2` + k; : : : ; jwjg. If i > 2` + k then

D

w;`

k

(i� 1) = d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `; i� 1℄) and therefore

D

w;`

k

(i)

= d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄)

= d

H

(w[i� 2`� k + 1; i� `� k � 1℄; w[i� `+ 1; i� 1℄) + 11

w

i�`�k

(i)

= d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `; i� 1℄)� 11

w

i�2`�k

(i� `)+

11

w

i�`�k

(i)

= D

w;`

k

(i� 1)� E

w;`

k

(i� `) + E

w;`

k

(i):

If i = 2` + k then D

w;`

k

(i) = d

H

(w[1; i � ` � k℄; w[` + k + 1; i℄) = d

H

(w[1; i � `�

k � 1℄; w[`+ k + 1; i� 1℄) + 11

w

i�`�k

(w

i

) = D

w;`

k

(i� 1) + E

w;`

k

(i).

But we have E

w;`

k

(i � `) = E

w;`

k

((2` + k) � `) = E

w;`

k

(` + k) = 0, so D

w;`

k

(i) =

D

w;`

k

(i� 1)� E

w;`

k

(i� `) + E

w;`

k

(i).

We prove the other
ase in the same manner. 2

The size of the arrays D (where D[k℄[i℄ = D

w;`

k

(i)) and E (where E[k℄[i℄ = E

w;`

k

(i))

is (j

max

� j

min

+ 1)� jwj. In order to �ll these two arrays, we now use a O((j

max

�

j

min

+ 1)� jwj)-time and spa
e algorithm.

Example 3.1

This example (see Fig. 4) has been obtained with w = aaataagttat
aat

aaat
gtgt
a,

` = 4, j

min

= �1, j

max

= 1 and " = 2:

For example D

w;4

�1

(7) = d

H

(w[1; 4℄; w[4; 7℄) = d

H

(aaat; taag) = 2, D

w;4

0

(17) = d

H

(

w[10; 13℄; w[14; 17℄) = d

H

(at
a; at

) = 1 and D

w;4

1

(28) = d

H

(w[20; 23℄; w[25; 28℄) =

d

H

(at
g; gt
a) = 2.

81

Pro
eedings of the Prague Stringology Conferen
e '03

��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������

��������
��������
��������

��������
��������
��������0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

0 0 0 1 1 1 2 2 3 4 3 3 2 2 3 3 4 4 4 4 4 4 4 3 3 3 43

0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1110 11
2 2 3 2 1 1 444444433213211000000 3

1 10 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 10 0 0 0 0 0 1 0 0
gap

overlap

conca−

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

���������
���������
���������
���������

2520151051 28

0 0 0 0 0 1 2 2 2 2 2 3 4 44 3 2 1 1 2 2 3 3 3 3 2 20

a a a a a g t t a t c a a t c c a a a t c g t g t c a

1001 = 2
t c g

g t c a

a t
0 0 0 1 = 1

c a

a t c c
01 0 = 21

a a a

t a a g

at

t

tenation

w

i

E

w;4

�1

(i)

D

w;4

�1

(i)

D

w;4

0

(i)

E

w;4

1

(i)

D

w;4

1

(i)

E

w;4

0

(i)

Fig. 4: D and E arrays

The spa
e
omplexity
an be improved as follows.

Sin
e the values E[k℄[i℄ are independent, we
an de
rease the spa
e
omplexity by

ignoring the �lling of the array E and by
omputing E[k℄[i℄ only when needed without

in
reasing the time
omplexity.

Moreover, for a given `, we only need the last value D

w;`

k

(i � 1) in order to
om-

pute D

w;`

k

(i) (see Lemma 3.1), thus we will only store the last
olumn of the ar-

ray D. Finally (see Fig. 5), we obtain a O((j

max

� j

min

+ 1) � jwj)-time and

O(j

max

� j

min

+ 1)-spa
e algorithm (D is an array of size O(j

max

� j

min

+ 1)). If

we are looking for all e.t.r. for
opies of length ` 2 [`

min

; `

max

℄,the
omplexity is

O((`

max

� `

min

+ 1) � (j

max

� j

min

+ 1) � jwj). From a pra
ti
al point of view,

(`

max

� `

min

+ 1) � 61 is mu
h lower than jwj and the time
omplexity is still linear:

O(C � jwj), where C � 61� (j

max

� j

min

).

Constru
tion of the Longest Paths

The two arrays are
ompa
t representations of the graphs we depi
ted in [5℄, and if

we refer to the traditional graph vo
abulary, we
an asso
iate a
ell in the position

array and a node in the position graph.

Constru
tion of the array
ontaining the longest paths(w; `; j

min

; j

max

; ")

1 for ` `

min

to `

max

do

2 for i 1 to jwj do

3 C[i℄ �1

4 L[i℄ 0

5 for k j

min

to j

max

do

6 if (i � `+ k) then

7 D[k℄ 0

8 elseif (i � 2`+ k) then

9 D[k℄ D[k℄ + 11

w

i�`�k

(w

i

)

10 else D[k℄ D[k℄ + 11

w

i�`�k

(w

i

)� 11

w

i�2`�k

(w

i�`

)

11 if (i � 2`+ k) and (D[k℄ � ") and (L[i� 2`� k + 1℄ + 1 > L[i� `+ 1℄) then

12 L[i� `+ 1℄ L[i� 2`� k + 1℄ + 1

13 C[i� `+ 1℄ i� 2`� k + 1

14 return (C;D)

Fig. 5: Constru
tion of the array
ontaining the longest paths

When D

w;`

k

(i) � " and i � 2`+k, the ar
 between nodes (i�2`�k+1) and (i�`+1)

is added only if it
reates a longest path to node (i� `+ 1), moreover the previously

82

A Linear Algorithm for the Dete
tion of Evolutive Tandem Repeats

existing, previously unique ar
 ending in i� ` + 1 is removed: let a path of length

ending in (i�`+1), if the length of the path ending in (i�2`�k+1) plus 1 is greater

than
, then thear
 ending in (i� `+1) is removed and the ar
 from (i� 2`� k+ 1)

to (i� `+ 1) is
reated.

Finally ea
h node i has at most one ar
 ending in i and therefore the `-position graph

is stored in an array C of integers, where C[i℄ is the index of the head of the ar
 (C[i℄,

i), and �1 otherwise. We use an array L of integers, where L[i℄ is the length of the

longest path ending in i.

Let C and L be arrays of integers of size jwj (see algorithm Fig. 5).

The determination of the longest paths,
orresponding to the maximal e.t.r., uses the

traditional algorithm.

Computation of the Distan
e between Two Fa
tors of Length

`+ 1

Lemma 3.2 (Computation of D

w;`+1

k

(i)) Let `; j

min

; j

max

and k be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+ k; : : : ; jwjg, D

w;`+1

k

(i) = D

w;`

k+1

(i) +E

w;`

k+1

(i� `);

(see Fig. 6).

Proof 2 Let `; j

min

; j

max

; i and k integers su
h that k 2 fj

min

; : : : ; j

max

g and i 2

f2`+ k; : : : ; jwjg. We have

D

w;`+1

k

(i) = d

H

(w[i� 2(`+ 1)� j + 1; i� (`+ 1)� k℄; w[i� (`+ 1) + 1; i℄)

= d

H

(w[i� 2`� k � 1; i� `� k � 1℄; w[i� `; i℄)

= d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `+ 1; i℄) + 11

w

i�2`�k�1

(w

i�`

)

= d

H

(w[i� 2`� (k + 1) + 1; i� `� (k + 1)℄; w[i� `+ 1; i℄)+

11

w

i�2`�k�1

(w

i�`

)

= D

w;`

k+1

(i) + E

w;`

k+1

(i� `):

2

�������������������������� ������������������������

������������

����������

``

`+ 1 `+ 1

i

k + 1

k

i� `� k � 1

i� 2`� k � 1

i� 2`� k

i� `� k � 1 ii� `

i� `+ 1

Fig. 6: Computation of D

w;`+1

k

(i)

������������
������������
������������
������������

������������
������������
������������
������������

����������

��������

``

` + 1 `+ 1

i

k + 1

i� `� k � 1

k

i + 1

i� 2`� k

i� `� k

i� `+ 1

i� 2`� k i� `+ 1

Fig. 7: Computation of D

w;`+1

k

(i+ 1)

Lemma 3.3 (Computation of D

w;`+1

k

(i+ 1)) Let `; j

min

and j

max

be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+k; : : : ; jwjgD

w;`+1

k

(i+1) = D

w;`

k+1

(i)+E

w;`

k+1

(i+1);

(see Fig. 7).

Proof 3 A

ording to Lemma 3.2, D

w;`+1

k

(i+1) = D

w;`

k+1

(i+1)+E

w;`

k+1

(i� `+1) and

by De�nition 3.1, D

w;`

k+1

(i + 1) = D

w;`

k+1

(i) � E

w;`

k+1

(i � ` + 1) + E

w;`

k+1

(i + 1), therefore,

D

w;`+1

k

(i+ 1) = D

w;`

k+1

(i) + E

w;`

k+1

(i + 1).

2

83

Pro
eedings of the Prague Stringology Conferen
e '03

Lemma 3.4 (Computation of D

w;`+1

k

(i)) Let `; j

min

and j

max

be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+ k; : : : ; jwjg

D

w;`+1

k

(i) = D

w;`

k+1

(i) + E

w;`

k+1

(i� `)

= D

w;`

k+1

(i� 1) + E

w;`

k+1

(i):

4 Evolutive Tandem Repeats and Comparison Ma-

tri
es

Comparison Matri
es

We will now explain the
onne
tion between the arrays we are
omputing and using,

and well-known te
hniques used by several algorithms devoted to sequen
e
ompari-

son.

A traditional te
hnique in sequen
e
omparison
onsists in the
onstru
tion and the

visit of the two-dimension matrix, where a
ell (i; i

0

)
ontains the
omparison s
ore,

i.e. the distan
e, between a fa
tor ending at position i in one sequen
e and a fa
tor

ending at position i

0

in the other sequen
e.

Computing the positions of all the approximate repeats in one sequen
e
an be
arried

out by
omparing the sequen
e with itself, that is by
onstru
ting a spe
i�
 symmetri

square matrix, like the one we are presenting in Fig. 8. Note that Fig. 9 represents

the arrays D and E
orresponding to the three white diagonals of Fig. 8.

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

a

c

T

a

t

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1

11

1

1

1

1

a

c

a

g

c

a

t

g

0

0

0

1

1

1

1

1

1

1

0

0 1

1

1

0

0

0

0

1

1 1 1 1 1 0 1

0 1 1 0 1 1

1 1 0 1 1

1 1 1 1 1

1 0 0 1 0 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

0 0 0 0

0

0

1 1

1 1 1 1 1 1 1

11111111

1 1 1 1 1 1 1 1 1 1

1

2

0 2 1 3

2 3

2 3

2

2

3

2

2

3

2

1

3

2

3

3

3

3

3

2

3

3

3

3

0

0

0

2

2

2

2

2

22

2 2

2

2

1

2

3

1

02

31 1 3

0

0 3

1

3

2 2

1 2 3 2 2 3 0

0

0

3

3

3

33

33

32

13

3

3

3 2

2 2

2

1 3

3

3

1

2

2

2

2 2

a c t a a c a gc a t g

2

0

−1

−1

−1

−1

−1

−1

−1

−1

−1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0 1 0 1 1 1 1

110110100110

1
3−1

jump
1

3−1
d (s[i],s[i’])

d (s[i−2,i],s[i’−2,i’])
H

H

Fig. 8: Matrix and its diagonals for ` = 3,

j

min

= �1; j

max

= 1 and " = 1

������

��

��
��
��
��

1051

0 0 0 0 0 1 2 3 3 3 30

a t

0 0 1
0 2 3 3

0 0 0 1 0 1 1 0 1 00
2 2 1222210000

1 11 1 10 0 0 0 0 0 1

a c t a c a c g a

0
1 1 1
1 2 3

1 0
3 2

10
1 1

1 1

1

g

E

w;3

�1

(i)

E

w;3

0

(i)

E

w;3

1

(i)

D

w;3

�1

(i)

D

w;3

0

(i)

D

w;3

1

(i)

w

i

Fig. 9: The arrays D and E
orrespond-

ing to the three white diagonals

In this matrix, the
ontent of a
ell (i; i

0

)
ontains informations
orresponding to

d

H

(w[i � 2; i℄; w[i

0

� 2; i

0

℄). One
an observe four di�erent kinds of
ells: dark gray

ells
orrespond to unde�ned distan
es (i < ` or i

0

< `, the fa
tors are not long enough

84

A Linear Algorithm for the Dete
tion of Evolutive Tandem Repeats

to
ompute d

H

(w[i� 2; i℄; w[i

0

� 2; i

0

℄), therefore only d

H

(w[i℄; w[i

0

℄) is reported in the

upper left
orner), light gray
ells
orrespond to useless
ells su
h that i

0

� i < `+j

min

or i

0

� i > `+ j

max

, white
ells
ontain three values as expressed in Fig. 8 and are the

only
ells that are really needed and �nally dashed
ells ti
k
opies parti
ipating to a

potential e.t.r. (for example, the dashed
ell (3; 7) states that d

H

(w[1; 3℄; w[5; 7℄) � ",

that is d

H

(a
t; a
a) � 1, whi
h is
orre
t).

Remark 4.1 Dashed
ells
ontributing to a diagonal indi
ate a potential larger re-

peat: (3; 9) and (4; 10) (
orresponding respe
tively to d

H

(a
t; a
g) � 1 and d

H

(
ta;

ga) � 1)
an establish the existen
e of a longer repeat (in this example d

H

(a
ta;

a
ga) � 1) but more generally, dashed
ells (i; i

0

) and (i+ 1; i

0

+ 1), that is d

H

(w[i�

2; i℄; w[i

0

� 2; i

0

℄) � 1 and d

H

(w[i � 1; i + 1℄; w[i

0

� 1; i

0

+ 1℄) � 1, does not imply

ne
essarily that d

H

(w[i� 2; i + 1℄; w[i

0

� 2; i

0

+ 1℄) � 1 (
onsider (6; 8) and (7; 9) for

example).

Assume now that we are sear
hing for approximate tandem repeats of length ` = 3,

with an error rate " = 1 and j

min

= �1; j

max

= 1, on
e we have built our matrix, the

hunt for the repeats
an be
arried out by visiting one row at a time and reporting

regions
ontaining
ells with a lower right value smaller than " every at least `+j

min

=

3� 1 = 2 and at most `+ j

max

= 3 + 1 = 4 positions. In this matrix (see Fig. 10), if

we
onsider the third row, one
an �nd su
h
ells in
olumns 3, 7 and 9 and therefore

dedu
e that there exists an approximate repetition starting at position 1 and ending

at position 9: as a matter of fa
t, a
taa
a
g is an approximate tandem repeat with

jumps, the letter a lo
ated at position 4
orresponds to a gap between
opies

1

= a
t

and

2

= a
a, the letter a lo
ates at position 7
orresponds to an overlap between

opies

2

= a
a and

3

= a
g. This is more or less the
on
ept Sagot and Myers used

in [12℄ for �nding mi
rosatellites.

Evolutive Tandem Repeats

Finding evolutive tandem repeats with jumps is slightly di�erent, the lo
ation of a

opy parti
ipating to the e.t.r. depends only on the lo
ation of its prede
essor, `,

the length of the
opies and j

min

; j

max

the a

eptable jump between two
onse
utive

opies.

Consider a
opy belonging to the e.t.r. that ends at position i, its su

essor must ends

at a spe
i�
 position (between i+`+j

min

and i+`+j

max

) in the matrix, we therefore

have to sear
h for a dashed
ell at positions (i; i

0

) for i+`+ j

min

� i

0

� i+`+ j

max

. If

there exists su
h a
ell, it gives us a signi�
ant information about the way the
opies

are
onne
ted: if i + ` + j

min

� i

0

� i + `� 1 there is an overlap of length i + `� i

0

between the
opies, if i

0

= i+` the
opies are
ontiguous, if i+`+1 � i

0

� i+`+j

max

there exists a gap of length i

0

� i� ` between the
opies. Therefore, for every row i,

we only have to
onsider (j

max

� j

min

) + 1
ells. In order to �nd e.t.r. we therefore

have to
ompute and visit the diagonals starting in
olumns i+`+j

min

to i+`+j

max

.

That leads to
omputing and visiting only O((j

max

� j

min

+ 1)� jwj)
ells.

The left-most diagonal, starting in
ell (1; `+ j

min

+ 1),
orresponds to the maximal

authorized overlap, while the right-most diagonal, starting in
ell (1; ` + j

max

+ 1),

orresponds to the maximal authorized gap. We
an therefore build a matrix that

sums up all these informations as depi
ted in Fig. 8. The three white diagonals are

85

Pro
eedings of the Prague Stringology Conferen
e '03

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

a c t a a c a gc a t g

1 2 3 4 5 6 7 8 9 10 11 12

a1

2 c

t3 0 3

a4

3 2 1

0 2 3 2

3

2 3

1 3 2 1

231

0 2 2 3 3 2 2 3

2

2

232120

0 3 1 2 3

32230

0 3 3 1

330

0 3

0g12

11 t

a10

g9

8 c

a7

a5

6 c

Fig. 10: Two dimension matrix
orresponding to the
omparison of a
taa
a
gatg

with itself, for ` = 3 and " = 1

the only ones that need to be
omputed (even if in this matrix, we show all the
ells).

Moreover, the
omputation of the three diagonals is equivalent to the
omputation of

the D and E arrays.

5 Experimental Results

We have implemented and tested this algorithm on various sequen
es, we built ran-

dom sequen
es over the alphabet fa;
; g; tg and no e.t.r. has been dete
ted (for the

same rapameters as below), it appears that this kind of repetition is not an artifa
t.

Moreover we fo
used on real sequen
es from A. thaliana and for testing purpose we

used sequen
es with length varying from 10kb to 200kb (see Fig. 11).

The average behaviour of the timing
urves
orresponds to that we were expe
ting.

Time and spa
e
onsumptions enabled us to sear
h for e.t.r. in whole
hromosomes,

we studied more spe
i�
ally A. thaliana whi
h possesses �ve
hromosomes (their

length varying from 17 to 29Mb) and an example is presented in Appendix A.

6 Con
lusion and Perspe
tives

In this arti
le, we presented a both spa
e and time linear algorithm for the dete
tion

of evolutive tandem repeats. Furthermore, we implemented this approa
h, developed

a web interfa
e (see Fig. 12, http://abiss.
rihan.fr/~rgroult/index.php) that

86

A Linear Algorithm for the Dete
tion of Evolutive Tandem Repeats

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 50000 100000 150000 200000

C
P

U
 T

im
e

(s
)

Length of the sequence (bp)

Execution times on sequences: length variation

Legend:
l=6, e=1, j=1
l=7, e=1, j=1
l=8, e=1, j=1

l=15, e=1, j=1

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 50000 100000 150000 200000

C
P

U
 T

im
e

(s
)

Length of the sequence (bp)

Execution times on sequences: jump variation

Legend:
l=7, e=2, j=1
l=7, e=2, j=2
l=7, e=2, j=3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50000 100000 150000 200000

C
P

U
 T

im
e

(s
)

Length of the sequence (bp)

Execution times on sequences

Legend:
l=6, e=1, j=1

l=15, e=7, j=4
l=30, e=30, j=14

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 50000 100000 150000 200000

C
P

U
 T

im
e

(s
)

Length of the sequence (bp)

Execution times on sequences: error variation

Legend:
l=8, e=1, j=1
l=8, e=2, j=1
l=8, e=3, j=1

Fig. 11: Exe
ution times on sequen
es, where l is the length of the
opies, e is the

maximal Hamming distan
e and j is the jump

presents the
opies, the alterations and sums up informations relative to the repeats.

We are now looking for this kind of repeats in
omplete genomes, we found several

interesting e.t.r. that are not inherited from approximate tandem repeats. We are

still in the pro
ess of studying the way it works, from the biologist viewpoint and we

are trying to �gure out their role, preferred lo
ation and number in di�erent genomes.

Sin
e
onsidering Hamming distan
e is somehow restri
tive, we are moving forward

by designing an algorithm that makes use of Levenshtein distan
e (whi
h allows indels

as well as substitution) instead of Hamming distan
e.

Referen
es

[1℄ G. Benson. An algorithm for �nding tandem repeats of unspe
i�ed pattern size.

In S. Istrail, P. Pevzner, and M. Waterman, editors, Pro
eedings of the 2nd An-

nual International Conferen
e on Computational Mole
ular Biology (RECOMB-

98), pages 20�29, New York, Mar.22�25 1998. ACM Press.

[2℄ G. Benson. Tandem repeats �nder: a program to analyze DNA sequen
es. Nu-

lei
 A
ids Res., 27(2):573�580, 1999.

[3℄ O. Elemento, O. Gas
uel, and M.-P. Lefran
. Re
onstru
ting the dupli
ation

history of tandemly repeated genes. Mole
ular Biology and Evolution, (19):278�

288, 2002.

87

Pro
eedings of the Prague Stringology Conferen
e '03

Fig. 12: HTML interfa
e

[4℄ D. Golstein and C. S
hlotterer. Mi
rosatellites: Evolution and Appli
ations.

Oxford University Press, 1999.

[5℄ R. Groult, M. Léonard, and L. Mou
hard. Evolutive tandem repeats using ham-

ming distan
e. In Pro
eedings of the 27th International Symposium on Mathe-

mati
al Foundations of Computer S
ien
e, pages 292�304, Warszawa - Otwo
k,

Poland, Aug. 2002. Le
ture Notes in Computer S
ien
e 2420, K. Diks, W. Rytter

(Eds.), Springer.

[6℄ A. Je�reys. Higly variable minisatellites and DNA �ngerprints. Bio
hem. So
.

Trans., 15:309�317, 1987.

[7℄ R. M. Kolpakov and G. Ku
herov. Finding maximal repetitions in a word in

linear time. In IEEE Symposium on Foundations of Computer S
ien
e, pages

596�604, 1999.

[8℄ R. M. Kolpakov and G. Ku
herov. Finding approximate repetitions under ham-

ming distan
e. In Pro
eedings of the 9th European Symposium on Algorithms

(ESA 2001), volume 2161 of Le
ture Notes in Computer S
ien
e, pages 170�181,

Aarhus, Denmark, 2001.

[9℄ S. Kurtz, E. Ohlebus
h, C. S
hleierma
her, J. Stoye, and R. G. Computation

and visualization of degenerate repeats in
omplete genome. In Pro
eedings of

the 8th International Conferen
e on Intelligent Systems for Mole
ular Biology,

pages 228�238, La Jolla, California, 2000. The AAAI Press.

[10℄ S. Kurtz and C. S
hleierma
her. Reputer - fast
omputation of maximal repeats

in
omplete genomes. Bioinformati
s, 15(5), 1999.

[11℄ A. Lefebvre and T. Le
roq. Computing repeated fa
tors with a fa
tor ora
le. In

L. Brankovi
 and J. Ryan, editors, Pro
eedings of the 11th Australasian Workshop

On Combinatorial Algorithms, pages 145�158, Hunter Valley, Australia, 2000.

88

A Linear Algorithm for the Dete
tion of Evolutive Tandem Repeats

[12℄ M. Sagot and E. W. Myers. Identifying satellites in nu
lei
 a
id sequen
es. In

S. Istrail, P. Pevzner, and M. Waterman, editors, Pro
eedings of the 2nd Annual

International Conferen
e on Computational Mole
ular Biology (RECOMB-98),

pages 234�242, New York, Mar.22�25 1998. ACM Press.

A An Example of e.t.r. O

urring in A. thaliana,

hr 4 (17Mb)

We found numerous e.t.r. in
hr 4 (17Mb) of A. thaliana, here is an example appearing

in an exon of the AT4G38590.1 gene.

./evorep -m11 -e3 -j1 -r4 -f ~/at4.fasta

->

- number of e.t.r.: 662

- time: 0m38.758s

Example of found e.t.r.

#==

Parameters: length=11, error=3, jmin=-1, jmax=1, rMin=4

Sequen
e: > at4.seq (17Mb)

Exe
ution time: 38 se
.

17245698 17245709 17245719 17245731 17245743 17245755 17245767

a
aagatgagaagaagaagaaagaagataaaga
gaagaggaagagga
gatgaagatgatgatgaagaagaag

[aagaag

17245698 a
aagatgaga

17245709 agaagaagaaa

17245719 agaagataaag

17245731
gaagaggaag

17245743 gga
gatgaag

17245755 tgatgatgaag

17245767 agaagaagaag

#==

We investigated this sequen
e using �tandem repeat �nder� [2℄ and �mreps� [7℄ and

obtained:

->

Tandem Repeat Finder:

Indi
es Period Copy Consensus Per
ent Per
ent S
ore A C G T Entropy(0-2)

Size Number Size Mat
hes Indels

No Repeats Found!

->

./mreps -err 3 -minp 2 -from 1 -exp 3.0

* Pro
essing window [1 : 80℄ *

from -> to : size <per.> [exp.℄ repetition

--

1 -> 18 : 18 <5> [3.60℄ a
aag atgag aagaa gaa

89

Pro
eedings of the Prague Stringology Conferen
e '03

5 -> 25 : 21 <6> [3.50℄ gatgag aagaag aagaaa gaa

8 -> 40 : 33 <4> [8.25℄ gaga agaa gaag aaag aaga taaa ga
g aaga g

10 -> 32 : 23 <7> [3.29℄ gaagaag aagaaag aagataa ag

11 -> 33 : 23 <5> [4.60℄ aagaa gaaga aagaa gataa aga

20 -> 80 : 61 <6> [10.17℄ aaagaa gataaa ga
gaa gaggaa gagga
 gatgaa

[gatgat gatgaa gaagaa gaagaa g

30 -> 80 : 51 <9> [5.67℄ aaga
gaag aggaagagg a
gatgaag atgatgatg

[aagaagaag aagaag

30 -> 80 : 51 <12> [4.25℄ aaga
gaagagg aagagga
gatg aagatgatgatg

[aagaagaagaag aag

36 -> 47 : 12 <4> [3.00℄ aaga ggaa gagg

60 -> 80 : 21 <4> [5.25℄ atga tgaa gaag aaga agaa g

--

RESULTS: There are 10 maximal repetitions in the segment pro
essed

90

Computing the Repetitions in a Weighted Sequen
e

Costas S. Iliopoulos

1

, Laurent Mou
hard

2

, Katerina Pedikuri

3;4

and

Athanasios K. Tsakalidis

3;4

1

Department of Computer S
ien
e, King's College London Strand,

London WC2R 2LS, England

e-mail:
si�d
s.k
l.a
.uk

2

ABISS, Atelier Biology, Informati
s, Statisti
s and So
iolinguisti
s,

Université de Rouen, 76821 Mont Saint Aignan Cedex, Fran
e

e-mail: Laurent.Mou
hard�univ-rouen.fr

3

Resear
h A
ademi
 Computer Te
hnology Institute,

61 Riga Feraiou Str., 26221 Patras, Gree
e

e-mail: tsak�
ti.gr

4

Department of Computer Engineering and Informati
s, University of Patras,

26500 Patras, Gree
e

e-mail: perdikur�
eid.upatras.gr

Abstra
t. We present an O(n log n) algorithm for
omputing the set of repe-

titions in a weighted sequen
e with probability of appearan
e larger than 1/k ,

where k is a given
onstant.

1 Introdu
tion

The key problem today in sequen
ing a large string of DNA is that only a small

amount of DNA
an be sequen
ed in a single read. That is, whether the sequen
ing is

done by a fully automated ma
hine or by a more manual method, the longest unbroken

DNA substring that
an be reliably determined in a single laboratory pro
edure is

about 300 to 1000 (approximately 500) bases long [Celera1, Celera2℄. A longer string

an be used in the pro
edure but only the initial 500 bases will be determined. Hen
e

to sequen
e long strings or an entire genome, the DNA must be divided into many

short strings that are individually sequen
ed and then used to assemble the sequen
e

of the full string. The
riti
al distin
tion between di�erent large-s
ale sequen
ing

methods is how the task of sequen
ing the full DNA is divided into manageable

subtasks, so that the original sequen
e
an be reassembled from sequen
es of length

500.

Reassembling DNA substrings introdu
es a degree of un
ertainty for various posi-

tions in a biosequen
e. This notion of un
ertainness was initially expressed with the

use of �don't
are�
hara
ters denoted as ���. A don't
are symbol has the property of

mat
hing with any symbol in the given alphabet. For example the string p = AC �C�

mat
hes the pattern q = A�DCT . In some
ases s
ientists determine the appearan
e

of a symbol in a position of a sequen
e by assigning a probability of appearan
e for

91

Pro
eedings of the Prague Stringology Conferen
e '03

every symbol. In other words a don't
are symbol is repla
ed by a list of probabilities

of appearan
e for a set of
hara
ters. Su
h a sequen
e is
alled a weighted sequen
e.

Other immediate appli
ations in mole
ular biology in
lude: using sequen
es
ontain-

ing degenerate bases, IUB
odes [IUB℄, where a letter
an repla
e several bases (for

example, a B will represent a G, T or C and a H will represent A, T or C); using logo

sequen
es [SS90℄ whi
h are more or less related to
onsensus: either from assembly

or from blo
ks obtained by a multiple alignment program.

In this paper we present an e�
ient algorithm for
omputing all possible repe-

titions of primitive words in a weighted sequen
e. The stru
ture of the paper is as

follows. In Se
tion 2 we give all the basi
 de�nitions used in the rest of the paper, in

Se
tion 3 we present our algorithm while in Se
tion 4 we give a brief time
omplexity

analysis of the proposed method. Finally in Se
tion 5 we
on
lude and dis
uss our

resear
h interest in open problems of the area.

2 Ba
kground

A lot of work has been done for identifying the repetitions in a word. In [Cro81℄,

[Apo83℄, [Mai84℄ and [Sto98℄, authors have presented e�
ient methods that �nd

o

urren
es of squares in a string of length n in time O(nlogn) plus the time to report

the dete
ted squares. Moreover in [Kol99a℄ and [Kol99b℄ authors presented e�
ient

algorithms to �nd maximal repetitions in a word. In the area of
omputational

biology, algorithms for �nding identi
al repetitions in biosequen
es are presented in

[Kur99℄, [Tsu99℄ and [Mar83℄. In this se
tion we will give all the basi
 de�nitions

used in the paper.

2.1 Basi
 De�nitions

Let � be a �nite alphabet whi
h
onsists of a set of
hara
ters (or symbols). The

ardinality of an alphabet denoted by j�j expresses the number of distin
t
hara
ters

in the alphabet. A string or word is a sequen
e of zero or more
hara
ters drawn

from an alphabet. The set of all words over the alphabet � is denoted by �

+

. A

word w of length n is represented by w[1::n℄ = w[1℄w[2℄ � � �w[n℄, where w[i℄ 2 � for

1 � i � n, and n = jwj is the length of w. The empty word is the empty sequen
e (of

zero length) and is denoted by "; we write �

�

= �

+

[f"g. Moreover a word is said

to be primitive if it
annot be written as v

e

with v 2 �

+

and e � 2.

A fa
tor f of length p is said to o

ur at position i in the word w if f = w[i; � � � i+

p� 1℄. In other words f is a substring of length p o

urring at position i in word w.

A word has a repetition when it has at least two
onse
utive equal fa
tors. More

pre
isely, a repetition in w is de�ned as a triple (i; p; e) so that w[i; � � � i+p�1℄=w[i+

p; � � � i+ 2 � p� 1℄ = � � � = w[i+ (e� 1) � p; � � � i+ e � p� 1℄. The integers p and e are

alled respe
tively the period and exponent of the repetition.

In the
ase that for a given position of a word w we
onsider the presen
e of a

set of
hara
ters with a given probability of appearan
e ea
h we de�ne the sense of a

weighted word w, de�ned as follow:

De�nition 1. A weighted word w = s

1

s

2

� � � s

n

is a
ontinuous set of
ouples

(s; �

i

(s)), where �

i

(s) is the probability of having the
hara
ter s at position i. For

every position 1 � i � n, ��

i

(s) = 1.

92

Computing the Repetitions in a Weighted Sequen
e

For example, if we
onsider the DNA alphabet � = fA;C;G; Tg the word w=

[(A,0.5),(C,0.25),(G,0.25),(T,0)℄ [(A,0),(C,1),(G,0),(T,0)℄ [(A,1),(C,0),(G,0),(T,0)℄,

represents a word having three letters: the �rst one is either A,C,G with respe
tive

probabilities 0.5, 0.25 and 0.25, the se
ond one is always a C, while the third letter

is ne
essarily an A, sin
e its probability of presen
e is 1. That means that in a given

biologi
al sequen
e one of the following words: ACA, CCA, GCA might appear with

probability 0.5, 0.25 and 0.25 ea
h. We observe that the probability of presen
e of

a word is the
umulative probability whi
h is
al
ulated by multiplying the relative

probabilities of appearan
e of ea
h
hara
ter in every position. For the above example

the probability of the word ACA to appear in positions 1 to 3
an be analyzed as

follows: �(ACA) = �

1

(A) ��

2

(C) ��

3

(A)=0.5*1*1=0.5. The de�nition of a weighted

fa
tor
an be easily extended.

A weighted sequen
e has a repetition when it has at least two identi
al o

urren
es

of a fa
tor (weighted or not). The probability of appearan
e of the fa
tor may vary

a

ording to the position it appears. In biologi
al problems s
ientists are interested in

dis
overing all the repetitions of all possible words having a probability of appearan
e

larger than a prede�ned
onstant.

2.2 Equivalent Classes of Repetitions

In our methodology, in order to re
ord the repetitions of all possible words we use

a list (L

p

)

p�1

of equivalent repetitions of length p on the positions of a weighted

sequen
e, de�ned as follows:

De�nition 2. Let x be a weighted sequen
e of length jxj=n; then (i; j) 2 L

p

i�

i+p � n, j+p � n and x

i

� � �x

i+p�1

= x

j

� � �x

j+p�1

, while �(x

i

� � �x

i+p�1

) � 1=k and

�(x

j

� � �x

j+p�1

) � 1=k :

So, two positions in x are equivalent when the fa
tors of x of length p starting at

i and j respe
tively are equal although the respe
tive probabilities of appearan
e
an

vary. The positions of appearan
e of the fa
tors as well as the respe
tive probabilities

are stored in a set of
lasses C

p

.

De�nition 3. Let x be a weighted sequen
e of length jxj=n; then the (C

p

f

)
lass

is the ordered list of at least 2
ouples (i

f

; �

i

(f)), whi
h in
ludes all positions of

appearan
e of the fa
tor f of length p in the weighted sequen
e. We ex
lude all
ouples

with probability less than 1/k .

Moreover we also de�ne a fun
tion on the positions of x, whi
h gives for every

position the next position in the same equivalen
e
lass.

De�nition 4. D

p

(i) = the least integer k > 0, so that (i; i+ k) 2 L

p

. (If there is

no su
h k the fun
tion is not de�ned).

One
an easily
he
k that any list L

p+1

is a re�nement of L

p

(L

p+1

� L

p

), sin
e

list L

p+1

ontains all possible repetitions of length p that
an be extended by one

hara
ter. Furthermore there
learly exists a smallest integer N, 1 � N � n, so that

L

1

� L

2

� � � � L

N

. Thus the
omputation of the equivalen
es L

p

an be done using

the values of L

p�1

, the respe
tive
lasses C

p�1

and a proper
hoi
efun
tion f .

De�nition 5. A
hoi
efun
tion f is a fun
tion

f : fC

0

1

; � � � ; C

0

k

g �! fC

1

; � � � ; C

k

g, with the properties: for any C

0

2 fC

0

1

; � � � ; C

0

k

g

[f(C

0

) � C

0

and for any C 2 fC

1

; � � � ; C

k

gC � C

0

=) jCj � jf(C

0

)j℄;

where fC

0

1

; � � � ; C

0

k

g and fC

1

; � � � ; C

k

g the equivalen
e
lasses of L

p�1

and L

p

re-

spe
tively .

93

Pro
eedings of the Prague Stringology Conferen
e '03

So f asso
iates to ea
h E

p�1

�
lass one of its E

p

� sub
lasses of maximal size.

Given a
hoi
e fun
tion f , ea
h L

p

lass f(C

0

) is
alled a big_
lass; the others are

alled small_
lasses. By de�nition, all the L

1

-
lasses are small.

Now we de�ne a new sequen
e (S

p

)

p�1

of equivalen
es on the positions of x as

follows:

De�nition 6. (i; j) 2 S

p

i� for any small
lass L

p

-
lass C

p

, i 2 C

p

i� j 2 C

p

.

Lemma. For any p � 1 , (i; j) 2 L

p+1

i� (i; j) 2 L

p

and (i+ 1; j + 1) 2 S

p

.

For more information on the proof of the Lemma the reader
an refer to [Cro81℄.

3 Computing the Repetitions

In this paper we address the problem of
omputing the set of repetitions in a weighted

biologi
al sequen
e. More formally the problem
an be stated as follows:

Problem Given a weighted sequen
e X and an integer k �nd all the repetitions

of all possible words having a probability of appearan
e larger than 1/k .

0.5
 0
 1
 1
0.5
 0
A

T

G

C

0
0
0
0
0
0

0
0
0.25
0
0
0.25

0
1
0.25
0
1
0.25

Figure 1: Graphi
al approa
h of the problem.

In a graphi
al approa
h the problem
an be represented as in the Figure 1. For

ea
h position of the weighted sequen
e we write down the probability of appearan
e

of ea
h
hara
ter of the alphabet. For the DNA alphabet whi
h
onstitutes of 4

hara
ters we write down 4 respe
tive probabilities. The probability of appearan
e

of a word is the
umulative probability
al
ulated following the respe
tive dire
ted

path.When the probability is larger than 1/k , the dire
ted path is a s
hema that
an

be extended by one
hara
ter, in the following step and graphi
ally we sear
h for

a repeated s
hema. In the above Figure the red dire
ted path has a probability of

appearan
e larger than 1/2 , (k=2) thus we sear
h for su
h repeated s
hemas.

Solution. For every
hara
ter s in the alphabet we de�ne a
lass C

1

as the

ordered list of
ouples (i

s

; �

i

(s)), whi
h in
ludes all equivalent positions of appearan
e

of the
hara
ter s in the weighted sequen
e. We ex
lude all
ouples with probability

less than 1/k. The set of C

1

lasses forms the L

1

list for all possible repetitions of

length one. We
ontinue by
omputing D

1

for ea
h position in the sequen
e.All L

1

-

lasses are small. The pro
ess is
ontinued by
omputing all C

p

lasses for p � 2

94

Computing the Repetitions in a Weighted Sequen
e

and updating L

p

thus forming D

p

. The pro
ess stops when we rea
h the maximal (in

length) repeated words with probability of appearan
e larger than 1/k .

The above solution uses ideas from the algorithm presented by Cro
hemore (see

[Cro81℄). The major di�eren
e is the
hoi
e fun
tion that we have used in order to

in
orporate the notion of probability of appearan
e in repetitions. A s
hema of the

algorithm is presented below.

FIND-WEIGHTED REPETITIONS(X,k)

Compute all possible repetitions of any length with probability larger than 1/k

FOR all s 2 � DO

reate the small
lasses C

1

of
ouples (s; �

i

(s)),

where �

i

(s) is the probability of having the
hara
ter s at position i.

IF �

i

(s) � 1=k ex
lude it from the respe
tive
lass

Compute for p = 1 L

p

and D

p

;

WHILE

S

small_
lasses 6= 0, DO

report the repetitions of period p.

p � p+ 1; if p > jxj=2 return repetitions;

L

p

 � L

p

\ S

p

; update D

p

;

small_
lasses � {indi
es of small L

p

�
lassesg

END FIND-WEIGHTED REPETITIONS

Example Suppose we want to �nd all repetitions of the weighted sequen
e: X=

ACTT[(A,0.5),(C,0.5)℄TC[(A,0.5),(C,0.3),(T,0.2)℄TTT, with probability larger than

1/4. We will illustrate the steps following the above presented algorithm.

1. For all
hara
ters s 2 �

DNA

= fA;C;G; Tg
reate the C

1

lasses.

C

1

A

= (1

A

; 1)(5

A

; 0:5)(8

A

; 0:5):

C

1

C

= (2

C

; 1)(5

C

; 0:5)(7

C

; 1)(8

C

; 0:3):

C

1

G

= empty:

C

1

T

= (3

T

; 1)(4

T

; 1)(6

T

; 1)(9

T

; 1)(10

T

; 1)(11

T

; 1):

2. De�ne L

1

lass as the union of C

1

lasses and the values D

1

.

L

1

= C

1

A

[C

1

C

[C

1

T

.

D

1

= f1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g.

3. Sin
e

S

small_
lasses 6= 0 we will
ompute all possible repetitions of length

p � 2, using the lemma we presented in subse
tion 2.2.

C

2

AT

= (5

AT

; 0:5)(8

AT

; 0:5):

C

2

CT

= (2

CT

; 1)(5

CT

; 0:5)(8

CT

; 0:3):

C

2

TC

= (4

TC

; 0:5)(6

TC

; 1):

C

2

TT

= (3

TT

; 1)(9

TT

; 1)(10

TT

; 1):

4. De�ne L

2

lass as the union of C

2

lasses and the values D

2

.

L

2

= C

2

AT

[C

2

CT

[C

2

TC

[C

2

TT

.

D

2

= {not de�ned, 1, 1, 1, 1, 2, not de�ned, 1, 1, not de�ned, not de�ned}.

5. Following the above pro
edure we
on
lude that the repetitions with probability

larger than 1/k are:.

L

3

= C

3

CTT

= (2

CTT

; 1)(8

CTT

; 0:3)

95

Pro
eedings of the Prague Stringology Conferen
e '03

Theorem The above algorithm
omputes all repetitions in a weighted sequen
e

X of length jnj.

Proof. It is easy to see that the algorithm stops. The length of L

1

in the algorithm

is bounded by O(j�j

jXj

). As far as it
on
erns the values of the list L

p

for p � 2, are

omputed using the Lemma in subse
tion 2.2 and the values of L

p�1

list. Ea
h list of

repetitions p+ 1 is at most half the size of the list of repetitions of length p.

4 Time Complexity Analysis

The time
omplexity analysis of our algorithm is based on the
ombination of the

following two fa
ts:

1. The well known �smaller-half tri
k� used also in [Cro81℄, [Apo83℄, [Sto98℄,

for �nding tandem repeats. A

ording to the �smaller-half tri
k� ea
h list of

repetitions of length p + 1 is at most half the size of the list of repetitions of

length p.

2. The probability of existen
e of a fa
tor f in a weighted sequen
e X is the
umu-

lative probability whi
h is
al
ulated by multiplying the relative probabilities

of appearan
e of ea
h
hara
ter/symbol in every position. Note that we inter-

ested in repetitions with probability greater than 1=k. It is not di�
ult to see

that given a position i of x, then there is only a
onstant number of di�erent

substrings that
an o

ur at position i with probability greater than 1=k. (The

proof follows).

For every weighted sequen
e w of length n, w[1::n℄ = w[1℄w[2℄ � � �w[n℄, ea
h

position w[i℄ for 1 � i � n, is the starting position of a weighted fa
tor i� the

respe
tive
hara
ter s has �(s

i

) � 1=k . Therefore the maximum probability of

appearan
e for the rest of the
hara
ters in position i is bounded by p = 1�1=k .

Assume that the number of starting positions inside a weighted fa
tor, produ
ed

from position i is l. In order this fa
tor to be interesting its probability of

appearan
e must be grater than 1=k . This is mathemati
ally formulated as

follows:

p

l

� 1=k �! l � log

p

(k).

That means that the number of weighted positions inside a weighted fa
tor is

bounded by a
onstant and thus the number of di�erent substrings that
an

o

ur at position i with probability greater than 1=k is also a
onstant number.

Based on the above two fa
ts the time
omplexity of our algorithm for
omputing

the set of repetitions in a weighted sequen
e with probability of appearan
e larger

than 1/k is O(n logn).

5 Con
lusions

Our future dire
tion is fo
used on de�ning the notion of borders for a weighted se-

quen
e and developing e�
ient algorithms for
omputing the
overs and the seeds of

weighted sequen
es.

96

Computing the Repetitions in a Weighted Sequen
e

Moreover we are studying the same problem using the su�x tree as the fundamen-

tal data stru
ture. The basi
 idea behind this approa
h is to in
orporate the notion

of probability of appearan
e in the path labels and in the leaves in the su�x tree of

a weighted sequen
e [Ili03℄.

Another potential appli
ation of our algorithm is in de�ning a basis for the re-

peated motifs of a weighted sequen
e. In our algorithm we
reate in an exhaustive

way all possible repetitions with probability larger than 1/k . We
an use all primitive

repetitions and a set of allowed operations in order to de�ne a basis that e�
iently

produ
es all repeated motifs. As any repeated word
an be expressed as an array of

primitive repetitions, it is often desirable to �nd only primitive repetitions.

Referen
es

[Cro81℄ Cro
hemore, M.: An Optimal Algorithm for Computing the Repetitions in

a Word. Information Pro
essing Letters, Vol.12 (5), (1981) 244-250.

[Celera1℄ Celera Genomi
s: The Genome Sequen
e of Drosophila melanogaster, S
i-

en
e 287, (2000) 2185-2195

[Celera2℄ Celera Genomi
s: The Sequen
e of the Human Genome, S
ien
e 291, (2001)

1304-1351.

[IUB℄ Nomen
lature Committee of the International Union of Bio
hemistry (NC-

IUB). Nomen
lature for in
ompletely spe
i�ed bases in nu
lei
 a
id se-

quen
es, Eur. J. Bio
hem. 150(1985) 1-5.

[SS90℄ S
hneider T. D., Stephens R. M.: Sequen
e Logos: A New Way to Display

Consensus Sequen
es, Nu
lei
 A
ids Res. 18, (1990) 6097-6100.

[Knu77℄ Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern mat
hing in strings,

SIAM J. Comput., (6), (1977) 322-350.

[Apo83℄ Apostoli
o, A., Preparata, F.P.,: Optimal o�-line dete
tion of repetitions

in a string. Theoreti
al Computer S
ien
e, (22), (1983) 297-315.

[Mai84℄ Main, M.G., Lorentz, R.J.,: An O(nlogn) algorithm for �nding all repeti-

tions in a string. Journal of Algorithms, (5), (1984) 422-432.

[Sto98℄ Stoye, J., Gus�eld, D.,: Simple and �exible dete
tion of
ontiguous re-

peats using a su�x tree. In pro
eedings of the 9th Annual Symposium on

Combinatorial Pattern mat
hing (CPM), volume 1448 of Le
ture Notes in

Computer S
ien
e, (1998) 140-152.

[Kol99a℄ Kolpakov, R., Ku
herov, G.,: Finding maximal repetitions in a word in

linear time. Pro
eedings of IEEE Foundations of Computer S
ien
e, (1999).

[Kol99b℄ Kolpakov, R., Ku
herov, G.,: On maximal repetitions in words. Pro
eedings

of Foundamentals of Computation Theory, (1999) 374-385.

[Mar83℄ Martinez, H.,: An E�
ient Method for Finding Repeats in Mole
ular Se-

quen
es. Nu
lei
 A
id Resear
h, (11), (1983) 4626-4634.

97

Pro
eedings of the Prague Stringology Conferen
e '03

[Tsu99℄ Tsunoda, T., Fukagawa, M., Takagi, T.,: Time and memory e�
ient algo-

rithm for extra
ting palindromi
 and repetitive subsequen
es in nu
lei
 a
id

sequen
es. Pa
i�
 Symposium on Bio
omputing, (4), (1999) 202-213.

[Kur99℄ Kurtz, S., S
hleierma
her, C.,: REPuter: fast
omputation of maximal

repetas in
omplete genomes. Bioinformati
s, (15), (1999) 426-427.

[Ili03℄ Iliopoulos, C., Makris, Ch., Panagis, I., Perdikuri, K., Theodoridis, E.,

Tsakalidis, A.,: Computing the Repetitions in a Weighted Sequen
e using

Weighted Su�x Trees. European Conferen
e On Computational Biology

(ECCB 2003), (a

epted).

98

Mat
hing Numeri
 Strings under Noise

Veli Mäkinen

1�

, Gonzalo Navarro

2y

, and Esko Ukkonen

1�

1

Department of Computer S
ien
e, P.O Box 26 (Teollisuuskatu 23)

FIN-00014 University of Helsinki, Finland.

e-mail: {vmakinen,ukkonen}�
s.helsinki.fi

2

Center for Web Resear
h, Department of Computer S
ien
e, University of Chile

Blan
o En
alada 2120, Santiago, Chile.

e-mail: gnavarro�d

.u
hile.
l

Abstra
t. Numeri
 string is a sequen
e of symbols from an alphabet � �

U, where U is some numeri
al universe
losed under addition and subtra
tion.

Given two numeri
 strings A = a

1

� � � a

m

and B = b

1

� � � b

n

and a distan
e

fun
tion d(A;B) that gives the s
ore of the best (partial) mat
hing of A and

B, the transposition invariant distan
e is min

t2U

fd(A + t; B)g, where A + t =

(a

1

+ t)(a

2

+ t) : : : (a

m

+ t). The
orresponding mat
hing problem is to �nd

o

urren
es j ofA inB where d(A+t; B

j

0

:::j

) is smaller than some given threshold

and B

j

0

:::j

is a substring of B. In this paper, we give e�
ient algorithms for

mat
hing numeri
 strings � with and without transposition invarian
e � under

noise; we
onsider distan
e fun
tions d(A;B) su
h that symbols a 2 A and b 2 B

an be mat
hed if jb�aj � Æ, or the � largest di�eren
es jb�aj
an be dis
arded.

Keywords: approximate mat
hing, transposition invarian
e, (Æ;
)�mat
hing

1 Introdu
tion

Transposition invariant string mat
hing is the problem of mat
hing two strings when

all the
hara
ters of either of them
an be �shifted� by some amount t. By �shifting�

we mean that the strings are sequen
es of numbers and we add number t to ea
h

hara
ter of one of them.

Interest in transposition invariant string mat
hing problems has re
ently arisen in

the �eld of musi
 information retrieval (MIR) [CIR98, LT00, LU00℄. In musi
 analysis

and retrieval, one often wants to
ompare two musi
 pie
es to test how similar they

are. A reasonable way of modeling musi
 is to
onsider the pit
hes and durations

of the notes. Often the durations are omitted, too, sin
e it is usually possible to

re
ognize the melody from a sequen
e of pit
hes. Hen
e, our fo
us is on distan
e

measures for pit
h sequen
es (of monophoni
 musi
) and their
omputation.

We studied the
omputation of edit distan
es under transposition invarian
e in

[MNU03℄. We noti
ed that sparse dynami
 programming is useful in transposition

�

Supported by the A
ademy of Finland under grant 22584.

y

Supported by Millenium Nu
leus Center for Web Resear
h, Grant P01-029-F, Mideplan, Chile.

99

Pro
eedings of the Prague Stringology Conferen
e '03

invariant mat
hing, and obtained e.g. an O(mn log logm) algorithm for transposition

invariant longest
ommon subsequen
e problem.

In this paper, we
omplement our earlier results by studying �non-gapped� distan
e

measures for numeri
 strings. That is, we study measures where the ith symbol of

the sour
e is mat
hed with the ith symbol of the target. To allow some noise in the

values to be
ompared, we study measures that either allow mat
hing symbols that

approximately mat
h (i.e. values are within Æ distan
e apart), or allow dis
arding some

amount (�) of largest di�eren
es. We show how to
ompute the transposition invariant

Hamming distan
e under noise inO(m logm) time, and transposition invariant sum of

absolute di�eren
es (SAD) and maximum absolute di�eren
e (MAD) distan
es under

noise in O(m+ � log�) time, where m is the length of both strings to be
ompared.

For the
orresponding sear
h problems we only give the trivial algorithm that

repeats the distan
e
omputation at ea
h of the n text positions. However, the upper

bound obtained this way for SAD distan
e is in fa
t the same as what is known without

transposition invarian
e (see [Mut95℄, �weighted k�mismat
hes problem�). We also

onsider the
ombined sear
h problem with SAD and MAD distan
es, known as the

(Æ;
)�mat
hing problem; we give an O(mn) algorithm for the transposition invariant

ase of this problem. Again the best known upper bound for (Æ;
)�mat
hing without

transpositions is O(mn) (be
ause of the SAD distan
e).

In addition to the distan
e-spe
i�
 results we introdu
e a more general approa
h to

ta
kle with noise; many distan
e measures that allow mat
hing two
hara
ters a and b

for free when jb�aj � Æ
an be
omputed easily on
e the set of possible mat
hes jM

Æ

j =

jM

Æ

j(A;B) = f(i; j) j jb

j

� a

i

j � Æ; a

i

2 A; b

j

2 Bg has been
omputed. We show

how to
onstru
t this set in O(m log j�j + n log j�j + jM

Æ

jmin(log(Æ + 2); log logm))

time, where � is the alphabet of the two strings to be
ompared. After the set M

Æ

is

onstru
ted, Hamming and MAD distan
es and (Æ;
)�mat
hing under noise
an be

omputed in time linear in the size of the set.

In the transposition invariant
ase, the
onstru
tion of the sets of possible mat
hes

for all relevant transpositions is useful as well (e.g. for edit distan
e under noise). We

show how to do this in linear time in the overall size of these sets (plus some additive

fa
tors of m,n, and log j�j).

Some of the results of this paper appear in a te
hni
al report [MNU02℄.

2 De�nitions

Let � be a �nite numeri
al alphabet, whi
h is a subset of some universe U that is

losed under addition and subtra
tion. Let A = a

1

a

2

: : : a

m

and B = b

1

b

2

: : : b

n

be

two numeri
 strings over �

�

, i.e. the symbols (
hara
ters) a

i

; b

j

of the two strings

are in � for all 1 � i � m; 1 � j � n. We will assume w.l.o.g. that m � n. String

A

0

is a substring of A if A

0

= A

i:::j

= a

i

: : : a

j

for some 1 � i � j � m. String A

00

is a subsequen
e of A, denoted by A

00

v A, if A

00

= a

i

1

a

i

2

: : : a

i

jA

00

j

for some indexes

1 � i

1

< i

2

< � � � < i

jA

00

j

� m.

When m = n, the following distan
es
an be de�ned. The Hamming distan
e

d

H

between strings A and B is d

H

(A;B) = m � jf(i; i) j a

i

= b

i

; 1 � i � mgj.

The maximum absolute di�eren
e distan
e d

MAD

between A and B is d

MAD

(A;B) =

max

1�i�m

fja

i

� b

i

j j 1 � i � mg. The sum of absolute di�eren
es distan
e d

SAD

between A and B is d

SAD

(A;B) =

P

m

i=1

ja

i

� b

i

j. Note that d

MAD

is in fa
t the

100

Mat
hing Numeri
 Strings under Noise

maximum metri
 (l

1

norm) and d

SAD

the Manhattan metri
 (l

1

norm) when we

interprete A and B as points in m dimensional Eu
lidean spa
e.

String A is a transposed
opy of B (denoted by A =

t

B) if B = (a

1

+ t)(a

2

+

t) � � � (a

m

+ t) = A + t for some t 2 U. The transposition invariant versions of

the above distan
e measures d

�

where � 2 fH;MAD; SADg
an now be stated as

d

t

�

(A;B) = min

t2U

d

�

(A+ t; B).

So far our de�nitions allow either only exa
t (transposition invariant) mat
hes

between some
hara
ters (d

t

H

) or approximate mat
h between all
hara
ters (d

t

MAD

and d

t

SAD

). To relax these
onditions, we introdu
e a
onstant Æ > 0. We write a =

Æ

b

when ja � bj � Æ, a; b 2 �. By repla
ing the equality a = b with a =

Æ

b in the

de�nition of d

t

H

, we get a more error-tolerant version of the distan
e; let us denote

the new distan
e d

t;Æ

H

. Similarly, by introdu
ing another
onstant � > 0, we
an de�ne

distan
es d

t;�

MAD

; d

t;�

SAD

su
h that the � largest di�eren
es ja

i

� b

i

j are dis
arded.

The approximate string mat
hing problem, based on the above distan
e fun
tions,

is to �nd the minimum distan
e between A and any substring of B. In this
ase we

all A the pattern and denote it P

1:::m

= p

1

p

2

� � �p

m

, and
all B the text and denote

it T

1:::n

= t

1

t

2

� � � t

n

, and usually assume that m << n. A
losely related problem is

the thresholded sear
h problem where, given P , T , and a threshold value k � 0, one

wants to �nd all the text positions j su
h that d(P; T

j

0

:::j

) � k for some j

0

. We will

refer
olle
tively to these two
losely related problems as the sear
h problem.

Noti
e that sear
hing under Hamming distan
e is known as the k�mismat
hes

problem [Abr87, ALP01, BYG94, BYP96, GG86, LB86℄. Also, a sear
h prob-

lem related to distan
es d

MAD

and d

SAD

is known as the (Æ;
)�mat
hing problem

[CCIMP99, CILP01, CILPR02℄ in whi
h o

urren
es j are sear
hed for su
h that

d

MAD

(P; T

j

0

:::j

) � Æ and d

SAD

(P; T

j

0

:::j

) �
.

Our
omplexity results are di�erent depending on the form of the alphabet �. We

will distinguish two
ases. An integer alphabet is any alphabet � � Z. For integer

alphabets, j�j will denote max(�) � min(�) + 1. A real alphabet will be any other

� � R, and then j�j denotes the
ardinality of �. For any string A = a

1

: : : a

m

, we

will
all �

A

= fa

i

j 1 � i � mg the alphabet of A.

Last, we will need some orders for a set of pairs P = f(i; j)g, where a

i

2 A and

b

j

2 B. The row order of P is su
h that P is sorted �rst by i (in in
reasing order)

and se
ondary by j (in in
reasing order). In
olumn order P is sorted �rst by j and

se
ondary by i. In diagonal order P is sorted �rst by j � i and se
ondary by i.

3 Mat
hing under Noise without Transposition In-

varian
e

We will now present a general and e�
ient method that
an be used with little

modi�
ations for solving both the k�mismat
hes problem and the (Æ;
)�mat
hing

problem. The time
omplexities will depend on the number of possible mat
hes

between pattern and text
hara
ters. A similar approa
h will also be used later in

the transposition invariant
ase.

Let M

Æ

(P; T) = M

Æ

= f(i; j) j jp

i

� t

j

j � Æg be the set of possible mat
hes. Let

us assume that we are given M

Æ

in diagonal order. By one traversal over M

Æ

one
an

101

Pro
eedings of the Prague Stringology Conferen
e '03

easily
ompute values S(d) and N(d) for ea
h diagonal d, where S(d) =

P

fjp

i

� t

j

j j

(i; j) 2 M

Æ

; j � i = dg and N(d) = jf(i; j) j (i; j) 2 M

Æ

; d = j � igj.

Given the arrays S(0 : : : n�m) and N(0 : : : n�m), one
an solve various problems.

For example, all values d su
h that S(d) �
 and N(d) = m,
orrespond to a (Æ;
)�

mat
h starting at position d + 1 of the text. Similarly, if N(d) � m � k when

omputed for M

0

, then there is an o

urren
e starting at position d + 1 of the text

for the k�mismat
hes problem.

Thus we have an O(jM

Æ

j + n) algorithm for several problems, if we just manage

to
onstru
t M

Æ

in linear time in its size.

Theorem 1 Given numeri
 strings P (pattern) and T (text) of lengths m and n

(m << n), the set of possible mat
hes M

Æ

(P; T) = f(i; j) j jp

i

� t

j

j � Æg
an be

onstru
ted in time O(j�j + m + n + jM

Æ

jmin(log(Æ + 2); log logm)) on an integer

alphabet, and in time O(m log j�j+n log j�j+jM

Æ

jmin(log(Æ+2); log logm)) on a real

alphabet. Within the same bounds, the set M

Æ

an be
onstru
ted in row,
olumn,

or diagonal order.

Proof. Let us �rst
onsider the integer alphabet with Æ = 0. We
onstru
t an array

L(1 : : : j�j), where ea
h entry L(
) stores an in
reasing list of all positions of P , where

hara
ter
 o

urs. Array L
an obviously be
onstru
ted by one traversal over P

in O(j�j + m) time. The set M

0

an then be
onstru
ted in
olumn order in one

traversal over T by
on
atenating lists L(t

1

); L(t

2

); : : : L(t

n

). The running time is

O(m+ n+ j�j+ jM

0

j).

For Æ > 0, we
onstru
t the array L as above but the traversal over T is now

more
ompli
ated. To
onstru
t the
olumn j of M

Æ

we need to merge the 2Æ+1 lists

L(t

j

� Æ); : : : ; L(t

j

+ Æ) into a single list. This merging
an be done using a priority

queue P as follows. Add the �rst element, say i, of ea
h list L(
) into P by using i

as the priority and
 as the key. Then repeat the following until all lists are empty:

Take the element with minimum priority, say (i;
), from P, and add the next element

from list L(
) into P. Column j of M

Æ

is
onstru
ted by inserting pair (i; j) at the

end of M

Æ

at ea
h step. The operations on a priority queue
an be supported in

O(log(Æ + 2)) time by using some standard implementation.

Sin
e the priority values that need to be stored are in the range [1; m℄, we
an

implement the priority queue more e�
iently using a data stru
ture of van Emde

Boas [vEB77℄. It supports, among other operations, retrieving the smallest value,

inserting a new value, and deleting the smallest value, in O(log logm) amortized time

on values in the range [1; m℄. We
an store the values i using this data stru
ture.

Then we
an repeat retrieving and deleting the smallest value i until the stru
ture is

empty, adding (i; j) at the end of M

Æ

at ea
h step. Thus the
laimed bound on the

integer alphabet follows.

When the alphabet is real, we
an use exa
tly the same pro
edure, expe
t that

the array L needs to be repla
ed by a binary sear
h tree. It takes O(m log j�j) time

to
onstru
t this sear
h tree. For ea
h
hara
ter of T we need to do a range query

on this tree to retrieve the lists of positions that
orrespond to
hara
ters in range

[t

j

� Æ; t

j

+ Æ℄. This will take O(n log j�j) time. Merging
an be done similarly as in

the
ase of an integer alphabet, so the
laimed bound follows.

Finally, the set is in
olumn order after the above
onstru
tion. Other orders
an

be
onstru
ted easily from the
olumn order in time O(m+ n+ jM

Æ

j). �

102

Mat
hing Numeri
 Strings under Noise

The above theorem gives e.g. an O(j�j + m + n + jM

0

j) time solution for the

k�mismat
hes problem on an integer alphabet. This
an be �(mn), but in the ex-

pe
ted
ase it is mu
h smaller. An expe
ted bound �(mn=j�j) is easy to prove; see

e.g. [BYP96℄, where the above algorithmwas originally proposed for the k�mismat
hes

problem.

4 Mat
hing under Noise and Transposition Invari-

an
e

For this se
tion, let T = ft

i

= b

i

� a

i

j 1 � i � mg = ft

i

g be the set of transpositions

that make some
hara
ters a

i

and b

i

mat
h. Note that the optimal transposition does

not need, in prin
iple, to be in
luded in T, but we will show that this is the
ase for

d

t

H

and d

t;�

SAD

. Note also that jTj = O(j�j) on an integer alphabet and jTj = O(m) in

any
ase.

4.1 Hamming Distan
e

Let A = a

1

: : : a

m

and B = b

1

: : : b

m

, where a

i

; b

i

2 � for 1 � i � m. We
onsider

the
omputation of transposition invariant Hamming distan
e d

t;Æ

H

(A;B). That is, we

sear
h for a transposition tmaximizing the size of set fi j jb

i

�(a

i

+t)j � Æ; 1 � i � mg.

Theorem 2 Given two numeri
 strings A and B, both of length m, there is an

algorithm for
omputing distan
e d

t;Æ

H

(A;B) inO(j�j+m) time on an integer alphabet,

or in O(m logm) time on a general alphabet.

Proof. It is
lear that the Hamming distan
e is minimized for the transposition in T

that makes the maximum number of
hara
ters mat
h. What follows is a simple voting

s
heme, where the most voted transposition wins. Sin
e we allow a toleran
e Æ in the

mat
hed values, t

i

votes for range [t

i

� Æ; t

i

+ Æ℄. Constru
t sets S = f(t

i

� Æ; �open�) j

1 � i � mg and E = f(t

i

+ Æ; �
lose�) j 1 � i � mg. Sort S [E into a list I using

order

(x

0

; y

0

) <

H

(x; y) if x

0

< x or (x

0

= x and y

0

< y);

where �open�<�
lose�. Initialize variable
ount = 0. Do for i = 1 to jIj if I(i) =

(x; �open�) then
ount =
ount+1 else
ount =
ount�1. Letmax
ount be the largest

value of
ount in the above algorithm. Then
learly d

t;Æ

H

(A;B) = m�max
ount, and

the optimal transposition is any value in the range [x

i

; x

i+1

℄, where I(i) = (x

i

; �), for

any i where max
ount is rea
hed. The
omplexity of the algorithm is O(m logm).

Sorting
an be repla
ed by array lookup when � is an integer alphabet, whi
h gives

the bound O(j�j+m) for that
ase. �

4.2 Sum of Absolute Di�eren
es Distan
e

We shall �rst look at the basi

ase where � = 0. That is, we sear
h for a transposition

t minimizing d

SAD

(A+ t; B) =

P

m

i=1

jb

i

� (a

i

+ t)j.

103

Pro
eedings of the Prague Stringology Conferen
e '03

Theorem 3 Given two numeri
 strings A and B, both of length m, there is an algo-

rithm for
omputing distan
e d

t

SAD

(A;B) in O(m) time on both integer and general

alphabets.

Proof. Let us
onsider T as a multiset, where the same element
an repeat multiple

times. Then jTj = m, sin
e there is one element in T for ea
h b

i

�a

i

, where 1 � i � m.

Sorting T in as
ending order gives a sequen
e t

i

1

� t

i

2

� : : : � t

i

m

. Let t

opt

be the

optimal transposition. We will prove by indu
tion that t

opt

= t

i

bm=2
+1

, that is, the

optimal transposition is the median transposition in T.

To start the indu
tion we
laim that t

i

1

� t

opt

� t

i

m

. To see this, noti
e that

d

SAD

(A+(t

i

1

� �); B) = d

SAD

(A+ t

i

1

; B)+m�, and d

SAD

(A+(t

i

m

+ �); B) = d

SAD

(A+

t

i

m

; B) +m�, for any � � 0.

Our indu
tion assumption is that t

i

k

� t

opt

� t

i

m�k+1

for some k. We

may assume that t

i

k+1

� t

i

m�k

, sin
e otherwise the result follows anyway. First

noti
e that, independently of the value of t

opt

in the above interval, the
ost

P

k

l=1

jb

i

l

� (a

i

l

+ t

opt

)j +

P

m

l=m�k+1

jb

i

l

� (a

i

l

+ t

opt

)j will be the same. Then no-

ti
e that

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

k+1

� �)j =

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

k+1

)j+ (m � 2k)�, and

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

m�k

+ �)j =

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

m�k

)j+(m�2k)�. This
ompletes

the indu
tion, sin
e we showed that t

i

k+1

� t

opt

� t

i

m�k

.

The
onsequen
e is that t

i

k

� t

opt

� t

i

m�k+1

for maximal k su
h that t

i

k

� t

i

m�k+1

,

that is, k = dm=2e. Whenm is odd, it holdsm�k+1 = k and there is only one optimal

transposition, t

i

dm=2e

. When m is even, one easily noti
es that all transpositions t

opt

,

t

i

m=2

� t

opt

� t

i

m=2+1

, are equally good. Finally, the median
an be found in linear

time [BFPRT72℄. �

To get a fast algorithm for d

t;�

SAD

when � > 0 largest di�eren
es
an be dis
arded,

we need a lemma that shows that the distan
e
omputation
an be in
rementalized

from one transposition to another. Let t

i

1

; t

i

2

; : : : ; t

i

m

be the sorted sequen
e of T.

Lemma 4 On
e values S

j

and L

j

su
h that d

SAD

(A + t

i

j

; B) = S

j

+ L

j

, S

j

=

P

j�1

j

0

=1

t

i

j

� t

i

j

0

, and L

j

=

P

m

j

0

=j+1

t

i

j

0

� t

i

j

, are
omputed, the values of S

j+1

and

L

j+1

an be
omputed in O(1) time.

Proof. Value S

j+1

an be written as

S

j+1

=

j

X

j

0

=1

t

i

j+1

� t

i

j

0

=

j

X

j

0

=1

t

i

j+1

� t

i

j

+ t

i

j

� t

i

j

0

= j(t

i

j+1

� t

i

j

) + S

j

:

Similar rearranging gives

L

j+1

=

m

X

j

0

=j+2

t

i

j

0

� t

i

j+1

= (m� j)(t

i

j

� t

i

j+1

) + L

j

:

Thus both values
an be
omputed in
onstant time given the values of S

j

and L

j

(and t

i

j+1

). �

Theorem 5 Given two numeri
 strings A and B both of length m, there is an algo-

rithm for
omputing distan
e d

t;�

SAD

(A;B) in O(m+ � log �) time on both integer and

general alphabets. On integer alphabets, time O(j�j+m+ �)
an also be obtained.

104

Mat
hing Numeri
 Strings under Noise

Proof. Consider the sorted sequen
e t

i

1

; t

i

2

; : : : ; t

i

m

as in the proof of Theorem 3.

Clearly the
andidates for the � outliers (largest di�eren
es) are M(k

0

; k

00

) =

ft

i

1

; : : : ; t

i

k

0

; t

i

m�k

00

+1

; : : : t

i

m

g for some k

0

+ k

00

= �. The naive algorithm is then to

ompute the distan
e in all these �+1
ases: Compute the median of TnM(k

0

; k

00

) for

ea
h k

0

+ k

00

= � and
hoose the minimum distan
e indu
ed by these medians. These

� + 1 medians
an be found as follows: First sele
t values t

�+1

and t

m��

using the

linear time sele
tion algorithm [BFPRT72℄. Then
olle
t and sort all values smaller

than t

�+1

or larger than t

m��

. After sele
ting the median m

0;�

of T nM(0; �) and

m

�;0

of TnM(�; 0), one
an
olle
t all medians m

k

0

;k

00

of TnM(k

0

; k

00

) for k

0

+k

00

= �,

sin
e the m

k

0

;k

00

values are those between m

0;�

and m

�;0

. The �+1 medians
an thus

be
olle
ted and sorted in O(m + � log �) time, and the additional time to
ompute

the distan
es for all of these � + 1 medians is O(�m). However, the
omputation of

distan
es given by
onse
utive transpositions
an be in
rementalized using Lemma 4.

First one has to
ompute the distan
e for the median of TnM(0; �), d

SAD

(A+m

0;�

; B),

and then
ontinue in
rementally from d

SAD

(A+m

k

0

;k

00

; B) to d

SAD

(A+m

k

0

+1;k

00

�1

; B),

until we rea
h the median of T nM(�; 0), d

SAD

(A +m

�;0

; B) (this is where we need

the medians sorted). Sin
e the set of outliers
hanges when moving from one median

to another, one has to add value t

i

k

0

� t

i

m

to S

m

and value t

i

m

� t

i

k

00

to L

m

, where

S

m

and L

m

are the values given by Lemma 4 (here we need the outliers sorted). The

time
omplexity of the whole algorithm is O(m + � log�). On an integer alphabet,

sorting
an be repla
ed by array lookup to yield O(j�j+m+ �). �

4.3 Maximum Absolute Di�eren
e Distan
e

We
onsider now how d

t;�

MAD

an be
omputed. In
ase � = 0, we sear
h for a trans-

position t minimizing d

MAD

(A + t; B) = max

m

i=1

jb

i

� (a

i

+ t)j. In
ase � > 0, we are

allowed to dis
ard the k largest di�eren
es jb

i

� (a

i

+ t)j.

Theorem 6 Given two numeri
 strings A and B both of length m, there is an algo-

rithm for
omputing distan
e d

t;�

MAD

(A;B) in O(m+� log�) time on both integer and

general alphabets. On integer alphabets, time O(j�j+m + �)
an also be obtained.

Proof. When � = 0 the distan
e is
learly d

t

MAD

(A;B) = (max

i

ft

i

g � min

i

ft

i

g)=2,

and the transposition giving this distan
e is (max

i

ft

i

g + min

i

ft

i

g)=2. When � > 0,

onsider again the sorted sequen
e t

i

1

; t

i

2

; : : : ; t

i

m

as in the proof of Theorem 3. Again

the � outliers are M(k

0

; k

00

) for some k

0

+ k

00

= � in the optimal transposition. The

optimal transposition is then the value (t

i

m�k

00

+ t

i

k

0

+1

)=2 that minimizes (t

i

m�k

00

�

t

i

k

0

+1

)=2, where k

0

+k

00

= �. The minimum value
an be
omputed in O(�) time, on
e

the � + 1 smallest and largest t

i

values are sorted. These values
an be sele
ted in

O(m) time and then sorted in O(� log�) time, or O(j�j+ �) on integer alphabets. �

4.4 Sear
hing

Up to now we have
onsidered distan
e
omputation. Any algorithm to
ompute the

distan
e between A and B
an be trivially
onverted into a sear
h algorithm for P in

T by
omparing P against every text window of the form T

j�m+1:::j

. A
tually, we do

not have any sear
h algorithm better than this.

105

Pro
eedings of the Prague Stringology Conferen
e '03

Lemma 7 For distan
es d

t;Æ

H

, d

t;�

SAD

, and d

t;�

MAD

, if the distan
e
an be evaluated in

O(f(m)) time, then the
orresponding sear
h problem
an be solved in O(f(m)n)

time.

On the other hand, it is not immediate how to perform transposition invariant

(Æ;
)�mat
hing. We show how the above results
an be applied to this
ase.

Note that one
an �nd in O(mn) time all the o

urren
es fjg su
h that

d

t

MAD

(P; T

j�m+1:::j

) � Æ, and all the o

urren
es fj

0

g where d

t

SAD

(P; T

j

0

�m+1:::j

0

) �
.

The (Æ;
)�mat
hes are a subset of fjg \ fj

0

g, but identity does not ne
essarily hold.

This is be
ause the optimal transposition
an be di�erent for d

t

MAD

and d

t

SAD

.

What we need to do is to verify this set of possible o

urren
es fjg \ fj

0

g. This

an be done as follows. For ea
h possible mat
h j

00

2 fjg \ fj

0

g one
an
ompute

limits s and l su
h that d

MAD

(P + t; T

j

00

�m+1:::j

00

) � Æ for all s � t � l: If the distan
e

d = d

MAD

(P + t

opt

; T

j

00

�m+1:::j

00

) is given, then s = t

opt

� (Æ� d) and l = t

opt

+ (Æ� d).

On the other hand, note that d

SAD

(P +t; T

j

00

:::j

00

+m�1

), as a fun
tion of t, is de
reasing

until t rea
hes the median of the transpositions, and then in
reasing. Thus, depending

on the relative order of the median of the transpositions with respe
t to s and l, we

only need to
ompute distan
e d

SAD

(P + t; T

j

00

�m+1:::j

00

) in one of them (t = s, t = l,

or t = t

dm=2e

). This gives the minimum value for d

SAD

in the range [s; l℄. If this value

is �
, we have found a mat
h.

One
an see that using the results of Theorems 3 and 6 with � = 0, the above

pro
edures
an be implemented so that only O(m) time at ea
h possible o

urren
e

is needed. There are at most n o

urren
es to test.

Theorem 8 Given two numeri
 strings P (pattern) and T (text) of lengths m and

n, there is an algorithm for �nding all the transposition invariant (Æ;
)�o

urren
es

of P in T in O(mn) time on both integer and general alphabets.

4.5 Set of Possible Mat
hes Revisited

Re
all that an edit distan
e between two strings A and B is the
ost of single sym-

bol insertions, deletions, and substitutions to
onvert A into B. The unit
ost or

Levenshtein distan
e [Lev66℄ assigns
ost 1 to ea
h operation. If substitutions are

forbidden and other operations have
ost 1 the resulting distan
e is related to the

longest
ommon subsequen
e (LCS) of A and B. See e.g. [MNU03℄ and the referen
es

therein (like [Sel80℄) for an introdu
tion and formal de�nition of these edit distan
es.

For the sequel, it is only ne
essary to know the fa
t [MNU03℄ that the above edit

distan
es
an be
omputed e�
iently on
e the set of possible mat
hes M = f(i; j) j

a

i

= b

j

; a

i

2 A; b

j

2 Bg is given. Sin
e we gave an e�
ient algorithm in Se
t. 3

for
onstru
ting M

Æ

= f(i; j) j jb

j

� a

i

j � Æg we immediatedly have algorithms for

edit distan
es under noise; just use the sparse dynami
 programming algorithms of

[MNU03℄ (or others'
ited therein) on M

Æ

instead of on M . The e�e
t of parameter Æ

is that two symbols
an be mat
hed if their values are
lose enough. For example, the

method sket
hed above
an be used to
ompute the longest approximately
ommon

subsequen
e of two numeri
 strings.

Now we fo
us on the transposition invariant edit distan
es under noise. Let us

denote the size of M

Æ

as r = r(A;B; Æ) = jM

Æ

(A;B)j. Let us rede�ne T in this se
tion

to be the set of those transpositions that make some
hara
ters between A and B

106

Mat
hing Numeri
 Strings under Noise

exa
tly Æ apart, that is T = fb

j

� a

i

� Æ j 1 � i � m; 1 � j � ng. The mat
h set

orresponding to a transposition t 2 T is M

Æ

t

= f(i; j) j jb

j

� a

i

� tj � Æg. Noti
e that

there is always some t 2 T whose mat
h set M

Æ

t

is equal to M

Æ

t

0

, where t

0

2 U. For

most edit distan
es (like Levensthtein distan
e or LCS) same mat
h set means that

the distan
e will also be the same.

As noti
ed in [MNU03℄ (in the
ase Æ = 0) one
ould
ompute the above edit

distan
es by running the basi
 dynami
 programming algorithms [Sel80℄ over all pairs

(A+t; B), where t 2 T. In
ase Æ > 0, one would just interpret symbols a be b the same

when jb� aj � Æ. One
an obtain a more e�
ient method using advan
ed algorithms

at ea
h transposition. Let us �rst assume that Æ = 0 and let r(A;B) = r(A;B; 0).

The following
onne
tion was shown in [MNU03℄:

Lemma 9 ([MNU03℄) If an algorithm
omputes a distan
e d(A;B) in

O(r(A;B)f(m;n)) time, then there is an algorithm that
omputes the transposition

invariant distan
e d

t

(A;B) = min

t2T

d(A+ t; B) in O(mnf(m;n)) time.

As a
onsequen
e of the above lemma, we have O(mn polylog(n)) time algorithms

for di�erent edit distan
es, sin
e we manage to
onstru
t the mat
h sets for all trans-

positions in O(mn polylog(n)) time [MNU03℄. In our noisy
ase, the above lemma

extends to giving an O(

P

t2T

jM

Æ

t

jf(m;n)) algorithm, whi
h equals O(mn polylog(n))

when Æ = 0. To a
hieve total running time O(

P

t2T

jM

Æ

t

jf(m;n)), we still need to

show that the sets M

Æ

t

an be
onstru
ted in linear time in their overall size.

Theorem 10 The mat
h sets M

Æ

t

= f(i; j) j a

i

+ t = b

j

g, ea
h sorted in the
olumn

order, for all transpositions t 2 T,
an be
onstru
ted in time O(j�j+Æmn) on an inte-

ger alphabet, and in time O(m log j�

A

j+n log j�

B

j+ j�

A

jj�

B

j log(min(j�

A

j; j�

B

j))+

P

t2T

jM

Æ

t

j) on a real alphabet.

Proof. (We extend the proof given in [MNU03℄ for the
ase Æ = 0.) On an integer

alphabet we
an pro
eed naively to obtain O(j�j +mn) time using array lookup to

get the transposition where ea
h pair (i; j) has to be added. For Æ > 0 ea
h pair (i; j)

is added to entries from b

j

� a

i

� Æ to b

j

� a

i

+ Æ, in O(j�j+ Æmn) time.

The
ase of real alphabets is solved as follows. Let us �rst
onsider the
ase Æ = 0.

Create a balan
ed tree T

A

where every
hara
ter a = a

i

of A is inserted, maintaining

for ea
h su
h a 2 �

A

a list L

a

of the positions i of A, in in
reasing order, su
h that

a = a

i

. Do the same for B and T

B

. This
osts O(m log j�

A

j+n log j�

B

j). Now,
reate

an array R(1 : : : j�

A

jj�

B

j), where ea
h R(k) stores the subset of the mat
h set M

t

k

(in
olumn order), where t

k

= b� a, b

j

= b, and a

i

= a for all (i; j) 2 R(k). There is

an entry in R for ea
h possible pair (a; b), where a 2 �

A

, b 2 �

B

. Clearly R
an be

onstru
ted in O(mn) time on
e T

A

, T

B

, and the asso
iated lists L are given. How-

ever, many pairs
an produ
e the same transposition, thus we have to (i) sort R based

on values t

k

and (ii) merge the partial mat
h sets that
orrespond to the same trans-

position. Phase (i)
an be implemented to run in O(j�

A

jj�

B

j log(min(j�

A

j; j�

B

j)))

time;
onsider w.l.o.g. that j�

A

j � j�

B

j. For �xed a 2 �

A

, we
an get the j�

B

j trans-

positions b � a, b 2 �

B

, in in
reasing order by a depth-�rst sear
h on T

B

. Thus we

have j�

A

j lists, ea
h
ontaining j�

B

j transpositions already in order. Merging these

lists (using standard te
hniques) takes O(j�

A

jj�

B

j log j�

A

j) time. Phase (ii)
an be

implemented to run in O(mn) time; we
an traverse through B and for ea
h b

j

add a

107

Pro
eedings of the Prague Stringology Conferen
e '03

new
olumn to ea
h M

t

, where b

j

� a = t, a 2 �

A

. The
orre
t set M

t

an be found

in
onstant time sin
e we
an maintain suitable pointers when sorting R in phase (i).

Finally, let us
onsider the
ase where Æ > 0. As dis
ussed earlier, ea
h pair

(a; b) produ
es two relevant transpositions, b � a � Æ and b � a + Æ. We pro
eed as

before until array R is
onstru
ted and sorted. Consider sliding a window of length

2Æ over the transpositions t

k

in R. Let the middle point of
urrent window be at

t. Clearly, the pairs that are in
luded in the
urrent window produ
e the whole

mat
h set for transposition t. That is, partial mat
h sets R(l); R(l + 1); : : : ; R(r)

are merged into mat
h set M

Æ

t

, where t

l

= b

j

� a

i

� t � Æ for (all) (i; j) 2 R(l),

t

r

= b

j

0

�a

i

0

� t+Æ for (all) (i

0

; j

0

) 2 R(r), and [l; r℄ is maximal range of R where this

holds. The mat
h sets
hange only when the middle points of the sliding window are

from set T = fb� a� Æ j a 2 �

A

; b 2 �

B

g. We
an
onstru
t this set in O(j�

A

jj�

B

j)

time. After sorting it, we
an slide the window of length 2Æ stopping at ea
h middle

point t 2 T , and
onstru
t ea
h mat
h set M

Æ

t

by merging the mat
h sets in the

entries of R that are
overed by the
urrent window.

What is left is to
onsider how the merging
an be done e�
iently. Noti
e that the

mat
h sets
orresponding to
onse
utive transpositions share a lot in
ommon; the

merging does not have to be done by brute for
e. We have two
ases depending on

whether the
onse
utive mat
h sets di�er (i) only by one entry of R, or (ii) by several

entries. In
ase (i), the range [l; r℄ of R is
hanged either to [l + 1; r℄ or to [l; r + 1℄.

Both situations
an be handled by one traversal over mat
h set
orresponding to [l; r℄

and in the latter
ase also over R(r + 1). In
ase (ii), the range [l; r℄ of R is
hanged

either to [l+ k; r℄ or to [l; r+ k℄ for some k (by de�nition both ranges
an not
hange

at the same time). Let us
onsider the latter situation, sin
e the �rst is analogous. It

follows that t

r+1

= � � � = t

r+k

, sin
e otherwise there would be a relevant transposition

t

r+k

0

� Æ, for some 1 < k

0

< k, in between t

r

� Æ and t

r+k

� Æ, whi
h
on�i
ts the fa
t

that we are moving from one relevant transposition to the next. What follows is that

we
an prepro
ess R just like in the
ase when Æ = 0, merging
onse
utive entries

of R having exa
tly the same transposition in O(mn) time. After this is done,
ase

(ii)
an be handled just like
ase (i). The time
omplexity of this merging phase is

bounded by

P

t2T

jM

Æ

t

j. �

Noti
e that

P

t2T

jM

Æ

t

j � Æmn on an integer alphabet. So the bound on a real

alphabet is analogous to the bound on an integer alphabet.

5 Con
luding Remarks

The motivation to study transposition invariant distan
es
omes from musi
 infor-

mation retrieval. However, there are also other appli
ations where these distan
e

measures are useful. For example, in image
omparison one
ould use the trans-

position invariant SAD distan
e to sear
h for the o

urren
es of a small template

inside a large image. With gray-level images the sear
h would then be �lighting in-

variant�. Combining other invarian
es, su
h as rotation or s
aling invarian
e, with

transposition invarian
e in a sear
h algorithm, is a major
hallenge.

108

Mat
hing Numeri
 Strings under Noise

Referen
es

[Abr87℄ K. Abrahamson. Generalized string mat
hing. SIAM J. Computing,

16(6):1039�1051, 1987.

[ALP01℄ A. Amir, M. Lewenstein, and E. Porat. Approximate Subset Mat
hing

with Don't Cares. In Pro
. 12th Annual ACM-SIAM Symposium on

Dis
rete Algorithms (SODA'01), pp. 279�288, 2001.

[BYG94℄ R. Baeza-Yates and G. Gonnet. Fast string mat
hing with mismat
hes.

Information and Computation, 108(2):187�199, 1994.

[BYP96℄ R. Baeza-Yates and C. Perleberg. Fast and Pra
ti
al Approximate

String Mat
hing. Information Pro
essing Letters, 59:21�27, 1996.

[BFPRT72℄ M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan. Time bounds

for sele
tion. J. Computer and System S
ien
es, 7:448�461, 1972.

[CCIMP99℄ E. Cambouropoulos, M. Cro
hemore, C.S. Iliopoulos, L. Mou
hard, and

Yoan J. Pinzón. Algorithms for
omputing approximate repetitions in

musi
al sequen
es. In Pro
. 10th Australian Workshop on Combinato-

rial Algorithms, AWOCA'99, R. Raman and J. Simpson, eds., Curtin

University of Te
hnology, Perth, Western Australia, pp. 129�144, 1999.

[CIR98℄ T. Crawford, C.S. Iliopoulos, and R. Raman. String mat
hing te
h-

niques for musi
al similarity and melodi
 re
ognition. Computing in

Musi
ology 11:71�100, 1998.

[CILP01℄ M. Cro
hemore, C.S. Iliopoulos, T. Le
roq, and Y.J. Pinzón. Approx-

imate string mat
hing in musi
al sequen
es. In Pro
. Prague Stringoly

Club (PSC 2001), M. Baliik and M. Simanek, eds, Cze
h Te
hni
al

University of Prague, pp. 26�36, DC-2001-06, 2001.

[CILPR02℄ M. Cro
hemore, C.S. Iliopoulos, T. Le
roq, W. Plandowski, and W.

Rytter. Three Heuristi
s for Æ�Mat
hing: Æ�BM Algorithms. In

Pro
. 13th Annual Symposium on Combinatorial Pattern Mat
hing

(CPM'02), Springer-Verlag LNCS 2373, pp. 178�189, 2002.

[GG86℄ Z. Galil and R. Gian
arlo. Improved string mat
hing with k mismat
hes.

SIGACT News, 17:52�54, 1986.

[LT00℄ K. Lemström and J. Tarhio. Sear
hing monophoni
 patterns within

polyphoni
 sour
es. In Pro
. RIAO 2000, pp. 1261�1279 (vol 2), 2000.

[LU00℄ K. Lemström and E. Ukkonen. In
luding interval en
oding into edit

distan
e based musi

omparison and retrieval. In Pro
. AISB 2000,

pp. 53�60, 2000.

[Lev66℄ V. Levenshtein. Binary
odes
apable of
orre
ting deletions, insertions

and reversals. Soviet Physi
s Doklady 6:707�710, 1966.

109

Pro
eedings of the Prague Stringology Conferen
e '03

[LB86℄ G. Landau and U. Vishkin. E�
ient string mat
hing with k mismat
hes.

Theoreti
al Computer S
ien
e, 43:239�249, 1986.

[Mut95℄ S. Muthukrishnan. New results and open problems related to non-

standard stringology. In Pro
. 6th Annual Symposium on Combinatorial

Pattern Mat
hing (CPM'95), LNCS 937, pp. 298�317, 1995.

[MNU02℄ V. Mäkinen, G. Navarro, and E. Ukkonen. Algorithms for Transposition

Invariant String Mat
hing. TR/DCC-2002-5, Dept. of CS, Univ. Chile,

July 2002,

�ftp://ftp.d

.u
hile.
l/pub/users/gnavarro/ti_mat
hing.ps.gz�

[MNU03℄ V. Mäkinen, G. Navarro and E. Ukkonen. Algorithms for Transposition

Invariant String Mat
hing (Extended Abstra
t). In Pro
. 20th Interna-

tional Symposium on Theoreti
al Aspe
ts of Computer S
ien
e (STACS

2003), Springer-Verlag LNCS 2607, pp. 191�202, Berlin, February, 2003.

[Sel80℄ P. Sellers. The theory and
omputation of evolutionary distan
es: Pat-

tern re
ognition. J. of Algorithms, 1(4):359�373, 1980.

[vEB77℄ P. van Emde Boas. Preserving order in a forest in less than logarithmi

time and linear spa
e. Inf. Pro
. Letters 6(3):80�82, 1977.

110

Operation L-INSERT on Fa
tor Automaton

�

Bo°ivoj Meli
har and Milan �imánek

Department of Computer S
ien
e & Engineering

Fa
ulty of Ele
tri
al Engineering

Cze
h Te
hni
al University Prague

e-mail: meli
har�fel.
vut.
z, simanek�fel.
vut.
z

Abstra
t. The fa
tor automaton is used for time-optimal sear
hing for sub-

strings in text. In general, if the text is
hanged the new fa
tor automaton has

to be
onstru
ted. When the text
hange is simple enough we
an
hange the

original fa
tor automaton to re�e
t the
hanges of the text and save the time of

the new fa
tor automaton
onstru
tion.

This paper deals with operation L-INSERT and des
ribes the algorithm modi-

fying the fa
tor automaton when a new symbol is prepended to the text. This

algorithm
an be also used for on-line ba
kward
onstru
tion of fa
tor automa-

ton.

Keywords: fa
tor automaton, DAWG, operation on fa
tor automaton,
on-

stru
tion of fa
tor automaton, �nite automaton.

1 Introdu
tion

The fa
tor automaton is a �nite automaton a

epting the set of all fa
tors (substrings)

of the given text (string) T . The fa
tor automaton
an be
onstru
ted for arbitrary

text by one of the
ommon
onstru
tion algorithms. The time
omplexity of the

onstru
tion is linear to the size of the text T , while pattern mat
hing for pattern P

is linear to the size of the pattern P and is independent of the size of text T . So, in

the most
ommon
ase the fa
tor automaton is on
e
onstru
ted and many time used

for pattern mat
hing. However, when we
hange the text T the fa
tor automaton

must be dropped and new fa
tor automaton has to be
onstru
ted.

If the
hanges in the text are simple enough then we
an �nd an algorithm mod-

ifying the original fa
tor automaton a

ording text T . The time
omplexity of this

algorithm is often better then the
omplete
onstru
tion of the new fa
tor automaton

for the
hanged text.

A ni
e example of su
h algorithm is the APPEND algorithm des
ribed in [1, Chap-

ter 6.3℄, whi
h
an modify given fa
tor automaton when a new symbol is appended to

the text T . The authors use this algorithm as a part of their on-line fa
tor automa-

ton
onstru
tion algorithm for text T = t

1

t

2

� � � t

n

: they start with one-node fa
tor

�

This resear
h has been partialy supported by the Ministry of Edu
ation, Youth, and Sports

of the Cze
h Republi
 under resear
h program No. J04/98:212300014 (Resear
h in the area of

information te
hnologies and
ummuni
ations) and by Grant Agen
y of Cze
h Republi
 grant No.

201/01/1433.

111

Pro
eedings of the Prague Stringology Conferen
e '03

automaton for empty text " and
ompute su

essively fa
tor automata for texts t

1

,

t

1

t

2

, t

1

t

2

t

3

, � � �, t

1

t

2

� � � t

n

.

Another known fa
tor automaton modifying algorithm is the L-DELETE algo-

rithm [2℄. It
an make desired
hanges to the fa
tor automaton when the text T is

redu
ed by deleting the leftmost symbol. The L-DELETE algorithm
an be used in

onjun
tion with the APPEND algorithm to implement fast substring mat
hing in

sliding window data
ompression method.

This paper des
ribes an L-INSERT algorithm modifying the fa
tor automaton

when the text T is prepended by a new symbol. Like the APPEND algorithm,

this algorithm
an also be used for the
onstru
tion of the fa
tor automaton. The

well-known
onstru
tion using operation APPEND
reates the fa
tor automaton by

appending symbols of the text T from left to right. On the
ontrary, the
onstru
tion

based on L-INSERT
reates the fa
tor automaton starting with the rightmost symbol

to the left.

2 Basi
 De�nitions

The fa
tor automaton for text T is de�ned as a �nite automaton M a

epting the

language L(M) = Fa
(T) of all fa
tors of T . There is an in�nite number of su
h

automata, hen
e we sele
t one with very regular stru
ture of its transition diagram

(Figure 1). All its states are both initial and �nal.

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

Figure 1: Canoni
al nondeterministi
 fa
tor automaton (CNFA)

De�nition 2.1 � Canoni
al nondeterministi
 fa
tor automaton (CNFA)

Canoni
al nondeterministi
 fa
tor automaton CNFA for text T = t

1

t

2

t

3

� � � t

n

is a

nondeterministi
 �nite automaton M = (Q;A; Æ; I; F) whi
h satis�es:

1. Q = fq

0

; q

1

; q

2

; � � � q

n

g

2. 8q

i

2 Q; a 2 A : Æ(q

i

; a) =

(

fq

i+1

g 8i < n; a = t

i+1

; in other
ases

3. I = Q

4. F = Q

We
annot dire
tly use CNFA be
ause of a nondeterminism. Ea
h nondetermin-

isti
 �nite automaton
an be transformed to deterministi
 one a

epting the same

language. The transformation
an be done by subset
onstru
tion [3℄. We use the

variant of the transformation whi
h does not insert ina

esible states into the resulting

DFA [4, algorithm 3.6℄ and we denote it as the standard determinization method.

The standard determinization method is based on the following state-sets
on-

stru
tion: For ea
h nondeterministi
 �nite automaton M = (Q;A; Æ; I; F) we
an

112

Operation L-INSERT on Fa
tor Automaton

�nd a deterministi
 �nite automaton

^

M = (

^

Q;A;

^

Æ; q̂

0

;

^

F) a

epting the same lan-

guage satisfying the following
onditions:

�

^

Q � P(Q) su
h that

^

Q = fq̂ : q̂ = Æ

�

(I; w);w 2 A

�

g

�

^

Æ is a mapping

^

Æ :

^

Q�A 7!

^

Q

8q̂ 2 Q; a 2 A :

^

Æ(q̂; a) =

S

q2q̂

Æ(q; a),

� q̂

0

2

^

Q q̂

0

= I,

�

^

F �

^

Q

^

F = fq̂ 2

^

Q : q̂ \ F 6= ;g.

We use the hat a

ent to denote deterministi
 automaton, its states and transition

fun
tion. States of CDFA are sets of CNFA. Note, that that CDFA
ontains only

rea
hable states.

De�nition 2.2 � Canoni
al deterministi
 fa
tor automaton (CDFA)

Canoni
al deterministi
 fa
tor automaton CDFA for text T is a deterministi
 au-

tomaton given as the result of the standard determinization of the
anoni
al nonde-

terministi
 fa
tor automaton for the same text T .

The L-INSERT algorithm modifying CNFA is very simple (it just inserts a new

state and one transition). We use that algorithm and the standard determinization to

�nd L-INSERT algorithm modifying CDFA. To keep the relationship between states

of CNFA and CDFA automata we use several adja
ent data stru
tures.

3 Adja
ent Data Stru
tures

To enable e�
ient algorithm modifying CDFA we extend CDFA by following addi-

tional information:

� su�x links,

� text pointers,

� in-degree of nodes.

3.1 Su�x Links

Ea
h state q̂ of the CDFA represents a set of a
tive states of the CNFA � after

a

epting any string w the a
tive state q̂

w

=

^

Æ

�

(q̂

0

; w) of CDFA represents a set of

a
tive states Q

w

= Æ

�

(I; w) of CNFA, formally q̂

w

= Q

w

.

Lemma 3.1 If two states q̂

u

; q̂

w

2

^

Q have nonempty interse
tion, q̂

u

\ q̂

w

6= ;, then

one of them is a subset of the other (q̂

w

� q̂

u

).

113

Pro
eedings of the Prague Stringology Conferen
e '03

w

T = t

1

t

2

t

3

� � � t

n

n

t

n

� � �

t

i+1

i

t

i

i-1

t

i�1

� � �

t

2

1

t

1

0

Figure 2: If state q̂

w

=

^

Æ

�

(q̂

0

; w)
ontains a state q

i

then string w ends at position i

Proof:

If both two states q̂

u

and q̂

w

ontain state q

i

then both represent the CNFA

a
tive state q

i

. Be
ause of very regular stru
ture of CNFA the state q

i

be
omes a
tive only if the a

epted string is a fa
tor of the text T ending

at position i (see Figure 2). It means that both strings u and w (leading

to states q̂

u

and q̂

w

) are fa
tors of the text T ending on the same position

i. Therefore one of them must be a su�x of the other (Figure 3). Let

u

w

n

t

n

� � �

t

i+1

i

t

i

i-1

t

i�1

� � �

t

2

1

t

1

0

Figure 3: Strings u and w end in the same position.

u be a su�x of w. The state q̂

w

represents states q̂

w

= fq

j

1

; q

j

2

; q

j

3

; � � �g

where j

k

are ending positions of all o

urren
es of the string w in the text.

The string u is a su�x of w so that it o

urs at least on the same ending

positions, therefore q̂

w

� q̂

u

(Figure 4).

uuuu

www

T = t

1

t

2

t

3

� � � t

n

Figure 4: String u ends at least on the same ending positions as string w.

From the lemma above, any pair of CDFA states
ontaining any
ommon CNFA

state q

i

are ordered by set in
lusion. Therefore all CDFA states representing any

CNFA state q

i

reate ordered set (
hain of states). The initial state q̂

0

= I = Q =

fq

0

; q

1

; � � � q

n

g
ontaining all CNFA states is a superset of any set of CNFA states and

it is the biggest set of any
hain of sets. We
an say that all states of CDFA are

114

Operation L-INSERT on Fa
tor Automaton

ordered in a rooted tree with the root q̂

0

. The
ommon name for su
h tree is su�x

tree.

CNFA:

4

a

3

b

2

b

1

a

0

CDFA:

a

b

23

4

a

3

b

2

b

14

b

a

01234

Su�x tree:

324

2314

01234

Positions in text T :

0

a

1

b

2

b

3

a

4

state words ending pos.

q̂

fq

0

;q

1

;q

2

;q

3

;q

4

g

" 0, 1, 2, 3, 4

q̂

fq

1

;q

4

g

a 1, 4

q̂

fq

2

;q

3

g

b 2, 3

q̂

fq

2

g

ab 2

q̂

fq

3

g

bb 3

abb

q̂

fq

4

g

ba 4

bba

abba

Figure 5: An example of su�x tree for T = abba

This su�x tree (as a data stru
ture)
an be implemented by pointers from ea
h

state q̂ 2

^

Q to its parent p̂ in the su�x tree. We
all su
h pointer as su�x link and

denote p̂ = suf [q̂℄. The state suf

k

[q̂℄ means k

th

iteration of su�x link and suf

�

[q̂℄

(transitive
losure) denotes a set of all iterations of su�x link of the state q̂.

suf

�

[q̂℄ = fq̂; suf [q̂℄; suf

2

[q̂℄; suf

3

[q̂℄; � � �g

Lemma 3.2 If two nonequal states p̂; q̂ 2

^

Q di�er by a one state q 2 Q i.e. p̂ = q̂[fqg

then there exists a dire
t su�x link between them: p̂ = suf [q̂℄.

115

Pro
eedings of the Prague Stringology Conferen
e '03

Proof:

Any two states p̂; q̂ 2

^

Q where q̂ is a proper subset of p̂ (; � q̂ � p̂) are

onne
ted by a su�x link i� there does not exist another state r su
h that

q̂ � r̂ � p̂. As states p̂ and q̂ di�er only by one state, no su
h state r̂ may

exist.

g

q

i

;

= fp̂

q

i

T = t

1

t

2

t

3

� � � t

n

w

p̂

Figure 6: The state p̂ has no in
oming su�x link i� it
ontain only one state

Lemma 3.3 State p̂ 2

^

Q has no in
oming su�x link if and only if the set q̂
ontains

exa
tly one state q 2 Q.

Proof:

We divide the proof of equivalen
e to proofs of the both impli
ations. The

proof of the �rst impli
ation (the state p̂ has no in
oming su�x link =)

the set p̂
ontains only one state) follows from this
ontradi
tion:

g

q

j

;

= fq̂

g

q

j

;

q

i

;

= fp̂

q

j

q

i

T = t

1

t

2

t

3

� � � t

n

waw

q̂p̂

Figure 7: If the state p̂
ontains two states then it has in
oming su�x link.

If the set p̂ would
ontain more than one state (see Figure 7) then there

would exist the longest fa
tor w of the text T , whi
h would end at ending

positions represented by members of p̂. Not all o

urren
es of string w are

pre
eded by the same symbol (be
ause w is the longest string with these

endings) and therefore there would exist a string aw whi
h is a fa
tor of

the text T and would end at positions q̂ where q̂ � p̂. Due to this in
lusion

both states p̂ and q̂ would share the same bran
h of su�x tree whi
h would

lead from q̂ to p̂. The state p̂ would have at least one in
oming su�x link,

whi
h gives the
ontradi
tion.

116

Operation L-INSERT on Fa
tor Automaton

The se
ond part, the proof of ba
kward impli
ation (the set p̂
ontains

only one state =) the state p̂ has no in
oming su�x link) is trivial be
ause

a su�x link
an lead only from a subset to a superset and a set with just

only one state has no regular subsets.

Lemma 3.4 If a state p̂ 2

^

Q has just one in
oming su�x link and w is the longest

string leading to this state p̂ =

^

Æ

�

(q̂

0

; w) (see Figure 8) then

a) there are at least two o

urren
es of the string w in the text T ,

b) the string w is a pre�x of the text T ,

) all o

urren
es of w in T ex
ept the very �rst one (the pre�x of T) are pre
eded

by the same symbol.

g

q

k

3

q

k

2

;q

k

1

;

q

i

;

= fq̂

q

i

T = t

1

t

2

t

3

� � � t

n

awawaww

q̂

Figure 8: The only one in
oming su�x link leads to a state p̂.

Proof:

The proof of part a) follows from the Lemma 3.3.

There are no
ouple of o

urren
es of string w following two di�erent

symbols. If two strings aw and bw (where a 6= b) would o

ur in text

T then both states q̂

aw

and q̂

bw

would be disjun
t subsets of p̂ and their

su�x links would lead to state p̂. At least one o

urren
e of w must not

be pre
eded by the same symbol as others be
ause w is the longest string

leading to state p̂. Therefore w o

urs at the beginning of T and all next

o

urren
es are pre
eded by the same symbol. w is a pre�x of T . This

proves parts b) and
).

Lemma 3.5 If a su�x link suf [q̂℄ = p̂ is the only su�x link leading to state p̂ then

set p̂ is larger then q̂ by just one state q

i

(i.e. p̂ = fq

i

g [q̂).

Proof:

Let w be a string leading to the state p̂ =

^

Æ

�

(q̂

0

; w) (see Figure 8). Due to

Lemma 3.4, string w is a pre�x of the text T and all other o

urren
es of

w in the text T are pre
eded by the same symbol a. The string aw o

urs

at the same ending positions as string w ex
ept the very �rst one (w is a

pre�x of T). We
an divide the set p̂ into the �rst o

urren
e (the state

q

i

) and the rest (o

urren
es of aw): p̂ = fq

i

g[

^

Æ

�

(q̂

0

;aw). Due to Lemma

3.2 it holds p̂ = suf [

^

Æ

�

(q̂

0

;aw)℄. There is only one su�x link leading to p̂

so that states

^

Æ

�

(q̂

0

;aw) and q̂ are identi
al and we
an write p̂ = fq

i

g[q̂.

117

Pro
eedings of the Prague Stringology Conferen
e '03

3.2 Text Pointers

Most of algorithms operating on fa
tor automaton need to resolve whi
h states of

CDFA represent given state q of CNFA. Sin
e all relevant CDFA states
ontain q they

reate a separate bran
h in the su�x tree. We
an store only the starting state of the

bran
h and
ontinue over the su�x tree to its root. Text pointers is a data stru
ture

whi
h keeps the information about the starting state. It
an be implemented as an

array TextPos[i℄ of CDFA states indexed by position i in text. In fa
tor automata it

holds TextPos[i℄ =

^

Æ

�

(q̂

0

; t

1

t

2

� � � t

i

). An example of text pointers array for T = abba

is on Figure 9.

position 4

position 3

324

position 2

2314

position 1

01234

position 0

su�x tree

text pointers

a

b

23

4

a

3

b

2

b

14

b

a

01234

pos.4pos.3pos.2pos.1pos.0

Text positions: T =

0

a

1

b

2

b

3

a

4

text pointers table

position state

0 q̂

fq

0

;q

1

;q

2

;q

3

;q

4

g

1 q̂

fq

1

;q

4

g

2 q̂

fq

2

g

3 q̂

fq

3

g

4 q̂

fq

4

g

Figure 9: An example of the su�x tree and the automaton with text pointers for

T = abba.

Note that the number of states is often larger then the number of positions in

the text. Therefore, there exist states whi
h are not the value of any TextPos. An

example of that is on Figure 9. Although the state q̂

fq

2

;q

3

g

represents ending positions

2 and 3 for string b, it is neither a value of TextPos[2℄ nor TextPos[3℄. We
an get

all states representing the ending position 2 by inspe
ting the whole bran
h of su�x

tree (a sequen
e of su�x links) from the state q̂

fq

2

g

= TextPos[2℄.

118

Operation L-INSERT on Fa
tor Automaton

3.3 Node In-degree

We use the number of transitions leading to this state (in
oming transitions) as a

referen
e
ounter for dete
ting unrea
hable states. If the automaton has unrea
hable

states then one of them must have in-degree equal to zero be
ause the CDFA has no

loops. After its removing it holds that either another unrea
hable state be
omes zero

in-degree or we are sure there are no unrea
hable states in the automaton.

3.4 Operation L-INSERT

The
anoni
al nondeterministi
 fa
tor automata (CNFA) for the texts T = t

1

t

2

t

3

� � � t

n

and aT = at

1

t

2

t

3

� � � t

n

are shown on the Figure 10.

M

T

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

M

aT

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

a

X

Figure 10: The
hange in CNFA when a new symbol is prepended.

The operation L-INSERT
reates a new state q

X

, whi
h is both initial and �nal

and a new transition from the state q

X

into the state q

0

.

The algorithm modifying CDFA follows from the relationship between nondeter-

ministi
 and deterministi
 fa
tor automaton.

When the new initial state q

X

is
reated, CDFA's initial state q̂

0

� see Figure 11

(step 1) � is
hanged to the new state q̂

0

0

= q̂

0

[fq

X

g. The outgoing transitions from

this state are still the same as from q̂

0

(step 2). Now, we
reate a new transition

in CNFA leading from q

X

to q

0

for symbol a. In the CDFA, we should redire
t the

transition leading from q̂

0

0

labeled by a symbol a to another state whi
h
ontains

similar set of states extended by the state q

0

, be
ause q

0

= Æ(q

X

; a) is the new

transition (step 3).

The algorithm is based on the re
ursive fun
tion GetExtendedState(q̂; i), whi
h

takes the set of states q̂ and integer i as arguments, and �nds a state q̂

0

= q̂ [fq

i

g. If

there is no su
h state in the automaton, it is
reated by the fun
tion. The value of

the fun
tion is the state q̂

0

(Figure 12).

Using this fun
tion the whole algorithm
an be written in �ve steps:

1.
reate a new state q̂

0

0

with the same outgoing transitions as q̂

0

,

2. get the old target of the �rst transition: q̂ =

^

Æ(q̂

0

0

; a),

3.
ompute new state for that transition: q̂

0

= GetExtendedState(q̂; 0),

4. redire
t the transition:

^

Æ(q̂

0

0

; a) = q̂

0

,

5.
hange the initial state to q̂

0

0

.

119

Pro
eedings of the Prague Stringology Conferen
e '03

t

2

t

1

q̂

0

(step 1)

t

2

t

1

q̂

0

t

1

q̂

0

0

(step 2)

t

2

t

1

q̂

0

a

a

t

1

q̂

0

0

(step 3)

Figure 11: The
hange in CDFA when symbol a is inserted.

q̂

0

q

i

T = t

1

t

2

t

3

� � � t

na

wwww

q̂

Figure 12: The state q̂

0

ontains state q

i

and all states from q̂

120

Operation L-INSERT on Fa
tor Automaton

We assume any unrea
hable state is removed as soon as it looses the last in
oming

transition (or the last referen
e).

Let us
on
ern the fun
tion GetExtendedState(q̂; i). It assumes that the string

w = at

1

t

2

t

3

� � � t

i

leads to the state q̂ (i.e. q̂ =

^

Æ

�

(q̂

0

; w)). It is the shortest string

leading to this state be
ause the text shorter by the �rst symbol a would be a pre�x

of T an would o

ur in advan
e at ending position i.

Note that the string w = at

1

t

2

t

3

� � � t

i

may not be a fa
tor of the text T . In this

ase the state q̂ may be q̂ = fg = ;. In su
h
ase, the solution is a state q̂

0

= fq

i

g.

Of
ourse, this state may or may not be present in the
urrent automaton. We
an

�nd it by inspe
ting the text pointer at position i. The value of TextPos[i℄ may be

the required state q̂

0

= fq

i

g or its superset. A

ording to Lemma 3.3: if there is no

su�x link leading to this state then it
ontains only one CNFA state fq

i

g and it is

the result value of the fun
tion GetExtendedState (Figure 13). If there exists a

� � �

su�x links

t

i+1

t

i

� � �

TextPos[i℄

Figure 13: The fo
used state has no in
oming su�x links therefore it
ontains only

one state q

i

su�x link leading to this state then we must
reate a new state q̂

0

= fq

i

g and set its

outgoing transitions. In this
ase the state q̂

0

will have only one outgoing transition

for the symbol t

i

leading to state fq

i+1

g (whi
h
an be obtained by re
ursive
alling

the fun
tion GetExtendedState(nil; i + 1)). In addition, we should set up the su�x

link of this state to lead to TextPos[i℄ and update TextPos[i℄ to new value � state

q̂

0

. (See Figure 14).

Now, we
on
ern the
ase when q̂ is an already existing state of CDFA. The

fun
tion GetExtendedState should lo
ate the state representing the set q̂ [fq

i

g. If

there is no su
h state, it should be
reated. Due to the Lemma 3.2 if there exists

su
h state it must be the target of the su�x link from state q̂. But the su�x parent

p̂ = suf(q̂) of the state q̂ may not be the required state in any
ase, of
ourse. We
an

test it by inspe
ting the number of su�x links leading to it. There are two disjun
t

ases:

� only one su�x link leads to state p̂,

� the state p̂ is a target of more su�x links.

At �rst we assume the su�x link from the state q̂ to the state p̂ is the only link

leading to p̂ (Figure 15). As the string w = at

1

t

2

t

3

� � � t

i

is the shortest string leading

to q̂ then the �rst su�x � string u = t

1

t

2

t

3

� � � t

i

leads to state suf(q̂) = p̂. We are

sure that string t

1

t

2

t

3

� � � t

i

o

urs at position i and therefore p̂
ontain the required

121

Pro
eedings of the Prague Stringology Conferen
e '03

su�x links

� � �

t

i+1

t

i

� � �

?

t

i+1

q̂

0

TextPos[i℄

Figure 14: If any su�x link leads to the state found by TextP tr[i℄ then we have

to
reate a new state q̂

0

,
onne
t its su�x link, outgoing transition and redire
t

TextP tr[i℄

g

q

k

3

q

k

2

q

k

1

q

i

= fp̂

g

q

k

3

q

k

2

q

k

1

= fq̂

q

i

0

T = t

1

t

2

t

3

� � � t

na

wwww

q̂

q̂

p̂

su�x tree

Figure 15: q̂ 7! p̂ is the only su�x link leading to p̂ therefore p̂ = q̂ [fq

i

g = p̂

0

122

Operation L-INSERT on Fa
tor Automaton

state q̂

i

. On the other side, the state p̂ does not
ontain any other state then fq

i

g or

q̂ (see Lemma 3.5) therefore state p̂ is the value of the fun
tion GetExtendedState .

Now, assume there exist at least two su�x links leading to the state p̂. One of

them is the link from q̂ and let another one lead from a state q̂

q

(Figure 16). The

g

q

k

3

q

k

1

q

i

= f

q̂

0

g

q

k

2

= f

q̂

q

g

q

k

3

q

k

1

= fq̂

g

q

k

3

q

k

2

q

k

1

q

i
= fp̂

q

i

T = t

1

t

2

t

3

� � � t

n

aubuauua

ww

(w)

q̂

q̂

q

q̂

q̂

0

p̂

su�x tree

Figure 16: If the state p̂ re
eives more su�x links then it is unusable. A new state q̂

0

has to be
reated.

sets q̂ and q̂

q

are disjun
t be
ause they are in the di�erent bran
hes of the su�x tree.

The state p̂ is the superset of both sets. Therefore, the set p̂
ontains more states

then q̂ [fq

i

g and will be unusable for us. The resulting state is still not in the set of

states of the automaton and we have to
reate it.

We
reate a new state q̂

0

whi
h should represent the set q̂ [fq

i

g and therefore

it inherits the same outgoing transition as q̂. However the transition for the symbol

t

i+1

should be redire
ted to the state (the set of CNFA states) extended by the state

q

i+1

. We
an lookup this state using the fun
tion GetExtendedState in re
ursion.

The redire
tion is made by assigning

^

Æ(q̂

0

; t

i+1

) = GetExtendedState(

^

Æ(q̂; i); i + 1).

Finally, we should update su�x links. The new state q̂

0

is a subset of p̂ and a superset

of q̂ therefore we in
lude it between states p̂ and q̂: suf [q̂

0

℄ = p̂ and suf [q̂℄ = q̂

0

.

Algorithm 3.1 � Operation L-INSERT using fun
tion GetExtendedState

Input: CDFA automaton

^

M = (

^

Q;A;

^

Æ; q̂

0

;

^

F) with su�x links, text T and

text pointers

symbol a

Output: CDFA automaton

^

M with su�x links, text T and text pointers

Lo
al: integer n

state p̂

state q̂

0

state q̂

0

0

state

^

t

Require:

^

M a

epts fa
tors of T = t

1

t

2

t

3

� � � t

n

Ensure:

^

M will a

ept fa
tors of T = at

1

t

2

t

3

� � � t

n

1: fun
tion GetExtendedState(state q̂; integer i)

2: if (q̂ == nil) then

123

Pro
eedings of the Prague Stringology Conferen
e '03

3:

^

t = TextP tr[i℄

4: n = jsuf

�1

(

^

t)j { the number of su�x links in
omming to

^

t }

5: if (n == 0) then

6: q̂

0

=

^

t

7: return q̂

0

8: else

9: q̂

0

=new state

10:

^

Æ(q̂

0

; a) = GetExtendedState(nil; i + 1)

11: suf [q̂

0

℄ =

^

t

12: return q̂

0

13: end if

14: else

15: p̂ = suf [q̂℄

16: n = jsuf

�1

(p̂)j

17: if (n == 1) then

18: q̂

0

= p̂

19: return q̂

0

20: else

21: q̂

0

= dupli
ate(q̂)

22:

^

Æ(q̂

0

; t

i+1

) = GetExtendedState(

^

Æ(q̂; t

i+1

); i+ 1)

23: suf [q̂

0

℄ = p̂

24: suf [q̂℄ = q̂

0

25: return q̂

0

26: end if

27: end if

28: endfun
tion

29: q̂

0

0

= dupli
ate(q̂

0

)

30:

^

Æ(q̂

0

0

; a) = GetExtendedState(

^

Æ(q̂

0

; a); 0)

31: SetInitialState(q̂

0

0

)

4 E�
ien
y of the Algorithm

4.1 Time Complexity

The best
ase from the time
omplexity point of view appears when the new inserted

symbol a is equal to ea
h symbol in the text: T = a

n

. In su
h
ase, the re
ursive

fun
tion GetExtendedState is
alled only on
e. Neither this fun
tion nor the main

algorithm
ontain loop, therefore the time
omplexity is
onstant O(1) � independent

on the size of the text T .

The worst
ase o

urs if all symbols in text T are the same but di�erent from the

new inserted symbol a: T = b

n

. In su
h
ase, the original automaton has n+1 states

and the new automaton will have 2n� 1 states, and so the algorithm have to
reate

n � 2 states and it has asymptoti
ally time
omplexity linear O(n) with respe
t to

the size of the text T .

124

Operation L-INSERT on Fa
tor Automaton

b

34

b

234

b

1234

4

b

3

b

2

b

1

b

0

b

a

X01234new CDFA:

4

b

34

b

234

b

1234

b

01234

old CDFA:

4

b

3

b

2

b

1

b

0

a

X
CNFA:

Figure 17: The worst
ase

4.2 Spa
e Complexity

The algorithm requires extra spa
e for following data stru
tures:

� text pointers,

� su�x links,

� states,

� transitions,

� sta
k for re
ursion.

Text pointers is an array indexed by the position in text T . The size of the array is

linear to the size of text T . Text pointers are more useful for other operations with fa
-

tor automata. In the
ase of L-INSERT algorithm, text pointers
an be substituted by

text T, be
ause we need su

essively the values TextPos[0℄; T extPos[1℄; T extPos[2℄; :::

and TextPos[i℄ =

^

Æ(TextPos[i�1℄; t

i

) while TextPos[0℄ = q̂

0

. So that we
ould
om-

pute the values of TextPos during re
ursion of the fun
tion GetExtendedState.

Both su�x links and states take the same spa
e
omplexity be
ause there is just

one outgoing su�x link per a state. The number of states is at most 2n (proved in

[1℄).

The number of transitions in the fa
tor automaton is less than 3n (proved in [1℄).

The size of the sta
k required for the re
ursion is limited by the number of re
ursive

alls. As a new states is
reated before any re
ursive
all, the total number of re
ursive

alls is limited by the number of inserted states. Moreover, the re
ursion fun
tion

GetExtendedState
an be transformed into an iteration loop without a need of an

extra data spa
e.

As the all data stru
tures require spa
e at most linear to the size of the automaton,

we
an say the L-INSERT algorithm is spa
e-linear.

125

Pro
eedings of the Prague Stringology Conferen
e '03

5 Con
lusion

This paper deals with the fa
tor automaton and its modi�
ations when the text often

hanges. We dis
uss several operations on the text and
ite algorithms re�e
ting

these operations into the fa
tor automaton. Moreover we des
ribe some adja
ent

data stru
tures (su�x links and text pointers) used in algorithms modifying the fa
tor

automaton. We present a new algorithm of operation L-INSERT. The algorithm
an

e�
iently modify a fa
tor automaton when a new symbol is inserted before the �rst

symbol of the text. This algorithm
an be also used for on-line ba
kward
onstru
tion

of the fa
tor automata. This means that the text grows from right to left while

onstru
ting the automaton. Finally, the time and spa
e
omplexity of the L-INSERT

algorithm is also dis
ussed.

Referen
es

[1℄ M. Cro
hemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[2℄ M. �imánek. The fa
tor automaton. In J. Holub and M. �imánek, editors, Pro-

eedings of the Prague Stringologi
 Club Workshop '98, pages 102�106, Cze
h

Te
hni
al University, Prague, Cze
h Republi
, 1998. Collaborative Report DC�

98�06.

[3℄ J. E. Hop
roft and J. D. Ullman. Introdu
tion to automata, languages and
om-

putations. Addison-Wesley, Reading, MA, 1979.

[4℄ J. Holub. Simulation of nondeterministi
 �nite automata in approximate string

and sequen
e mat
hing. Te
hni
al Report DC�98�04, Department of Computer

S
ien
e and Engineering, Cze
h Te
hni
al University, Prague, Cze
h Republi
,

1998.

126

An E�
ient Mapping for S
ore of String Mat
hing

Tetsuya Nakatoh

1

, Kensuke Baba

2

, Daisuke Ikeda

1

, Yasuhiro Yamada

3

,

and Sa
hio Hirokawa

1

1

Computing and Communi
ations Center, Kyushu University

Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan

e-mail: {nakatoh,daisuke,hirokawa}�

.kyushu-u.a
.jp

2

PRESTO, Japan S
ien
e and Te
hnology Corporation

Hon
ho 4-1-8, Kawagu
hi City, Saitama 332-0012, Japan

e-mail: baba�i.kyushu-u.a
.jp

3

Graduate S
hool of Information S
ien
e and Ele
tri
al Engineering

Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan

e-mail: yshiro�

.kyushu-u.a
.jp

Abstra
t. This paper proposes an e�
ient algorithm to solve the problem of

string mat
hing with mismat
hes. For a text of length n and a pattern of length

m over an alphabet �, the problem is known to be solved in O(j�jn logm)

time by
omputing a s
ore by the fast Fourier transformation (FFT). Atallah

et al. introdu
ed a randomized algorithm in whi
h the time
omplexity
an

be de
reased by the trade-o� with the a

ura
y of the estimates for the s
ore.

The algorithm in the present paper yields an estimate with smaller varian
e

ompared to that the algorithm by Atallah et al., moreover, and
omputes the

exa
t s
ore in O(j�jn logm) time. The present paper also gives two methods to

improve the algorithm and an exa
t estimation of the varian
e of the estimates

for the s
ore.

Keywords: string mat
hing with mismat
hes, FFT,
onvolution, deterministi

algorithm, randomized algorithm.

1 Introdu
tion

String mat
hing [4, 5℄ is the problem to obtain all the o

urren
es of a (short) string

alled a pattern in a (long) string
alled a text. We
onsider string mat
hing with

mismat
hes whi
h allows inexa
t mat
h introdu
ed by substitution. Let � be an

alphabet and Æ the Krone
ker fun
tion from � � � to f0; 1g, that is, for a; b 2 �,

Æ(a; b) is 1 if a = b, 0 otherwise. The problem with mismat
hes is generally solved

by
omputing the s
ore ve
tor C(T; P) between a text T = t

1

� � � t

n

and a pattern

P = p

1

� � � p

m

as follows:

C(T; P) = (

1

; : : : ;

i

; : : : ;

n�m+1

); where

i

=

m

X

j=1

Æ(t

i+j�1

; p

j

):

127

Pro
eedings of the Prague Stringology Conferen
e '03

We
an
ompute the s
ore ve
tor using the fast Fourier transform (FFT) in

O(n logm) time, if the s
ore ve
tor is represented as a
onvolution, that is, if the

Krone
ker fun
tion is expressed by a produ
t of two mappings from � to a set of

numbers. This approa
h was developed by Fis
her and Paterson [6℄ and is simply

summarized in Gus�eld [7℄. However, pra
ti
ally, the time
omplexity of the algo-

rithm depends on the number of alphabets. One of the reason for the di�
ulties is

that the Krone
ker fun
tion
an not be written as a produ
t of mappings dire
tly.

For example, if � = fa; b;
g, the generalized algorithm in [7℄ needs three mappings

�

1

, �

2

, and �

3

whi
h
onvert symbols into f1; 0g as the following table.

�

1

�

2

�

3

a 1 0 0

b 0 1 0

 0 0 1

Then, we have Æ(a; b) =

P

3

`=1

�

`

(a) � �

`

(b) and the s
ore ve
tor is obtained by
om-

puting the
onvolution

P

m

j=1

�

`

(t

i+j�1

) � �

`

(p

j

) for 1 � i � n three times.

Atallah et al. [1℄ introdu
ed a randomized algorithmwhere the time
omplexity has

a trade-o� with the a

ura
y of the estimates for the s
ore ve
tor. In this algorithm,

symbols are
onverted into
omplex numbers with a primitive �-th root ! of unity

and the Hermitian inner produ
t is used for the
onvolution. Then, the s
ore ve
tor

is obtained as the average of the results of
onvolutions with respe
t to all possible

mappings '

`

from � to f0; : : : ; j�j � 1g, that is,

i

=

1

j�j

j�j

X

`=1

m

X

j=1

!

'

`

(t

i+j�1

)�'

`

(p

j

)

;

where � is the set of all mappings �

`

. (A deterministi
 algorithm
onstru
ted by those

mappings requires the
omputation of the
onvolution j�j

j�j

times.) An estimate

for the s
ore ve
tor is the average of the results with respe
t to some mappings

hosen independently and uniformly from �. Let k be the number of randomly

hosen samples. Then, the time
omplexity is O(kn logm). They showed that the

expe
tation of the estimates equals to the s
ore ve
tor and the varian
e is bounded

by (m�

i

)

2

=k. Baba et al. [2℄ improved this algorithm by simplifying the mappings

whi
h
onverts the strings into numbers. The
odomain of the mappings is the set

f�1; 1g instead of the set of
omplex numbers. Then, the s
ore ve
tor is

i

=

1

j�j

j�j

X

`=1

m

X

j=1

�

`

(t

i+j�1

) � �

`

(p

j

):

Baba et al. [3℄ pointed out that the algorithms whi
h
ompute the s
ore ve
tor by

FFT are distinguished by the mappings whi
h
onvert strings into numbers in ea
h

algorithm, and the exa
t s
ore is obtained by repeating the O(n logm) operation j�j

times.

In this paper, we propose an e�
ient algorithm to solve string mat
hing in whi
h

the varian
e of the estimates is not greater than (m �

i

)

2

=k. Moreover, the exa
t

s
ore ve
tor is
omputed in O(j�jn logm) time. We also give a stri
t evaluation of

the varian
e and introdu
e two methods to improve our algorithm.

128

An E�
ient Mapping for S
ore of String Mat
hing

2 E�
ient Algorithm

We propose an e�
ient algorithm for string mat
hing with mismat
hes. The time

omplexity of a deterministi
 algorithm and the varian
e of the estimates for the

s
ore ve
tor are obtained by analyzing the mappings whi
h
onvert the symbols to

the numbers. Let p be the smallest prime number whi
h is greater than or equal to the

ardinality j�j of the alphabet. The
odomain of the mappings is the p-adi
 number

�eld Z

p

. Sin
e su
h a prime number is less than 2j�j � 2 (Chebyshev's theorem), a

deterministi
 algorithm with this mappings
omputes the s
ore ve
tor between a text

of length n and a pattern of length m in O(j�jn logm) time. Moreover, in the same

way as the algorithm by Atallah et al, we
an
onstru
t a randomized algorithm in

whi
h the varian
e of the estimates for the s
ore ve
tor is independent to j�j.

2.1 E�
ient Mapping

Let ' be a bije
tive mapping from � to f0; 1; � � � j�j � 1g. For 0 � x � p � 1 and

a 2 �, we de�ne a mapping �

x

as

�

x

(a) = !

x�'(a)

; (1)

where ! is a primitive p-th root of unity. Then, we have the following lemma.

Lemma 1 For any a; b 2 �,

Æ(a; b) =

1

p

p�1

X

x=0

�

x

(a) � �

x

(b);

where !

y

= !

�y

.

Proof. If a = b, we have �

x

(a) � �

x

(b) = !

0

= 1 for any 0 � x � p � 1. Hen
e,

the right side of the equation is equal to 1. If a 6= b, the di�eren
e '(a)� '(b) is an

element of Z

p

nf0g. Therefore, x � ('(a) � '(b)) is valued 0; : : : ; p � 1 modulo p for

0 � x � p� 1. Thus, we have

P

p�1

x=0

�

x

(a) � �

x

(b) =

P

p�1

x=0

!

x�('(a)�'(b))

= 0. 2

Lemma 2 By using the mapping �

x

, the s
ore ve
tor between a text of length n and

a pattern of length m over an alphabet �
an be
omputed in O(j�jn logm) time.

Proof. By the de�nition of the s
ore ve
tor and Lemma 1, the s
ore ve
tor is

i

=

1

p

p�1

X

x=0

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

): (2)

Therefore, the s
ore ve
tor is obtained by
omputing the
onvolution

f(i) =

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

) (1 � i � n)

p times. Sin
e p = O(j�j), we have the lemma. 2

129

Pro
eedings of the Prague Stringology Conferen
e '03

2.2 Analysis of Varian
e

In the same way as the algorithm by Atallah et al. [1℄, we
an
onstru
t a randomized

algorithm in whi
h an estimate for the s
ore ve
tor is obtained by
hoosing some

mappings from �. We de�ne a sample s

i

of an element

i

of the s
ore ve
tor to be

s

i

=

m

X

j=1

�

x(`)

(t

i+j�1

) � �

x(`)

(p

j

):

Let k be the number of
hosen samples. Then, an estimate ŝ

i

for the element

i

of

the s
ore ve
tor is de�ned by

ŝ

i

=

1

k

k

X

`=1

s

i

:

By Eq. (2), it is
lear that the mean of the estimates is equal to

i

. The following

lemma gives the upper-bound of the varian
e of the estimates.

Lemma 3 In a randomized algorithm
onstru
ted with the mapping �

x

, the varian
e

of the estimates for the s
ore ve
tor is bounded by (m�

i

)

2

=k.

Proof. We denote by V (X) the varian
e of a random variable X. By the de�nition

of the estimate and the basi
 property of varian
e, we have V (ŝ

i

) = V (s

i

)=k. Sin
e

�

x(`)

(a) � �

x(`)

(a) = 1 and j�

x(`)

(a) � �

x(`)

(b)j = 1 for any 1 � ` � j�j and any a; b 2 �,

the varian
e of the samples is V (s

i

) =

P

j�j

`=1

(

P

m

j=1

�

x(`)

(t

i+j�1

) � �

x(`)

(p

j

)�

i

)

2

=j�j �

(m�

i

)

2

. 2

2.3 Des
ription of Algorithm

We des
ribe the algorithm whi
h uses the mapping �

x

in detail. The input is a text

string T = t

1

� � � t

n

, a pattern string P = p

1

� � � p

m

over an alphabet �, and a number k

of iterations in this algorithm. The output is an estimate for the s
ore ve
tor C(T; P)

if k < p, the exa
t s
ore ve
tor if k = p, where p is the smallest prime number su
h

that j�j � p. By the standard te
hnique [4℄ of partitioning the text, we
an assume

n = (1 + �)m for � = O(m). The algorithm is
onstru
ted by iterations of the

following operations.

�
onvert the text into a numeri
al sequen
es �

x

(T) = !

'

x

(t

1

)

� � �!

'

x

(t

(1+�)m

)

by

the mapping �

x

from � to f!

0

; : : : ; !

p�1

g;

�
onvert the pattern into �

x

(P) = !

�'

x

(p

1

)

� � �!

�'

x

(p

m

)

by �

x

and pad with �m

zeros;

�
ompute the sample s

i

for 1 � i � (1 + �)m as the
onvolution of �

x

(T) and

the reverse of the padded �

x

(P) by FFT.

The output is
omputed as the average of the results of the
onvolution for 1 �

x � k. If k = p, by Lemma 2, the output is equal to the s
ore ve
tor. If k < p,

the output is regarded as an estimate for the s
ore ve
tor obtained by a randomized

algorithm with �sampling without repla
ement�. Therefore, by Lemma 3 the varian
e

of the estimates is ((p� k)=(p� 1)) � (V (s

i

)=k).

130

An E�
ient Mapping for S
ore of String Mat
hing

Theorem 1 By the algorithm with the mapping �

x

, the exa
t s
ore between a text of

length n and a pattern of length m over an alphabet � is
omputed in O(j�jn logm)

time. Moreover, an estimate for the s
ore ve
tor is
omputed in O(kn logm) time,

where k is the number of iterations in the algorithm and the varian
e of the estimates

is bounded by (p� k)(m�

i

)

2

=(p� 1)k.

In generally, the varian
e of the estimates obtained by sampling without repla
e-

ment is

j�j � k

j�j � 1

� V (ŝ

i

)

where � is the set of all mappings whi
h
onvert symbols into numbers. The
ardi-

nality j�j of the set is j�j

j�j

in the algorithm by Atallah et al [1℄. and 2

j�j

in one

by Baba et al [2℄. Hen
e, the �nite-size
orre
tion term (j�j � k)=(j�j � 1) is not so

e�e
tive.

A key distinguishing feature of our algorithm is that the exa
t s
ore
an be
om-

puted in a pra
ti
al time. Sin
e j�j is large in the two randomized algorithms, their

deterministi
 versions
onstru
ted in a similar way as our algorithm are not pra
ti
al

for a large alphabet. Although the deterministi
 algorithm generalized by Gus�eld [7℄

an be extended to a randomized algorithm in the same way as our algorithm, the

varian
e of the estimates depends on the number of alphabets.

3 Improvement of Algorithm

We propose two te
hniques to improve the algorithm in the previous se
tion.

3.1 Removal of Defe
tive Mapping

Our mappings
onvert the di�erent symbols to the distin
t numeri
al values. But

only the mapping �

0

onverts all symbols to 0. Therefore, we remove the mapping

�

0

from the set �. That is possible without
omputing
onvolution.

By Eq. (1), Æ(a; b) =

1

p

P

p�1

x=0

�

x

(a) � �

x

(b) =

1

p

(

P

p�1

x=1

�

x

(a) � �

x

(b) + �

0

(a) � �

0

(b)) =

1

p

(

P

p�1

x=1

�

x

(a) � �

x

(b) + 1). Therefore, the s
ore ve
tor is

i

=

P

m

j=1

1

p

(

P

p�1

x=1

�(t

i+j�1

) �

�(p

j

)+1) =

1

p

P

p�1

x=1

P

m

j=1

�

x

(t

i+j�1

) ��

x

(p

j

)+

m

p

: To randomize the
omputation of

i

,

we de�ne

0

i

as follows:

0

i

=

1

p�1

P

p�1

x=1

P

m

j=1

�

x

(t

i+j�1

) � �

x

(p

j

): Hen
e,

i

=

p�1

p

0

i

+

m

p

:

We de�ne a sample s

0

i

of an element

0

i

to be

s

0

i

=

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

):

And an estimate

^

s

0

i

is de�ned by

^

s

0

i

=

1

k

k

X

`=1

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

)

where 1 � k � p� 1.

131

Pro
eedings of the Prague Stringology Conferen
e '03

And an estimate ŝ

i

for the element

i

of the s
ore ve
tor is de�ned by

ŝ

i

=

p� 1

p

1

k

k

X

`=1

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

) +

m

p

(3)

where 1 � k � p� 1.

By the di�nition of a varian
e, V (s

i

) =

(p�1)

2

p

2

V (s

0

i

). Moreover, be
ause the number

of mappings de
rease by one, the varian
e in
onsideration of that is bounded by

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

(m�

i

)

2

k

: (4)

3.2 Removal of Imaginary Part

The magnitude of �

x

(a) � �

x

(b) in Eq. (1) is 1. We used this magnitude for the

analysis of the varian
e until this point. However, the real part is independent of the

imaginary part. Therefore, those parts of Eq. (1)
an be
omputed separately.

Let <(v) be a real part of a
omplex number v. By Lemma 1,

1

p

P

p�1

x=0

�

x

(a) ��

x

(b)

returns 0 or 1. Therefore, we
an remove the imaginary part. Then, Æ(a; b) =

<(

1

p

P

p�1

x=0

�

x

(a) � �

x

(b)) for any a; b 2 �. By the de�nition of the s
ore,

i

=

P

m

j=1

<(

1

p

P

p�1

x=0

�

x

(t

i+j�1

) � �

x

(p

j

)): Sin
e the order of addition is not restri
ted, the

s
ore ve
tor is

i

=

1

p

p�1

X

x=0

<(

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

)):

The
omputation of the
omplex number is ne
essary to
ompute
onvolution with

FFT. We only have to omit the imaginary part after the
omputation of FFT. By this

omission, the
omputation of both the sum of the imaginary part and the magnitude

of
omplex number be
ome unne
essary.

The varian
e is the poorest when in
onsistent m �

hara
ters are ea
h a kind

of symbol on the text and the pattern. In su
h a
ase, �

`

(a) � �

`

(b) is �xed without

in�uen
e of j. By Eq. (1), <(�

x

(a) � �

x

(b)) =
os �

`

, where �

`

=

2�x�('(a)�'(b))

p

. Then,

the random variable s

i

is following.

s

i

=

m

X

j=1

<(�

`

(a) � �

`

(b)) =

m

X

j=1

os �

`

=

i

os 0+(m�

i

)
os �

`

=

i

+(m�

i

)
os �

`

:

The varian
e V (s

i

) of this random variable s

i

are followings.

V (s

i

) =

p

X

`=1

(

i

+ (m�

i

)
os �

`

�

i

)

2

�

1

p

=

1

p

p

X

`=1

((m�

i

)
os �

`

)

2

=

1

p

(m�

i

)

2

p

X

`=1

os

2

�

`

=

(m�

i

)

2

p

p

X

`=1

1 +
os �

`

2

132

An E�
ient Mapping for S
ore of String Mat
hing

=

(m�

i

)

2

2p

(

p

X

`=1

1 +

p

X

`=1

os �

`

)

=

(m�

i

)

2

2p

(p+ 0)

=

(m�

i

)

2

2

(5)

By V (ŝ

i

) = V (s

i

)=k, the varian
e of the estimates ŝ

i

is bounded by

(m�

i

)

2

2k

: (6)

3.3 Varian
e of Improved Algorithm

We showed two improvement points. That both
an be applied to the basi
 algorithm

at a time.

Now, the
hange point of the algorithm from the basis one shown in Subse
tion 2.3

is showed in the followings.

� We remove �

0

, and
hoose a sample from the remaining mappings.

� An estimate ŝ

0

i

is
omputed using that samples.

� Only a real part is used for a
omputation of an estimate from the result of

FFT.

� We
ompute ŝ

i

by Eq. (3), and make it the estimate of

i

.

When these improvements are applied, by Eq. (4) and Eq. (6), the varian
e of the

estimates is bounded by

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

(m�

i

)

2

2k

:

It is smaller than one in the algorithm of Se
tion 2.

4 Exa
t Estimation of Varian
e

Atallah et al. presented an upper bound of the varian
e of the estimates for the s
ore

in their algorithm as (m �

i

)

2

=k. The reason for this varian
e is that their set of

mappings in
ludes many mappings whi
h
onvert some di�erent symbols into same

numeri
al value. One of the features of our mappings is that it does not
onvert some

di�erent symbols into same numeri
al value be
ause a single ex
eptional mapping

was removed in Subse
tion 3.1. Using this feature, we give an exa
t estimation of the

varian
e based on our mappings.

Let a; b be symbols in �. If a produ
t �(a) � �(b) in one position is independent

of it in other position, the estimate of

P

(m�

i

)

j

�

x

(t

j

) � �

x

(p

j

) is 0: The two following

onditions must be satis�ed for that. One of those
onditions is that a symbol in one

position is independent of symbols in other positions. In this paper, we suppose that

ondition. The independen
e
an not be expe
ted in the general English text mu
h.

But, we expe
t high independen
e about the
omparison of the produ
t �(a) � �(b).

�

�

In this paper, we did not get to the veri�
ation of that point. It is a future work.

133

Pro
eedings of the Prague Stringology Conferen
e '03

Another
ondition is the following lemma.

Lemma 4 If all mappings
onvert di�erent symbols into distin
t numeri
al values,

then the produ
t �(a) � �(b) in one position is independent of that in other position.

Proof. Let t

1

; t

2

; p

1

; p

2

be symbols in �, x a value whi
h
an be returned by mappings

and r the number of kinds of x. Let �

x

be a set of the mappings whi
h
onvert more

than one of some symbols into x, and �

xy

denotes �

x

\ �

y

. We de�ne D

x

as the

di�eren
e between the number of x whi
h the mappings
onvert a given symbol into

and the number of mappings used for it. The number of
ertain value x whi
h a

ertain symbol a
onvert to is

j�j

r

be
ause

P

j�j

`=1

�

`

(a) = 0. Then, the number of

ertain value x whi
h all the symbols
onvert to is �. Therefore, j�

x

j = j�j �D

x

. In

the mapping that
onverts the di�erent symbols to the distin
t numeri
al values, �

x

equal to �.

Pr(X) denotes the probability of event X. Let A be the event �(t

1

) � �(p

1

) = x

and B the event �(t

2

) � �(p

2

) = x. And let A

0

be the event �(t

1

) = d

1

, A

00

the event

�(p

1

) = d

2

, B

0

the event �(t

2

) = d

3

, and B

00

the event �(p

2

) = d

4

.

If a
ertain event o

urred, that a result of a mapping was value x, the mapping in

the next event is restri
ted to mappings whi
h return value x. After the event A, a set

of mappings is �

d

1

d

2

be
ause the mapping returned d

1

and d

2

were used in the event

A. A probability that a mapping return a value x is (the number of
ombinations

of the mapping and the symbol whi
h
an return x)/(the produ
t of the number of

mappings and the number of symbols). Then we have

Pr(B

0

) =

1

r

� j�j � j�j

j�j � j�j

=

1

r

;

Pr(B

00

jB

0

) =

1

r

� j�j � j�j

j�

d

3

j � j�j

=

j�j

r � j�

d

3

j

;

Pr(B) =

r�1

X

d

3

=0

Pr(B

0

) Pr(B

00

jB

0

) =

r�1

X

d

3

=0

(

1

r

�

j�j

r � j�

d

3

j

) =

1

r

2

r�1

X

d

3

=0

(

j�j

j�

d

3

j

);

and

Pr(BjA) =

r�1

X

d

3

=0

(

j�j

r � j�

d

1

d

2

j

�

j�j

r � j�

d

1

d

2

d

3

j

) =

1

r

2

r�1

X

d

3

=0

(

j�j

2

j�

d

1

d

2

j � j�

d

1

d

2

d

3

j

):

We get Pr(BjA) 6= Pr(B), hen
e �(t

1

) � �(p

1

) is not independent of �(t

2

) � �(p

2

).

However, if � = �

d

1

d

2

= �

d

1

d

2

d

3

, then Pr(BjA) = Pr(B). This
ondition is satis-

�ed only when all mappings should
onvert di�erent symbols into distin
t numeri
al

values. 2

Other two mappings
an not satisfy the
ondition of Lemma 4 while only our

mappings
an satisfy it in
ase of j�j = p. Therefore, we add a dummy symbol in

ase of j�j < p. Then we
an
orre
t a sampling bias be
ause we
an know that by

the dummy symbol in advan
e.

When �

`

is drawn uniformly randomly from �, the random variable ŝ is ŝ =

1

k

P

k

`=1

P

m

j=1

�

`

(t

j

) � �

`

(p

j

):

Then, we get the following lemma.

134

An E�
ient Mapping for S
ore of String Mat
hing

Lemma 5 Given that the produ
t �(a)��(b) in one position is independent of that in

other position. When
 symbols align in the m symbols, the varian
e V (ŝ) of random

variable s are

V (ŝ) =

m�

i

k

:

Proof. Let s

j

be the random variable as �

`

(t

j

) � �

`

(p

j

), then s

j

= �

`

(t

j

) � �

`

(p

j

) =

!

d(t

j

;p

j

)

where d(t

j

; p

j

) = x � ((t

j

)� (p

j

)). s

(t

j

=p

j

)

denotes that s in t

j

= p

j

and

s

(t

j

6=p

j

)

denotes that s in t

j

6= p

j

.

If t

j

= p

j

, s

j

= 1. If t

j

6= p

j

, s

j

= !

d(t

j

;p

j

)

: Then, those means are E(s

(t

j

=p

j

)

) =

1; E(s

(t

j

6=p

j

)

) =

P

p�1

x=0

!

d(t

j

;p

j

)

�

1

p

= 0: And those varian
e are V (s

(t

j

=p

j

)

) = (s

(t

j

=p

j

)

�

E(s

(t

j

=p

j

)

))

2

� 1 = (1 � 1)

2

� 1 = 0; V (s

(t

j

6=p

j

)

) =

P

p�1

x=0

(s

(t

j

6=p

j

)

�E(s

(t

j

6=p

j

)

))

2

�

1

p

=

1

p

P

p�1

x=0

(j!

d(t

j

;p

j

)

j)

2

=

1

p

P

p�1

x=0

1 = 1:

Be
ause we assume that the produ
t �(a) � �(b) in one position is independent of

that in other position, a varian
e V (s) of s are the simple total of a varian
e of every

position. Then, V (s) =

P

V (s

(t

j

=p

j

)

)+

P

m�

i

V (s

(t

j

6=p

j

)

) =

P

0+

P

m�

i

1 = m�

i

:

Using k samples s, a varian
e V (ŝ) of the estimate s is V (ŝ) =

1

k

V (s). Then

V (ŝ) =

m�

i

k

:

2

This analysis
an be applied to the algorithm whi
h improvement in Se
tion 3 was

added to.

Then Eq. (5)
hanges as follow,

V (s

j(t

j

6=p

j

)

) =

p�1

X

x=0

(s

j(t

j

6=p

j

)

� E(s

j(t

j

6=p

j

)

))

2

1

p

=

1

p

p�1

X

x=0

(
os

2�g(a; b)

p

� 0)

2

=

1

p

p�1

X

x=0

os

2

2�g(a; b)

p

=

1

p

p�1

X

x=0

1 +
os

2�g(a;b)

p

2

=

1

2p

(

p�1

X

x=0

1 +

p�1

X

x=0

os

2�g(a; b)

p

)

=

1

2

(7)

By Eq. (7), we analyze the varian
e as the proof of Lemma 5.

V (ŝ) =

m�

i

2k

: (8)

By Eq. (4) and Eq. (8), we get the following theorem.

Theorem 2 The varian
e of the estimates for the s
ore in our algorithm is

V (ŝ) =

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

m�

i

2k

:

135

Pro
eedings of the Prague Stringology Conferen
e '03

Con
lusion

We gave an e�
ient randomized algorithm for string mat
hing with mismat
hes. This

randomized algorithm uses
onvolution with FFT, like that proposed by Atallah et

al. and Baba et al. We used the mappings whi
h
onvert the symbols to the p-

adi
 number �eld. One of the features of our mappings is that it does not
onvert

some di�erent symbols into same numeri
al value. By that feature, the varian
e of the

estimate of the s
ore ve
tor is smaller. The other feature of our mappings is that there

are not so many mappings. The number of mapping is p�1 where j�j � p < 2j�j�2.

We analyzed the varian
e of the estimates for the s
ore in this algorithm. And it

is very small as
ompared to the randomized algorithms proposed in the past. The

varian
e in this algorithm is

(p�1)

2

p

2

�

p�1�k

p�2

�

m�

i

2k

. Its time
omplexity is O(kn logm)

where k is the number of samples, and the upper bound of k is p � 1. When k is

p� 1, this algorithm is deterministi
, and the estimate be
omes the real value.

Experiments with read texts and the evaluation of
omputation time are future

work. We have a plan to apply the method for pattern extra
tion from Web pages [8℄.

Referen
es

[1℄ Atallah, M. J., Chyzak, F., and Dumas, P.: A Randomized Algorithm for

Approximate String Mat
hing. Algorithmi
a 29, 468-486. 2001.

[2℄ Baba, K., Shinohara, A., Takeda, M., Inenaga, S., and Arikawa, S.: A

Note on Randomized Algorithm for String Mat
hing with Mismat
hes.

Nordi
 Journal of Computing 10, 2-12. 2003.

[3℄ Baba, K., Tanaka, Y., Nakatoh, T., Shinohara, A.: A Uni�
ation of FFT

Algorithm for String Mat
hing. Pro
. International Symposium on Infor-

mation S
ien
e and Ele
tri
al Engineering 2003, to appear.

[4℄ Cro
hemore, M. and Rytter, W.: Text Algorithms. Oxford University

Press, New York. 1994.

[5℄ Cro
hemore, M. and Rytter, W.: Jewels of Stringology. World S
ienti�
.

2003.

[6℄ Fis
her, M. J. and Paterson, M. S.: String-mat
hing and other produ
ts.

In Complexity of Computation (Pro
eedings of the SIAM-AMS Applied

Mathemati
s Symposium, New York, 1973), 113-125. 1974.

[7℄ Gus�eld, D.: Algorithms on Strings, Trees, and Sequen
es. Cambridge

University Press, New York. 1997.

[8℄ Tagu
hi, T., Koga, Y. and Hirokawa, S.: Integration of Sear
h Sites of

the World Wide Web. Pro
. of International Forum
um Conferen
e on

Information Te
hnology and Communi
ation, Vol. 2, pp. 25-32, 2000.

136

