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Prefa
e

The Prague Stringology Conferen
e 2003 (PSC'03) was held at the Department of

Computer S
ien
e and Engineering of the Cze
h Te
hni
al University in Prague,

Cze
h Republi
, on September 22�24, 2003. The 
onferen
e fo
used on stringology

and related topi
s. Stringology is a dis
ipline 
on
erned with algorithmi
 pro
essing

of strings and sequen
es.

The papers submitted were reviewed by the programme 
ommittee and eleven

were sele
ted for presentation at the 
onferen
e, based on originality and quality.

This volume 
ontains these sele
ted papers.

In the years 1996�2000 the Prague Stringology Club Workshops (PSCW's) and

the Prague Stringology Conferen
es in 2001 and 2002 pre
eded this 
onferen
e. The

pro
eedings of these workshops and the 
onferen
es had been published by Cze
h

Te
hni
al University and are available on WWW pages of the Prague Stringology

Club (PSC). Sele
ted 
ontributions were published in a spe
ial issue of the journal

Kybernetika and those sele
ted from PSC'02 were published in a spe
ial issue of the

Nordi
 Journal of Computing.

The Prague Stringology Club was founded in 1996 as a resear
h group at the

Department of Computer S
ien
e and Engineering of the Cze
h Te
hni
al University

in Prague. The goal of PSC is to study algorithms on strings and sequen
es with em-

phasis on �nite automata theory. The �rst event organized by PSC was the workshop

PSCW'96 featuring only a handful invited talks. However, sin
e PSCW'97 the papers

and talks are sele
ted by a rigorous peer review pro
ess. The obje
tive is not only to

present new results in stringology, but also to fa
ilitate personal 
onta
ts among the

people working on these problems.

I would like to thank all those who had submitted papers for PSC'03 as well as

the reviewers. Spe
ial thanks goes to all the members of the programme 
ommittee,

without whose e�orts it would not have been possible to put together su
h a stimu-

lating program of PSC'03. Last, but not least, my thanks go to the members of the

organizing 
ommittee for ensuring su
h a smooth running of the 
onferen
e.

In Hamilton, Ontario, Canada

on August 2003

Jan Holub
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The Transformation Distan
e Problem Revisited

Behshad Behzadi and Jean-Mar
 Steyaert

LIX, É
ole Polyte
hnique

Palaiseau 
edex 91128, Fran
e

e-mail: {behzadi,steyaert}�lix.polyte
hnique.fr

Abstra
t. Evolution a
ts in several ways on biologi
al sequen
es: either by mu-

tating an element, or by inserting, deleting or 
opying a segment of the sequen
e.

Varré et al. [VDR98℄ de�ned a transformation distan
e for the sequen
es, in

whi
h the evolutionary operations are 
opy, reverse 
opy and insertion of a seg-

ment. They also proposed an algorithm to 
al
ulate the transformation distan
e.

This algorithm is O(n

4

) in time and O(n

4

) in spa
e, where n is the size of the

sequen
es. In this paper, we propose an improved algorithm whi
h 
osts O(n

2

)

in time and O(n

2

) in spa
e. Furthermore, we extend the operation set by adding

point deletions. We present an algorithm whi
h is O(n

3

) in time and O(n

2

) in

spa
e for this extended 
ase.

Keywords: dynami
 programming, pattern mat
hing

1 Introdu
tion

Building models and tools to quantify evolution is an important domain of biology.

Evolutionary trees or diagrams are based on statisti
al methods whi
h exploit 
om-

parison methods between genomi
 sequen
es. Many 
omparison models have been

proposed a

ording to the type of physi
o-
hemi
al phenomena that underly the evo-

lutionary pro
ess [Do81℄. Di�erent evolutionary operation sets are studied. Mutation,

deletion and insertion were the �rst operations dealt with [SaKr83℄. Dupli
ation and


ontra
tion were then added to the operation set [BeRi02, BeSt03℄. All these oper-

ations were a
ting on single letters, representing bases, aminoa
ids or more 
omplex

sequen
es: they are 
alled point transformations. Segment operations are also very

important to study. In a number of papers [VDR97, VDR98, VDR99℄, Varré et al.

have studied an evolutionary distan
e based on the amount of segment moves that

Nature needed (or is supposed to have needed) to transfer a sequen
e from one spe
ies

to the equivalent sequen
e in another one. Their model is 
on
erned with segments


opy with or without reversal and on segment insertion: it is thus a very simple and

robust model whi
h 
an easily be explained from biologi
al me
hanisms. They devel-

oped this study on DNA sequen
es, but the basi
 
on
epts and algorithms apply as

well to proteins or satellites.

The algorithm they propose to 
ompute the minimal transformation sequen
e is

based on an en
oding into a graph formalism, from whi
h one 
an get the solution

by 
omputing shortest paths. This gives an O(n

4

) answer both in spa
e and time

1

.

1

Even O(n

6

) in the last fren
h version [Va00℄.

1



Pro
eedings of the Prague Stringology Conferen
e '03

In fa
t it is possible to give a dire
t solution based on dynami
 programming whi
h


osts only O(n

2

) in time and spa
e. This solution is obviously more e�
ient for long

sequen
es and makes the problem tra
table even for very long sequen
es.

In the se
ond se
tion we des
ribe the model and the problem des
ription.

In the third se
tion our algorithm for 
al
ulating the transformation distan
e is

presented. Firstly, in the prepro
essing part we show how to �nd e�
iently the

existen
e of all the substrings of one string in another one. Then the 
ore of the

algorithm is presented, whi
h is basi
ally a dynami
 programming algorithm.

In se
tion 4, we introdu
e the point deletions in our model and we give an al-

gorithm to solve the transformation distan
e problem in presen
e of point deletions:

this algorithm runs in time O(n

3

) and spa
e O(n

2

).

Finally, se
tion 5 is dedi
ated to 
on
lusions and remarks.

2 Model and Problem Des
ription

The symbols are elements from an alphabet �. The set of all �nite-length strings

formed using symbols from alphabet � is denoted by �

�

. In this paper, we use the

letters x, y, z,... for the symbols in � and S, T , P , R, ... for strings over �

�

.

The empty string is denoted by �. The length of a string S is denoted by jSj. The


on
atenation of a string P and R, denoted PR, has length jP j+ jRj and 
onsists of

the symbols from P followed by the symbols from R.

We will denote by S[i℄ the symbol in position i of the string S (the �rst symbol of

a string S is S[1℄). The substring of S starting at position i and ending at position

j is denoted by S[i::j℄ = S[i℄S[i + 1℄ : : : S[j℄. The reverse of a string S is denoted

by S

�1

. Thus, if n is the length of S, S

�1

[i::j℄ = S[(n � j + 1)::(n � i + 1)℄

�1

and

S[i::j℄

�1

= S

�1

[(n� j + 1)::(n� i+ 1)℄. We say that a string P is a pre�x of a string

S, denoted P v S, if S = PR for some string R 2 �

�

. Similarly, we say that a

string P is a su�x of a string S, denoted by P w S, if S = RP for some R 2 �

�

.

For brevity of notation, we denote the k-symbol pre�x P [1::k℄ of a string pattern

P [1::m℄ by P

k

. Thus, P

0

= � and P

m

= P = P [1::m℄. We re
all the de�nition of

a subsequen
e: Given a string S[1::n℄, another string R[1::k℄ is a subsequen
e of S,

denoted by R � S, if there exists a stri
tly in
reasing sequen
e < i

1

; i

2

; : : : ; i

k

> of

indi
es of S su
h that for all j = 1; 2; : : : ; k, we have S[i

j

℄ = R[j℄. For example, if

S = xxyzyyzx, R = zzxx and P = xxzz, then P is a subsequen
e of S, while R is

not a subsequen
e of S. When a string S is a subsequen
e of a string T , T is 
alled

a supersequen
e of S, denoted by T � S. In the last example, S is a supersequen
e

of P .

Varré et al. [VDR98, VDR99℄ propose a new measure whi
h evaluates segment-

based dissimilarity between two strings: the sour
e string S and the target string T .

This measure is related to the pro
ess of 
onstru
ting the target string T with segment

operations

2

. The 
onstru
tion starts with the empty string � and pro
eeds from left

to right by adding segments (
on
atenation), one segment per operation. The left-to-

right generation is not a restri
tion but a fa
t that 
an be formally proved. A list of

operations is 
alled a s
ript. Three types of segment operations are 
onsidered: the


opy adds segments that are 
ontained in the sour
e string S, the reverse 
opy adds

2

In this paper we use segment as an equivalent word for substring.

2



The Transformation Distan
e Problem Revisited

the segments that are 
ontained in S in reverse order, and the insertion adds segments

that are not ne
essarily 
ontained in S. The measure depends on a parameter that

is the Minimum Fa
tor Length (MFL); it is the minimum length of the segments

that 
an be 
opied or reverse 
opied. Depending on the number of 
ommon segments

between S and T , there exist several s
ripts for 
onstru
ting the target T . Among

these s
ripts, some are more likely; in order to identify them, we introdu
e a 
ost

fun
tion for ea
h operation. InsertCost(T [i::j℄) is the 
ost of insertion of substring

T [i::j℄. CopyCost(T [i::j℄) is the 
ost of 
opying the segment T [i::j℄ from S if it is


ontained in S. Finally RevCopyCost(T [i::j℄) is the 
ost of 
opying substring T [i::j℄

from S if the reverse of this substring is 
ontained in the sour
e S. The 
ost of a

s
ript is the sum of the 
osts of its operations. The minimal s
ripts are all s
ripts of

minimum 
ost and the transformation distan
e

3

(TD) is the 
ost of a minimal s
ript.

The problem whi
h we solve in this paper is the 
omputation of the transformation

distan
e. It is 
lear that it is also possible to get a minimal s
ript.

3 Algorithm

In this se
tion we des
ribe the algorithm to determine the transformation distan
e

between two strings. The algorithm 
onsists of two parts. The �rst part is a prepro-


essing part in whi
h we determine for ea
h substring of target string T , whether it

exists in the sour
e string S or not. In the se
ond part, whi
h is the 
ore algorithm, we

determine the transformation distan
e with help of the information that we obtained

in the prepro
essing part. This 
ore algorithm is a dynami
 programming algorithm.

3.1 Prepro
essing

De
iding whether a given substring exists in S or not, and �nding its position in the


ase of presen
e, needs to apply a string mat
hing algorithm. For this aim, we design

an algorithm based on KMP (Knutt-Moris-Pratt) string mat
hing algorithm with

some 
hanges. Let FP [i; j℄ be the the �rst position of o

urren
e of the substring

T [i::j℄ in S if su
h an o

urren
e exists and 1 otherwise. Similarly FPR[i; j℄ is the

�rst position of an o

urren
e of T

�1

[i::j℄ in S. We need to re
all the de�nition of

pre�x fun
tion � (adapted from the original KMP one), whi
h is needed for pre
om-

putation. Given a pattern P [1::m℄, the pre�x fun
tion for pattern P is the fun
tion

� : f1; 2; : : : ; mg ! f0; 1; : : : ; m� 1g su
h that �[q℄ = maxfk : k < q and P

k

w P

q

g.

That is, �

q

is the length of the longest pre�x of P that is a proper su�x of P

q

. We

have the following lemma for the pre�x fun
tions.

Lemma 1 The pre�x fun
tion of P

k

is a restri
tion of pre�x fun
tion of P to the set

f1; 2; : : : ; kg.

Proof: The proof is immediate by the de�nition of the pre�x fun
tion be
ause �[i℄

for a given i 
an be obtained only from P

i�1

= P [1::(i� 1)℄ and P [i℄.

Although simple, this lemma is a 
orner-stone of the algorithm. It shows that, one


an sear
h for the presen
e of the pre�xes of a pattern string in the sour
e string, in the

3

Although this measure is not a mathemati
al distan
e but we will use the term transformation

distan
e whi
h was introdu
ed by Varré et al. [VDR98, VDR99℄.

3
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Algorithm 1 Pre�x-Mat
her(A, S, P, index) %% index = jT j+ 1� length of the

1. n  length[S℄ %% su�x P being sear
hed in S

2. m  length[P ℄ %% A

[n�n℄

: A[i; i+ q℄ 6=1 i� the pre�x

3. q  0 %% of P of length q+1 o

urs in S

4. for i  1 to n

5. do while q > 0 and P [q + 1℄ 6= S[i℄

6. do q  �[q℄

7. if P [q + 1℄ = S[i℄ then

8. q  q + 1

9. if A[index; index + q℄ =1 then

10. A[index; index + q℄ = i� q

11. if q = m then

12. Exit %% the su�x P has been dis
overed

Figure 1: Pre�x-Mat
her

Algorithm 2 PrePro
essing(S, T )

1. FillArray(FP;1)

2. FillArray(FPR;1)

3. n length[T ℄

4. for k  1 to n

5. do P  T [k::n℄

6. Pre�x-Mat
her(FP; S; P; k) %% dire
t pattern

7. PR T

�1

[k::n℄

8. Pre�x-Mat
her(FPR; S; PR; k) %% reverse pattern

Figure 2: PrePro
essing

same time of sear
hing for the 
omplete pattern, without in
reasing the 
omplexity

of the sear
h. The algorithm is given in pseudo
ode in �gure 1 as the pro
edure

Pre�x-Mat
her. The 
omplexity of the Pre�x-Mat
her algorithm is O(n) in time.

For the proof of the 
omplexity and 
orre
tness of this algorithm, see 
hapter 34.4 of

[CLR90℄. Pre�x-Mat
her �nds the position of the �rst o

urren
e of all pre�xes of a

pattern string P in string S. In the PrePro
essing algorithm (�gure 2), we 
all the

Pre�x-Mat
her with patterns T [1::n℄; T [2::n℄; :::; T [n℄. Thus, we have the position of

the �rst o

urren
es of all of the substrings of T in S. Similarly, the �rst position of

all substrings of T

�1

are found in S. The total 
omplexity the prepro
essing part is

O(n

2

) in time and O(n

2

) in spa
e.

3.2 Core Algorithm

As the s
ripts 
onstru
t the target string T from left to right by adding segments,

dynami
 programming is an ideal tool for 
omputing the transformation distan
e.

The 
ore part of the algorithm determines the transformation distan
e between S

and T by a dynami
 programming algorithm. Let C[k℄ be the minimum produ
tion


ost of T [1::k℄ using the segments of S. The algorithm is given in �gure 3. We make

use of generi
 fun
tions CopyCost, RevCopyCost and InsertCost as de�ned at the end

of se
tion 2. These fun
tions are de�ned using the PrePro
essing algorithm: arrays

4
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Algorithm 3 TransformationDistan
e(S, T )

1. PrePro
essing(S, T)

2. C[0℄ 0

3. for k  1 to jT j

4 : C[k℄ min

0<i�k

8

>

>

>

<

>

>

>

:

C[i� 1℄ + CopyCost(T [i::k℄) if FP [i; k℄ <1

C[i� 1℄ +RevCopyCost(T [i::k℄) if FPR[n� k + 1; n� i+ 1℄ <1

C[i� 1℄ + InsertCost(T [i::k℄)

1

5. return C[n℄

Figure 3: Transformation Distan
e: a dynami
 programming solution

FP and FPR. In order to �x ideas, one 
an 
onsider that these 
osts are proportional

to the length of the sear
hed segment (and 1 if this segment does not o

ur in S).

In fa
t any sub-additive fun
tion would be 
onvenient.

Proposition 1 The re
urren
e relations of Algorithm 3, 
orre
tly determine the

transformation distan
e of S and T .

Proof: We prove by indu
tion on k that after the algorithm exe
ution, C[k℄ 
ontains

the minimum produ
tion 
ost of target T [1::k℄ with the sour
e string S. C[0℄ is

initialized to 0, be
ause the 
ost of produ
tion of � from S is zero.

Now, we suppose that C[i℄ is 
al
ulated 
orre
tly for all i < k for some positive

value of k. Let us 
onsider the 
al
ulation of C[k℄. The last operation in a minimal

s
ript whi
h generates T [1::k℄, 
reates a su�x of T [1::k℄. Let this su�x be T [i::k℄.

As the s
ript is minimal, the s
ript without its last operation is a minimal s
ript for

T [1::(i� 1)℄. The minimum 
ost of the s
ript for T [1::(i� 1)℄ is C[i� 1℄ by indu
tion

hypothesis. If T [i::k℄ exists in S and the last operation of the minimal s
ript is

a 
opy operation, the minimal 
ost of the s
ript is C[i � 1℄ + CopyCost(T [i::k℄).

Similarly, if the reverse of T [i::k℄ exists in S and the last operation in the minimal

s
ript of T [1::k℄ is a reverse 
opy operation, the minimal 
ost of the s
ript is C[i �

1℄ + RevCopyCost(T [i::k℄). Finally, if the last operation in the minimal s
ript of

T [1::k℄ is an insertion, the minimal 
ost of the s
ript is C[i� 1℄+ InsertCost(T [i::k℄)

(see �gure 4). Thus, C[n℄ is the minimum 
ost of produ
tion of T = T [1::n℄ and the

algorithm determines 
orre
tly the transformation distan
e of S and T .

Note that when the length of the substring T [i::k℄ is smaller than MFL, Copy-

Cost(T [i::k℄) and RevCopyCost(T [i::k℄) are equal to 1.

The 
omplexity of Algorithm 3 is O(n

2

) in time and O(n) in spa
e. So the total


omplexity of our algorithm (prepro
essing + 
ore algorithm) is O(n

2

) in time and

O(n

2

) in spa
e.

4 An Additional Operation: Point Deletion

In this se
tion, we extend the set of evolutionary operations by adding the point dele-

tion operation. During a point deletion (or simply deletion) operation, a symbol of

the string whi
h is under evolution is eliminated. This is an important operation from

5
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T

ki

Insertion

C[i� 1℄ + InsertCost(T [i::k℄)

T

S

ki

6

FPR[i; k℄

Reverse Copy

C[i� 1℄ +RevCopyCost(T [i::k℄)

T

S

ki

6

FP [i; k℄

Copy

C[i� 1℄ + CopyCost(T [i::k℄)

Figure 4: The three di�erent possibilities for generation of a su�x of T [1::k℄

the biologi
al point of view; in the real evolution of biologi
al sequen
es, in several


ases after or during the 
opy operations some bases (symbols) are eliminated. We

denote the 
ost of deletion of a symbol by DelCost. For simpli
ity, we suppose that

the 
ost of deletion of every unique symbol is the same. Sin
e we have only point

deletions, deleting a segment of k symbols amounts to delete the k symbols one by

one, whi
h will 
ost k � DelCost. As before, our obje
tive is to �nd the minimum


ost for a s
ript generating a target string T , with the help of segments of a sour
e

string S. As the 
osts are independent of time, we 
onsider that the deletions are

applied only in the latest added segment (rightmost one), at any moment during the

evolution. It should be 
lear that in an optimal transformation, deletions are not

applied into an inserted substring (a substring whi
h is the result of an insertion

operation). Depending on the assigned 
osts, deletions 
an be used after the 
opy

or reverse 
opy operations. We 
onsider a 
opy operation together with all deletions

whi
h are applied to that 
opied segment as a unit operation. So we have a new op-

eration 
alled NewCopy whi
h is a 
opy operation followed by zero or more deletions

on the 
opied segment. In �gure 5 a s
hema of a NewCopy operation is illustrated.

Similarly, NewRevCopy is a reverse 
opy operation followed by zero or more deletions.

Solving the extended transformation distan
e with the point deletions, amounts to

solve the transformation distan
e with the following three operations: Insertion, New-

Copy and NewRevCopy. A substring T [i::j℄ of the target string 
an be produ
ed by

a unique NewCopy operation if and only if T [i::j℄ is a subsequen
e string of sour
e

S. Conversely, T [i::j℄ 
an be produ
ed by a unique NewRevCopy operation if and

only if T [i::j℄

�1

is a subsequen
e string of the sour
e S. In a prepro
essing part, the

algorithm determines the minimum generation 
ost by a NewCopy or NewRevCopy

operation, for any substring of the target string T . Very similar to the last se
tion

6
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T

S

l

1

l

2

l

3

l

4

l

5

l

6

ki

Copy(S[l

1

::l

6

℄)

+

Delete(S[l

2

::l

3

℄)

+

Delete(S[l

4

::l

5

℄)

NewCopy(T [i::k℄)

6 6

Deleted segments

Figure 5: The illustration of NewCopy operation: A 
opy operation + zero or more

deletions

algorithm, a dynami
 programming algorithm 
al
ulates the extended transformation

distan
e in the new 
ore algorithm.

4.1 New Prepro
essing

In the prepro
essing part, we 
ompute the 
osts of these new operations for any sub-

string of the target: NewCopyCost[i; j℄ is the minimum 
ost of generating the T [i::j℄

by a NewCopy operation. Similarly, NewRevCopyCost[i; j℄ is the minimum 
ost of

generating T [i::j℄ by a NewRevCopy operation. Computing the NewCopyCost[i; j℄

amounts to �nd the shortest substring (with minimum length) of the sour
e string

whi
h 
ontains T [i::j℄ as a subsequen
e string. By this way, the number of deletions

whi
h are needed for this NewCopy operation is minimized. ForNewRevCopyCost[i; j℄,

we need to �nd the shortest substring in S

�1

whi
h 
ontains T [i::j℄ as a subsequen
e.

In the NewPrePro
essing algorithm listed in �gure 6, the 
ost tables New-

CopyCost and LastO

 are initially �lled with1 (lines 1-2). The algorithm s
ans the

sour
e from left to right to �nd the shortest supersequen
e for ea
h segment of the

target. The algorithm uses an auxiliary table LastO

 for this aim.

After the k-th letter of S is pro
essed (loop of line 3), the following is true:

LastO

[i; j℄ is the largest l � k su
h that S[l::k℄ is a supersequen
e of T [i::j℄. The loop

on T (line 4) is pro
essed with de
reasing indi
es for memory optimization. Whenever

the letter S[k℄ o

urs in j-th position in T (line 5), then there is an opportunity of

obtaining a better supersequen
e for some of T [i::j℄'s, i � j. LastO

[i; j℄ takes the

value LastO

[i; j � 1℄ (
omputed for k � 1) sin
e S[LastO

[i; j � 1℄::k℄ is now the

rightmost supersequen
e for T [i::j℄ (line 9). Its 
ost is 
ompared to the 
ost of the

best previous one; if better, the new 
ost is stored in NewCopyCost (lines 11-13). One

should observe that rightmost sequen
es are updated only when a new 
ommon letter

is s
anned. This is ne
essary and su�
ient as stated in the following lemma:

Lemma 2 If S[l::k℄ is the best supersequen
e for T [i::j℄ over S[1::N ℄, then it is the

rightmost supersequen
e for T [i::j℄ on S[1::k℄.

Proof: S[l::k℄ is the best sequen
e for T [i::j℄ over S[1::k℄ then it is better than

all S[l

0

::k℄ for l

0

< l and no S[l

00

::k℄ 
an be a supersequen
e for l

00

< l.
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Algorithm 4 NewPrePro
essing(S, T )

1. FillArray(NewCopyCost;1)

2. FillArray(LastO

;1) %% LastO

 is a sub-diagonal array: LastO

[i; j℄ =1 for i > j

3. for k  1 to jSj %% Sour
e s
anned left to right

4. for ea
h j  jT j downto 1 %% �nd mat
hes in T for S[k℄

%% for a �xed k: LastO

[i; j℄ =largest l su
h that S[l::k℄ � T [i::j℄

5. if S[k℄ = T [j℄ then

6. LastO

[j; j℄ k

7. NewCopyCost[j; j℄ CopyCost(T [j℄) %% deletions are not needed

8. for i 1 to j � 1 %% for all su�xes of T[1..j℄

9. LastO

[i; j℄ LastO

[i; j�1℄ %% S[LastO

[i; j�1℄::k�1℄℄ � T [i::j�1℄

10. NumDel  k � LastO

[i; j℄� i� j %% di�eren
e in lengths

11. ThisCost DelCost�NumDel+CopyCost(S[LastO

[i; j℄::k℄)

12. if ThisCost < NewCopyCost[i; j℄ then

13. NewCopyCost[i; j℄ ThisCost

Figure 6: NewPrePro
essing (simpli�ed: reverse 
opies have been omitted)

Algorithm 5 NewTransformationDistan
e(S, T )

1. NewPrePro
essing(S,T)

2. C[0℄ 0

3. for k  1 to n

4 : C[k℄ min

0<i�k

8

>

>

>

<

>

>

>

:

C[i� 1℄ +NewCopyCost[i; k℄ if FP [i; k℄ <1

C[i� 1℄ +NewRevCopyCost[i; k℄ if FPR[i; k℄ <1

C[i� 1℄ + InsertCost(T [i::k℄)

1

5. return C[n℄

Figure 7: New Transformation Distan
e: dynami
 programming

4.2 New Core Algorithm

In the 
ore algorithm, the minimum generation 
osts of the pre�xes of the target

string T are determined from left to right. This is realized by a dynami
 programming

algorithm: Let C[k℄ be the minimum produ
tion 
ost of T [1::k℄ using the segments of

S. The algorithm is given in �gure 7. The proof of the following proposition is very

similar to the proof of proposition 1:

Proposition 2 The re
urren
e relations of Algorithm 5, 
orre
tly determine the ex-

tended transformation distan
e of S and T .

The 
omplexity of the prepro
essing part, is O(n

3

) in time and O(n

2

) in spa
e.

The 
omplexity of the 
ore algorithm is O(n

2

) both in time and spa
e. Therefore, the

whole 
omplexity of the new algorithm for the 
al
ulation of extended transformation

distan
e is O(n

3

) in time and O(n

2

) in spa
e.
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The Transformation Distan
e Problem Revisited

Remarks and Con
lusion

In this paper, we presented a new improved algorithm for 
al
ulation of the transfor-

mation distan
e problem. We also gave an algorithm for the transformation distan
e

problem in presen
e of the deletion operations. In this version, 
osts have been given

a spe
ial additive form for 
larity. In fa
t a number of variations are possible within

our framework: the main property needed on 
osts seems to be their subadditivity.

In this paper, we state that Algorithm 3 
omplexity is O(n

3

); this stands for

the worst 
ase 
omplexity; in fa
t only a small proportion of pairs (S[k℄; T [j℄) imply

running the inner loop. Under 
ertain additional statisti
al hypotheses the average


omplexity 
ould be less than O(n

3

).
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Abstra
t. We present a variation of the Fast-Sear
h string mat
hing algorithm,

a re
ent member of the large family of Boyer-Moore-like algorithms, and we 
om-

pare it with some of the most e�e
tive string mat
hing algorithms, su
h as Hor-

spool, Qui
k Sear
h, Tuned Boyer-Moore, Reverse Fa
tor, Berry-Ravindran, and

Fast-Sear
h itself. All algorithms are 
ompared in terms of run-time e�
ien
y,

number of text 
hara
ter inspe
tions, and number of 
hara
ter 
omparisons.

It turns out that our new proposed variant, though not linear, a
hieves very

good results espe
ially in the 
ase of very short patterns or small alphabets.

Keywords: string mat
hing, experimental algorithms, text pro
essing.

1 Introdu
tion

Given a text T and a pattern P over some alphabet �, the string mat
hing prob-

lem 
onsists in �nding all o

urren
es of the pattern P in the text T . It is a very

extensively studied problem in 
omputer s
ien
e, mainly due to its dire
t appli
a-

tions to su
h diverse areas as text, image and signal pro
essing, spee
h analysis and

re
ognition, information retrieval, 
omputational biology and 
hemistry, et
.

Several string mat
hing algorithms have been proposed over the years. The Boyer-

Moore algorithm [BM77℄ deserves a spe
ial mention, sin
e it has been parti
ularly

su

essful and has inspired mu
h work. It is based upon three simple ideas: right-to-

left s
anning, bad 
hara
ter heuristi
s, and good su�x heuristi
s. We will review it

at length in Se
tion 2.1.

Many subsequent algorithms have been based on variations on how to apply the

two mentioned heuristi
s. For instan
e, the Fast-Sear
h algorithm, re
ently introdu
ed

by the authors [CF03℄, requires that the bad 
hara
ter heuristi
s is used only if the

mismat
hing 
hara
ter is the last 
hara
ter of the pattern, otherwise the good su�x

heuristi
s is to be used.

In this paper, we present a variation of the Fast-Sear
h algorithm in whi
h the good

su�x heuristi
s uses also a look-ahead 
hara
ter to determine larger advan
ements.

We also propose a pra
ti
al algorithm to pre
ompute the table en
oding su
h an

extended good su�x rule.

Before entering into details, we need a bit of notations and terminology. A string

P is represented as a �nite array P [0 :: m � 1℄, with m � 0. In su
h a 
ase we say

10
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that P has length m and write length(P ) = m. In parti
ular, for m = 0 we obtain

the empty string, also denoted by ". By P [i℄ we denote the (i+ 1)-st 
hara
ter of P ,

for 0 � i < length(P ). Likewise, by P [i :: j℄ we denote the substring of P 
ontained

between the (i + 1)-st and the (j + 1)-st 
hara
ters of P , for 0 � i � j < length(P ).

Moreover, for any i; j 2 Z, we put

P [i :: j℄ =

(

" if i > j

P [max(i; 0);min(j; length(P )� 1)℄ otherwise:

For any two strings P and P

0

, we write P

0

= P to indi
ate that P

0

is a su�x of P , i.e.,

P

0

= P [i :: length(P )� 1℄, for some 0 � i < length(P ). Similarly, we write P

0

< P to

indi
ate that P

0

is a pre�x of P , i.e., P

0

= P [0 :: i� 1℄, for some 0 � i � length(P ).

In addition, we write P:P

0

to denote the 
on
atenation of P and P

0

.

Let T be a text of length n and let P be a pattern of lengthm. When the 
hara
ter

P [0℄ is aligned with the 
hara
ter T [s℄ of the text, so that the 
hara
ter P [i℄ is aligned

with the 
hara
ter T [s+ i℄, for i = 0; : : : ; m� 1, we say that the pattern P has shift

s in T . In this 
ase the substring T [s :: s+m� 1℄ is 
alled the 
urrent window of the

text. If T [s :: s+m�1℄ = P , we say that the shift s is valid. Thus the string mat
hing

problem 
an be rephrased as the problem of �nding all valid shifts of a pattern P

relative to a text T .

Most string mat
hing algorithms have the following general stru
ture. First, dur-

ing a prepro
essing phase, they 
al
ulate useful mappings, in the form of tables,

whi
h later are a

essed to determine nontrivial shift advan
ements. Next, start-

ing with shift s = 0, they look for all valid shifts, by exe
uting a mat
hing phase,

whi
h determines whether the shift s is valid and 
omputes a positive shift in
rement

�s. Su
h in
rement �s is used to produ
e the new shift s + �s to be fed to the

subsequent mat
hing phase. Observe that for the 
orre
tness of the algorithm it is

plainly ne
essary that ea
h shift in
rement �s 
omputed is safe, namely the interval

fs+ 1; : : : ; s+�s� 1g 
ontains no valid shifts.

For instan
e, in the 
ase of the naive string mat
hing algorithm, there is no pre-

pro
essing phase and the mat
hing phase always returns a unitary shift in
rement,

i.e., all possible shifts are a
tually pro
essed.

The paper is organized as follows. In Se
tion 2 we survey some of the most e�e
tive

string mat
hing algorithms. Next, in Se
tion 3, we introdu
e a new variant of the Fast-

Sear
h algorithm. Experimental data obtained by running under various 
onditions

all the algorithms reviewed are presented and 
ompared in Se
tion 4. Finally, we

draw our 
on
lusions in Se
tion 5.

2 Some Very Fast String Mat
hing Algorithms

In this se
tion we brie�y review the Boyer-Moore algorithm and some of its most e�-


ient variants that have been proposed over the years. In parti
ular, we present the

Horspool [Hor80℄, Tuned Boyer-Moore[HS91℄, Qui
k-Sear
h[Sun90℄, Berry-Ravindran

[BR99℄, and the Fast-Sear
h [CF03℄ algorithms.

We also review the Reverse Fa
tor algorithm [CCG

+

94℄, whi
h is based on the

smallest su�x automaton of the reverse pattern.
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2.1 The Boyer-Moore Algorithm

The Boyer-Moore algorithm [BM77℄ is the progenitor of several algorithmi
 variants

whi
h aim at 
omputing 
lose to optimal shift in
rements very e�
iently. Spe
i�
ally,

the Boyer-Moore algorithm 
he
ks whether s is a valid shift by s
anning the pattern P

from right to left and, at the end of the mat
hing phase, 
omputes the shift in
rement

as the maximum value suggested by the good su�x rule and the bad 
hara
ter rule

below, using the fun
tions gs

P

and b


P

respe
tively, provided that both of them are

appli
able.

If the �rst mismat
h o

urs at position i of the pattern P , the good su�x rule

suggests to align the substring T [s + i + 1 : : : s + m � 1℄ = P [i + 1 : : :m � 1℄ with

its rightmost o

urren
e in P pre
eded by a 
hara
ter di�erent from P [i℄. If su
h an

o

urren
e does not exist, the good su�x rule suggests a shift in
rement whi
h allows

to mat
h the longest su�x of T [s+ i+ 1 : : : s+m� 1℄ with a pre�x of P .

More formally, if the �rst mismat
h o

urs at position i of the pattern P , the good

su�x rule states that the shift 
an be safely in
remented by gs

P

(i+1) positions, where

gs

P

(j) =

Def

minf0 < k � m j P [j � k ::m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ 6= P [j � 1� k℄)g ;

for j = 0; 1; : : : ; m. (The situation in whi
h an o

urren
e of the pattern P is found


an be regarded as a mismat
h at position �1.)

The bad 
hara
ter rule states that if 
 = T [s + i℄ 6= P [i℄ is the �rst mismat
hing


hara
ter, while s
anning P and T from right to left with shift s, then P 
an be safely

shifted in su
h a way that its rightmost o

urren
e of 
, if present, is aligned with

position (s+ i) in T . In the 
ase in whi
h 
 does not o

ur in P , then P 
an be safely

shifted just past position (s + i) in T . More formally, the shift in
rement suggested

by the bad 
hara
ter rule is given by the expression (i� b


P

(T [s+ i℄)), where

b


P

(
) =

Def

max(f0 � k < m j P [k℄ = 
g [ f�1g) ;

for 
 2 �, and where we re
all that � is the alphabet of the pattern P and text

T . Noti
e that there are situations in whi
h the shift in
rement given by the bad


hara
ter rule 
an be negative.

It turns out that the fun
tions gs

P

and b


P


an be 
omputed during the pre-

pro
essing phase in time O(m) and O(m + j�j), respe
tively, and that the overall

worst-
ase running time of the Boyer-Moore algorithm, as des
ribed above, is linear

(
f. [GO80℄).

2.2 The Horspool Algorithm

Horspool suggested a simpli�
ation of the original Boyer-Moore algorithm, de�ning a

new variant whi
h, though quadrati
, performed better in pra
ti
al 
ases (
f. [Hor80℄).

He just dropped the good su�x rule and proposed to 
ompute the shift advan
ement

in su
h a way that the rightmost 
hara
ter T [s+m� 1℄ is aligned with its rightmost

o

urren
e on P [0 :: m � 2℄, if present; otherwise the pattern is advan
ed just past

the window. This 
orresponds to advan
e the shift by hb


P

(T [s+m� 1℄) positions,

where

hb


P

(
) =

Def

min(f1 � k < m j P [m� 1� k℄ = 
g [ fmg) :

12
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The resulting algorithm performs well in pra
ti
e and 
an be immediately translated

into programming 
ode (see Baeza-Yates and Régnier [BYR92℄ for a simple imple-

mentation in the C programming language).

2.3 The Tuned Boyer-Moore Algorithm

The Tuned Boyer-Moore algorithm [HS91℄ 
an be seen as an e�
ient implementation

of the Horspool algorithm. Again, let P be a pattern of length m. Ea
h iteration

of the Tuned Boyer-Moore algorithm 
an be divided into two phases: last 
hara
ter

lo
alization and mat
hing phase. The �rst phase sear
hes for a mat
h of P [m�1℄, by

applying rounds of three blind shifts (based on the 
lassi
al bad 
hara
ter rule) until

needed. The mat
hing phase tries then to mat
h the rest of the pattern P [0 :: m� 2℄

with the 
orresponding 
hara
ters of the text, pro
eeding from right to left. At

the end of the mat
hing phase, the shift advan
ement is 
omputed a

ording to the

Horspool bad 
hara
ter rule. Moreover, to begin with, the algorithm adds m 
opies

of P [m� 1℄ at the end of the text, as a sentinel, to 
ompute the last shifts 
orre
tly.

The fa
t that the blind shifts require no 
omparison is at the heart of the very

good pra
ti
al behavior of the Tuned Boyer-Moore, despite its quadrati
 worst-
ase

time 
omplexity (
f. [Le
00℄).

2.4 The Qui
k-Sear
h Algorithm

The Qui
k-Sear
h algorithm, presented in [Sun90℄, uses a modi�
ation of the original

heuristi
s of the Boyer-Moore algorithm, mu
h along the same lines of the Horspool

algorithm. Spe
i�
ally, it is based on the following observation: when a mismat
h


hara
ter is en
ountered, the pattern is always shifted to the right by at least one


hara
ter, but never by more than m 
hara
ters. Thus, the 
hara
ter T [s + m℄ is

always involved in testing for the next alignment. So, one 
an apply the bad 
hara
ter

rule to T [s + m℄, rather than to the mismat
hing 
hara
ter, obtaining larger shift

advan
ements. This 
orresponds to advan
e the shift by qb


P

(T [s + m℄) positions,

where

qb


P

(
) =

Def

min(f0 < k � m j P [m� k℄ = 
g [ fm+ 1g) :

Experimental tests have shown that that the Qui
k-Sear
h algorithm is very fast

espe
ially for short patterns (
f. [Le
00℄).

2.5 The Berry-Ravindran Algorithm

The Berry-Ravindran algorithm [BR99℄ extends the Qui
k-Sear
h algorithm in that

its bad 
hara
ter rule uses the two 
hara
ters T [s+m℄ and T [s+m+ 1℄ rather than

just the last 
hara
ter T [s+m℄ of the window, where m is the size of the pattern P .

Thus, at the end of ea
h mat
hing phase with shift s, the Berry-Ravindran algorithm

advan
es the pattern so that the substring of the text T [s+m :: s+m+1℄ is aligned

with its rightmost o

urren
e in P .

The pre
omputation of the table used by the bad 
hara
ter rule requires O(j�j

2

)-

spa
e and O(m + j�j

2

)-time 
omplexity, where � is the alphabet of the text and

pattern. Experimental results [BR99℄ show that the Berry-Ravindran algorithm is

fast in pra
ti
e and performs a low number of text/pattern 
hara
ter 
omparisons.
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2.6 The Fast-Sear
h Algorithm

Again, let P be a pattern of lengthm and let T be a text of length n over a �nite alpha-

bet �. The main observation upon whi
h the Fast-Sear
h algorithm [CF03℄ is based

is the following: the Horspool bad 
hara
ter rule leads to larger shift in
rements than

the good su�x rule if and only if a mismat
h o

urs immediately, while 
omparing

the pattern P with the window T [s :: s+m�1℄, namely when P [m�1℄ 6= T [s+m�1℄,

where 0 � s � m� n is a shift.

In agreement with the above observation, the Fast-Sear
h algorithm 
omputes its

shift in
rements by applying the Horspool bad 
hara
ter rule only if a mismat
h

o

urs during the �rst 
hara
ter 
omparison. Otherwise it uses the good su�x rule.

Noti
e that hb


P

(a) = b


P

(a), whenever a 6= P [m � 1℄, so that to 
ompute the

shift advan
ement one 
an use the traditional bad 
hara
ter rule, b


P

, rather then

the Horspool bad 
hara
ter rule, hb


P

.

A more e�e
tive implementation of the Fast-Sear
h algorithm is obtained along

the same lines of the Tuned Boyer-Moore algorithm: the bad 
hara
ter rule 
an be

iterated until the last 
hara
ter P [m� 1℄ of the pattern is mat
hed 
orre
tly against

the text. At this point it is known that T [s+m�1℄ = P [m�1℄, so that the subsequent

mat
hing phase 
an start with the (m � 2)-nd 
hara
ter of the pattern. At the end

of the mat
hing phase the algorithm uses the good su�x rule for shifting.

As in the 
ase of the Tuned Boyer-Moore algorithm, the Fast-Sear
h algorithm

bene�ts from the introdu
tion of an external sentinel, whi
h allows to 
ompute 
or-

re
tly the last shifts with no extra 
he
ks.

Experimental results [CF03℄ show that the Fast-Sear
h algorithm obtains the best

run-time performan
es in most 
ases and, sporadi
ally, it is se
ond only to the Tuned

Boyer-Moore algorithm. Con
erning the number of text 
hara
ter inspe
tions, it turns

out that the Fast-Sear
h algorithm is quite 
lose to the Reverse Fa
tor algorithm,

whi
h generally shows the best behavior. We noti
e, though, that in the 
ase of very

short patterns the Fast-Sear
h algorithm rea
hes the lowest number of text 
hara
ter

a

esses.

2.7 The Reverse Fa
tor Algorithm

Unlike the variants of the Boyer-Moore algorithm summarized above, the Reverse

Fa
tor algorithm 
omputes shifts whi
h mat
h pre�xes of the pattern, rather than

su�xes. This is made possible by the smallest su�x automaton of the reverse of the

pattern P , whi
h is a deterministi
 �nite automaton S(P ) whose a

epted language

is the set of su�xes of P (for a 
omplete des
ription see [CCG

+

94℄).

The Reverse Fa
tor algorithm has a quadrati
 worst-
ase time 
omplexity, but it

is very fast in pra
ti
e (
f. [Le
00℄). Moreover, it has been shown that on the average

it inspe
ts O(n log(m)=m) text 
hara
ters, rea
hing the best bound shown by Yao in

[Yao79℄.

3 The Forward-Fast-Sear
h Algorithm

In this se
tion we present a new e�
ient variant of the Boyer-Moore algorithm ob-

tained by modifying the Fast-Sear
h algorithm presented in Se
tion 2.6.
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The new algorithmi
 variant, that we 
all Forward-Fast-Sear
h, mantains the same

stru
ture of the Fast-Sear
h algorithm, but is based upon a modi�ed version of the

good su�x rule, 
alled forward good su�x rule, whi
h uses a look-ahead 
hara
ter to

determine larger shift advan
ements.

The forward good su�x requires a pre
omputed table of size (m � j�j), where m

is the length of the pattern and � is the alphabet of the text and pattern.

Con
erning the running time, the forward good su�x rule 
an be pre
omputed by

j�j iterations of the standard linear pre
omputation of the Boyer-Moore good su�x

rule, yielding a O(m � j�j) time 
omplexity. Nevertheless, we propose an alternative,

more dire
t approa
h whi
h behaves very well in pra
ti
e, though it requires O(m �

max(m; j�j)) time in the worst 
ase.

3.1 Strengthening the Good Su�x Rule

3.1.1 The Ba
kward Good Su�x Rule

A �rst natural way to strengthen the good su�x rule, whi
h yields the ba
kward good

su�x rule, 
an be obtained by merging it with the bad 
hara
ter rule as follows.

As usual, let us assume that we are 
omparing a pattern P of length m with the

window T [s :: s +m � 1℄ at shift s of a given text T , s
anning it from right to left.

If the �rst mismat
h o

urs at position i of the pattern P , i.e. P [i + 1 :: m � 1℄ =

T [s + i + 1 :: s + m � 1℄ and P [i℄ 6= T [s + i℄, then the ba
kward good su�x rule

proposes to align the substring T [s+ i+ 1 :: s+m� 1℄ with its rightmost o

urren
e

in P pre
eded by the ba
kward 
hara
ter T [s + i℄. If su
h an o

urren
e does not

exist, the ba
kward good su�x rule proposes a shift in
rement whi
h allows to mat
h

the longest su�x of T [s + i + 1 :: s +m � 1℄ with a pre�x of P . More formally, this


orresponds to in
rement the shift s by

 �

gs

P

(i + 1; T [s+ i℄), where

 �

gs

P

(j; 
) =

Def

minf0 < k � m j P [j � k : : :m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ = 
)g ;

for j = 0; 1; : : : ; m and 
 2 �.

3.1.2 The Forward Good Su�x Rule

As observed by Sunday [Sun90℄, after a mat
hing phase with shift s, the forward


hara
ter T [s+m℄ is always involved in the subsequent mat
hing phase. Thus, another

possible variant of the good su�x rule, whi
h we 
all forward good su�x rule, 
onsists

in mat
hing the forward 
hara
ter T [s +m℄, rather than the mismat
hed 
hara
ter

T [s + i℄. More pre
isely, if as above the �rst mismat
h o

urs at position i of the

pattern P , the forward good su�x rule suggests to align the substring T [s+ i+1 :: s+

m℄ with its rightmost o

urren
e in P pre
eded by a 
hara
ter di�erent from P [i℄.

If su
h an o

urren
e does not exist, the forward good su�x rule proposes a shift

in
rement whi
h allows to mat
h the longest su�x of T [s+ i+1 :: s+m℄ with a pre�x

of P . This 
orresponds to advan
e the shift s by

�!

gs

P

(i+1; T [s+m℄) positions, where

�!

gs

P

(j; 
) =

Def

min(f0 < k � m j P [j � k ::m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ 6= P [j � 1� k℄)

and P [m� k℄ = 
g [ fm+ 1g) ;

for j = 0; 1; : : : ; m and 
 2 �.
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3.1.3 Comparing the Good Su�x Rule with its Variants

We 
omputed the average shift advan
ement suggested by the good su�x rule and

its ba
kward and forward variants on four Rand� problems, for � = 2; 4; 8; 20, with

pattern lengths 2; 4; 6; 8; 10; 20; 40; 80, and 160, where a Rand� problem 
onsists in

sear
hing, for ea
h assigned value of the pattern length, a set of 200 random patterns

over an alphabet � of size � in a 20Mb random text over the same alphabet �.

Experimental results, presented in the tables below, show that the forward and

ba
kward good su�x rules propose on the average mu
h larger shift advan
ements

than the standard good su�x rule (up to 400% better). In addition, the forward

good su�x rule shows always a slightly better behavior than the ba
kward one, whi
h

be
omes more sensible in the 
ase of very small alphabets. This is partly due to the

fa
t that the forward 
hara
ter is always used by the forward good su�x rule to


ompute shift advan
ements, whereas there are 
ases in whi
h the ba
kward good

su�x rule does not exploit the ba
kward 
hara
ter.

� = 2 2 4 6 8 10 20 40 80 160

gs 1.540 2.762 3.869 4.765 5.468 8.464 12.254 16.137 21.807

 �

gs 1.540 2.762 3.869 4.765 5.468 8.464 12.254 16.137 21.807

�!

gs 2.269 3.642 5.026 6.310 7.394 12.21 18.200 25.586 34.798

� = 4 2 4 6 8 10 20 40 80 160

gs 1.750 3.062 4.334 5.196 6.079 8.697 12.382 16.857 22.645

 �

gs 1.750 3.540 5.170 6.691 8.097 13.62 21.604 30.540 42.891

�!

gs 2.687 4.407 6.114 7.696 9.245 15.55 25.149 36.584 51.398

� = 8 2 4 6 8 10 20 40 80 160

gs 1.880 3.453 4.833 5.399 6.656 10.05 13.613 19.510 25.807

 �

gs 1.880 3.857 5.692 7.441 9.294 17.63 31.570 51.010 75.734

�!

gs 2.860 4.775 6.671 8.399 10.24 18.72 33.225 54.825 81.334

� = 20 2 4 6 8 10 20 40 80 160

gs 1.930 3.714 5.238 6.684 8.512 12.81 19.078 25.169 33.975

 �

gs 1.930 3.956 5.892 7.919 9.867 19.47 38.167 72.950 136.45

�!

gs 2.946 4.929 6.896 8.868 10.85 20.44 39.206 74.084 138.22

Average advan
ements for some Rand� problems

3.1.4 Implementing the Forward Good Su�x Rule

Given a pattern P of length m over an alphabet �, we have plainly

�!

gs

P

(j; 
) = gs

P:


(j) ;

for j = 0; 1; : : : ; m and 
 2 �, where P:
 is the string obtained by 
on
atenating the


hara
ter 
 at the end of P . Thus, a natural way to 
ompute the forward good su�x

fun
tion

�!

gs

P


onsists in 
omputing the standard good su�x fun
tions gs

P:


, for all


 2 �, by means of the O(m) tri
ky algorithm �rstly given in [KMP77℄ and then


orre
ted in [Rit80℄.

Su
h a pro
edure is asymptoti
ally optimal, as it has O(m � j�j) spa
e and time


omplexity.

In Figure 1 we propose an alternative pro
edure to 
ompute the forward good

su�x fun
tion whi
h, despite its O(m � max(m; j�j)) worst-
ase time 
omplexity,

turns out to be very e�
ient in pra
ti
e, even for large values of m.
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pre
ompute-forward-good-su�x(P )

Initialization:

1. m = length(P )

2. for i = 0 to m do

3. for 
 2 � do

4.

�!

gs[i; 
℄ = m+ 1

5. for i = 0 to m� 1 do

6. next [i℄ = i� 1

Computation:

7. for slen = 0 to m� 1 do

8. last = m� 1

9. i = next [last ℄

10. while i � 0 do

11. if

�!

gs[m� slen; P [i+ 1℄℄ > m� 1� i then

12. if (i� slen < 0 or

13 (i� slen � 0 and P [i� slen℄ 6= P [m� 1� slen℄)) then

14.

�!

gs[m� slen; P [i+ 1℄℄ = m� 1� i

15. if (i� slen � 0 and P [i� slen℄ = P [last � slen℄) or

16. (i� slen < 0) then

17. next [last ℄ = i

18. last = i

19. i = next [i℄

20. if

�!

gs[m� slen; P [0℄℄ > m then

21.

�!

gs[m� slen; P [0℄℄ = m

22. next [last ℄ = �1

23. return

�!

gs

Figure 1: The fun
tion for 
omputing forward good su�xes

After an initialization phase whi
h takes O(m � j�j) spa
e and time 
omplexity,

the pre
ompute-forward-good-su�x pro
edure 
arries out m iterations of its main for-

loop, starting at line 7. During the k-th iteration, for k = 1; 2; : : : ; m, it 
omputes

the sequen
e S

k

(P ) of all o

urren
es in P of the su�x P [m� k ::m� 1℄ of length k,

impli
itly represented by means of the array next :

S

k

(P ) = h P [next [m� 1℄� k + 1 :: next [m� 1℄℄ ;

P [next

(2)

[m� 1℄� k + 1 :: next

(2)

[m� 1℄℄;

: : : : : :

P [next

(r

k

)

[m� 1℄� k + 1 :: next

(r

k

)

[m� 1℄℄ i ;

(1)

where r

k

is su
h that next

(r

k

+1)

[m�1℄ = �1. For that purpose, lines 15-18 implement

the re
urren
e

S

k

(P ) = hP [j � k + 1 :: j℄ jP [j � k + 2 :: j℄ 2 S

k�1

(P ) and P [j � k + 1℄ = P [m� k℄i ;

where S

0

(P ) is also formally given by (1), thanks to the way the array next is ini-

tialized in lines 5-6. Moreover, during the k-th iteration of the for-loop, for ea
h
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P [j � k + 1 :: j℄ 2 S

k

(P ), the pro
edure updates, if ne
essary, the value

�!

gs(m � k �

1; P [j + 1℄) by setting it to (m� 1� j) (lines 11-14).

Plainly, the pro
edure in Figure 1 requires O(m � j�j) spa
e. To 
ompute its

time 
omplexity, it is enough to observe that the k-th exe
ution of the while-

loop in lines 10-19, for k = 1; 2; : : : ; m, takes O(jS

k�1

(P )j) time, giving a total

of O(

P

m�1

j=0

jS

j

(P )j) = O(m

2

) time in the worst 
ase. This leads to an overall

O(m �max(m; j�j)) worst-
ase time 
omplexity, taking into a

ount also the initizial-

ization phase.

Experimental results show that the sum

P

m�1

j=0

jS

j

(P )j has on the average an al-

most linear behavior. For instan
e, the following tables report the average of the

sum

P

m�1

j=0

jS

j

(P )j 
omputed for 100; 000 random patterns of size m over an alphabet

of size �, for � = 2; 4; 8; 20 and m = 2; 4; 6; 8; 10; 20; 40; 80; 160. The tests relative

to a natural language bu�er NL have been 
omputed by randomly sele
ting 100; 000

substrings for ea
h given pattern length over the 3.13Mb �le obtained by dis
arding

the nonalphabeti
 
hara
ters from the WinEdt spelling di
tionary.

m 2 4 6 8 10 20 40 80 160

m

2

(worst 
ase) 4 16 36 64 100 400 1600 6400 25600

Average for � = 2 2.50 7.38 13.07 19.01 25.02 55.09 114.89 234.98 474.57

Average for � = 4 2.24 5.46 8.76 12.10 15.45 32.09 65.34 132.06 264.98

Average for � = 8 2.12 4.67 7.23 9.81 12.40 25.24 50.93 102.45 204.98

Average for � = 20 2.04 4.25 6.46 8.68 10.89 21.96 44.00 88.21 176.63

Average on NL 2.04 4.23 6.47 8.84 11.99 28.57 57.97 111.61 208.00

For the same set of random tests, we also 
omputed the total time taken to 
on-

stru
t the forward good su�x fun
tion

�!

gs, using the two implementations des
ribed

earlier, namely the one whi
h has a O(m � j�j) worst-
ase time and spa
e 
omplexity

and the pro
edure pre
ompute-forward-good-su�x. Su
h implementations are denoted

respe
tively �

�!

gs (I)� and �

�!

gs (II)� in the tables below, where experimental results are

expressed in hundredths of se
onds.

� = 2 2 4 6 8 10 20 40 80 160

�!

gs (I) 58.1 60.1 63.1 66.1 68.1 81.1 103.2 149.2 239.3

�!

gs (II) 3.0 6.0 11.0 15.1 18.0 37.0 74.1 145.3 288.4

� = 4 2 4 6 8 10 20 40 80 160

�!

gs (I) 113.2 117.1 121.2 124.2 128.2 142.2 174.2 235.4 357.5

�!

gs (II) 3.0 6.0 10.0 13.0 16.0 33.1 64.1 126.2 250.3

� = 8 2 4 6 8 10 20 40 80 160

�!

gs (I) 225.3 230.4 237.3 240.4 243.3 268.4 313.4 401.6 577.9

�!

gs (II) 4.0 7.0 11.0 14.0 19.0 36.1 72.1 141.2 289.4

� = 20 2 4 6 8 10 20 40 80 160

�!

gs (I) 558.8 573.9 580.8 589.8 598.9 642.9 733.1 905.3 1250.8

�!

gs (II) 5.0 11.0 16.0 20.1 26.0 50.1 98.1 195.3 394.6

NL 2 4 6 8 10 20 40 80 160

�!

gs (I) 553.8 565.8 573.8 583.8 592.8 636.9 725.0 895.3 1238.8

�!

gs (II) 5.0 10.0 16.0 19.0 23.1 48.1 95.1 189.3 379.5
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Forward-Fast-Sear
h(P , T )

1. n = length(T )

2. m = length(P )

3. T

0

= T:P [m� 1℄

m+1

4. b
 = pre
ompute-bad-
hara
ter(P )

5.

�!

gs = pre
ompute-forward-good-su�x(P )

7. s = 0

8. while b
[T

0

[s +m� 1℄℄ > 0 do

9. s = s+ b
[T

0

[s+m� 1℄℄

10. while s � n�m do

11. j = m� 2

12. while j � 0 and P [j℄ = T

0

[s+ j℄ do

13. j = j � 1

14. if j < 0 then

15. print(s)

16. s = s+

�!

gs[j + 1; T [s+m℄℄

17. while b
[T

0

[s+m� 1℄℄ > 0 do

18. s = s+ b
[T

0

[s+m� 1℄℄

Figure 2: The Forward-Fast-Sear
h algorithm

The analysis of the above experimental results show that for alphabets of size at least

4 the pro
edure pre
ompute-forward-good-su�x is on the average always faster than

the implementation of the forward good su�x fun
tion des
ribed at the beginning

the present se
tion.

3.2 Building up the Forward-Fast-Sear
h Algorithm

The implementation of the Forward-Fast-Sear
h algorithm 
an be obtained along the

same lines of the Fast-Sear
h and the Tuned Boyer-Moore algorithms.

In the �rst phase, 
alled 
hara
ter lo
alization phase, the algorithm iterates the

bad 
hara
ter rule until the last 
hara
ter P [m�1℄ of the pattern is mat
hed 
orre
tly

against the text. More pre
isely, starting from a shift position s, if we denote by j

i

the total shift advan
ement after the i-th iteration of the bad 
hara
ter rule, then we

have the following re
urren
e:

j

i

= j

i�1

+ b


P

(T [s+ j

i�1

+m� 1℄) :

Therefore, the bad 
hara
ter rule is applied k times in a row, where k = minfi j T [s+

j

i

+m� 1℄ = P [m� 1℄g, with an overall shift advan
ement of j

k

.

At this point we have that T [s+ j

k

+m� 1℄ = P [m� 1℄, so that the subsequent

mat
hing phase 
an test for an o

urren
e of the pattern by 
omparing only the

remaining (m � 1) 
hara
ters of the pattern. At the end of the mat
hing phase the

algorithm applies the forward good su�x rule instead of the traditional good su�x

rule.

As in the 
ase of the Fast-Sear
h and Tuned Boyer-Moore algorithms, the Forward-

Fast-Sear
h algorithm bene�ts from the introdu
tion of an external sentinel: sin
e the
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forward good su�x rule looks at the 
hara
ter T [s+m℄ just after the 
urrent window,

m+ 1 
opies of the 
hara
ter P [m� 1℄ are added at the end of the text T , obtaining

a new text T

0

= T:P [m� 1℄

m+1

. This allows to 
ompute 
orre
tly the last shifts with

no extra 
he
ks. Plainly, all the valid shifts of P in T are the valid shifts s of P in T

0

su
h that s � n�m, where, as usual, n and m denote respe
tively the lengths of T

and P . The 
ode of the Forward-Fast-Sear
h algorithm is presented in Figure 2.

4 Experimental Results

We present next experimental data whi
h allow to 
ompare the following string mat
h-

ing algorithms under various 
onditions: Horspool (HOR), Qui
k-Sear
h (QS), Barry-

Ravidran (BR), Tuned Boyer-Moore (TBM), Reverse Fa
tor (RF), Fast-Sear
h (FS),

and Forward-Fast-Sear
h (FFS).

We have 
hosen to 
ompare the algorithms in terms of running time, number of

text 
hara
ter inspe
tions, and number of 
hara
ter 
omparisons.

All algorithms have been implemented in the C programming language and were

used to sear
h for the same strings in large �xed text bu�ers on a PC with AMD

Athlon pro
essor of 1.19GHz. In parti
ular, the algorithms have been tested on four

Rand� problems, for � = 2; 4; 8; 20, and on a natural language text bu�er NL with

patterns of length m = 2; 4; 6; 8; 10; 20; 40; 80, and 160.

We re
all that ea
h Rand� problem 
onsists in sear
hing a set of 200 random

patterns of a given length in a 20Mb random text over a 
ommon alphabet of size �.

The tests on the natural language text bu�er NL have been performed on a 3.13Mb

�le obtained by dis
arding the nonalphabeti
 
hara
ters from the WinEdt spelling

di
tionary. For ea
h pattern length m, we have sele
ted 200 random substrings of

length m in the �le whi
h subsequently have been sear
hed for in the same �le.

4.1 Running Times

Experimental results show that the Forward-Fast-Sear
h algorithm obtains the best

run-time performan
e in most 
ases and, sporadi
ally, it is se
ond only to the Fast-

Sear
h algorithm, in the 
ase of natural language texts and long patterns, and to the

Berry-Ravidran algorithm, in the 
ase of large alphabets and patterns.

In the following tables, running times are expressed in hundredths of se
onds.

� = 2 2 4 6 8 10 20 40 80 160

HOR 42.01 44.18 42.86 42.02 46.57 40.24 39.51 38.83 39.95

QS 34.33 41.12 38.35 39.30 42.80 37.42 36.77 36.42 36.54

BR 44.84 49.36 44.42 43.48 47.69 40.66 40.70 40.74 40.54

TBM 33.96 36.54 36.88 36.65 40.53 35.98 36.05 35.54 36.30

RF 249.2 200.0 145.9 114.2 107.3 57.95 36.84 27.95 22.36

FS 41.79 35.36 28.72 25.32 26.15 20.40 18.40 17.99 17.31

FFS 31.08 28.87 25.28 22.37 23.15 18.05 16.78 16.62 15.82

Running times for a Rand2 problem
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� = 4 2 4 6 8 10 20 40 80 160

HOR 34.66 25.57 22.05 20.76 20.27 19.68 20.05 19.54 20.20

QS 26.49 22.10 19.87 19.35 18.98 18.58 19.05 18.73 19.04

BR 32.20 25.68 22.08 20.31 19.24 17.29 16.66 16.36 16.51

TBM 25.53 20.68 19.15 18.85 18.76 18.50 18.81 18.38 18.78

RF 156.1 98.60 74.84 62.28 53.79 34.73 24.26 20.34 16.67

FS 28.60 20.58 18.91 18.26 17.86 17.22 16.53 16.18 15.82

FFS 24.87 20.06 18.35 17.65 17.22 16.23 15.61 15.33 14.40

Running times for a Rand4 problem

� = 8 2 4 6 8 10 20 40 80 160

HOR 27.71 20.19 18.40 17.43 16.84 15.70 15.56 15.62 15.71

QS 20.91 18.27 17.17 16.59 16.25 15.36 15.22 15.23 15.35

BR 25.19 20.55 18.77 17.74 17.02 15.33 14.55 14.55 13.96

TBM 21.09 17.78 16.78 16.77 16.22 15.14 15.11 15.05 15.18

RF 114.8 70.75 54.97 46.27 40.62 27.26 20.58 18.17 15.01

FS 20.66 17.75 16.75 16.41 16.01 15.02 14.89 14.80 14.81

FFS 20.20 17.58 16.60 16.17 15.82 14.87 14.54 14.52 13.92

Running times for a Rand8 problem

� = 20 2 4 6 8 10 20 40 80 160

HOR 23.45 18.17 16.58 16.21 15.89 15.21 14.90 14.84 14.98

QS 18.67 16.84 15.78 15.69 15.49 14.98 14.74 14.73 14.79

BR 21.83 18.88 17.32 16.89 16.47 15.47 14.90 14.42 12.60

TBM 18.76 16.78 15.64 15.44 15.39 14.85 14.82 14.65 14.65

RF 92.44 54.83 41.67 35.57 31.61 23.12 19.25 17.69 14.72

FS 19.11 16.59 15.57 15.49 15.24 14.81 14.66 14.65 14.58

FFS 18.76 16.51 15.51 15.44 15.24 14.83 14.64 14.65 14.35

Running times for a Rand20 problem

NL 2 4 6 8 10 20 40 80 160

HOR 3.40 2.65 2.45 2.36 2.36 2.22 2.15 2.11 1.98

QS 2.73 2.42 2.35 2.24 2.20 2.14 2.09 2.09 2.01

BR 3.28 2.87 2.66 2.59 2.47 2.33 2.25 2.21 1.95

TBM 2.77 2.39 2.27 2.25 2.18 2.19 2.09 2.12 1.93

RF 13.94 8.33 6.48 5.46 4.87 3.35 2.79 2.68 4.67

FS 2.79 2.45 2.22 2.24 2.19 2.14 2.06 2.09 1.91

FFS 2.70 2.35 2.26 2.26 2.18 2.15 2.13 2.11 2.24

Running times for a natural language problem

4.2 Average Number of Text Chara
ter Inspe
tions

For ea
h test, the average number of 
hara
ter inspe
tions has been obtained by

taking the total number of times a text 
hara
ter is a

essed, either to perform a


omparison with a pattern 
hara
ter, or to perform a shift, or to 
ompute a transition

in an automaton, and dividing it by the length of the text bu�er.

It turns out that the Forward-Fast-Sear
h algorithm is always very 
lose the best

results whi
h are generally obtained by the Fast-Sear
h algorithm, for short patterns,

and by Reverse-Fa
tor algorithm, for long patterns. We noti
e, however, that the

Forward-Fast-Sear
h algorithm obtains in most 
ases the se
ond best result and is

better than Reverse-Fa
tor, for short patterns, and Fast-Sear
h, for long patterns.
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� = 2 2 4 6 8 10 20 40 80 160

HOR 1.00 1.15 1.26 1.26 1.28 1.24 1.27 1.23 1.27

QS 1.54 1.67 1.63 1.67 1.64 1.61 1.65 1.61 1.60

BR 1.28 1.25 1.20 1.20 1.19 1.19 1.19 1.18 1.16

TBM 1.23 1.35 1.46 1.46 1.47 1.43 1.46 1.42 1.46

RF 1.43 1.06 .799 .615 .519 .294 .169 .096 .054

FS 1.00 .929 .806 .698 .632 .460 .348 .270 .213

FFS 1.15 .993 .833 .703 .621 .410 .289 .210 .161

� = 4 2 4 6 8 10 20 40 80 160

HOR .714 .510 .435 .404 .392 .373 .389 .365 .392

QS 1.03 .817 .700 .675 .645 .610 .650 .622 .633

BR .949 .713 .569 .488 .429 .307 .264 .244 .251

TBM .841 .591 .504 .468 .454 .432 .450 .422 .446

RF .886 .528 .387 .316 .264 .154 .089 .051 .028

FS .714 .489 .398 .356 .330 .273 .239 .200 .177

FFS .768 .526 .418 .367 .330 .241 .182 .136 .105

� = 8 2 4 6 8 10 20 40 80 160

HOR .600 .350 .263 .222 .198 .158 .153 .149 .152

QS .842 .575 .456 .393 .358 .291 .282 .278 .277

BR .844 .582 .443 .360 .305 .179 .109 .072 .057

TBM .663 .386 .291 .245 .218 .174 .168 .164 .167

RF .674 .381 .278 .225 .191 .112 .063 .036 .020

FS .600 .348 .260 .217 .193 .150 .137 .126 .117

FFS .627 .368 .274 .227 .201 .146 .117 .093 .075

� = 20 2 4 6 8 10 20 40 80 160

HOR .538 .285 .199 .157 .132 .083 .061 .054 .053

QS .734 .463 .346 .282 .242 .157 .118 .104 .104

BR .787 .528 .397 .318 .266 .146 .078 .042 .023

TBM .563 .297 .208 .164 .137 .086 .063 .056 .056

RF .565 .302 .214 .170 .143 .084 .049 .027 .014

FS .538 .284 .198 .156 .131 .082 .060 .053 .052

FFS .550 .293 .205 .161 .135 .082 .060 .049 .043

NL 2 4 6 8 10 20 40 80 160

HOR .550 .300 .211 .171 .144 .091 .059 .042 .032

QS .759 .489 .375 .309 .261 .175 .125 .086 .066

BR .795 .538 .411 .335 .278 .155 .085 .050 .028

TBM .584 .318 .226 .182 .153 .096 .062 .044 .034

RF .588 .321 .231 .185 .153 .084 .045 .024 .013

FS .550 .299 .211 .171 .143 .087 .055 .038 .027

FFS .565 .312 .220 .180 .152 .088 .054 .036 .026

Average number of text 
hara
ter inspe
tions for some Rand� problems and for

a natural language problem

4.3 Average Number of Comparisons

For ea
h test, the average number of 
hara
ter 
omparisons has been obtained by

taking the total number of times a text 
hara
ter is 
ompared with a 
hara
ter in the

pattern and dividing it by the total number of 
hara
ters in the text bu�er.

It turns out that the Forward-Fast-Sear
h algorithm a
hieves the best results in

most 
ases. Sporadi
ally our algorithm is se
ond only to the Berry-Ravindran al-

gorithm whi
h obtains very good results for short patterns and small alphabets.

Moreover we observe that Tuned Boyer-Moore, Fast-Sear
h and Forward-Fast-Sear
h
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algorithms perform a very low number of 
hara
ters 
omparisons in the 
ase of large

alphabets.

� = 2 2 4 6 8 10 20 40 80 160

HOR 1.000 1.159 1.260 1.269 1.281 1.244 1.272 1.235 1.270

QS .9588 1.109 1.088 1.119 1.095 1.073 1.104 1.079 1.080

BR .2631 .3766 .3916 .3989 .3962 .3973 .3969 .3940 .3893

TBM .3333 .6044 .6995 .7154 .7249 .7082 .7215 .7024 .7205

FS .3333 .4767 .4466 .3925 .3573 .2609 .1967 .1530 .1248

FFS .3076 .4224 .3875 .3324 .2962 .1964 .1377 .1003 .0766

� = 4 2 4 6 8 10 20 40 80 160

HOR .7143 .5100 .4356 .4041 .3922 .3732 .3890 .3652 .3928

QS .6053 .4864 .4109 .3908 .3716 .3491 .3719 .3556 .3742

BR .2747 .2353 .1898 .1628 .1432 .1025 .0883 .0813 .0837

TBM .1429 .1445 .1264 .1175 .1140 .1085 .1131 .1062 .1141

FS .1429 .1373 .1141 .1024 .0949 .0784 .0690 .0577 .0526

FFS .1323 .1272 .1041 .0913 .0822 .0601 .0454 .0341 .0263

� = 8 2 4 6 8 10 20 40 80 160

HOR .6000 .3501 .2639 .2222 .1985 .1586 .1531 .1490 .1522

QS .4631 .3189 .2505 .2139 .1943 .1559 .1504 .1487 .1524

BR .2711 .1940 .1479 .1202 .1018 .0598 .0364 .0243 .0190

TBM .0667 .0482 .0365 .0307 .0274 .0219 .0212 .0206 .0210

FS .0667 .0477 .0359 .0300 .0267 .0207 .0190 .0175 .0167

FFS .0634 .0459 .0345 .0287 .0252 .0184 .0148 .0117 .0095

� = 20 2 4 6 8 10 20 40 80 160

HOR .5385 .2844 .1991 .1569 .1316 .0828 .0608 .0541 .0537

QS .3837 .2427 .1805 .1476 .1263 .0817 .0607 .0538 .0534

BR .2608 .1760 .1323 .1061 .0887 .0490 .0263 .0141 .0079

TBM .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0028

FS .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0027

FFS .0251 .0147 .0103 .0081 .0068 .0042 .0030 .0025 .0022

NL 2 4 6 8 10 20 40 80 160

HOR .5501 .3000 .2117 .1716 .1445 .0913 .0595 .0420 .0329

QS .4031 .2605 .2002 .1646 .1393 .0914 .0654 .0455 .0364

BR .2599 .1794 .1371 .1118 .0927 .0519 .0286 .0168 .0094

TBM .0345 .0245 .0171 .0142 .0123 .0089 .0061 .0046 .0042

FS .0345 .0245 .0171 .0141 .0121 .0066 .0043 .0030 .0025

FFS .0333 .0244 .0168 .0153 .0140 .0058 .0032 .0020 .0014

Average number of 
omparisons for some Rand� problems and for a natural language problem

5 Con
lusion

We presented a new e�
ient variant of the Boyer-Moore string mat
hing algorithm,

named Forward-Fast-Sear
h. As its progenitor Fast-Sear
h, the Forward-Fast-Sear
h

algorithm applies repeatedly the bad 
hara
ter rule until the last 
hara
ter of the

pattern is mat
hed 
orre
tly and then it begins to mat
h the pattern against the

text from right to left. At the end of ea
h mat
hing phase, it 
omputes the shift

advan
ement as a fun
tion of the mat
hed su�x of the pattern and the �rst 
hara
ter

of the text past the 
urrent window (forward good su�x rule).

It turns out that, despite the O(m � j�j)-spa
e and O(m �max(m; j�j))-time 
om-

plexity required in the worst 
ase to pre
ompute the forward good su�x fun
tion, the
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Forward-Fast-Sear
h algorithm is very fast in pra
ti
e and 
ompares well with other

fast variants of the Boyer-Moore algorithm.

We plan to evaluate theoreti
ally the average time 
omplexity of the Forward-Fast-

Sear
h algorithm, and to adapt it to s
anning strategies depending on the 
hara
ter

frequen
ies.
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Abstra
t. In this paper we study approximate seeds of strings, that is, sub-

strings of a given string x that 
over (by 
on
atenations or overlaps) a super-

string of x, under a variety of distan
e rules (the Hamming distan
e, the edit

distan
e, and the weighted edit distan
e). We solve the smallest distan
e ap-

proximate seed problem and the restri
ted smallest approximate seed problem

in polynomial time and we prove that the general smallest approximate seed

problem is NP-
omplete.

Keywords: regularities, seeds, approximate seeds, Hamming distan
e, edit dis-

tan
e, weighted edit distan
e, penalty matrix.

1 Introdu
tion

Finding regularities in strings is useful in a wide area of appli
ations whi
h involve

string manipulations. Mole
ular biology, data 
ompression and 
omputer-assisted

musi
 analysis are 
lassi
 examples. By regularities we mean repeated strings of an

approximate nature. Examples of regularities in
lude repetitions, periods, 
overs and

seeds. Regularities in strings have been studied widely the last 20 years.

There are several O(n logn)-time algorithms [11, 6, 27℄ for �nding repetitions, that

is, equal adja
ent substrings, in a string x, where n is the length of x. Apostoli
o and

Breslauer [2℄ gave an optimal O(log logn)-time parallel algorithm (i.e., total work is

O(n logn)) for �nding all the repetitions.

The prepro
essing of the Knuth-Morris-Pratt algorithm [22℄ �nds all periods of

x in linear time� in fa
t, all periods of every pre�x of x. Apostoli
o, Breslauer

and Galil [3℄ derived an optimal O(log logn)-time parallel algorithm for �nding all

periods.

�

Work supported by IMT 2000 Proje
t AB02, MOST grant M1-0309-06-0003, and Royal So
iety

grant.
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The fa
t that in pra
tise it was often desirable to relax the meaning of �repetition�,

has led more re
ently to the study of a 
olle
tion of related patterns��
overs� and

�seeds�. Covers are similar to periods, but now overlaps, as well as 
on
atenations, are

allowed. The notion of 
overs was introdu
ed by Apostoli
o, Fara
h and Iliopoulos

in [5℄, where a linear-time algorithm to test superprimitivity, was given (see also

[8, 9, 18℄). Moore and Smyth [29℄ and re
ently Li and Smyth [25℄ gave linear time-

time algorithms for �nding all 
overs of a string x. In parallel 
omputation, Iliopoulos

and Park [19℄ obtained an optimal O(log logn) time algorithm for �nding all 
overs

of x. Apostoli
o and Ehrenfeu
ht [4℄ and Iliopoulos and Mou
hard [17℄ 
onsidered

the problem of �nding maximal quasiperiodi
 substrings of x. A two-dimensional

variant of the 
overing problem was studied in [12, 15℄, and a minimum 
overing by

substrings of a given length in [20℄.

An extension of the notion of 
overs, is that of seeds; that is, 
overs of a superstring

of x. The notion of seeds was introdu
ed by Iliopoulos, Moore and Park [16℄ and an

O(n logn)-time algorithm was given for 
omputing all seeds of x. A parallel algorithm

for �nding all seeds was presented by Berkman, Iliopoulos and Park [7℄, that requires

O(logn) time and O(n logn) work.

In appli
ations su
h as mole
ular biology and 
omputer-assisted musi
 analysis,

�nding exa
t repetitions is not always su�
ient. A more appropriate notion is that

of approximate repetitions ([10, 13℄); that is, �nding strings that are �similar� to a

given pattern, by allowing errors. In this paper, we 
onsider three di�erent kinds of

�similarity� (approximation): the Hamming distan
e, the edit dis
tan
e [1, 35℄ and a

generalization of the edit distan
e, the weighted edit distan
e, where di�erent 
osts

are assigned to ea
h substitution, insertion and deletion for ea
h pair of symbols.

Approximate repetitions have been studied by Landau and S
hmidt [24℄, who

derived an O(kn logk logn)-time algorithm for �nding approximate squares whose

edit distan
e is at most k in a text of length n. S
hmidt also gave an O(n

2

logn)

algorithm for �nding approximate tandem or nontandem repeats in [31℄ whi
h uses an

arbitrary s
ore for similarity of repeated strings. More re
ently, Sim, Iliopoulos, Park

and Smyth provided polynomial time algorithms for �nding approximate periods [33℄

and, Sim, Park, Kim and Lee solved the approximate 
overs problem in [34℄.

In this paper, we introdu
e the notion of approximate seeds, an approximate

version of seeds. We solve the smallest distan
e approximate seed problem and the

restri
ted smallest approximate seed problem and we prove that the more general

smallest approximate seed problem is NP-
omplete.

The paper is organized as follows. In se
tion 2, we present some basi
 de�nitions.

In se
tion 3, we des
ribe the notion of approximate seeds and we de�ne the three

problems studied in this paper. In se
tion 4, we present the algorithms that solve the

�rst two problems and the proof that the third problem is NP-
omplete. Se
tion 5


ontains our 
on
lusion.

2 Preliminaries

A string is a sequen
e of zero or more symbols from an alphabet �. The set of all

strings over � is denoted by �

�

. The length of a string x is denoted by jxj. The

empty string, the string of length zero, is denoted by ". The i-th symbol of a string

x is denoted by x[i℄.
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A string w is a substring of x if x = uwv, where u; v 2 �

�

. We denote by x[i::j℄

the substring of x that starts at position i and ends at position j. Conversely, x is


alled a superstring of w. A string w is a pre�x of x if x = wy, for y 2 �

�

. Similarly,

w is a su�x of x if x = yw, for w 2 �

�

. We 
all a string w a subsequen
e (also 
alled

a subword [14℄) of x (or x is a supersequen
e of w) if w is obtained by deleting zero or

more symbols at any positions from x. For example, a
e is a subsequen
e of aab
def .

For a given set S of strings, a string w is 
alled a 
ommon supersequen
e of S if s is

a supersequen
e of every string in S.

The string xy is a 
on
atenation of the strings x and y. The 
on
atenation of k


opies of x is denoted by x

k

. For two strings x = x[1::n℄ and y = y[1::m℄ su
h that

x[n � i + 1::n℄ = y[1::i℄ for some i � 1 (that is, su
h that x has a su�x equal to

a pre�x of y), the string x[1::n℄y[i + 1::m℄ is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring y of x is 
alled a repetition in x, if x = uy

k

v, where u; y; v are

substrings of x and k � 2, jyj 6= 0. For example, if x = aababab, then a (appearing in

positions 1 and 2) and ab (appearing in positions 2, 4 and 6) are repetitions in x; in

parti
ular a

2

= aa is 
alled a square and (ab)

3

= ababab is 
alled a 
ube.

A substring w is 
alled a period of a string x, if x 
an be written as x = w

k

w

0

where k � 1 and w

0

is a pre�x of w. The shortest period of x is 
alled the period of

x. For example, if x = ab
ab
ab, then ab
, ab
ab
 and the string x itself are periods

of x, while ab
 is the period of x.

A substring w of x is 
alled a 
over of x, if x 
an be 
onstru
ted by 
on
atenating

or overlapping 
opies of w. We also say that w 
overs x. For example, if x = ababaaba,

then aba and x are 
overs of x. If x has a 
over w 6= x, x is said to be quasiperiodi
;

otherwise, x is superprimitive.

A substring w of x is 
alled a seed of x, if w 
overs one superstring of x (this 
an

be any superstring of x, in
luding x itself). For example, aba and ababa are some

seeds of x = ababaab.

We 
all the distan
e Æ(x; y) between two strings x and y, the minimum 
ost to

transform one string x to the other string y. There are several well known distan
e

fun
tions, des
ribed in the next paragraph. The spe
ial symbol � is used to represent

the absen
e of a 
hara
ter.

2.1 Distan
e fun
tions

The edit distan
e between two strings is the minimum number of edit operations

that transform one string into another. The edit operations are the insertion of an

extraneous symbol (e.g., � ! a), the deletion of a symbol (e.g., a ! �) and the

substitution of a symbol by another symbol (e.g., a ! b). Note that in the edit

distan
e model we only 
ount the number of edit operations, 
onsidering the 
ost of

ea
h operation equal to 1.

The Hamming distan
e between two strings is the minimum number of substitu-

tions (e.g., a ! b) that transform one string to the other. Note that the Hamming

distan
e 
an be de�ned only when the two strings have the same length, be
ause it

does not allow insertions and deletions.

We also 
onsider a generalized version of the edit distan
e model, the weighted

edit distan
e, where the edit operations no longer have the same 
osts. It makes use
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a b 
 a e �

j j j

a b � d e g

Figure 1: Alignment example

of a penalty matrix, a matrix that spe
i�es the 
ost of ea
h substitution for ea
h pair

of symbols, and the insertion and deletion 
ost for ea
h 
hara
ter. A penalty matrix

is a metri
 when it satis�es the following 
onditions for all a; b; 
 2 � [ f�g:

� Æ(a; b) � 0,

� Æ(a; b) = Æ(b; a),

� Æ(a; a) = 0, and

� Æ(a; 
) � Æ(a; b) + Æ(b; 
) (triangle inequality).

The similarity between two strings 
an be seen by using an alignment ; that is, any

pairing of symbols subje
t to the restri
tion that if lines were drawn between paired

symbols, as in Figure 1, the lines would not 
ross. The equality of the lengths 
an be

obtained by inserting or deleting zero or more symbols. In our example, the string

�ab
ae� is transformed to �abdeg� by deleting, substituting and inserting a 
hara
ter

at positions 3, 4 and 6, respe
tively. Note that this is not the only possible alignment

between the two strings.

We say that a distan
e fun
tion Æ(x; y) is a relative distan
e fun
tion if the lengths

of strings x and y are 
onsidered in the value of Æ(x; y); otherwise it is an absolute

distan
e fun
tion. The Hamming distan
e and the edit distan
e are examples of

absolute distan
e fun
tions. There are two ways to de�ne a relative distan
e between

x and y:

� First, we 
an �x one of the two strings and de�ne a relative distan
e fun
tion

with respe
t to the �xed string. The error ratio with respe
t to x is de�ned to

be d=jxj, where d is an absolute distan
e between x and y.

� Se
ond, we 
an de�ne a relative distan
e fun
tion symmetri
ally. The symmetri


error ratio is de�ned to be d=l, where d is an absolute distan
e between x and

y, and l = (jxj+ jyj)=2 [32℄. Note that we may take l = jxj+ jyj, in whi
h 
ase

everything is the same ex
ept that the ratio is multiplied by 2.

If d is the edit distan
e between x and y, the error ratio with respe
t to x or the

symmetri
 error ratio is 
alled a relative edit distan
e. The weighted edit distan
e 
an

also be used as a relative distan
e fun
tion be
ause the penalty matrix 
an 
ontain

arbitrary 
osts.

3 Problem De�nitions

De�nition 1 Let x and s be strings over �

�

, Æ be a distan
e fun
tion and t be

a number. We 
all s a t-approximate seed of x if and only if there exist strings

s

1

; s

2

; : : : ; s

r

(s

i

6= ") su
h that
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(i) Æ(s; s

i

) � t, for 1 � i � r, and

(ii) there exists a superstring y = uxv, juj < jsj and jvj < jsj, of x that 
an be


onstru
ted by overlapping or 
on
atenating 
opies of the strings s

1

; s

2

; : : : ; s

r

.

Ea
h s

i

, 1 � i � r, will be 
alled a seed blo
k of x.

Note that y 
an be any superstring of x, in
luding x itself (in whi
h 
ase, s is

an approximate 
over). Note, also, that there 
an be several versions of approximate

seeds a

ording to the de�nition of distan
e fun
tion Æ.

An example of an approximate seed is shown in Figure 2. For strings x =

BABACCB and s = ABAB, s is an approximate seed of x with error 1 (ham-

ming distan
e), be
ause there exist the strings s

1

= ABAB; s

2

= ABAC; s

3

=

CBAB, su
h that the distan
e between s and ea
h s

i

is no more than 1, and by


on
atenating or overlapping the strings s

1

; s

2

; s

3

we 
onstru
t a superstring of x,

y = ABABACCBAB.

A B A B A C C B A B

s

1

s

2

s

3

Figure 2: Approximate Seed example.

We 
onsider the following three problems related to approximate seeds.

Problem 1 Smallest Distan
e Approximate Seed Let x be a string of length

n, s be a string of length m, and Æ be a distan
e fun
tion. Find the minimum number

t su
h that s is a t-approximate seed of x.

In this problem, the string s is given a priori. Thus, it makes no di�eren
e whether

Æ is an absolute distan
e fun
tion or an error ratio with respe
t to s. If a threshold

k � jsj on the edit distan
e is given as input to Problem 1, the problem asks whether

s is a k-approximate seed of x or not (the k-approximate seed problem). Note that if

the edit distan
e is used for Æ, it is trivially true that s is an jsj-approximate seed of

x.

Problem 2 Restri
ted Smallest Approximate Seed Given a string x of

length n, �nd a substring s of x su
h that: s is a t-approximate seed of x and there

is no substring of x that is a k-approximate seed of x for all k < t.

Sin
e any substring of x 
an be a 
andidate for s, the length of s is not (a priori)

�xed in this problem. Therefore, we need to use a relative distan
e fun
tion (i.e.,

an error ratio or a weighted edit distan
e) rather than an absolute distan
e fun
tion.

For example, if the absolute edit distan
e is used, every substring of x of length 1 is

a 1-approximate seed of x. Moreover, we assume that s is of length at most jxj=2,

be
ause, otherwise the longest proper pre�x of x (or any long pre�x of x) 
an easily

be
ome an approximate seed of x with a small distan
e. This assumption will be

applied to Problem 3, too.
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Problem 3 Smallest Approximate Seed Given a string x of length n, �nd a

string s su
h that: s is a t-approximate seed of x and there is no substring of x that

is a k-approximate seed of x for all k < t.

Problem 3 is a generalization of Problem 2; s 
an now be any string, not ne
essarily

a substring of x. Obviously, this problem is harder than the previous one; we will

prove that it is NP-
omplete.

4 Algorithms and NP-Completeness

4.1 Problem 1

Our algorithm for Problem 1 
onsists of two steps. Let n = jxj and m = jsj.

1. Compute the distan
e between s and every substring of x.

We denote by w

ij

the distan
e between s and x[i::j℄, for 1 < i � j < n. Note

that, by de�nition of approximate seeds, x[i::n℄ 
an be mat
hed to any pre�x

of s, and x[1::j℄ 
an be mat
hed to any su�x of s (be
ause s has to 
over

any superstring of x). Thus, we denote w

in

the minimum value of the distan
es

between all pre�xes of s and x[i::n℄, and w

1j

the minimum value of the distan
es

between all su�xes of s and x[1::j℄.

2. Compute the minimum t su
h that s is a t-approximate seed of x.

We use dynami
 programming to 
ompute t as follows. Let t

i

be the minimum

value su
h that s is a t

i

-approximate seed of x[1::i℄. Let t

0

= 0. For i = 1 to n,

we 
ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg (1)

The value t

n

is the minimum t su
h that s is a t-approximate seed of x.

To 
ompute the distan
e between two strings, x and y, in step 1, a dynami


programming table, 
alled the D table, of size (jxj + 1) � (jyj + 1), is used. Ea
h

entry D[i; j℄; 0 � i � jxj and 0 � j � jyj, stores the minimum 
ost of transforming

x[1::i℄ to y[1::j℄. Initially, D[0; 0℄ = 0; D[i; 0℄ = D[i� 1; 0℄ + Æ(x[i℄;�) and D[0; j℄ =

D[0; j�1℄+Æ(�; y[j℄). Then we 
an 
ompute all the entries of the D table in O(jxjjyj)

time by the following re
urren
e:

D[i; j℄ = min

8

>

<

>

:

D[i� 1; j℄ + Æ(x[i℄;�)

D[i; j � 1℄ + Æ(�; y[j℄)

D[i� 1; j � 1℄ + Æ(x[i℄; y[j℄)

where Æ(a; b) is the 
ost of substituting 
hara
ter a with 
hara
ter b, Æ(a;�) is the


ost of deleting a and Æ(�; a) is the 
ost of inserting a.

The se
ond step of the algorithm is 
omputed as shown in Figure 3. For every h,

we 
over x[h+1::i℄ with one 
opy of s, with error w

h+1;i

. What is left to be 
overed is

x[1::h℄. We obtain this by 
overing either x[1::h℄, with error t[h℄, or x[1::h + 1℄, with

error t[h+ 1℄, : : : or x[1::i� 1℄, with error t[i� 1℄, (in general x[1::j℄, with error t[j℄);

we 
hoose the x[1::j℄ (the shaded box) that gives the smallest error. Note that, this

box 
overs a superstring of x[1::j℄.
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x

1
i

h+ 1

n

s

j

Figure 3: The se
ond step of the algorithm.

Theorem 1 Problem 1 
an be solved in O(mn

2

) time when a weighted edit distan
e

is used for Æ. If the edit or the Hamming distan
e is used for Æ, it 
an be solved in

O(mn) time.

Proof. For an arbitrary penalty matrix, step 1 takes O(mn

2

) time, sin
e we make a

D table of size (m+1)�(n�i+2) for ea
h position i of x. The fa
t that a superstring

of x, rather than x itself, has to be �
overed� does not in
rease the time 
omplexity,

if we use the following pro
edure: instead of 
omputing a new D-table between ea
h

s[1::k℄ (resp. s[k::m℄) and x[i::n℄ (resp. x[1::j℄), we just make one D-table between

s and x[i::n℄ (resp. s

R

(x[1::j℄)

R

) and take the minimum value of the last 
olumn of

this table.

In step 2, we 
an 
ompute the minimum t in O(n

2

) time as follows. The inner

min loop of formula (1) 
an be 
omputed in 
onstant time by reusing the min values


omputed in the previous round. The outer min loop is repeated i times, for 1 � i �

n, i.e., O(n

2

) repetitions.

Thus, the total time 
omplexity is O(mn

2

).

When the edit distan
e is used for the measure of similarity, this algorithm for

Problem 1 
an be improved. In this 
ase, Æ(a; b) is always 1 if a 6= b and Æ(a; b) = 0

otherwise. Now it is not ne
essary to 
ompute the edit distan
es between s and the

substrings of x whose lengths are larger than 2m be
ause their edit distan
es with

s will ex
eed m. (It is trivially true that s is an m-approximate seed of x.) Step 1

now takes O(m

2

n) time sin
e we make a D table of size (m+ 1)� (2m+ 1) for ea
h

position of x. Also, step 2 
an be done in O(mn) time sin
e we 
ompare O(m) values

at ea
h position of x. Thus, the time 
omplexity is redu
ed to O(m

2

n).

However, we 
an do better. Step 1 
an be solved in O(mn) time by the algorithm

due to Landau, Myers and S
hmidt [23℄. Given two strings x and y and a forward

(resp. ba
kward) solution for the 
omparison between x and y, the algorithm in [23℄

in
rementally 
omputes a solution for x and by (resp. yb) in O(k) time, where b is an

additional 
hara
ter and k is a threshold on the edit distan
e. This 
an be done due

to the relationship between the solution for x and y and the solution for x and by.

When k = m (i.e., the threshold is not given) we 
an 
ompute all the edit distan
es

between s and every substring of x whose length is at most 2m in O(mn) time using

this algorithm. Re
ently, Kim and Park [21℄ gave a simpler O(mn)-time algorithm

for the same problem. Therefore, we 
an solve Problem 1, in O(mn) time if the edit

distan
e is used for Æ. When the threshold k is given as input for Problem 1, it 
an

be solved in O(kn) time be
ause ea
h step of the above algorithm takes O(kn) time.

If we use the Hamming distan
e for Æ, in step 1 we 
onsider only the substrings

of x of length m. (Re
all that the Hamming distan
e is de�ned only between strings

of equal length) Sin
e there are O(n) su
h substrings, and we need O(m) time to


ompute the distan
e between ea
h substring and s, step 1 takes O(mn) time. Also,

as in the 
ase of the edit distan
e, step 2 
an be done in O(mn) time (we 
ompare

O(m) values at ea
h position of x). Thus, the overall time 
omplexity is O(mn). �
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x

x

x[j::n℄

s

i

i+m-2

s = x[i::i +m� 2℄

(Previous D table)

Newly 
omputed

row

x

x

x[j::n℄

s

i

i+m-1

s = x[i::i +m� 1℄

(New D table)

Figure 4: Computing new D tables

4.2 Problem 2

In this problem, we are not given a string s. Any substring of x is now a 
andidate

for approximate seed. Let s be su
h a 
andidate string. Re
all that, sin
e the length

of s is not �xed in this 
ase, we need to use a relative distan
e fun
tion (rather than

an absolute distan
e fun
tion); that is, an error ratio, in the 
ase of the Hamming or

edit distan
e, or a weighted edit distan
e.

When the relative edit distan
e is used for the measure of similarity, Problem 2


an be solved in O(n

4

) time by our algorithm for Problem 1. If we take ea
h substring

of x as s and apply the O(mn) algorithm for Problem 1 (that uses the algorithm in

[23℄), it takes O(jsjn) time for ea
h s. Sin
e there are O(n

2

) substrings of x, the

overall time is O(n

4

).

For weighted edit distan
es (as well as for relative edit distan
es), we 
an solve

Problem 2 in O(n

4

) time, without using the somewhat 
ompli
ated algorithm in [23℄.

Like before, we 
onsider every substring of x as 
andidate string s, and we solve

Problem 1 for x and s. But, we do this, by pro
essing all the substrings of x that

start at position i, at the same time, as follows.

Let T be the minimum distan
e so far. Initially, T = 1. For ea
h i; 1 � i � n,

we pro
ess the n� i + 1 substrings that start at position i as 
andidate strings. Let

m be the length of a 
hosen substring of x as s. Initially, m = 1.

1. Take x[i::i + m � 1℄ as s and 
ompute w

hj

, for all 1 � h � j � n. This


omputation 
an be done by making n D tables with s and ea
h of the n

su�xes of x. By adding just one row to ea
h of previous D tables (i.e., n D

tables when s = x[i::i +m� 2℄), we 
an 
ompute these new D tables in O(n

2

)

time. See Figure 4. (Note that when m = 1, we 
reate new D tables.)

2. Compute the minimum distan
e t su
h that s is a t-approximate seed of x. This

step is similar to the se
ond step of the algorithm for Problem 1. Let t

i

be the

minimum value su
h that s is a t

i

-approximate seed of x[1::i℄ and t

0

= 0. For

i = 1 to n, we 
ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg

The value t

n

is the minimum t su
h that s is a t-approximate seed of x. If t

n

is

smaller than T , we update T with t

n

. If m < n� i+ 1, in
rease m by 1 and go

to step 1.

When all the steps are 
ompleted, the �nal value of T is the minimum distan
e

and the substring s that is a T -approximate seed of x is an answer to Problem 2.

32



Approximate Seeds of Strings

(Note that there 
an be more than one substring s that are T -approximate seeds of

x).

Theorem 2 Problem 2 
an be solved in O(n

4

) time when a weighted edit distan
e

or a relative edit distan
e is used for Æ. When a relative Hamming distan
e is used

for Æ, Problem 2 
an be solved in O(n

3

) time.

Proof. For a weighted edit distan
e, we make n D tables in O(n

2

) time in step 1

and 
ompute the minimum distan
e in O(n

2

) time in step 2. For m = 1 to n� i+ 1,

we repeat the two steps. Therefore, it takes O(n

3

) time for ea
h i and the total time


omplexity of this algorithm is O(n

4

). If a relative edit distan
e is used, the algorithm


an be slightly simpli�ed, as in Problem 1, but it still takes O(n

4

) time.

For a relative Hamming distan
e, it takes O(n) time for ea
h 
andidate string and

sin
e there are O(n

2

) 
andidate strings, the total time 
omplexity is O(n

3

). �

4.3 Problem 3

Given a set of strings, the shortest 
ommon supersequen
e (SCS) problem is to �nd

a shortest 
ommon supersequen
e of all strings in the set. The SCS problem is NP-


omplete [26, 30℄. We will show that Problem 3 is NP-
omplete by a redu
tion from

the SCS problem. In this se
tion we will 
all Problem 3 the SAS problem (abbreviation

of the smallest approximate seed problem). The de
ision versions of the SCS and SAS

problems are as follows:

De�nition 2 (SCS) Given a positive integer m and a �nite set S of strings from �

�

where � is a �nite alphabet, the SCS problem is to de
ide if there exists a 
ommon

supersequen
e w of S su
h that jwj � m.

De�nition 3 (SAS) Given a number t, a string x from (�

0

)

�

where �

0

is a �nite

alphabet, and a penalty matrix, the SAS problem is to de
ide if there exists a string

u su
h that u is a t-approximate seed of x.

Theorem 3 The SAS problem is NP-
omplete.

5 Con
lusions

In this paper, we solved the smallest distan
e approximate seed problem, in O(mn)

time for the Hamming and edit distan
e and O(mn

2

) for the weighted edit distan
e,

and the restri
ted smallest approximate seed problem, in O(n

4

) time for the edit and

weighted edit distan
e and O(n

3

) for the Hamming distan
e. We also proved that the

smallest approximate seed problem is NP-
omplete.

The signi�
an
e of our work 
omes from the fa
t that we solved the �rst two

problems for approximate seeds, with exa
tly the same time 
omplexities as those

for approximate periods [33℄ and approximate 
overs [34℄, despite the fa
t that seeds

allow overlaps, as well as 
on
atenations, and 
over a superstring of a string x (rather

than 
overing the string x itself).
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Abstra
t. A fa
tor ora
le is a data stru
ture for weak fa
tor re
ognition. It is

an automaton built on a string p of length m that is a
y
li
, re
ognizes at least

all fa
tors of p, has m+1 states whi
h are all �nal, and has m to 2m� 1 transi-

tions. In this paper, we give two alternative algorithms for its 
onstru
tion and

prove the 
onstru
ted automata to be equivalent to the automata 
onstru
ted

by the algorithms in [1℄. Although these new O(m

2

) algorithms are pra
ti
ally

ine�
ient 
ompared to the O(m) algorithm given in [1℄, they give more insight

into fa
tor ora
les. Our �rst algorithm 
onstru
ts a fa
tor ora
le based on the

su�xes of p in a way that is more intuitive. Some of the 
ru
ial properties of

fa
tor ora
les, whi
h in [1℄ need several lemmas to be proven, are immediately

obvious. Another important property however be
omes less obvious. A se
ond

algorithm gives a 
lear insight in the relationship between the trie or dawg re
-

ognizing the fa
tors of p and the fa
tor ora
le re
ognizing a superset thereof.

We 
onje
ture that an O(m) version of this trie-based algorithm exists.

Keywords: fa
tor ora
le, �nite automaton, weak fa
tor re
ognition, algorithm

derivation, pattern mat
hing.

1 Introdu
tion

A fa
tor ora
le is a data stru
ture for weak fa
tor re
ognition. It 
an be des
ribed

as an automaton built on a string p of length m that (a) is a
y
li
, (b) re
ognizes

at least all fa
tors of p, (
) has m + 1 states (whi
h are all �nal), and (d) has m to

2m�1 transitions (
f. [1℄). Some example fa
tor ora
les are given in Figures 1 and 2.

0 1
a

2

b

4

c

b
3

b

c

c

Figure 1: Fa
tor ora
le for abb
 (re
ognizing ab
 62 fa
t(p))
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c

c
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c
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a

a

Figure 2: Fa
tor ora
le for abb

a (re
ognizing ab
; ab
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a 62
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t(p))

Fa
tor ora
les are introdu
ed in [1℄ as an alternative to the use of exa
t fa
tor

re
ognition in many on-line keyword pattern mat
hing algorithms. In su
h algorithms,

a window on a text is read ba
kward while attempting to mat
h a keyword fa
tor.

When this fails, the window is shifted using the information on the longest fa
tor

mat
hed and the mismat
hing 
hara
ter.

Instead of an automaton re
ognizing exa
tly the set of fa
tors of the keyword,

it is possible to use a fa
tor ora
le: although it re
ognizes more strings than just

the fa
tors and thus might read ba
kwards longer than ne
essary, it 
annot miss any

mat
hes. The advantage of using fa
tor ora
les is that they are easier to 
onstru
t

and take less spa
e to represent 
ompared to the automata that were previously used

in these fa
tor-based algorithms, su
h as su�x, fa
tor and subsequen
e automata.

This is the result of the latter automata la
king one or more of the four essential

properties of the fa
tor ora
le.

The fa
tor ora
le is introdu
ed in [1℄ by means of an O(m

2

) 
onstru
tion algorithm

that is used as its de�nition. Furthermore, an O(m) sequential 
onstru
tion algorithm

is des
ribed. It is not obvious by just 
onsidering the algorithms that it re
ognizes

at least all fa
tors of p and has m to 2m� 1 transitions (i.e. that (b) and (d) hold).

For both algorithms, a number of lemmas are needed to prove this. In this paper, we

give two alternative algorithms for the 
onstru
tion of a fa
tor ora
le.

Our �rst algorithm, in Se
tion 2, 
onstru
ts a fa
tor ora
le based on the su�xes

of p. This algorithm is O(m

2

) and thus not of pra
ti
al interest, but it is more in-

tuitive to understand and properties (b) and (d)�two important properties of fa
tor

ora
les�are immediately obvious from the algorithm. The a
y
li
ity of the fa
tor or-

a
le however�
orresponding to property (a)�is not immediately obvious. Our proof

of this property (part of Property 6) is rather involved, whereas the property is imme-

diately obvious from the algorithms in [1℄. We prove that the alternative 
onstru
tion

algorithm and those given in [1℄ 
onstru
t equivalent automata in Se
tion 3.

In Se
tion 4 we present our se
ond algorithm, whi
h 
onstru
ts a fa
tor ora
le

from the trie re
ognizing the fa
tors of p. Although this algorithm is O(m

2

) as well,

it gives a 
lear insight in the relationship between the trie and dawg re
ognizing the

fa
tors of p and the fa
tor ora
le re
ognizing a superset thereof. In addition, we


onje
ture that an O(m) trie-based algorithm exists.

Finally, Se
tion 5 gives a summary and overview of future work.

1.1 Related Work

An earlier version of this paper appears as [3, Chapter 4℄. In that thesis, some

properties of the language of a fa
tor ora
le are dis
ussed as well. The thesis also
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dis
usses pattern mat
hing algorithms�among them those using fa
tor ora
les�and

the implementation of the fa
tor ora
le as part of the SPARE Time pattern mat
hing

toolkit, a revised and extended version of SPARE Parts ([9℄).

As mentioned before, fa
tor ora
les were introdu
ed in [1℄ as an alternative to the

use of exa
t fa
tor re
ognition in many on-line keyword pattern mat
hing algorithms.

A pattern mat
hing algorithm using the fa
tor ora
le is des
ribed in that paper as

well.

Apart from their use in pattern mat
hing algorithms, fa
tor ora
les have been

used in a heuristi
 to 
ompute repeated fa
tors of a string [6℄ as well as to 
ompress

text [7℄. An improvement for those uses of fa
tor ora
les is introdu
ed in [8℄ in the

form of the repeat ora
le.

Related to the fa
tor ora
le, the su�x ora
le�in whi
h only those states 
orre-

sponding to a su�x of p are marked �nal�is introdu
ed in [1℄. In [2℄ the fa
tor ora
le

is extended to apply to a set of strings.

1.2 Preliminaries

A string p = p

1

:::p

m

of length m is a sequen
e of 
hara
ters from an alphabet V . A

string u is a fa
tor (resp. pre�x, su�x ) of a string v if v = sut (resp. v = ut, v = su),

for s; t 2 V

�

. We will use pref(p), su�(p) and fa
t(p) for the set of pre�xes, su�xes

and fa
tors of p respe
tively. A pre�x (resp. su�x or fa
tor) is a proper pre�x (resp.

su�x or fa
tor) of a string p if it does not equal p. We write u �

s

v to denote that u

is a su�x of v, and u <

s

v to denote that u is a proper su�x of v.

2 Constru
tion Based on Su�xes

Our �rst alternative algorithm for the 
onstru
tion of a fa
tor ora
le 
onstru
ts a

`skeleton' automaton for p�re
ognizing pref(p)�and then 
onstru
ts a path for

ea
h of the su�xes of p in order of de
reasing length, su
h that eventually at least

pref(su�(p)) = fa
t(p) is re
ognized. If su
h a su�x of p is already re
ognized, no

transition needs to be 
onstru
ted. If on the other hand the 
omplete su�x is not yet

re
ognized there is a longest pre�x of su
h a su�x that is re
ognized. A transition on

the next, non-re
ognized symbol is then 
reated, from the state in whi
h this longest

pre�x of the su�x is re
ognized, to a state from whi
h there is a path leading to state

m that spells out the rest of the su�x.

Build_Ora
le_2(p = p

1

p

2

:::p

m

)

1: for i from 0 to m do

2: Create a new �nal state i

3: end for

4: for i from 0 to m� 1 do

5: Create a new transition from i to i + 1 by p

i+1

6: end for

7: for i from 2 to m do

8: Let the longest path from state 0 that spells a pre�x of p

i

:::p

m

end in state j

and spell out p

i

:::p

k

(i� 1 � k � m)

9: if k 6= m then
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10: Build a new transition from j to k + 1 by p

k+1

11: end if

12: end for

Note that this algorithm is O(m

2

) (sin
e the operation on line 6 
an be implemented

using a while loop). The fa
tor ora
le on p built using this algorithm is referred to

as Ora
le(p) and the language re
ognized by it as fa
tora
le(p).

The �rst two properties we give are obvious given our algorithm. They 
orrespond

to (b) and (
)-(d) respe
tively as mentioned in Se
tion 1.

Property 1 fa
t(p) � fa
tora
le(p).

Proof: The algorithm 
onstru
ts a path for all su�xes of p and all states are �nal.

Property 2 For p of length m, Ora
le(p) has exa
tly m + 1 states and between m

and 2m� 1 transitions.

Proof: States 
an be 
onstru
ted in steps 1-2 only, and exa
tly m + 1 states are


onstru
ted there. In step 4 of the algorithm, m transitions are 
reated. In steps 5-8,

at most m� 1 transitions are 
reated.

Property 3 (Glushkov's property) All transitions rea
hing a state i of Ora
le(p)

are labeled by p

i

.

Proof: The only steps of the algorithm that 
reate transitions are steps 4 and 8. In

both, transitions to a state i are 
reated labeled by p

i

.

Property 4 (Weak determinism) For ea
h state of Ora
le(p), no two outgoing

transitions of the state are labeled by the same symbol.

Proof: The algorithm never 
reates an outgoing transition by some symbol if su
h a

transition already exists.

We now de�ne fun
tion po

ur(u; p) to give the end position of the leftmost o

urren
e

of u in p (equivalent to the same fun
tion in [1℄):

De�nition 1 Fun
tion po

ur 2 V

�

� V

�

! N is de�ned as

po

ur(u; p) = minfjtuj; p = tuvg (p; t; u; v 2 V

�

)

Note that if u 62 fa
t(p), po

ur(u; p) =1.

Property 5 For su�xes and pre�xes of fa
tors we have:

uv 2 fa
t(p)) po

ur(v; p) � po

ur(uv; p) (p; u; v 2 V

�

)

uv 2 fa
t(p)) po

ur(u; p) � po

ur(uv; p)� jvj (p; u; v 2 V

�

)

We introdu
e min(i) for the minimum length string re
ognized in state i�either in

a partially 
onstru
ted or in the 
omplete automaton.

In the following property, we use j

i

and k

i

to identify the values j and k attain

when 
onsidering su�x p

i

:::p

m

of p in steps 5-8 of the algorithm.
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Property 6 For the partial automaton 
onstru
ted a

ording to algorithmBuild_-

Ora
le_2 with all su�xes of p of length greater than m� i + 1 already 
onsidered

in steps 5-8 (2 � i � m+ 1), we have that

i. it is a
y
li


ii. for ea
h h with 1 � h < i, all pre�xes of p

h

:::p

m

are re
ognized

iii. for ea
h state n and outgoing transition to a state q 6= n+ 1,

q � k

max

+ 1 holds where k

max

= maxfk

h

; 1 < h < i ^ k

h

< mg

iv. for ea
h state n, min(n) is an element of fa
t(p), min(n) is a su�x of ea
h

string re
ognized in n, and n = po

ur(min(n); p)

v. if u 2 fa
t(p) is re
ognized, it is re
ognized in a state n � po

ur(u; p)

vi. for ea
h state n and ea
h symbol a su
h that there is a transition from n to a

state q by a, min(n) � a 2 fa
t(p) and q = po

ur(min(n) � a; p)

vii. for ea
h pair of states n and q, if min(n) �

s

min(q), then n � q, and as a

result, if min(n) <

s

min(q), then n < q

viii. if w is re
ognized in state n, then for any su�x u of w, if u is re
ognized, it is

re
ognized in state q � n

Proof: See Appendix A.

Note that Property 6, i. 
orresponds to property (a) in Se
tion 1.

3 Equivalen
e to Original Algorithms

A fa
tor ora
le as introdu
ed in [1℄ is built by the following algorithm:

Build_Ora
le(p = p

1

p

2

:::p

m

)

1: for i from 0 to m do

2: Create a new �nal state i

3: end for

4: for i from 0 to m� 1 do

5: Create a new transition from i to i + 1 by p

i+1

6: end for

7: for i from 0 to m� 1 do

8: Let u be a minimal length word in state i

9: for all � 2 �; � 6= p

i+1

do

10: if u� 2 Fa
t(p

i�juj+1

:::p

m

) then

11: Build a new transition from i to

�

i� juj+ po

ur(u�; p

i�juj+1

:::p

m

) by �

12: end if

13: end for

�

Note that in [1℄ the term �juj is missing in the algorithm, although from the rest of the paper

it is 
lear that it is used in the 
onstru
tion of the automata
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14: end for

To prove the equivalen
e of the automata 
onstru
ted by the two algorithms, we need

the following properties.

Property 7 For any state i of both Ora
le(p) (i.e. the fa
tor ora
le 
onstru
ted a
-


ording to algorithm Build_Ora
le_2 and the fa
tor ora
le 
onstru
ted a

ording

to algorithm Build_Ora
le), if u = min(i) then

u� 2 fa
t(p

i�juj+1

:::p

m

) � u� 2 fa
t(p)

Proof: ): Trivial. (: By Property 6, iv. (for Build_Ora
le_2) and [1, Lemma

1℄ (for Build_Ora
le), i = po

ur(u; p). By Property 5, po

ur(u�; p) � i, hen
e

u� 2 fa
t(p

i�juj+1

:::p

m

).

Property 8 For any state i of an automaton 
onstru
ted by either algorithm, if

u = min(i) and u� 2 fa
t(p) then

i� juj+ po

ur(u�; p

i�juj+1

:::p

m

) = po

ur(u�; p)

Proof:

i� juj+ po

ur(u�; p

i�juj+1

:::p

m

)

= { de�nition po

ur }

i� juj+minfjtu�j; p

i�juj+1

:::p

m

= tu�vg

= { u = min(i), hen
e re
ognized in i = po

ur(u; p) }

i� juj+minfjtu�j � (i� juj); p = tu�vg

= { u� 2 fa
t(p), property of min }

i� juj+minfjtu�j; p = tu�vg � (i� juj)

= { 
al
ulus, de�nition po

ur }

po

ur(u�; p)

Property 9 The algorithms Build_Ora
le_2 and Build_Ora
le


onstru
t equivalent automata.

Proof: We prove this by indu
tion on the states. Our indu
tion hypothesis is that

for ea
h state j (0 � j < i), min(j) is the same in both automata, and the outgoing

transitions from state j are equivalent for both automata.

If i = 0, u = min(i) = " in both automata. Consider a transition 
reated

by Build_Ora
le_2, say to state k by � 6= p

i+1

. Sin
e this transition exists,

u� 2 fa
t(p) and k = po

ur(u�; p) (due to Property 6, vi.). Using Properties 7

and 8, su
h a transition was 
reated by Build_Ora
le as well. Similarly, 
onsider

a transition 
reated by Build_Ora
le, say to state k by �. This transition, say

on symbol �, leads to state k = i � juj + po

ur(u�; p

i�juj+1

:::p

m

) and was 
reated

sin
e u� 2 fa
t(p

i�juj+1

:::p

m

) (see the algorithm). Using Properties 7 and 8, su
h a

transition was 
reated by Build_Ora
le_2 as well.
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If i > 0, using the indu
tion hypothesis and a
y
li
ity of the automata, i has

the same in
oming transitions and as a result min(i) is the same for both automata.

Using the same arguments as in 
ase i = 0, the outgoing transitions from state i are

equivalent for both automata.

As a result, the two automata are equivalent.

4 Constru
tion Based on Trie

0 1
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b

9

c

2
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3
b

4
c
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c
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Figure 3: Trie re
ognizing fa
t(abb
)
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Figure 4: DAWG re
ognizing fa
t(abb
)
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Figure 5: Fa
tor ora
le re
ognizing fa
t(abb
) [ fab
g

There is a 
lose relationship between the data stru
tures Trie(fa
t(p)) �the trie

([5℄) on fa
t(p)�re
ognizing exa
tly fa
t(p), DAWG(fa
t(p)) �the dire
ted a
y
li


word graph ([4℄) on fa
t(p)�re
ognizing exa
tly fa
t(p), and Ora
le(p)�the fa
tor

ora
le on p�whi
h re
ognizes at least fa
t(p).

It is well known that DAWG(fa
t(p)) 
an be 
onstru
ted from Trie(fa
t(p)) by

merging states whose right languages are identi
al (see for example [4℄). The fa
tor

ora
le as de�ned by Ora
le(p) 
an also be 
onstru
ted from Trie(fa
t(p)), by merging

states whose right languages have identi
al longest strings (whi
h are su�xes of p).

An example of a trie, DAWG and fa
tor ora
le for the fa
tors of abb
 
an be seen in

Figures 3-5.
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De�nition 2 We de�ne Trie(S) as a 5-tuple <Q, V , Æ, ", F> where S is a �nite

set of strings, Q = pref(S) is the set of states, V is the alphabet, Æ is the transition

fun
tion, de�ned by

Æ(u; a) =

(

ua if ua 2 pref(S)

? if ua 62 pref(S)

(u 2 pref(S); a 2 V );

" is the single start state and F = S is the set of �nal states.

Property 10 For u; v 2 fa
t(p) we have :

uv 2 fa
t(p) ^ (8w : uw 2 fa
t(p) : jwj � jvj) ) uv 2 su�(p)

uv

1

2 fa
t(p) ^ (8w : uw 2 fa
t(p) : jwj � jv

1

j)

^ uv

2

2 fa
t(p) ^ (8w : uw 2 fa
t(p) : jwj � jv

2

j) ) v

1

= v

2

Property 11 For u 2 fa
t(p) and C 2 N,

(8w : uw 2 fa
t(p) : jwj � C) � (8w : uw 2 su�(p) : jwj � C)

Proof: ): trivial. (: Let ux 2 fa
t(p), then (9y : : uxy 2 su�(p)), hen
e (9y : :

jxyj � C), and sin
e jyj � 0, jxj � C.

Using Properties 10 and 11, max

p

(u) 
an be de�ned as the unique longest string v

su
h that uv 2 su�(p):

De�nition 3 De�ne max

p

(u) = v where v is su
h that

uv 2 su�(p) ^ (8w : uw 2 su�(p) : jwj � jvj)

We now present our simple trie-based 
onstru
tion algorithm for fa
tor ora
les:

Trie_To_Ora
le(p = p

1

p

2

:::p

m

)

1: Constru
t Trie(fa
t(p))

2: for i from 2 to m do

3: Merge all states u for whi
h max

p

(u) = p

i+1

:::p

m

into the single state p

1

:::p

i

4: end for

The order in whi
h the values of i are 
onsidered is not important. In addition, note

that it is not ne
essary to 
onsider the states u for whi
h max

p

(u) = p

2

:::p

m

sin
e

there is pre
isely one su
h state u in Trie(fa
t(p)), u = p

1

. Due to Property 10, it is

su�
ient to only 
onsider su�xes of p as longest strings.

Also note that the intermediate automata may be nondeterministi
, but the �nal

automaton will be weakly deterministi
 (as per Property 4).

The above algorithm has 
omplexity O(m

2

) (assuming that max

p

(u) was 
om-

puted during 
onstru
tion of the trie). The 
onstru
tion of a Trie 
an be done in

O(m) time however, and the merging of the states is similar to minimization of an
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a
y
li
 automaton, whi
h 
an also be done in O(m). We therefore 
onje
ture that an

O(m) trie-based fa
tor ora
le 
onstru
tion algorithm exists.

To prove that algorithm Trie_To_Ora
le 
onstru
ts Ora
le(p), we de�ne a

partition on the states of the trie, indu
ed by an equivalen
e relation on the states.

De�nition 4 Relation �

p

on states of Trie(fa
t(p)) is de�ned by

t �

p

u � max

p

(t) = max

p

(u) (t; u 2 fa
t(p))

Note that relation �

p

is an equivalen
e relation.

We now show that the partitioning into sets of states of Trie(fa
t(p)) indu
ed by �

p

,

is the same as the partitioning of Trie(fa
t(pa)) indu
ed by �

pa

, restri
ted to the

states of Trie(fa
t(p)), i.e.

Property 12

t �

p

u � t �

pa

u (t; u 2 fa
t(p); a 2 V )

Proof:

t �

p

u

� { de�nition �

p

}

max

p

(t) = max

p

(u)

� { }

max

p

(t)a = max

p

(u)a

� { ( ? ) }

max

pa

(t) = max

pa

(u)

� { de�nition �

pa

}

t �

pa

u

where we prove ( ? ) by

v = max

pa

(u)

� { de�nition max

pa

}

uv 2 su�(pa) ^ (8w : uw 2 su�(pa) : jwj � jvj)

� { u 2 fa
t(p), hen
e (9x : : uxa 2 su�(pa)),

hen
e jxaj > 0 and jvj > 0; su�(pa) = su�(p)a [ f"g }

uv 2 su�(p)a ^ (8w : uw 2 su�(pa) : jwj � jvj)

� { jvj > 0 }

uv 2 su�(p)a ^ (8w : w 6= " ^ uw 2 su�(pa) : jwj � jvj) ^ v = v

0

a

� { su�(pa) = su�(p)a [ f"g }

uv 2 su�(p)a ^ (8w : w 6= " ^ uw 2 su�(p)a : jwj � jvj) ^ v = v

0

a
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� { w = w

0

a }

uv 2 su�(p)a ^ (8w

0

: uw

0

a 2 su�(p)a : jw

0

aj � jv

0

aj) ^ v = v

0

a

� { }

uv 2 su�(p)a ^ (8w

0

: uw

0

2 su�(p) : jw

0

j � jv

0

j) ^ v = v

0

a

� { v = v

0

a }

uv

0

2 su�(p) ^ (8w

0

: uw

0

2 su�(p) : jw

0

j � jv

0

j) ^ v = v

0

a

� { de�nition max

p

}

v

0

= max

p

(u) ^ v = v

0

a

� { }

v = max

p

(u)a

Property 13 Algorithm Trie_To_Ora
le 
onstru
ts Ora
le(p).

Proof: By indu
tion on jpj = m. If m = 0, p = ", and Trie(fa
t(")) = Ora
le(").

If m = 1, p = a (a 2 V ), and Trie(fa
t(a))=Ora
le(a). If m > 1, p = xa

(x 2 V

�

; a 2 V ), and we may assume the algorithm to 
onstru
t part Ora
le(x)

of Ora
le(xa) 
orre
tly (using fa
t(ua) = fa
t(u) [ su�(u)a, Trie(fa
t(xa)) being

an extension of Trie(fa
t(x)), and Ora
le(xa) being an extension of Ora
le(x) (whi
h

is straightforward to see from algorithm Build_Ora
le_2 as well as [1, page 57,

after Corollary 4℄), and Property 12). Now 
onsider the states of this partially 
on-

verted automaton in whi
h su�xes of x are re
ognized. By 
onstru
tion of the trie,

there are transitions from these states by a. The fa
tor ora
le 
onstru
tion a

ord-

ing to algorithm Ora
le_Sequential in [1℄ 
reates Ora
le(xa) from Ora
le(x)+a

(i.e. the fa
tor ora
le for x extended with a single new state m rea
hable from state

m� 1 by symbol p

m

= a) by 
reating new transitions to state m from those states in

whi
h su�xes of x are re
ognized and that do not yet have a transition on a. Sin
e

Trie_To_Ora
le merges all states t for whi
h max

xa

(t) = a into the single state

m, Ora
le(xa) is 
onstru
ted 
orre
tly from Trie(fa
t(xa)).

5 Con
lusions and Future Work

We have presented two alternative 
onstru
tion algorithms for fa
tor ora
les and

shown the automata 
onstru
ted by them to be equivalent to those 
onstru
ted by

the algorithms in [1℄. Although both our algorithms are O(m

2

) and thus pra
ti
ally

ine�
ient 
ompared to the O(m) sequential algorithm given in [1℄, they give more

insight into fa
tor ora
les.

Our �rst algorithm is more intuitive to understand and makes it immediately

obvious, without the need for several lemmas, that the fa
tor ora
le re
ognizes at

least fa
t(p) and has m to 2m� 1 transitions.

Our se
ond algorithm gives a 
lear insight into the relationship between the trie

or dawg re
ognizing fa
t(p) and the fa
tor ora
le re
ognizing a superset thereof. We
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onje
ture that an O(m) trie-based algorithm for the 
onstru
tion of fa
tor ora
les

exists.
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Figure 6: Fa
tor ora
le re
ognizing a superset of fa
t(p) (in
luding for example 
a
e 62

fa
t(p)), for p = ab
a
da
e.
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Figure 7: Alternative automaton with m + 1 states satisy�ng Glushkov's property

yet re
ognizing a di�erent superset of fa
t(p) than the fa
tor ora
le for p (in
luding

for example a
a
da
e 62 fa
tora
le(p), but not 
a
e) and having less transitions, for

p = ab
a
da
e.

As stated in [1℄, the fa
tor ora
le is not minimal in terms of number of transitions

among the automata with m+ 1 states re
ognizing at least fa
t(p). We note that it

is not even minimal among the subset of su
h automata having Glushkov's property

(see Figures 6 and 7).

We are working on an automaton-independent de�nition of the language re
og-

nized by the fa
tor ora
le. Su
h a 
hara
terization would enable us to 
al
ulate how

many strings are re
ognized that are not fa
tors of the original string. This 
ould

be useful in determining whether to use a fa
tor ora
le-based algorithm in pattern

mat
hing or not.
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A Proof of Property 6

We �rst 
onsider the automaton 
onstru
ted in steps 1-4 of the algorithm. It is

straightforward to verify that the properties hold for i = 2.

Now assume that the properties hold for the automaton with all su�xes of p of

length greater than m � i + 1 already 
onsidered. We prove that they also hold for

the automaton after the su�x of length m� i+ 1, p

i

:::p

m

, has been 
onsidered.

If k = m in step 6, su�x p

i

:::p

m

is already re
ognized, no new transition will be


reated, the automaton does not 
hange and the properties still hold.

If k < m, then we need to prove that ea
h of the properties holds for the new

automaton.

Ad i: By v., string p

i

:::p

k

is re
ognized in state j � po

ur(p

i

:::p

k

; p). Sin
e

p

i

:::p

k

�

s

p

1

:::p

k

and po

ur(p

1

:::p

k

; p) = k, po

ur(p

i

:::p

k

; p) � k due to Property 5.

Sin
e j � k, the transition 
reated from j to k + 1 is a forward one.
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Ad ii: Trivial.

Ad iii: We prove that the property holds for the new automaton by showing that

k = k

i

� k

max

, i.e. k will be
ome the new k

max

.

If k

max

= �1, k � k

max


learly holds.

If k

max

> �1, assume that k

max

> k, then there is an h su
h that 1 < h < i ^

k

h

< m ^ k

h

= k

max

. Fa
tor p

h

:::p

k

is re
ognized in g � k due to ii. and v.

If g = k, then p

h

:::p

k

is re
ognized in k and p

h

:::p

m

is re
ognized in m; so k

h

= m

whi
h 
ontradi
ts k

h

< m.

If g < k, then p

h

:::p

k

is re
ognized in g < k. Sin
e p

i

:::p

k

is re
ognized in j = j

i

and p

i

:::p

k

�

s

p

h

:::p

k

, due to viii., j � g.

If j = g, then p

h

:::p

k

is the longest pre�x of p

h

:::p

m

re
ognized by the old automa-

ton, whi
h 
ontradi
ts ii.

If j < g, then j < g < k. We know that min(g) �

s

p

h

:::p

k

(using iv.), min(j) �

s

p

h

:::p

k

(using iv. and p

i

:::p

k

�

s

p

h

:::p

k

) and therefore that min(j) <

s

min(g) (due

to vii.). Let l be the state to whi
h the transition by p

k+1

from g leads, i.e. l is the state

in whi
h p

h

:::p

k+1

is re
ognized. Using vi., we have that l = po

ur(min(g) � p

k+1

; p).

Using Property 5 we have that l � po

ur(p

h

:::p

k+1

; p) and the latter is � k + 1 due

to the de�nition of po

ur (sin
e k + 1 marks the end of an o

urren
e of p

h

:::p

k+1

).

We have po

ur(min(j) � p

k+1

; p) � po

ur(min(g) � p

k+1

; p) = l sin
e min(j) �

s

min(g). We want to prove that k + 1 � po

ur(min(j) � p

k+1

; p). Assume that

po

ur(min(j) � p

k+1

; p) < k + 1. If the �rst o

urren
e of min(j) � p

k+1

starts before

position i of p, then it is a pre�x of a su�x of p longer than p

i

:::p

m

and thus by ii.

min(j) � p

k+1

is re
ognized. Sin
e min(j) is re
ognized in j, a transition from j by

p

k+1

must exist and we have a 
ontradi
tion. If the �rst o

urren
e of min(j) � p

k+1

starts at or after position i of p, then there exists a shortest string x su
h that

x �min(j) � p

k+1

2 pref(p

i

:::p

k

) and x �min(j) � p

k+1

is re
ognized in a state � j. But

then x �min(j) is re
ognized in a state n < j. By viii., sin
e min(j) �

s

x �min(j),

this means that min(j) is re
ognized in state s � n < j and we have a 
ontradi
tion.

Thus k+1 � po

ur(min(j)�p

k+1

; p) � l and therefore, sin
e l � k+1 holds, l = k+1.

In that 
ase, p

h

:::p

k+1

is re
ognized in l = k + 1 and p

h

:::p

m

is re
ognized in m. But

then k

h

= m, and we have a 
ontradi
tion.

Thus, k

max

= k

h

� k = k

i

and iii. holds for the new automaton.

Ad iv: Let s = min(j), t = min(k + 1) and u = min(h) (k + 1 � h � m)

respe
tively in the old automaton. Due to the proof of iii., k = k

i

� k

max

and

therefore a unique path between k + 1 and h exists, labeled r, and�due to iv�

u �

s

tr.

If jsp

k+1

rj � juj, u remains the minimal length string re
ognized in state h. Sin
e

s �

s

p

i

:::p

k

, sp

k+1

r �

s

p

i

:::p

k+1

r. Sin
e u �

s

tr, tr �

s

p

1

:::p

k+1

r and jsp

k+1

rj � juj,

u �

s

sp

k+1

r and�due to iv.�u �

s

s

0

p

k+1

r as well for any s

0

re
ognized in state j.

If jsp

k+1

rj < juj, sp

k+1

r is the new minimal length string re
ognized in state

h. Sin
e s �

s

p

i

:::p

k

, sp

k+1

r �

s

p

i

:::p

k+1

r. Sin
e u �

s

tr, tr �

s

p

1

:::p

k+1

r and

jsp

k+1

rj < juj, sp

k+1

r �

s

u and�due to iv.�sp

k+1

r �

s

s

0

p

k+1

r as well for any s

0

re
ognized in state j.

Sin
e p

i

:::p

k+1

r was not re
ognized before, it is not a pre�x of p, p

2

:::p

m

, ...,

p

i�1

:::p

m

(using ii.), hen
e po

ur(p

i

:::p

k+1

r; p) = k + 1 + jrj. Sin
e s �

s

p

i

:::p

k

,

po

ur(sp

k+1

r; p) � k + 1 + jrj. Assume that po

ur(sp

k+1

r; p) < k + 1 + jrj, then

p

i

:::p

k+1

r = usp

k+1

rv (u; v 2 V

�

, v 6= ", juj minimal), sin
e sp

k+1

r 
annot start before
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p

i

be
ause in that 
ase it would have already been re
ognized by the old automaton.

Fa
tor us is re
ognized in state g < j (using i.) and�sin
e viii. holds�s �

s

us is

re
ognized in a state o � g < j. This 
ontradi
ts s being re
ognized in j. As a result

po

ur(sp

k+1

r; p) = k + 1 + jrj.

Ad v: Any new fa
tor of p re
ognized after 
reation of the transition from j to

k+1 has the form vp

k+1

r and is re
ognized in k+1+ jrj with v 2 fa
t(p) re
ognized

in state j. Sin
e k + 1 + jrj = po

ur(min(k + 1)r; p) (using iii., iv. holding for the

new automaton plus the fa
t that k is the new k

max

) and min(k+1) �r �

s

vp

k+1

r due

to iv. holding for the new automaton, k+1+ jrj � po

ur(vp

k+1

r; p) using Property 5.

Ad vi: The states n we have to 
onsider are n = j and n = h for k + 1 � h � m.

For n = j, a new transition to k+1 is 
reated and by iv., min(j) �

s

p

i

:::p

k

., hen
e

we have min(j) � p

k+1

�

s

p

i

:::p

k+1

, p

k+1�jmin(j)j

:::p

k+1

= min(j) � p

k+1

, min(j) � p

k+1

2

fa
t(p) and po

ur(min(j) �p

k+1

; p) � k+1. Sin
e min(j) �p

k+1

is re
ognized in state

k + 1, due to v. for the new automaton, k + 1 � po

ur(min(j) � p

k+1

; p). Therefore

k + 1 = po

ur(min(j) � p

k+1

; p).

For n = h with k + 1 � h � m, min(h) 
hanges to sp

k+1

r if and only if

jsp

k+1

rj < juj (with r; s; u as in the proof of iv.). We know that ua 2 fa
t(p) and

q = po

ur(ua; p). Sin
e sp

k+1

r �

s

u, sp

k+1

ra �

s

ua, hen
e sp

k+1

ra 2 fa
t(p) as well

and po

ur(sp

k+1

ra; p) � po

ur(ua; p) = q, but due to v., q � po

ur(sp

k+1

ra; p)

hen
e q = po

ur(sp

k+1

ra; p).

Ad vii: Assume min(n) �

s

min(q). We have po

ur(min(n); p) � po

ur(min(q);

p) due to Property 5, whi
h a

ording to iv. is equivalent to n � q.

Ad viii: By indu
tion on jwj. It is true if jwj = 0 or jwj = 1. Assume that it

is true for all strings x su
h that jxj < jwj. We will show that it is also true for w,

re
ognized in n.

Let w = xa (x 6= "), x is re
ognized in h (0 < h < n). Consider a proper su�x of

w, re
ognized in state q. It either equals " and is re
ognized in state 0 � n or it 
an

be written as va where v <

s

x.

Su�x va of w is re
ognized, therefore su�x v of x is re
ognized and a

ording

to the indu
tion hypothesis, v is re
ognized in state l � h. Let �x = min(h) and

�v = min(l). Due to iv. for the new automaton, �x �

s

x and �v �

s

v. We now prove

that �v �

s

�x. If l = h, then �v = �x. Now 
onsider the 
ase l < h. Sin
e v �

s

x and

�v �

s

v, �v �

s

x. Due to vii., �x 6�

s

�v. Thus, sin
e �v and �x both are su�xes of x, �v �

s

�x.

Sin
e �x is re
ognized in h and there is a transition by a from h to n, by vi. for the new

automaton we have that �xa 2 fa
t(p) and n = po

ur(�xa; p). Sin
e �v is re
ognized

in l and there is a transition by a from l to q, �va 2 fa
t(p) and q = po

ur(�va; p) due

to vi. for the new automaton. Sin
e �va �

s

�xa, po

ur(�va; p) � po

ur(�xa; p) due to

Property 5 and hen
e q � n.

We have shown that the properties hold for every partial automaton during the


onstru
tion. Consequently, they hold for the 
omplete automaton Ora
le(p).
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Abstra
t. We study the minimum k-
over problem. For a given string x of

length n and an integer k, the minimum k-
over is the minimum set of k-

substrings that 
overs x. We show that the on-line algorithm that has been

proposed by Iliopoulos and Smyth [IS92℄ is not 
orre
t. We prove that the

problem is in fa
t NP-hard. Furthermore, we propose two greedy algorithms

that are implemented and tested on di�erent kind of data.

Keywords: string algorithm, k-
over, data 
ompression, NP-
omplete, greedy algo-

rithm.

1 Introdu
tion

The minimum k-
over problem is to 
ompute, for a given string x and an integer

k < jxj, a set U = fu

1

; u

2

; : : : ; u

m

g of substrings of x su
h that:

(i) every u

i

is of length k;

(ii) the set U 
overs the string x;

(iii) the number m = jU j of su
h substrings is the smallest possible.
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This problem was studied by Iliopoulos and Smyth [IS92℄, where they designed an

O(n

2

(n� k)) on-line algorithm. The idea of a k-
over is a generalization of the idea

of a 
over, where a string w is 
alled a 
over of a string x if x 
an be 
onstru
ted

by 
on
atenations and superpositions of w. For example, if x = ababaaba, then aba

and x are the 
overs of x. If w 6= x 
overs x then w is 
alled a proper 
over of a


overable string x. The notion of a 
over was introdu
ed by Apostoli
o et al. [AFI91℄,

where they gave a linear time algorithm for the shortest 
overs problem. Breslauer

[B92℄ presented an on-line algorithm for the same problem. Moore and Smyth [MS94℄

presented a linear time algorithm to 
ompute all the 
overs of every pre�x of a string.

An on-line algorithm for the same problem was developed by Li and Smyth [LS02℄.

Two O(n logn) algorithms for 
omputing all maximal 
overable substrings of a given

string were also presented, one by Iliopoulos and Mou
hard [IM93℄ and the other by

Brodal and Pederson [BP00℄. A lot of work has been done on parallel 
omputation

of 
overs; see for example [B94℄ and [IP94℄.

A minimum k-
over provides a theoreti
al 
lassi�
ation of strings a

ording to

approximate periodi
ity. For every k, some strings have a minimum k-
over of 
ar-

dinality 1, some a minimum k-
over of 
ardinality 2, and so on. Thus for a range of

k, a minimum k-
over 
an provide a measure of how 
lose to periodi
 every string

x is. Pra
ti
ally, a minimum k-
over has a potential appli
ation in data 
ompres-

sion of nonrandom strings. A minimum k-
over may also be useful in DNA sequen
e

analysis. A DNA sequen
e is based on a four-letter alphabet for example fa; 
; g; tg.

Hen
e, �nding the k-
over of a DNA sequen
e 
ould be helpful for the analysis of its

stru
ture.

In this paper, we brie�y present Iliopoulos and Smyth's on-line algorithm. Their

algorithm 
omputes the minimum k-
overs for all pre�xes of a given string x in

O(n

2

(n� k)) time. We show why the algorithm does not work 
orre
tly (Se
tion 3).

In the rest of the paper we 
onsider two 
losely-related problems:

(Problem 1) for given x, k and m, de
ide whether there exists a k-
over of x of


ardinality m;

(Problem 2) 
ompute a minimum k-
over of x.

For m = 1, Problem 1 
an be solved in �(n) time simply by 
omputing all

the 
overs of x [MS94, MS95, LS02℄ while at the same time testing to determine

whether or not ea
h one is of length k. For m > 1 we show by redu
tion to 3-SAT

that Problem 1 is NP-hard (Se
tion 4). We then des
ribe two e�
ient algorithms

that yield approximate solutions to Problem 2 (Se
tion 5). These approximation

algorithms have been tested and shown to provide good results (Se
tion 6). More

approximation algorithms were proposed in [Y00℄.

2 Preliminaries

A string is a sequen
e of zero or more symbols drawn from an alphabet �. The set

of all strings over � is denoted by �

�

. The string of length zero is the empty string �;

a string x of length n > 0 is represented by x

1

x

2

� � �x

n

, where x

i

2 � for 1 � i � n.

A string w is a substring of x if x = uwv for u; v 2 �

�

. More pre
isely, let i � n and

j � n denote nonnegative integers: if 1 � i � j, x[i::j℄ denotes the substring of x
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that starts at position i and has length j � i+ 1; otherwise, x[i::j℄ = �. A string w is

a pre�x of x if x = wu for some u 2 �

�

. Similarly, w is a su�x of x if x = uw for

some u 2 �

�

.

The string xy is a 
on
atenation of two strings x and y. The 
on
atenation of k


opies of x is denoted by x

k

. For two strings x = x

1

� � �x

n

and y = y

1

� � �y

m

su
h

that x

n�i+1

� � �x

n

= y

1

� � � y

i

for some i � 1 (that is, su
h that x has a su�x equal to

a pre�x of y), the string x

1

� � �x

n

y

i+1

� � � y

m

is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring w is said to be a 
over of a given string x if every position of x lies

within an o

urren
e of a string w within x. Additionally, if jwj < jxj then w is 
alled

a proper 
over of x. For example, x is always a 
over of x, and w = aba is a proper


over of x = abaababa.

For a given a nonempty string x of length n and a set

U = fu

1

; u

2

; : : : ; u

m

g

of m strings ea
h of length k, we say that U is a k-
over of x if and only if every

position of x lies within an o

urren
e of some u

i

, 1 � i � m. If m is the minimum

integer for whi
h su
h a set U exists, then U is said to be a minimum k-
over of x. To

avoid trivialities we suppose throughout that 1 < k < n=2. Note that 1 � m � dn=ke.

Next we state some basi
 fa
ts about the minimum k-
over.

Fa
t 1 The pre�x x[1::k℄ and the su�x x[n� k+1::n℄ are both ne
essarily elements

of every minimum k-
over of x.

Fa
t 2 The 
ardinality of a minimum k-
over of a string of length n is at most dn=ke.

Fa
t 3 A minimum k-
over of a string x is not unique.

For example, if x = ab
defg, then the sets

fab
; b
d; efgg; fab
; 
de; efgg; fab
; def; efgg

are all minimum 3-
overs of x.

In [IS92℄, the number of distin
t minimum k-
overs of a given string x of length

n has been proved to be exponential in n. This is a major 
ompli
ating fa
tor in the

design of polynomial time algorithm for 
omputing the minimum k-
overs of a given

string.

3 Iliopoulos & Smyth On-Line Algorithm

Re
all that in [IS92℄, Iliopoulos and Smyth designed an O(n

2

(n � k)) time on-line

algorithm for 
omputing a minimum k-
over of a given string x of length n. Their

algorithm s
ans a given string x from left to right and iteratively 
al
ulates a minimum

k-
over for every pre�x of x. The algorithm is based upon the following two main

ideas:

1. Fa
t 1 states that a minimum k-
over of x[1::i + 1℄ must in
lude the su�x

x[i� k + 2::i+ 1℄. This is used as a yardsti
k to �nd a minimum k-
over.
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2. For i � k, a minimum k-
over of x[1::i + 1℄ depends only on the minimum

k-
overs of the previous k positions; that is, the minimum k-
over of x[1::i �

k + 1℄; : : : ; x[1::i� 1℄; x[1::i℄.

To a
hieve e�
ien
y, the algorithm stores for ea
h positions i in x an array whi
h

identi�es all the k-substrings that o

ur in at least one of the minimum k-
overs.

Let 


i

be the 
ardinality of this set. At step i + 1, the algorithm 
he
ks for ea
h

position j 2 i�k+1::i, whether the 
urrent su�x x[i�k+2::i+1℄ has already been

in
luded in the stored minimum k-
over of x[1::j℄. If so then the set 
overs x[1::i+1℄,

otherwise the 
urrent su�x has to be added to the set. Among these k 
andidates,

the algorithm 
hooses a set with the smallest 
ardinality as a minimum k-
over of

x[1::i + 1℄. For more details see [IS92℄.

Lemma 3.1 For i � 2k and l; l

0

= 1; 2; : : :, let U

i;l

denotes the distin
t minimum

k-
over for x[1::i℄. Then every minimum set U

i+1;l

is a superset of some minimum set

U

j;l

0

, i� k + 1 � j � i.

The above lemma is stated in [IS92℄ and it follows dire
tly from the two ideas

stated at the beginning of this se
tion. The algorithm as we brie�y des
ribed also

relies on the 
orre
tness of the lemma. In the next example we will show that the

lemma is not 
orre
t and 
onsequentially nor is the algorithm. The following example

illustrates just one of the situations where the algorithm fails to 
ompute a minimum

k-
over.

Example: If x = ba
aababbaaa

aabbabbbaaaa
 and k = 3 then when i + 1 = 27,

j 2 24::26, and position 27 should form its minimum k-
over from position 24 be
ause




24

= min(


j

); j 2 24::27. The minimum k-
overs of position 24 are as follows:

U

24;1

= fba
; aab; abb; baa; 

ag;

U

24;2

= fba
; aab; abb; baa; a

g:

Neither of them 
ontains the su�x aa
, so we get 


27

= 


24

+ 1 = 6, and a

ordingly

the minimum k-
overs of position 27 are as follows:

U

27;1

= fba
; aab; abb; baa; 

a; aa
g;

U

27;2

= fba
; aab; abb; baa; a

; aa
g:

But we 
an �nd at least one minimum k-
over that is di�erent from U

27;1

and U

27;2

;

namely:

U

27;3

= fba
; aab; abb; baa; 
aa; aa
g:

U

27;3

is a k-
over of position 24, but not the minimum. However it will 
ontribute to

the minimum when position 27 is rea
hed. There is a potential problem for future


al
ulations if we lose U

27;3

at position 27; for example if we extend x by adding aa to

the end. As we 
an see, U

27;3


an be a minimum k-
over of x[1::29℄. Without keeping

U

27;3

, we shall get 


29

= 7, one greater than the minimum.

The above suggests that in order to 
ompute a minimum k-
over of the 
urrent

position, we have to refer to every single k-
over of the previous positions. Sin
e

the number of minimum k-
overs of a string may be exponential, we doubt that the

problem of 
omputing a minimum k-
over 
an be solved in polynomial time.
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4 Problem 1 and NP-Completeness

The k-
over problem is to �nd a set 
over of minimum size for a given string. Restating

this optimization problem as a de
ision one, we wish to determine whether a given

string has a k-
over of a given size m.

k

m

-COVER = fhx; k;mi : string x has a k-
over of size mg.

The following theorem shows that this problem is NP-
omplete.

Theorem 4.1 The k

m

-COVER 2 NP.

Proof. To show that k

m

-COVER 2 NP, for a given string x, we use the set U

m

of m

substrings all of length k as a 
erti�
ate for x. Che
king whether U

m

is a k-
over 
an

be a

omplished in O(n logn) time by 
he
king whether, for ea
h position 1 � i � n,

i is 
overed by at least one of the k-substrings in U

m

.

We next prove that 3-SAT �

p

k

m

-COVER, whi
h shows that a minimum k-
over

problem is NP-hard. 3-SAT is well-known to be NP-
omplete [C71℄. We transform 3-

SAT to k

m

-COVER. Let V = fv

1

; v

2

; : : : ; v

p

g be a set of variables, C = f


1

; 


2

; : : : ; 


q

g

be the set of 
lauses and F = 


1

^


2

^ : : :^


q

be a 3-SAT formula with 


i

= `

i

1

_`

i

2

_`

i

3

,

1 � i � q.

We shall show how to 
onstru
t from F a string x su
h that x will have a k-
over

of size m if and only if F is satis�able. We 
hoose k = 3 and note that there is an

easy redu
tion to 2-CNF for k = 2. The string x is build of substrings separated by

sequen
es of sssss; hen
e sss is one of the 
hosen 
overing k-strings, and thus we 
an

fo
us on the individual substrings. The 
onstru
tion will be made up of truth-setting


omponents, and satisfa
tion testing 
omponents.

Variable Choi
e

For ea
h variable v 2 V , we 
onstru
t the following 6 substrings (ea
h substring is

pro
eeded and followed by sssss); ea
h 
hara
ter is indexed by v:

(i) #

a

r r $ v � � r r #

a

(ii)#

b

t t $ �v � � t t #

b

(iii)#

a

(iv) #

b

(v)#

a

#

b

(vi)#

b

#

a

The only ways to 
over the above strings with 9 or fewer length 3 strings, are one of

the following (noti
e the uninteresting �exibility in (v) and (vi)):

1. fss#

a

; rr$; v��; rr#

a

;#

b

tt; $�v�; �tt;#

b

ssg and one of fs#

b

#

a

;#

b

#

a

sg.

2. f#

a

rr; $v�; �rr;#

a

ss; ss#

b

; tt$; �v��; tt#

b

g and one of fs#

a

#

b

;#

a

#

b

sg.

To see this, 
onsider 
overing string (iii). It 
an be done by one of ss#

a

, #

a

ss,

s#

a

s, but only the �rst two 
ould be used elsewhere, so one of them may as well be


hosen. Clearly, 8 strings at least are needed to 
over (i) and (ii) as they have no

length 3 substring in 
ommon. Thus, to use only 1 additional string to 
over (v) and

(vi) we need to 
hoose either ss#

a

;#

b

ss or #

a

ss; ss#

b

.

The 
hoi
e v�� and $�v� (given by 
hoosing ss#

a

) 
orresponds to v = T while the


hoi
e �v�� and $v� (given by 
hoosing #

a

ss) 
orresponds to v = F .
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Clause Satis�ability

For ea
h 
lause 
 2 C, where 
 = `

1

_`

2

_`

3

, the following substrings are 
reated, again

pre
eded and followed by sssss. The 
hara
ters, ex
ept for $

i

; �

i

; �

i

; `

i

; i = 1; 2; 3 are

indexed by 
 also; $

i

; �

i

; �

i

; `

i


arry the index for the literal.

(i)$

1

`

1

�

1

�

1

h

1

(ii) $

2

`

2

�

2

�

2

h

2

(iii) $

3

`

3

�

3

�

3

h

3

(iv)$

1

(v)$

2

(vi)$

3

(vii)h

1

(viii)h

2

(ix)h

3

(x)�

1

�

1

h

1

d

1

�

2

�

2

h

2

(xi)�

2

�

2

h

2

d

2

�

3

�

3

h

3

(xii)�

3

�

3

h

3

d

3

�

1

�

1

h

1

(xiii)�

1

(xiv)�

2

(xv)�

3

To 
over (iv)-(ix) and (xiii)-(xv) we may as well 
hoose ss$

i

; h

i

ss and ss�

i

as these

are the only reusable substrings.

If `

i

is true, then `

i

�

i

�

i

was already 
hosen; otherwise $

i

`

i

�

i

was 
hosen. Thus, if

`

i

is false; in (i)-(iii), �

i

remains to be 
overed. The only reusable 
overing string is

�

i

�

i

h

i

.

Consider strings (x)-(xii) and suppose at least one `

i

is true. Without loss of

generality let it be `

1

. Then it is not hard to see that 5 more strings that in
lude

�

2

�

2

h

2

and �

3

�

3

h

3

thereby 
overing �

2

in (ii) and �

3

in (iii) su�
e. We 
hoose:

�

2

�

2

h

2

; �

3

�

3

h

3

; �

1

h

1

d

1

; d

2

�

3

�

3

and d

3

�

1

�

1

. It is not hard to see that 5 
overing strings

are needed: 3 to 
over d

1

; d

2

and d

3

, but this 
an only 
ompletely 
over one of �

1

; �

2

and �

3

as ea
h o

urs twi
e, and hen
e two more 
overing strings are needed for the

remaining pair among �

1

; �

2

and �

3

.

If no `

i

is true, we are obliged to 
hoose �

1

�

1

h

1

; �

2

�

2

h

2

and �

3

�

3

h

3

as well as 3

strings to 
over d

1

; d

2

and d

3

. At least 6 
overing strings in all are needed. Thus, if

F is satis�able then the full string 
an be 
overed by

m = 9p+ 6p+ 3q + 5q + 1 = 15p+ 8q + 1


overing strings, where p is the number of variables in F and q is the number of


lauses. Otherwise, it needs at least 15p+ 8q + 2 
overing strings. 2

5 Approximate Minimum k-Cover

In this se
tion we introdu
e two greedy algorithms to 
ompute a minimum k-
over.

The greedy method works by pi
king, at ea
h stage, the k-substring whi
h 
overs the

greatest number of un
overed positions. The �rst algorithm works globally while the

se
ond algorithm follows a lo
al strategy. To 
al
ulate all possible k-substrings in a

given string x, both greedy algorithms use Cro
hemore's partitioning algorithm [C81℄

to prepro
ess the input string x.

Originally, Cro
hemore's algorithm was designed to 
ompute the repetitions in a

string inO(n logn) time. A string has a repetition when it has at least two 
onse
utive

equal substrings. For example, abab is a repetition in aababba = a(ab)

2

ba. We shall

use the algorithm in another way � to �nd the sets of the starting positions of all

the distin
t substrings of length k in a given string x. This idea 
an be expressed

more pre
isely as follows:
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Given a string x[1::n℄ and an integer k, Cro
hemore's algorithm is used to 
ompute

the equivalen
e 
lasses of all equal substrings of length k in x. We denote these equiv-

alen
e 
lasses by e

1

; e

2

; :::; e

m

, where the elements in e

i

are sorted integers denoting

starting positions of equal substrings, and m is the number of possible equivalen
e


lasses returned by the algorithm.

These elements are stored using a global array L[1::n℄, su
h that L[i℄ is the next

position in the same equivalen
e 
lass of equal substrings of length k. That is, L[i℄ = j

if L[i::i+ k� 1℄ = x[j::j + k� 1℄ and the 
ir
ular sequen
e i; L[i℄; L[L[i℄℄; : : : ; L

`

[i℄ = i

identi�es all ` k-substrings in x that are equal to x[i::i + k � 1℄.

For example, if x = abaababaabaab and k = 3 then e

1

= f3; 8; 11g; e

2

=

f1; 4; 6; 9g; e

3

= f2; 7; 10g; and e

4

= f5g are the equivalen
e 
lasses. Where aab; aba;

baa; bab are the 
orresponding 3-substrings. Hen
e, the value of array L is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a b a a b a b a a b a a b

L[i℄ 4 7 8 6 5 9 10 11 1 2 3

Eid[i℄ 2 3 1 2 4 2 3 1 2 3 1

In the above, Eid[i℄ identi�es the equivalen
e 
lass 
ontaining position i. In the

following subse
tions, we shall present two approximation algorithms. We 
all the

�rst Global-Un
overed and the se
ond Lo
al-Un
overed.

5.1 Global-Un
overed Algorithm

Re
all that the greedy algorithmworks by sele
ting one k-substring at a time that 
ov-

ers the most positions among the un
overed ones. Our greedy algorithm is 
omparable

to the greedy one [J74℄ to 
onstru
t the minimum set 
over. The 
ost of a greedy

solution is known to 
ome always within a multipli
ative fa
tor of H(max

j

jEC

j

j),

where EC

j

is the number of positions that 
ould be 
overed by the k-substring j.

Here, H(d) =

P

d

i=1

1

i

is the dth harmoni
 number and is bounded by 1 + log d. This

was shown by Johnson [J74℄ and Lovasz [L75℄ for the general SET COVER problem.

The key to Algorithm Global-Un
overed is �nding the equivalen
e 
lass whi
h 
an


over the maximum number of so-far-un
overed positions e�
iently. The details of

the algorithm are provided in Figure 1. To a
hieve e�
ien
y, the algorithm uses the

following data stru
tures:

1. An array Ebu
ket[1::n℄ indexed by the number of so-far-un
overed positions

that 
ould be 
overed by a single equivalen
e 
lass. Ea
h element (bu
ket) of

the array is doubly-linked list of the equivalen
e 
lasses that 
ould 
over equal

number of so-far-un
overed positions. Thus, every element of the doubly linked

list 
ontains an index of an equivalen
e 
lass in addition to the left and the right

pointers to the adja
ent elements.

2. A two dimensional array Eptr[1::m℄ indexed by the equivalen
e 
lass j. Where

Eptr[j℄[bu
ket℄ identi�es the bu
ket that in
ludes j in its doubly linked list.

In other words, equivalen
e 
lass j 
ould 
over Eptr[j℄[bu
ket℄ so-far-un
overed

positions. Additionally Eptr[j℄[ptr℄ is a pointer to the 
orresponding element

of the doubly linked list Ebu
ket[Eptr[j℄[bu
ket℄℄. Thus, any elements of the

doubly linked lists 
an be referen
ed in 
onstant time by using Eptr.
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Algorithm Global-Un
overed(x; k)

Input: A string x of length n, an integer 0 < k < n

Output: An approximate minimum k-
over U

g

1. (L[1::n℄; Eid[1::n℄; start[1::m℄;m)  Cro
hemorePar(x; k)

2. 
over_so_far[1::n℄  F; F; : : : ; F

3. initialization:

4. U

g

 ;

5. for e  1 to m do

6. Eun
ov[e℄  0 **number of positions that 
ould be 
overed by equivalen
e 
lass e**

7. for i 1 to n� k + 1

8. if i < L[i℄

9. then Eun
ov[Eid[i℄℄ + = min(k; L[i℄� i)

10. else Eun
ov[Eid[i℄℄ + = k

11. (Ebu
ke
t; Eptr)  Bu
ket-Sort(Eun
ov)

12. The algorithm:

13. k_prefix; k_suffix  Eid[1℄; Eid[n� k + 1℄

14. GU-Cover(k_prefix; Ebu
ket; Eptr)

15. Add(U

g

; k_prefix)

16. if k_suffix 6= k_prefix

17. then GU-Cover(k_suffix; Ebu
ket; Eptr)

18. Add(U

g

; k_suffix)

19. e  Head(Ebu
ket)

20. while e 6= 0

21. GU-Cover(e; Ebu
ket; Eptr)

22. Add(U

g

; e)

23. e  Head(Ebu
ket)

24. return U

g

25. Fun
tion GU-Cover(e; Ebu
ket; Eptr)

26. i  start[e℄ **the �rst element in the equivalen
e 
lass e**

27. repeat

28. for j  1 to k do

29. if 
over_so_far[i+ j � 1℄ = F then

30. 
over_so_far[i+ j � 1℄ T

31. for every l 2 Eid[(i+ j � 1)� k + 1℄; : : : Eid[i+ j � 1℄ do

32. Delete(Ebu
ket[Eptr[l℄[bu
ket℄℄,Eptr[l℄[ptr℄)

33. if Eptr[l℄[bu
ket℄ 6= 1

34. then Insert(Ebu
ket[Eptr[l℄[bu
ket� 1℄℄,Eptr[l℄[ptr℄)

35. Eptr[l℄[bu
ket℄  Eptr[l℄[bu
ket℄� 1

36. i  L[i℄

37. until (i = start[e℄)

Figure 1: Global-Un
overed Algorithm.
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On
e Ebu
ket is established, the k-pre�x and the k-su�x are the �rst elements

to be in
luded in the approximate minimum k-
over. The algorithm then iteratively


hoose a head element of Ebu
ket as an element of the approximate minimum k-


over. The head element is an equivalen
e 
lass that 
overs the largest number of so

far un
overed positions. Finding su
h equivalen
e 
lasses 
osts O(n) time throughout

the 
al
ulations.

The algorithm requires O(n logn) time to run Cro
hemore's algorithm and an

additional O(n) time to 
onstru
t and initialize Ebu
ket and Eptr. Note that a

linear time Bu
ket-Sort has been used be
ause the number of positions that 
ould be


overed by any equivalen
e 
lass is bounded.

For ea
h position i, 
over_so_far[i℄ is initialized to F and set to T on
e during

the 
al
ulation. When 
over_so_far[i℄ is set from F to T , O(k) elements in Ebu
ket

may need to be deleted from the 
urrent bu
ket and inserted to the next bu
ket.

Ea
h rearrangement 
osts O(1) time. Thus, the total time required to maintain the

elements in Ebu
ket throughout the 
al
ulation is O(kn). Summing the above gives

the total running time: O(n logn) + O(n) + O(kn) = maxfO(n logn); O(kn)g time,

whi
h for a �xed k, asymptoti
ally approa
hes O(n logn) as n in
reases to 1.

5.2 Lo
al-Un
overed Algorithm

Algorithm Lo
al-Un
overed 
hooses its 
andidate element, of the approximate mini-

mum k-
over, in a range of Eid[left_un
over�k+1℄::Eid[left_un
over℄; the integer

left_un
over keeps tra
k of the leftmost so-far-un
overed position. The algorithm

uses the array un
over_no. The array un
over_no[1::m℄ is indexed by the equiva-

len
e 
lasses, where un
over_no[j℄ is the number of positions 
orresponding to equiv-

alen
e 
lass j that have not been 
overed. Hen
e, the values of the array need to be

updated dynami
ally during the 
omputation. The details of the algorithm are pro-

vided in Figure 2.

The initialization is just the same as in Global-Un
overed. However, we need to

update un
over_no. As in Global-Un
overed, the k-pre�x and the k-su�x are the

�rst two elements to be in
luded in the approximate minimum k-
over. The algorithm

then tries to 
over the leftmost un
overed position with the k-substring 
orresponding

to the equivalen
e 
lass whi
h 
an 
over the maximum number of un
overed positions.

That is, let j = left_un
over if j < n, then the 
hosen k-substring is the one


orresponding to equivalen
e 
lass satisfying

maxfun
over_no[Eid[j � k + 1℄; un
over_no[j � k + 2℄; : : : ; un
over_no[Eid[j℄℄g:

A brief analysis of the algorithm shows that the algorithm requires:

� O(n logn): to run Cro
hemore's algorithm;

� O(n): Step 2, the loop on (Steps 6-9), and the total time spent in Add();

� O(k): the loop on (Steps 19-23);

� O(kn): is the total time of the LU-Cover subroutine.

Summing the above gives the total running time O(n logn)+O(n)+O(k)+O(kn) =

maxfO(n logn); O(kn)g time.
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Algorithm Lo
al-Un
overed(x; k)

Input: A string x of length n, an integer 0 < k < n

Output: An approximate minimum k-
over U

l

1. (L[1::n℄; Eid[1::n℄;m)  Cro
hemorePar(x; k)

2. 
over_so_far[1::n℄  F; F; : : : ; F

3. initialization:

4. U

l

 ;

5. left_un
over  1

6. for i 1 to n� k + 1 do

7. if i < L[i℄

8. then un
over_no[Eid[i℄℄ + = min(k; L[i℄� i)

9. else un
over_no[Eid[i℄℄ + = k

10. The algorithm:

11. k_prefix; k_suffix  Eid[1℄; Eid[n� k + 1℄

12. LU-Cover(k_prefix; 1; un
over_no; left_un
over)

13. Add(U

l

; k_prefix)

14. if k_suffix 6= k_prefix then

15. LU-Cover(k_suffix; n� k + 1; un
over_no; left_un
over)

16. Add(U

l

; k_suffix)

17. while left_un
over < n do

18. max = 0

19. for j  1 to k do

20. if un
over_no[Eid[left_un
over � j + 1℄℄ > max then

21. max  un
over_no[Eid[left_un
over � j + 1℄℄

22. e  Eid[left_un
over � j + 1℄

23. s  left_un
over � j + 1

24. LU-Cover(e; s; un
over_no; left_un
over)

25. Add(U

l

; e)

26. return U

l

27. Fun
tion LU-Cover(e; start; un
over_no; left_un
over)

28. i  start

29. repeat

30. for j  1 to k do

31. if 
over_so_far[i+ j � 1℄ = F then

32. 
over_so_far[i+ j � 1℄ T

33. for every l 2 Eid[(i+ j � 1)� k + 1℄; : : : Eid[i+ j � 1℄ do

34. un
over_no[l℄ � = 1

35. i  L[i℄

36. until (i = start)

37. while left_un
over � n and 
over_so_far[left_un
over℄ do

38. left_un
over ++

Figure 2: Lo
al-Un
overed Algorithm.
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Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

100 12 11 11 11 9.09 0 0

200 14 14 14 14 0 0 0

300 14 15 15 14 0 7.14 7.14

400 16 15 17 15 6.67 0 13.3

500 17 17 17 17 0 0 0

600 16 16 16 16 0 0 0

700 18 16 16 16 12.5 0 0

800 17 17 19 17 0 0 11.8

900 18 16 18 16 12.5 0 12.5

1000 18 17 16 16 12.5 6.25 0

Average (%) = / / / 5.33 1.34 4.47

Table 1: Pseudo-Random Strings on Alphabet fa; b; 
g, and k = 3

6 Experimental Results

We used four types of strings: sturmian strings, pseudo random strings on the al-

phabets: fa; bg, fa; b; 
g, fa; b; 
; dg, DNA sequen
es

�

, and English text. In order

to 
ompare our approximate methods in term of e�e
tiveness, we developed a naive

algorithm based on the Iliopoulos and Smyth algorithm. This naive algorithm �nds

the minimum k-
over at position i+ 1 by testing ea
h position j 2 i� k + 1::i in the

same way as in Iliopoulos and Smyth's. However, the key di�eren
e is that the algo-

rithm stores not only the 
overs that are minimum but also those that are one more

than minimum at every position. Thus, the aim here is to store as mu
h informa-

tion as possible taking into 
onsideration the limitation of the 
omputer's resour
es.

The implementation results show that the naive algorithm does not always yield the

best k-
over - in most 
ases the two approximate algorithms yield better results. Let

U

min

be the minimum k-
over of a string x, U

N

be the result 
omputed by our naive

method, U

GU

be the result 
omputed by Global-Un
overed algorithm, and U

LU

be

the result 
omputed by Lo
al-Un
overed algorithm. Then the following simplifying

assumption has been made:

jU

min

j � jU

best

j = minfjU

N

j; jU

GU

j; jU

LU

jg

Table 1, 2, 3 show that Algorithm Global-Un
overed yields the best result in most


ases, the naive algorithm never ex
eed a deviation of 7:83%, and Algorithm Lo
al-

Un
overed never ex
eed 6:24%. The following observations are also worth mentioning:

� The Sturmian strings are very well-stru
tured. For the tested Sturmian strings,

from length of 20 to 1000, for every k 2 3; 4; 5, jU

best

j = 2.

� For the tested pseudo-random strings and DNA sequen
es, jU

best

j in
reases as

the values of k, the length n, and the alphabet size are in
reasing.

� Let jU

best�DNA

j denotes the 
ardinality of the approximate minimum k-
over

of DNA sequen
e and jU

best�ab
d

j denotes the 
ardinality of the approximate

�

ex
erpted from www.
bs.dtu.dk/databases/DNA2protSS/nu
all.seq.
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Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

100 19 19 19 19 0 0 0

200 25 26 27 25 0 4.00 8.00

300 32 29 29 29 10.3 0 0

400 37 34 36 34 8.80 0 5.88

500 36 36 35 35 2.86 2.86 0

600 37 36 37 36 2.78 0 2.78

700 37 35 38 35 5.71 0 8.57

800 42 37 39 37 16.2 0 5.41

900 42 35 42 35 20 0 20

1000 42 38 39 38 10.5 0 2.63

Average (%) / / / / 7.71 0.68 5.32

Table 2: Pseudo-Random Strings on Alphabet fa; b; 
; dg, and k = 3

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

60 13 13 13 13 0 0 0

126 21 22 23 21 0 4.76 9.52

171 23 22 23 22 4.54 0 4.54

234 25 24 26 24 4.17 0 8.33

312 32 29 30 29 10.3 0 3.45

432 26 27 29 26 0 3.85 11.5

591 34 31 35 31 9.68 0 12.9

771 40 34 36 34 17.6 0 5.89

1233 43 38 37 37 24.3 2.70 0

Average (%) / / / / 7.83 1.26 6.24

Table 3: DNA Sequen
es, and k = 3
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minimum k-
over of pseudo-random strings on alphabet fa; b; 
; dg. For the

same value of k and n, jU

best�DNA

j < jU

best�ab
d

j. We 
an make a 
onje
ture

that DNA sequen
es are better stru
tured than pseudo-random strings on an

alphabet of size 4.

Con
lusions

We have shown that for k � 2, the k-
over problem (Problem1) is NP-Complete. We

have then proposed two O(n logn) greedy algorithms that 
an be used to 
al
ulate an

approximate minimum k-
over. The results obtained by the algorithms are believed

to 
ome within a multipli
ative fa
tor of the minimum. Prove this has been left as

an open problem.
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Abstra
t. Given K - a large set of words - this paper presents a new method

for learning the morphologi
al features of K. The method, LMF, has two 
om-

ponents : prepro
essing and pro
essing. The �rst 
omponent makes use of two

separate methods, namely, re�nement and time�spa
e optimization. The for-

mer is a method that uses the 
losed world assumption of the default logi
 for

partitioning K into a set of hierar
hi
al languages. The latter is for e�
iently

learning the morphologi
al features of ea
h language outputted by the former

method. Although, the �nite-state transdu
ers or the two-trie stru
ture 
an be

used to map a language onto a set of values, but we use our own 
ompetitor

whi
h has re
ently been proposed for su
h a mapping, 
onsisting of asso
iating

a �nite-state automaton a

epting the input language with a de
ision tree (dt)

representing the output values. The advantages of this approa
h are that it

leads to more 
ompa
t representations than transdu
ers, and that de
ision trees


an easily be synthesized by ma
hine learning te
hniques.

In the pro
essing phase, given an input string (x), thanks to the hierar
hi
al

languages establishing the preferen
y order for the utilization of the 
urrent

automaton(g

i

) among the multiple ones, if x 
an be spelled out using g

i

, then

the output is returned using its 
ounterpart namely dt

i

, otherwise, we inspe
t

other alternative until an output or failure be done. LMF has learned good

strategies for the large sets of the words whi
h are 
onsuming tasks form spa
e

and times point of views e.g., all the verbs in Fren
h, in
luding all the 
onjugated

forms of ea
h verb.

Keywords: morphologi
al features, automata, de
ision trees, learning.

1 Introdu
tion

The morphologi
al features (i.e., mode, tense, person and gender) are supposed to

be the important ingredients of the lexi
ons whi
h are widely used in the pro
ess

of determining for a word (e.g., �livre�) its output values (e.g., Verb+IND-PRES-

1-SING, Verb+IND-PRES-3-SING, Verb+IMP-PRES-3-SING, Noun+MASC-SING

and Noun+FEM-SING).

�

This work is partially supported by le Conseil Régional de Lorrain.
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Figure 1: Example of ambiguous �nite-

state transdu
er shown by a (13,16) au-

tomaton [4, Page 158℄.
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 a b
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a

a

Figure 2: Our alternative - a (7,7) un-

labeled automaton along with two de-


ision rules. If b2 = 'b' Then v1 =

[xxxxx,xxyyx,xtzyx℄. If b2 = '
' Then

v2 = [yzxxy,yzyyy℄. b

2

stands for the

se
ond 
hara
ter from right to left of

the input language.

An obvious solution to su
h a task is to store all the desired words along with

their asso
iated output values in a large-s
ale di
tionary. But in this 
ase two major

problems have to be solved: fast lookup and 
ompa
t representation. Two modern

and e�
ient methods 
an a
hieve fast lookup by determination and 
ompa
t repre-

sentation by minimization. The �rst method is the te
hnique of two�tries proposed

by Aoe et al [1℄. This method has the advantage of being appli
able to a dynami


set of keys but unfortunately it has the disadvantage (Please refer to the page 488

of [1℄) of 
ontaining more than states (hen
e the transitions) representing the data


ompared to its 
ompetitor, namely, the automata [13℄.

The se
ond method is the transdu
ers (i.e., automata with outputs) [6, 8, 9℄

whi
h have proved to be a very formal and robust exe
ution framework for linguisti


phenomena, but there are still some aspe
ts that should be investigated. In parti
ular,

as shown in Figures 1, the transdu
ers assign the unne
essary labels to some ar
s of the

graph representing the automaton. That is why, in our re
ent work, we have proposed

a method to avoid su
h unne
essary labels (hen
e the states and the transitions) as

pi
tured in Figure 2. Our solution for mapping a language onto a set of values is

based on asso
iating a �nite-state automaton a

epting the input language with a

de
ision tree representing the output values. The advantages of this approa
h are

that it leads to more 
ompa
t representations than transdu
ers, and that de
ision

trees 
an easily be synthesized by ma
hine learning te
hniques.

For the sake of 
larity, we 
onsider only the verbs in a given language and will

show how our alternate approa
h 
an be 
ombined with the 
losed world assumptions

of the default reasoning. We show that the representation developed here provides a

ri
her language for dealing with a set of strings where ea
h of whi
h is asso
iated with

one or more set of strings while keeping in the 
ore of our system the two mentioned

desiderata: 
ompa
t representation and fast lookup. After presenting the default

reasoning and its appli
ability to the morphology, we illustrate in Se
tion 3 
ombining

the automata and the de
ision tree. In Se
tion 4 the re�nement is des
ribed. The

main algorithm of LMF along with examples in four languages 
loses: Azeri, English,

Fren
h and Persian are des
ribed in Se
tion 5. Finally, the 
on
luding remarks 
lose

the paper.

2 Using Default Logi
 in Morphology

Default reasoning is a spe
ial but very important form of non�monotoni
 reasoning [5℄.

The term �default reasoning� is used to denote the pro
ess of arriving at 
on
lusions
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based upon patterns of inferen
es of the form �In the absen
e of any information to

the 
ontrary assume . . . � (e.g., if all elephants we have seen had a trunk, we might

think that all elephants have a trunk). Of 
ourse, the possible 
ir
umstan
es in whi
h

any �presumed� 
orre
t line of reasoning 
an be defeated astound, and we are doomed

to make mistakes when our experien
es does not support the 
urrent situation. If we

assume that the morphology world of the natural languages is 
losed one then there

is a great 
han
e that the rate of the 
lassi�
ation noise be lower, even zero.

Example 1: w.r.t. the world of the verbs in Fren
h, even if there is no indi
ations

about the verb �zaper� in our system, LMF is able to learn 95 morphologi
al features

asso
iated with the 
onjugated forms (e.g., �zapons�) of that verb.

Remark 1: The number 95 
ame from the fa
t that LMF is designed to learn the

morphologi
al features of all modes, namely indi
ative (IND), subjun
tive (SUB),


onditional (COND), imperative (IMP), in�nitive(INF) and parti
ipate (PART). IND

mode has 48 forms in eight tenses: present, imperfe
t, past, future, et
. Ea
h of whi
h

allows to generate six forms a

ording to: (1) gender (singular and plural); and (2)

the person (1, 2, and 3). SUB mode has 24 forms in four tenses. COND mode has 24

forms in two tenses. IMP, INF modes has two and three forms, respe
tively. PART

mode has usually three forms, two for some irregular verbs.

2.1 The Closed World Assumption

It seems not generally re
ognized that the reasoning 
omponents of many natural

language understanding systems have default assumption built into them. The repre-

sentation of knowledge upon whi
h the reasoner 
omputes does not expli
itly indi
ate


ertain default assumptions. Rather, these default are realized as part of the 
ode of

the reasoner's pro
ess stru
ture 
ontaining the hierar
hies.

The starting point of the default reasoning is a set of inferen
e rules(axioms) pos-

sibly along with some fa
ts of the domain at hand 
olle
ted in database whi
h we 
all

axiomal database (noted by G

ax

). Given G

ax

, the task based on the �spe
i�
ity� and

�inheritan
e� is to draw a plausible inferen
e for the input. These 
an be illustrated

by the 
lassi
al Tweety example as follows: Consider the database 
ontaining four de-

faults: �penguins are birds�, �penguins do not �y�, �birds �y� and �birds have wings�.

�Spe
i�
ity� tell us Tweety is a penguin, then Tweety doesn't �y be
ause penguin is

a more spe
i�
 
lassi�
ation of Tweety than bird . �Inheritan
e� on the other hand,

does equip Tweety with wings, by virtue of being a bird, albeit an ex
eptional bird

w.r.t. �ying ability.

From e�
ient implementation of the reasoner's pro
ess stru
ture point of view, if

the 
lass �Spe
i�
ity� lies �above� the generi
 
lass i.e., there is some pointer leading

from penguin's to node bird in G

ax

, then given a parti
ular penguin we 
an 
on
lude

that it doesn't �y. Noti
e that the reasoner's pro
ess stru
ture of G

ax


an be either

a network - the graph of the taxonomy - or a set of �rst order formulae. The se
ond

option has been 
hosen to form G

ax

of the morphology world in our work. In that

option for fast inferen
e purpose, G

ax

is organized a

ording to priorities whi
h are

given as ordering of predi
ates formulae, or default rules: in 
on�i
ting situations

preferen
e is given to item with high priority. That is to say, the data are added

in G

ax

in the following orders: (1) the fa
ts of the ex
eptional data; (2) the fa
ts
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asso
iated with generi
 axioms; (3) the ex
eptional axioms des
ribing the spe
i�
ity;

and �nally (4) the generi
 axioms.

Example 2: w.r.t. Tweety the orders of G

ax

is as follows: (1) Penguin(tweety); (2)

Bird(tweety); (3) (8x)Penguin(x)! :F lies(x); (4) (8x)Bird(x)! F lies(x):

(3) 
an be paraphrased as �penguins usually 
annot �y�. If a parti
ular penguin

(say Foo) 
an �y, this is obviously a 
ounter ex
eptional data (or insensitivity to

spe
i�
ity) w.r.t. to (3). Although, how the representation of the insensitivity to

spe
i�
ity 
an be done in the open world (i.e., the data related to the ex
eptions and

in parti
ular those of the 
ounter ex
eptions are not known in advan
e), but this is

not a limitation for our work be
ause the databases of LMF is 
omposed only using

three predi
ates : regular, ex
eptional and 
ounter-ex
eptional. The sele
tion of the


ounter ex
eptional data is based on the fast inferen
e purpose.

The LMF poli
y for su
h above purpose is to take into a

ount both the high

priority of usage in the text of a given language (e.g., the auxiliary verbs of a given

language su
h as �avoir� - to have - or �être� - to be -) and the seldom of data w.r.t.

ex
eptional data (e.g., �aller� -to go - the only member of the 
lass 22 of the irregular

verbs) or its spe
i�
ity w.r.t. the general data (e.g., �Haïr� meaning to hate, whi
h

is also a unique member of the 20th 
lass of the regular verb).

3 Combing the Automata and the De
ision Trees

In what follows, we summarize our re
ent work [3℄ 
on
erning the 
ombination of the

automata and the de
ision trees. We assume the reader to be familiar with both the

theory of �nite automaton and the de
ision tree learning as presented in standard

books e.g., [13℄ and [7℄, respe
tively. We refer to a key and a value denoted by k

and kv, respe
tively, as a sequen
e of 
hara
ters surrounded by empty spa
es whi
h

may have one or more internal spa
es. We may use key and word (in
luding verbs),

inter
hangeably, as well as, the value, key�value and the morphologi
al features.

The input of our algorithm for su
h above 
ombination is the following 
ustomary

form: f = f(k

i

; v

i

)ji = 1; : : : ; ng for representation and fast lookup. The point of our

idea is as follows: If an input string(x) 
an be re
ognized using the unlabeled �nite-

state-automaton (g) asso
iated with the keys (of f) - hen
e having less states and

transitions 
ompared to the transdu
er as shown in Figures 1 and 2 - then use the learn

de
ision tree (dt) for outputting the value asso
iated with x. Table 1 shows a sim-

ple de
ision tree (dt) of f1 = f(Iran; Tehran); (Iraq; Baghdad); (Ireland;Dublin)g.

Note that the dt w.r.t. f

2

= f(Iran,Asia),(Iraq,Asia)g has a unique solution-path i.e.

(kvAsia) - no 
ondition (i.e., question) is required to dis
riminate the key-value.

3.1 A
y
li
 Finite-state Automaton

Re
all that an a
y
li
 �nite-state automaton is a graph of the form g = (Q;�; Æ; q

0

; F )

where Q is a �nite set of states, � is the alphabet, q

0

is the start state, F � Q is the

a

epting states. Æ is a partial mapping Æ : Q � � �! Q denoting transition. If

a 2 �, the notation Æ(q; a) = ? is used to mean that Æ(q; a) is unde�ned. Let �

?

denotes the set 
ontaining all strings over � in
luding zero-length string, 
alled the
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Table 1: Ba
kward attribute-based Data and De
ision Tree.

b

7

b

6

b

5

b

4

b

3

b

2

b

1

KV Solution-Path Question KV

? ? ? I r a n Tehran (b

1

n kv Tehran) b

1

= n? Tehran

? ? ? I r a q Baghdad (b

1

q kv Baghdad) b

1

= q? Baghdad

I r e l a n d Dublin (b

1

d kv Dublin) b

1

= d? Dublin

Table 2: Ten keys of the same lengths along with asso
iated values.

Key onC myC mnH onH nnH nnC mnC nyC myH oyC

Value down down up down up up up up down down

empty string ". The extension of the partial Æ mapping with x 2 �

?

is a fun
tion

Æ

?

: Q� �

?

�! Q and de�ned as follows:

Æ

?

(q; ") = q

Æ

?

(q; ax) =

(

Æ

?

(Æ(q; a); x) if Æ(q; a) 6= ?

? otherwise.

A �nite automaton is said to be (n,m)�automaton if jQj = n and jEj = m where E

denotes the set of the edges (transitions) of g. The property Æ

?

allows fast retrieval for

variable-length strings and qui
k unsu

essful sear
h determination. The pessimisti


time 
omplexity of Æ

?

is O(n) w.r.t. a string of length n.

3.2 De
ision Tree Learning

De
ision tree learning is a method for approximating dis
rete�valued target fun
tions,

in whi
h the learned fun
tion is represented by a de
ision tree (dt). Learned de
ision

trees 
an also be re-represented as a set of if�then rules to improve human readability.

Example 3: Below we list the if�then rules representing the de
ision tree asso
iated

with data of Table 2.

If f

1

= `o' Then KV = `down';

If f

1

= `m

0

^ f

2

=

0

y

0

Then KV = `down';

If f

1

= `m

0

^ f

2

=

0

n

0

Then KV = `up';

If f

1

= `n

0

Then KV = `up';

where f

1

and f

2

denote �rst 
hara
ter and s
eond 
hara
ter (of the key from left to

right), respe
tively. De
ision trees 
lassify instan
es by sorting them down the tree

from the root to some leaf node, whi
h provides the 
lassi�
ation of the instan
es.

Ea
h node in the tree spe
i�es a test of some attribute (e.g., b1 of Table 1) instan
e,

and ea
h bran
h des
ending from that node 
orresponds to one of the possible values

for this attribute. An instan
e is 
lassi�ed by starting at the root of the tree, testing

the attribute value by this node, then moving down the tree bran
h 
orresponding to

the value of the attribute in the given example. This pro
ess is then repeated for the

subtree rooted at the new node. Noti
e that the implementation of the de
ision tree

is based on m-array tree rather than the binary one. The former allows to save the

de
ision tree in a less spa
e 
ompared to the latter. Figure 4 shows su
h a learned

tree representing the values of the keys of Table 2.

69



Pro
eedings of the Prague Stringology Conferen
e '03

0

1

2

3

4 5

m

n

o

n

y

n

y

H

C

C

Figure 3: A (6,10) unlabeled automa-

ton for re
ognizing the keys of Table 2.

1 : omn

0 : down 2 : yn 0 : up

0 : down 0 : up

o

m

n

y

n

Figure 4: Learned de
ision tree for de-

termining the value of any re
ognized

key of Table 2.

Table 3: Distribution of Fren
h regular verbs a

ording to the 
lass and the frequen
y

noted by C and F, respe
tively.

C 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F 3875 156 165 342 69 114 19 12 9 254 26 49 2 302 1

4 Re�nement

The re�nement pro
ess has the following tasks to perform:

1. Transform the input of LMF, namely our input, namely f = f(k

i

; v

i

)ji =

1; : : : ; ng into axiomal database D

ax

, as des
ribed in Se
tion 2.1.

2. Partition D

ax

into the 
ounter-ex
eptional, ex
eptional and general axioms.

The transformation is based on the 
losed world assumption of the morphology

assuming that the set of the words of (f) noted by K 
an be divided into two subsets

of so-
alled regular and irregular words. The regular forms follows the fa
t that their

derivate/in�e
tional forms (ea
h noted by d

k

) 
an be generated using those axioms

spe
i�ed by the linguists whi
h are usually further re�ned in a set of �ner regular

axioms (axiom). Using a root (of the word) ea
h axiom allows to generate all d

k

s of

the word. The root is obtained by removing a parti
ular substring of used axiom.

Example 4: The regular forms of the verbs in Fren
h is divided into the �rst group


ontaining 13 
lasses (ranged from 6 to 18) and the se
ond group whi
h is 
omposed of

two 
lasses (ranged from 19 to 20), where ea
h number stands for an axiom. Below

the repartition of 5189 in�nitives (of the regular verbs) used in our experiment is

shown in Table 3.

Remark 2: As appear from Table 3, 20th 
lass has only one member, namely �Haïr�.

However, as we mentioned earlier, it is not 
onsidered is a a regular data. Indeed,

w.r.t. to the inferen
e pro
ess, it is wise to 
onsider it as a 
ounter-ex
eptional data.

The reason is to speed up the inferen
e pro
essing by mentioning expli
itly the data

and axioms is the following order: 
ounter-ex
eptional, ex
eptional and general. This

pro
ess 
onstitutes the well known pra
ti
al tri
k of the default logi
. So, 5188 (i.e.,

5189 -1) roots along with 19 
lasses will be used as the reservoir for learning the

extended database of 492860 (i.e., 5188� 95) d

k

s of the lexi
ographers expressed in

a raw database.

An axiom 
an be des
ribed using a two dimensional ve
tor of size r, where r

stands for the number of morphologi
al features in use. The �rst row of su
h a ve
tor
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Table 4: Information on size of 13943 verbs of the third group in Fren
h and mor-

phologi
al information along with the forest of the de
ision trees obtained by the

partitive learning mode. Ent. refers to number of 
all to the entropy fun
tion.

Data De
ision Tree Gain

Len. Freq.

2 11

4 183

5 412

6 943

7 1480

8 2160

9 2317

10 2115

11 1729

12 1168

13 733

14 389

15 183

16 72

17 25

18 7

Inodes Leaves Ent.

9 3 15

133 40 371

225 66 904

460 131 2149

578 202 3388

727 240 5065

692 342 6664

582 252 6531

445 207 6361

318 125 4980

164 69 3472

106 50 2620

59 22 1624

36 18 1063

9 4 288

3 2 83

K% V%

66% 19%

81% 23%

88% 44%

91% 47%

93% 57%

94% 62%

95% 67%

96% 70%

96% 72%

97% 70%

97% 75%

97% 70%

97% 68%

95% 50%

97% 64%

96% 58%

is 
omposed of r the values. The se
ond row 
ontain di�erent substrings related to

d

k

s. Usually, the lexi
ographers are used to add the word in expli
it database in

whi
h ea
h entry is 
omposed one d

k

and a value. Sin
e it may happen that for a d

k

di�erent values be asso
iated with it (e.g., aime IND-PRES-1-SING, IMP-PRES-3-

SING, et
. ) therefore, the learning pro
ess should assure to 
olle
t them into a set of

morphologi
al features representing a set of unique ambiguity 
lass. In summary, the

entire lexi
on 
an viewed as follows. First on 
an form the the four following reservoir

f

g

, s

g

, f

e

and f




representing: (1) f

g

: Database related to the general axioms; (2) s

g

:

Database of su�xes of the regular (general) words; (3) f

e

: Database of derivate forms

expressed as the ex
eptional data; (4) f




: Database of derivate forms based on the

high priority relating the 
ounter ex
eptional data. Noti
e that f

g

along with s

g

will

be used to re
ognize the derivate forms of the words governed by the general axioms.

4.1 More Re�nement: Learning by Partitive Mode

As we mentioned earlier, the input of de
ision tree learning is a �xed attributes the

size of this table is `+1�n, where ` denotes the length of the longest keys of f and n

is the number of keys. Usually, we have to use the dummy 
hara
ters (noted by ? see

Table 1). Using the dummy 
hara
ters augment the size of the input table. Be
ause

of the very re
ursive nature of the learning pro
ess, in
luding the 
hara
terization of

the de
ision tree may be a time 
onsuming task for the large data. An alternative to

the a unique table is to employ multiple tables as follows. First f is divided into q
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user-inputs (f

i

) su
h that the length of the keys of ea
h f

i

be identi
al, then form the


orresponding de
ision trees. So, in the partitive mode, we have to learn a forest of

the de
ision tress : 
omposed a ve
tor of r positive integers. ith number is pointed

to the ith de
ision tree.

Sear
hing a value for an input string (x of length y) works as follows. If y belongs

to the ve
tor of above mentioned numbers, �rst we spell out x this time using the

automaton asso
iated with entire keys of K. If x spelled out 
orre
tly, then we use

the y

th

de
ision tree to output the value.

Example 5: The value of x = abababad 
an not be learned w.r.t. 
urrent f =

f(ab
; 1); (ababba
; 2)(ababab
; 3)g. We have length(x) = 8 whi
h is not member of

{3,5,7}. In the 
ontrary, for x = ab
 the value is 1 i.e., (1) length(x) 2 f3; 5; 7g, (2)

x is re
ognized using the automaton asso
iated with K = fab
; abab
; ababab
g and

(3) no question is required for f

3

the value is 1. Table 4 shows the Information on

size of 13943 verbs of the third group in Fren
h and morphologi
al information along

with the forest of the de
ision trees obtained by the partitive learning mode.

5 Main Algorithm

Below the algorithm for learning morphologi
al features is given whi
h is 
omposed of

two 
omponents: prepro
essing and pro
essing. In the �rst 
omponent four automata

and two de
ision trees along with a forest de
ision trees 
ontaining r de
ision trees are

formed, where r stands for the number of partitions of the ex
eptional data a

ording

to the same key-length 
riterion. In the se
ond 
omponent, if an user-input (x) 
an

be re
ognized by one of the four automata (see below for the order in use) then the


orresponding de
ision tree will be inspe
ted to output the value. The argument of

main fun
tion are:

1. f

g

= f(root

i

; axiom

i

)ji = 1 : : : ; n

1

g i.e., Database related to the general axioms;

2. s

g

= f(suf

i

; mf

i

ji = 1 : : : ; m

1

g i.e., Database of su�xes of the regular (general)

words; mf stands for a morphologi
al features or a set of alternate morpholog-

i
al features;

3. f

e

= f(d

i

; mf

i

)ji = 1 : : : ; n

2

g i.e., Database of derivate forms expressed as the

ex
eptional data; d

i

refers to a derivate form of a base word (e.g., in�nitive);

4. f




= f(d

i

; mf

i

)ji = 1 : : : n

3

g i.e., Database of derivate forms based on the high

priority relating the 
ounter ex
eptional data.

fun
 LearningMorphologi
alFeatures(f

g

; s

g

; f

e

; f




)

K

g

 Colle
tKeys(f

g

): K




 Colle
tKeys(f




):

g

kg

 FormAutomaton(K

g

); g

k


 FormAutomaton(K




):

ApplyPrepro
essingPartitiveMode(f

e

).

g

Ke

 FormAutomaton(K

e

):

table




 FormInputForLearning(f




):

t




 LearnDe
isionTree(table




):

t

s

 LearnDe
esionTreeOfSuffixes(s

g

):

72



Learning the Morphologi
al Features of a Large Set of Words

ApplySear
h(x).{Pro
essing 
omponent, x is an input string.}


nuf

The fun
tion FormAutomaton() follows the elegant algorithms des
ribed in [2℄ for

the in
remental 
onstru
tion of minimal a
y
li
 �nite state automata and transdu
ers

from both sorted and unsorted data We adapted the former one su
h that the length

of the longest key be 
al
ulated for being used later in the 
onstru
tion of suitable

input for learning the dt of the 
ounter ex
eptional data. Please refers to [3℄ for the

des
ription of the fun
tion FormInputForLearning() and LearnDe
isionTree().

The 
onstru
tion of the forest of the de
ision trees works as follows.

fun
 ApplyPrepro
essingPartitionMode(f

e

)

S

`

x

i=`

1

f

ei

 Partition(f

e

)

for i 2 (`

1

; : : : `

x

) do

K

ei

 Colle
tKeys(f

ei

); g

kei

 FormAtuomaton(f

ei

).

Table

ei

 FormInputForLearning(f

ei

)

t

ei

 LearnDe
isionTree(Table

ei

):

end for


nuf

Sin
e the sear
h order is based on looking at the following order : (1) 
ounter

ex
eptional, (2) ex
eptional and general data, then pro
essing 
omponent is as follows:

fun
 ApplySear
h(x)

return(Sear
hValue(x, g

k


, t




) OR Sear
hValueUsingPartitionMode(x, g

ke

, forest)

OR Sear
hByMismat
h(x, g

kg

, s

g

, t

s

)).


nuf

For knowing how Sear
hValue() works, again 
onsider Figure 4 where zero used

in a node indi
ates that node is a leaf one. A positive integer number used in a node

has its own meaning indi
ating the test to be done taking into a

ount the 
ontent

of the 
urrent node under inspe
tion e.g., �1:omn� means that if the �rst 
hara
ter

of x is 'm' then gets the value by des
ending in the sub-tree of �rst 
hild. Sin
e the

sub-tree has only one node - a leaf - then value is 'down'. If the �rst 
hara
ter of x

is 'm' this time the value has to be sele
ted using the sub-tree of the se
ond 
hild.

Depending on the se
ond 
hara
ter (�2:yn�) of x the output value is either �down� or

�up�.

fun
 Sear
hValue(x, g, dt)

if Æ

?

(q

0

; x) = q su
h that q 2 F (ofg) then

kv  GetValue(x,dt).

else

kv  nil; {x is unknown w.r.t. the 
urrent g}

end if


nuf
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The fun
tion Sear
hByMismat
h() uses the automaton asso
iated with the general

data to know if the root of (the base) word 
an be re
ognized by that automaton.

If the input string 
an be spelled out using a given position then there is a 
han
e

that the su�x of the input string be re
ognized using the automaton of the available

su�xes (s

g

), if so, then GetValue will be a
tivated to output the output value.

fun
 Sear
hByMismat
h(x, g

kg

, t

s

)

pos MisMat
hPosition(x; g

kg

); s substr(x; pos): {s stands for the su�x}

return(GetValue(s, t

s

)).


nuf

5.1 Examples

Below we illustrate the tra
es of LMF applied to the verbs in English and Fren
h,

Azeri and Persian.

Example 6 (Fren
h): Let us 
onsider the following phrase: �Il livre un livre.� i.e.,

He is providing a book. Suppose that we are interested in learning the morpholog-

i
al features of the word �livre�. The 
urrent word 
annot be spelled out neither

using the automaton asso
iated with the 
ounter ex
eptional automaton nor with the

ex
eptional automaton. Therefore, the automaton asso
iated with f

g

(database of

regular roots in Fren
h 
orresponding to the �rst group) will be 
alled to partially

spell out the word �livre�. Using fun
tion Sear
hByMismat
h tell us to stop at the

fourth 
hara
ter (from left to right). The remaining part of the 
urrent word - �e� -

will then be used as the entry of the de
ision tree asso
iated with the su�xes of f

g

outputting the desired result: Verb+IND-PRES-1-SING, Verb+IND-PRES-3-SING,

Verb+IMP-PRES-3-SING, Noun+MASC-SING and Noun+FEM-SING.

Remark 3: The reason for whi
h it is preferable to divide the set of words (of

a language) into several �les, ea
h of whi
h 
ontaining the same synta
ti
 
ategory


ould better be illustrated using our previous example. Indeed, one 
ould use the rules

of lo
al grammar e.g., (1) pronoun+verb as in �il livre� and (2) determinant+noun,

as in �un livre�, for the e�
ient tagging purpose while learning the morphologi
al and

right features of used word in a text.

Example 7 (Fren
h): In the the following phrase: �Bush hait Saddam et vi
e-versa.

i.e., Bush hates Saddam and vi
e-versa.� Learning the morphologi
al features of the

word �hait� is immediate be
ause this word belongs to the ex
eptional data 
ontaining

the verbs of 20th 
lass.

Example 8 (English): The morphologi
al features of the word �stood� in the fol-

lowing phrase: �He stood the 
hild�, 
an also be learned immediately, be
ause it

belongs to the ex
eptional data w.r.t. the verbs in English.

Example 9 (Azeri): Like in Turkish, the order of 
onstituents may 
hange rather

freely without a�e
ting the grammati
ality of a senten
e. Due to various synta
ti


and pragmati
 
onstraints, di�erent orderings are not just stylisti
 variants of the


anoni
al order. For instan
e, a 
onstituent that is to be emphasized is generally

pla
ed immediately before the verb. This a�e
ts the pla
es of all the 
onstituents in
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a senten
e ex
ept that of the verb:

Man o³haxlara ketabi verdim. I gave the book to

I 
hildren+DAT book+ACC give+P1S the 
hildren.

O³haxlara man ketabi verdim. It was me who gave


hildren+DAT I book+ACC give+P1S the 
hildren the book.

Man ketabi o³haxlara verdim. It was the 
hildren to

I book+ACC 
hildren+DAT give+P1S them I gave the book.

The �rst above senten
e is an example of the 
anoni
al word order whereas in

the se
ond one the subje
t, man, is emphasized. Similarly, in the last one the dire
t

obje
t, o³haxlara, is emphasized.

Remark 4: Although, Azeri has some similarity with old Turkish, but their stru
-

tures di�er in several aspe
ts, notably w.r.t. new Turkish. This is parti
ularly true

for the the vo
abularies and the morphology. All together, this makes the pro
essing

of Azeri di�erent from Turkish, in
luding our learning pro
ess.

Example 10 (Persian): If we 
on
ern ourselves with the unmarked order of 
on-

stituents, like in Turkish and Azeri, Persian 
an be 
hara
terized as a subje
t-obje
t-

verb language: (a) �Man be baçeha ketab ra dadam.� (i.e., I gave the book to the


hildren.) and (b) �Lazat bordand.� (i.e., (They) enjoyed). In (a) the morphologi
al

features of the verb �dadam� is determined by what we 
all the 
ounter ex
eptional

data whereas in (b) the segment �Lazat (adje
tive) bordan (verb)� have to be 
onsid-

ered as a 
ompound verb. So, the 
ombination of the morphologi
al features of two

words would determine the morphologi
al feature of the mentioned segment.

6 Con
luding Remarks

LMF is written in C and applied for learning of the large set of the verbs in Fren
h

and very limited ones in Persian and Azeri. The experiments show that 
ombing

the 
losed world assumption, the automata and the de
ision trees is a good approa
h

sin
e our tests provide the right results for more than half million verbs - in
luding the


onjugated form - in Fren
h. Note that the transdu
ers [8℄, as the the best available

method, have been used in the morphology world. However, the advantages of 
omb-

ing the automata with the de
ision trees are that it leads to 
ompa
t representations

than transdu
ers, and the de
ision trees 
an easily synthesize by ma
hine learning

te
hniques. This is emphasized in this work by Figure 2.

It must be stressed that using automata is appropriate when there is no need

for frequent updates of one or more databases. This is due to the fa
t that it is

di�
ult to update qui
kly the automaton. However, w.r.t. our present work, this is

not ne
essarily a limitation be
ause we are dealing with stati
 keys originated from

the morphology world. From update viewpoint, using the two-trie stru
ture of Aoe

et al. [1℄ instead of the automata is preferred where there is the need for frequent

updates. But in this 
ase, the 
ost of spa
e (number of states and transitions) is

(slightly) expensive 
ompared to the automaton.

An interesting extension is the question of addressing how to learn the regular

and irregular data from pure Stringology viewpoint i.e., without atta
hing a domain

to the values of the keys. That is to say, we have to dis
over the axioms along with

possible ex
eptional and/or 
ounter ex
eptional ones.
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Abstra
t. We present here a linear algorithm for the dete
tion of evolutive

tandem repeats. An evolutive tandem repeat 
onsists in a series of almost 
on-

tiguous 
opies, every 
opy being similar (using Hamming distan
e in this arti
le)

to its prede
essor and su

essor. From a global view point, evolutive tandem

repeats extend the traditional approximate tandem repeat where ea
h 
opy has

to be in a neighborhood of a given model. Due to the la
k of algorithms, these

repeats have been dis
overed in genomi
 sequen
es only re
ently. In this arti
le,

we present a two-stage algorithm, where we �rst 
ompute an array 
ontaining all

the Hamming distan
es between 
andidates, then we visit this array to build a


omplete evolutive tandem repeat from insulated pairs of 
opies. Moreover, we

explain how it is still 
onsistent with the usual te
hnique devoted to dynami


programming whi
h 
onsists in �lling a 
omparison matrix and ba
ktra
king

through it to �nd an optimal alignment.

Keywords: linear algorithm, evolutive tandem repeats, Hamming distan
e

1 Introdu
tion

The notion of approximate tandem repeat is generally well-de�ned, from the formal

view point [2, 12℄, it uses a 
onsensus model, every 
opy parti
ipating to this repeat

being very similar to the 
onsensus. An evolutive tandem repeat has no need for

a 
onsensus model, the �rst and the last 
opies might be 
ompletely di�erent but

every time we are 
onsidering two su

essive 
opies parti
ipating to the repeat, they

are very similar to ea
h other: �nding evolutive tandem repeats is obviously mu
h

more 
ompli
ated than dete
ting generi
 tandem repeats for whi
h usual well-known

stru
tures, su
h as su�x trees, 
an be used during a prepro
essing stage [9℄.

Evolutive tandem repeats have been phrased by mole
ular biologists, for example

in [4℄, and have been observed in real DNA sequen
es (see Appendix A for a 
omplete

example, dete
ted in A. thaliana). In [5℄, we gave a formal de�nition of evolutive

tandem repeats with jumps then we des
ribed a quadrati
 spa
e and time algorithm

�
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whi
h dete
ts all the maximal. Even if numerous models and algorithms sear
hing

for various kinds of repeats have been developed [1, 3, 10, 11, 8, 12℄, none of these

algorithms are able to lo
ate evolutive tandem repeats, as far as we know, we therefore

designed a quadrati
 algorithm for their dete
tion, it was based on the 
onstru
tion

of two graphs and their visits.

Sin
e we are looking for lo
al repetitions having approximatively the average length

of mini (or even mi
ro) satellites and be
ause we are also looking for a 
ertain number

of 
opies (having three or less 
opies in an evolutive tandem repeats is meaningless),

we are here interested in sear
hing for 
opies whose length may vary from 4 to 64 [6℄,

that is usually thousands times less than the size of the sequen
es we are studying.

We present in this arti
le a O((`

max

� `

min

+ 1)� (j

max

� j

min

+ 1)� jwj)-time and

O(j

max

� j

min

+ 1)-spa
e algorithm where and `

min

and `

max

(resp. j

min

and j

max

)

are the minimal and maximal values of the length of the 
opies (resp. the jump

between two 
opies) and w is the studied sequen
e. More pre
isely, sin
e length and

jump values are very small (with respe
t to the length of the sequen
e whi
h 
an be


ounted in millions of base pairs), we still have an overall linear time-
omplexity. So

in pra
ti
e, the time 
omplexity is in O(C � jwj), where C � (61� (j

max

� j

min

).

In se
tion 2, we re
all some basi
 de�nitions and introdu
e the evolutive tandem

repeats. In se
tion 3, we present the ideas of our algorithm. In se
tion 4, we explain

the 
onne
tion with 
omparison matri
es. In se
tion 5, we present experimental

results and �nally, in se
tion 6, we 
on
lude.

2 Preliminaries

Let � be an alphabet and �

�

its asso
iated free monoid. A word (resp. non empty

word) over � is an element of �

�

(resp. �

+

). The letter of a word w o

urring at

position i is denoted by w

i

. The length jwj of a word w is the number of letters of w,

i.e. w = w

1

� � �w

jwj

. We will denote by �

`

the set of all possible words of length `

over �. We denote by u:v (or simply uv) the 
on
atenation of two words u and v.

Consider w = p:f:s for some p; f; s 2 �

�

. Su
h p; f; s are respe
tively pre�x, fa
tor

and su�x of w. We denote f = w[i; j℄ = w

i

w

i+1

� � �w

j�1

w

j

for 1 � i � j � jwj. The


on
atenation of n 
opies of u is denoted by u

n

.

There exist several distan
es one 
an use for the analysis of genomi
 sequen
es. In

this arti
le, we will 
onsider the Hamming distan
e: the Hamming distan
e between

two words of equal length is the number of positions at whi
h their 
orresponding

letters di�er: for u; v 2 �

`

, d

H

(u; v) = Cardfi 2 f1; : : : ; `g j u

i

6= v

i

g:

De�nition 2.1 (Evolutive tandem repeat)

An evolutive tandem repeat with jumps (e.t.r. for short) is a tuple (v; "; (j

min

; j

max

);

`; n; (p

i

)

1�i�n

) where v is a word, " is the maximal number of errors between two


onse
utive 
opies, [j

min

; j

max

℄ is the range of the length of a jump (overlap or gap

between two 
onse
utive 
opies) with (j

max

� j

min

+ 1) � `=2, ` is the length of

the 
opies, n is the number of 
opies, p

i

are the starting positions of the 
opies




i

= v[p

i

; p

i

+ `� 1℄ and

8

>

<

>

:

p

1

= 1; p

n

+ `� 1 = jvj;

j

min

� p

i+1

� (p

i

+ `) � j

max

; 8i 2 f1; : : : ; n� 1g;

d

H

(


i

; 


i+1

) � "; 8i 2 f1; : : : ; n� 1g:
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Example 2.1 Let 
onsider the word v = aaataa
ag
g
.

(v; 1; (�1; 1); 3; 4; (1; 5; 8; 10)) is an e.t.r. with jumps: p

1

= 1, p

2

= 5 (gap), p

3

= 8

and p

4

= 10 (overlap) 
orresponding to 


1

= aaa, 


2

= aa
, 


3

= ag
 and 


4

= 
g


(see Fig. 1).

gap overlap

a a a
 
 
g g

` `

`

� j

min

� " � "

p

1

p

2

p

3

p

4

` = 3

� j

max

= 1

� " = 1

v =

a

g

g







a




1

=




4

=




3

=




2

= 


aaa

a




a a a t

Fig. 1: Example of an evolutive tandem repeat with jumps

We will 
onsider only in what follows maximal e.t.r., that is e.t.r. whi
h is not

embedded in a longer one: 
onsider for example a word w = gaaaga
gagg
gg and

` = 3. The e.t.r. etr

1

= (aaga
gagg; 1; (�1; 1); 3; 3; (1; 4; 7)) is not maximal in w sin
e

the repeat etr

2

= (aaga
gagg
gg; 1; (�1; 1); 3; 4; (1; 4; 7; 10)) 
ontains more 
opies. In

this 
ase, we say that etr

2

�
ontains� etr

1

and remark that etr

2

is a maximal e.t.r. in

w.

In a previous arti
le [5℄, we �rst 
onsidered all fa
tors of w having the same length.

For ea
h fa
tor, we 
omputed the set of its starting positions using an equivalen
e

relation on positions in w. Then, we built a graph for whi
h nodes are these sets

and there exists an edge between two nodes if the 
orresponding fa
tors are slightly

di�erent in the meaning of the Hamming distan
e. Next, we 
omputed a se
ond graph

namely the `-position graph de�ned as follows:

De�nition 2.2 (`-position graph) Let w be a word and " and jump integers. The

`-position graph 
orresponding to w, " and jump is the oriented graph PG

`

(w; ";

jump) = (N;E) where

8

>

>

>

<

>

>

>

:

N = f1; :::; jwj � `+ 1g and

E = f(i; i

0

; i

0

� (i + `)) for (i; i

0

) 2 N �N; i < i

0

su
h that ji

0

� (i + `)j � jump;

d

H

(w[i; i+ `� 1℄; w[i

0

; i

0

+ `� 1℄) � "g:

Nodes are labeled with all the positions f1; : : : ; jwj� `+1g of fa
tors of length ` and

there exists an edge labeled with d between two nodes if the 
orresponding positions

are 
lose in w and if the Hamming distan
e between their asso
iated fa
tors, denoted

d is not greater than a given ". We used a quadrati
 time but linear spa
e algorithm

to 
ompute it. In what follows we denote by (i; i

0

; d) an edge labeled d from the node i

to the node i

0

.

Finally, we looked for all the longest paths in the `-position graph to �nd maximal

e.t.r.
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3 A Linear � Time and Spa
e � Algorithm

In a previous arti
le [5℄, we des
ribed a quadrati
 spa
e and time algorithm whi
h

dete
ts all maximal e.t.r. in a word w. In what follows, we present a linear time

and spa
e algorithm that starts with the �lling of a �position� array and follows on

with the visit of this array in an attempt to �nd regularities. We will �rst draw the

�big-pi
ture� and will 
onsolidate the des
ription by explaining the stru
tures we used

and the strategies we developed.

The �rst important idea 
onsists in 
onsidering every `-mer (fa
tor of length `) as

a sliding window. Sin
e we have to 
ompute the distan
es between pairs of fa
tors,

we have to use two sliding windows f and f

0

(see Fig. 2): one window, f

0

, ending

at position i will 
orrespond to the right-most fa
tor (moving sequentially from left

to right, one position at a time) while the other window, f , will 
orrespond to the


andidates for a pair (ending at a position in the interval [i� `� j

max

; i� `� j

min

℄).

Therefore, we only have to 
onsider j

max

� j

min

+ 1 possible positions for the left

sliding window, for ea
h given position of the right sliding window and fo
us on the


omputation of (j

max

�j

min

+1)�(jwj�`+1) distan
es, that is a linear-time and spa
e


onstru
tion of a �position� array (emulating the position graph we de�ned in [5℄).

������������
������������
������������
������������

�������������
�������������
�������������
�������������

``

i� 2`� k + 1 i� `+ 1

k

i� `� k i

f f

0

Fig. 2: The two sliding windows f and f

0

The se
ond important idea is the 
omputation of the Hamming distan
e by itself: if

the Hamming distan
e between the fa
tors of length ` ending at position i and i

0

is

known then the Hamming distan
e between the fa
tors ending at position i + 1 and

i

0

+ 1 
an be 
omputed in O(1)-time be
ause (`� 1) 
omparisons have already been

done. It will speed up the �lling of the position array (see Fig. 3).

`

`

`� 1 
omparisons in 
ommon

w

i+`

: : : w

i�1

w

i

d

H

(w[i+ `; i+ 1℄; w[i

0

+ `; i

0

+ 1)

d

H

(w[i+ `� 1; i℄; w[i

0

+ `� 1; i

0

)

w

i

0

+`

: : : w

i

0

�1

w

i

0

w

i+`�1

w

i

0

+`�1

w

i+1

w

i

0

+1

Fig. 3: Computing Hamming distan
e on in
remental positions

Finally we only have to visit the position array and sear
h for a series of a

eptable

values (smaller than ") lo
ated at appropriate positions (the distan
e between two


onse
utive positions has to belong to [`+ j

min

; `+ j

max

℄).
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A Two-stage Algorithm

We �rst have to 
ompute the Hamming distan
es between every possible pairs of


andidates and �ll the position array D that 
ontains all these 
omputations.

De�nition 3.1 Let w = w

1

: : : w

n

be a word over �, ` an integer and k 2 fj

min

; : : : ;

j

max

g. We de�ne D

w;`

k

(i) by

D

w;`

k

(i) =

8

>

<

>

:

0; 8i 2 f1; : : : ; `+ kg

d

H

(w[1; i� `� k℄; w[`+ k + 1; i℄); 8i 2 f`+ k + 1; : : : ; 2`+ k � 1g

d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄); 8i 2 f2`+ k; : : : ; jwjg

We assume now that D

w;`

k

(i� 1) has been previously 
omputed and we would like to


ompute D

w;`

k

(i), i.e we know d

H

(w[i � 2` � k; i � ` � k � 1℄; w[i � `; i � 1℄) and we

would like to 
ompute d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄).

We therefore de�ne two additional fun
tions:

� 8a; b 2 �; 11

a

(b) = 0 if b = a, 1 otherwise;

� 8k 2 fj

min

; : : : ; j

max

g; E

w;`

k

(i) = 11

w

i�`�k

(w

i

) if i 2 f` + k + 1; : : : ; jwjg, 0

otherwise.

Lemma 3.1 Let w be a word over �, ` an integer and k 2 fj

min

; : : : ; j

max

g. We have:

D

w;`

k

(i) =

8

>

<

>

:

0; 8i 2 f1; : : : ; `+ kg;

D

w;`

k

(i� 1) + E

w;`

k

(i); 8i 2 f`+ k + 1; : : : ; 2`+ k � 1g;

D

w;`

k

(i� 1) + E

w;`

k

(i)� E

w;`

k

(i� `); 8i 2 f2`+ k; : : : ; jwjg:

Proof 1 Let k 2 fj

min

; : : : ; j

max

g and i 2 f2` + k; : : : ; jwjg. If i > 2` + k then

D

w;`

k

(i� 1) = d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `; i� 1℄) and therefore

D

w;`

k

(i)

= d

H

(w[i� 2`� k + 1; i� `� k℄; w[i� `+ 1; i℄)

= d

H

(w[i� 2`� k + 1; i� `� k � 1℄; w[i� `+ 1; i� 1℄) + 11

w

i�`�k

(i)

= d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `; i� 1℄)� 11

w

i�2`�k

(i� `)+

11

w

i�`�k

(i)

= D

w;`

k

(i� 1)� E

w;`

k

(i� `) + E

w;`

k

(i):

If i = 2` + k then D

w;`

k

(i) = d

H

(w[1; i � ` � k℄; w[` + k + 1; i℄) = d

H

(w[1; i � `�

k � 1℄; w[`+ k + 1; i� 1℄) + 11

w

i�`�k

(w

i

) = D

w;`

k

(i� 1) + E

w;`

k

(i).

But we have E

w;`

k

(i � `) = E

w;`

k

((2` + k) � `) = E

w;`

k

(` + k) = 0, so D

w;`

k

(i) =

D

w;`

k

(i� 1)� E

w;`

k

(i� `) + E

w;`

k

(i).

We prove the other 
ase in the same manner. 2

The size of the arrays D (where D[k℄[i℄ = D

w;`

k

(i)) and E (where E[k℄[i℄ = E

w;`

k

(i))

is (j

max

� j

min

+ 1)� jwj. In order to �ll these two arrays, we now use a O((j

max

�

j

min

+ 1)� jwj)-time and spa
e algorithm.

Example 3.1

This example (see Fig. 4) has been obtained with w = aaataagttat
aat

aaat
gtgt
a,

` = 4, j

min

= �1, j

max

= 1 and " = 2:

For example D

w;4

�1

(7) = d

H

(w[1; 4℄; w[4; 7℄) = d

H

(aaat; taag) = 2, D

w;4

0

(17) = d

H

(

w[10; 13℄; w[14; 17℄) = d

H

(at
a; at

) = 1 and D

w;4

1

(28) = d

H

(w[20; 23℄; w[25; 28℄) =

d

H

(at
g; gt
a) = 2.

81



Pro
eedings of the Prague Stringology Conferen
e '03

��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������

��������
��������
��������

��������
��������
��������0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

0 0 0 1 1 1 2 2 3 4 3 3 2 2 3 3 4 4 4 4 4 4 4 3 3 3 43

0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1110 11
2 2 3 2 1 1 444444433213211000000 3
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gap

overlap

conca−

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

���������
���������
���������
���������

2520151051 28

0 0 0 0 0 1 2 2 2 2 2 3 4 44 3 2 1 1 2 2 3 3 3 3 2 20

a a a a a g t t a t c a a t c c a a a t c g t g t c a

1001 = 2
t c g

g t c a

a t
0 0 0 1 = 1

c a

a t c c
01 0 = 21

a a a

t a a g

at

t

tenation

w

i

E

w;4

�1

(i)

D

w;4

�1

(i)

D

w;4

0

(i)

E

w;4

1

(i)

D

w;4

1

(i)

E

w;4

0

(i)

Fig. 4: D and E arrays

The spa
e 
omplexity 
an be improved as follows.

Sin
e the values E[k℄[i℄ are independent, we 
an de
rease the spa
e 
omplexity by

ignoring the �lling of the array E and by 
omputing E[k℄[i℄ only when needed without

in
reasing the time 
omplexity.

Moreover, for a given `, we only need the last value D

w;`

k

(i � 1) in order to 
om-

pute D

w;`

k

(i) (see Lemma 3.1), thus we will only store the last 
olumn of the ar-

ray D. Finally (see Fig. 5), we obtain a O((j

max

� j

min

+ 1) � jwj)-time and

O(j

max

� j

min

+ 1)-spa
e algorithm (D is an array of size O(j

max

� j

min

+ 1)). If

we are looking for all e.t.r. for 
opies of length ` 2 [`

min

; `

max

℄,the 
omplexity is

O((`

max

� `

min

+ 1) � (j

max

� j

min

+ 1) � jwj). From a pra
ti
al point of view,

(`

max

� `

min

+ 1) � 61 is mu
h lower than jwj and the time 
omplexity is still linear:

O(C � jwj), where C � 61� (j

max

� j

min

).

Constru
tion of the Longest Paths

The two arrays are 
ompa
t representations of the graphs we depi
ted in [5℄, and if

we refer to the traditional graph vo
abulary, we 
an asso
iate a 
ell in the position

array and a node in the position graph.

Constru
tion of the array 
ontaining the longest paths(w; `; j

min

; j

max

; ")

1 for ` `

min

to `

max

do

2 for i 1 to jwj do

3 C[i℄ �1

4 L[i℄ 0

5 for k  j

min

to j

max

do

6 if (i � `+ k) then

7 D[k℄ 0

8 elseif (i � 2`+ k) then

9 D[k℄ D[k℄ + 11

w

i�`�k

(w

i

)

10 else D[k℄ D[k℄ + 11

w

i�`�k

(w

i

)� 11

w

i�2`�k

(w

i�`

)

11 if (i � 2`+ k) and (D[k℄ � ") and (L[i� 2`� k + 1℄ + 1 > L[i� `+ 1℄) then

12 L[i� `+ 1℄ L[i� 2`� k + 1℄ + 1

13 C[i� `+ 1℄ i� 2`� k + 1

14 return (C;D)

Fig. 5: Constru
tion of the array 
ontaining the longest paths

When D

w;`

k

(i) � " and i � 2`+k, the ar
 between nodes (i�2`�k+1) and (i�`+1)

is added only if it 
reates a longest path to node (i� `+ 1), moreover the previously
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existing, previously unique ar
 ending in i� ` + 1 is removed: let a path of length 


ending in (i�`+1), if the length of the path ending in (i�2`�k+1) plus 1 is greater

than 
, then thear
 ending in (i� `+1) is removed and the ar
 from (i� 2`� k+ 1)

to (i� `+ 1) is 
reated.

Finally ea
h node i has at most one ar
 ending in i and therefore the `-position graph

is stored in an array C of integers, where C[i℄ is the index of the head of the ar
 (C[i℄,

i), and �1 otherwise. We use an array L of integers, where L[i℄ is the length of the

longest path ending in i.

Let C and L be arrays of integers of size jwj (see algorithm Fig. 5).

The determination of the longest paths, 
orresponding to the maximal e.t.r., uses the

traditional algorithm.

Computation of the Distan
e between Two Fa
tors of Length

`+ 1

Lemma 3.2 (Computation of D

w;`+1

k

(i)) Let `; j

min

; j

max

and k be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+ k; : : : ; jwjg, D

w;`+1

k

(i) = D

w;`

k+1

(i) +E

w;`

k+1

(i� `);

(see Fig. 6).

Proof 2 Let `; j

min

; j

max

; i and k integers su
h that k 2 fj

min

; : : : ; j

max

g and i 2

f2`+ k; : : : ; jwjg. We have

D

w;`+1

k

(i) = d

H

(w[i� 2(`+ 1)� j + 1; i� (`+ 1)� k℄; w[i� (`+ 1) + 1; i℄)

= d

H

(w[i� 2`� k � 1; i� `� k � 1℄; w[i� `; i℄)

= d

H

(w[i� 2`� k; i� `� k � 1℄; w[i� `+ 1; i℄) + 11

w

i�2`�k�1

(w

i�`

)

= d

H

(w[i� 2`� (k + 1) + 1; i� `� (k + 1)℄; w[i� `+ 1; i℄)+

11

w

i�2`�k�1

(w

i�`

)

= D

w;`

k+1

(i) + E

w;`

k+1

(i� `):

2

�������������������������� ������������������������

������������

����������

``

`+ 1 `+ 1

i

k + 1

k

i� `� k � 1

i� 2`� k � 1

i� 2`� k

i� `� k � 1 ii� `

i� `+ 1

Fig. 6: Computation of D

w;`+1

k

(i)

������������
������������
������������
������������

������������
������������
������������
������������

����������

��������

``

` + 1 `+ 1

i

k + 1

i� `� k � 1

k

i + 1

i� 2`� k

i� `� k

i� `+ 1

i� 2`� k i� `+ 1

Fig. 7: Computation of D

w;`+1

k

(i+ 1)

Lemma 3.3 (Computation of D

w;`+1

k

(i+ 1)) Let `; j

min

and j

max

be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+k; : : : ; jwjgD

w;`+1

k

(i+1) = D

w;`

k+1

(i)+E

w;`

k+1

(i+1);

(see Fig. 7).

Proof 3 A

ording to Lemma 3.2, D

w;`+1

k

(i+1) = D

w;`

k+1

(i+1)+E

w;`

k+1

(i� `+1) and

by De�nition 3.1, D

w;`

k+1

(i + 1) = D

w;`

k+1

(i) � E

w;`

k+1

(i � ` + 1) + E

w;`

k+1

(i + 1), therefore,

D

w;`+1

k

(i+ 1) = D

w;`

k+1

(i) + E

w;`

k+1

(i + 1).

2
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Lemma 3.4 (Computation of D

w;`+1

k

(i)) Let `; j

min

and j

max

be integers. We

have 8k 2 fj

min

; : : : ; j

max

g; i 2 f2`+ k; : : : ; jwjg

D

w;`+1

k

(i) = D

w;`

k+1

(i) + E

w;`

k+1

(i� `)

= D

w;`

k+1

(i� 1) + E

w;`

k+1

(i):

4 Evolutive Tandem Repeats and Comparison Ma-

tri
es

Comparison Matri
es

We will now explain the 
onne
tion between the arrays we are 
omputing and using,

and well-known te
hniques used by several algorithms devoted to sequen
e 
ompari-

son.

A traditional te
hnique in sequen
e 
omparison 
onsists in the 
onstru
tion and the

visit of the two-dimension matrix, where a 
ell (i; i

0

) 
ontains the 
omparison s
ore,

i.e. the distan
e, between a fa
tor ending at position i in one sequen
e and a fa
tor

ending at position i

0

in the other sequen
e.

Computing the positions of all the approximate repeats in one sequen
e 
an be 
arried

out by 
omparing the sequen
e with itself, that is by 
onstru
ting a spe
i�
 symmetri


square matrix, like the one we are presenting in Fig. 8. Note that Fig. 9 represents

the arrays D and E 
orresponding to the three white diagonals of Fig. 8.

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

a

c

T

a

t

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1

11

1

1

1

1

a

c

a

g

c

a

t

g

0

0

0

1

1

1

1

1

1

1

0

0 1

1

1

0

0

0

0

1

1 1 1 1 1 0 1

0 1 1 0 1 1

1 1 0 1 1

1 1 1 1 1

1 0 0 1 0 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

0 0 0 0

0

0

1 1

1 1 1 1 1 1 1

11111111

1 1 1 1 1 1 1 1 1 1

1

2

0 2 1 3

2 3

2 3

2

2

3

2

2

3

2

1

3

2

3

3

3

3

3

2

3

3

3

3

0

0

0

2

2

2

2

2

22

2 2

2

2

1

2

3

1

02

31 1 3

0

0 3

1

3

2 2

1 2 3 2 2 3 0

0

0

3

3

3

33

33

32

13

3

3

3 2

2 2

2

1 3

3

3

1

2

2

2

2 2

a c t a a c a gc a t g

2

0

−1

−1

−1

−1

−1

−1

−1

−1

−1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0 1 0 1 1 1 1

110110100110

1
3−1

jump
1

3−1
d (s[i],s[i’])

d (s[i−2,i],s[i’−2,i’])
H

H

Fig. 8: Matrix and its diagonals for ` = 3,

j

min

= �1; j

max

= 1 and " = 1
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��
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1051

0 0 0 0 0 1 2 3 3 3 30

a t

0 0 1
0 2 3 3

0 0 0 1 0 1 1 0 1 00
2 2 1222210000

1 11 1 10 0 0 0 0 0 1

a c t a c a c g a

0
1 1 1
1 2 3

1 0
3 2
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1 1

1

g

E

w;3

�1

(i)

E

w;3

0

(i)

E

w;3

1

(i)

D

w;3

�1

(i)

D

w;3

0

(i)

D

w;3

1

(i)

w

i

Fig. 9: The arrays D and E 
orrespond-

ing to the three white diagonals

In this matrix, the 
ontent of a 
ell (i; i

0

) 
ontains informations 
orresponding to

d

H

(w[i � 2; i℄; w[i

0

� 2; i

0

℄). One 
an observe four di�erent kinds of 
ells: dark gray


ells 
orrespond to unde�ned distan
es (i < ` or i

0

< `, the fa
tors are not long enough
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to 
ompute d

H

(w[i� 2; i℄; w[i

0

� 2; i

0

℄), therefore only d

H

(w[i℄; w[i

0

℄) is reported in the

upper left 
orner), light gray 
ells 
orrespond to useless 
ells su
h that i

0

� i < `+j

min

or i

0

� i > `+ j

max

, white 
ells 
ontain three values as expressed in Fig. 8 and are the

only 
ells that are really needed and �nally dashed 
ells ti
k 
opies parti
ipating to a

potential e.t.r. (for example, the dashed 
ell (3; 7) states that d

H

(w[1; 3℄; w[5; 7℄) � ",

that is d

H

(a
t; a
a) � 1, whi
h is 
orre
t).

Remark 4.1 Dashed 
ells 
ontributing to a diagonal indi
ate a potential larger re-

peat: (3; 9) and (4; 10) (
orresponding respe
tively to d

H

(a
t; a
g) � 1 and d

H

(
ta;


ga) � 1) 
an establish the existen
e of a longer repeat (in this example d

H

(a
ta;

a
ga) � 1) but more generally, dashed 
ells (i; i

0

) and (i+ 1; i

0

+ 1), that is d

H

(w[i�

2; i℄; w[i

0

� 2; i

0

℄) � 1 and d

H

(w[i � 1; i + 1℄; w[i

0

� 1; i

0

+ 1℄) � 1, does not imply

ne
essarily that d

H

(w[i� 2; i + 1℄; w[i

0

� 2; i

0

+ 1℄) � 1 (
onsider (6; 8) and (7; 9) for

example).

Assume now that we are sear
hing for approximate tandem repeats of length ` = 3,

with an error rate " = 1 and j

min

= �1; j

max

= 1, on
e we have built our matrix, the

hunt for the repeats 
an be 
arried out by visiting one row at a time and reporting

regions 
ontaining 
ells with a lower right value smaller than " every at least `+j

min

=

3� 1 = 2 and at most `+ j

max

= 3 + 1 = 4 positions. In this matrix (see Fig. 10), if

we 
onsider the third row, one 
an �nd su
h 
ells in 
olumns 3, 7 and 9 and therefore

dedu
e that there exists an approximate repetition starting at position 1 and ending

at position 9: as a matter of fa
t, a
taa
a
g is an approximate tandem repeat with

jumps, the letter a lo
ated at position 4 
orresponds to a gap between 
opies 


1

= a
t

and 


2

= a
a, the letter a lo
ates at position 7 
orresponds to an overlap between


opies 


2

= a
a and 


3

= a
g. This is more or less the 
on
ept Sagot and Myers used

in [12℄ for �nding mi
rosatellites.

Evolutive Tandem Repeats

Finding evolutive tandem repeats with jumps is slightly di�erent, the lo
ation of a


opy parti
ipating to the e.t.r. depends only on the lo
ation of its prede
essor, `,

the length of the 
opies and j

min

; j

max

the a

eptable jump between two 
onse
utive


opies.

Consider a 
opy belonging to the e.t.r. that ends at position i, its su

essor must ends

at a spe
i�
 position (between i+`+j

min

and i+`+j

max

) in the matrix, we therefore

have to sear
h for a dashed 
ell at positions (i; i

0

) for i+`+ j

min

� i

0

� i+`+ j

max

. If

there exists su
h a 
ell, it gives us a signi�
ant information about the way the 
opies

are 
onne
ted: if i + ` + j

min

� i

0

� i + `� 1 there is an overlap of length i + `� i

0

between the 
opies, if i

0

= i+` the 
opies are 
ontiguous, if i+`+1 � i

0

� i+`+j

max

there exists a gap of length i

0

� i� ` between the 
opies. Therefore, for every row i,

we only have to 
onsider (j

max

� j

min

) + 1 
ells. In order to �nd e.t.r. we therefore

have to 
ompute and visit the diagonals starting in 
olumns i+`+j

min

to i+`+j

max

.

That leads to 
omputing and visiting only O((j

max

� j

min

+ 1)� jwj) 
ells.

The left-most diagonal, starting in 
ell (1; `+ j

min

+ 1), 
orresponds to the maximal

authorized overlap, while the right-most diagonal, starting in 
ell (1; ` + j

max

+ 1),


orresponds to the maximal authorized gap. We 
an therefore build a matrix that

sums up all these informations as depi
ted in Fig. 8. The three white diagonals are
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232120

0 3 1 2 3

32230

0 3 3 1

330

0 3

0g12

11 t

a10

g9

8 c
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a5

6 c

Fig. 10: Two dimension matrix 
orresponding to the 
omparison of a
taa
a
gatg

with itself, for ` = 3 and " = 1

the only ones that need to be 
omputed (even if in this matrix, we show all the 
ells).

Moreover, the 
omputation of the three diagonals is equivalent to the 
omputation of

the D and E arrays.

5 Experimental Results

We have implemented and tested this algorithm on various sequen
es, we built ran-

dom sequen
es over the alphabet fa; 
; g; tg and no e.t.r. has been dete
ted (for the

same rapameters as below), it appears that this kind of repetition is not an artifa
t.

Moreover we fo
used on real sequen
es from A. thaliana and for testing purpose we

used sequen
es with length varying from 10kb to 200kb (see Fig. 11).

The average behaviour of the timing 
urves 
orresponds to that we were expe
ting.

Time and spa
e 
onsumptions enabled us to sear
h for e.t.r. in whole 
hromosomes,

we studied more spe
i�
ally A. thaliana whi
h possesses �ve 
hromosomes (their

length varying from 17 to 29Mb) and an example is presented in Appendix A.

6 Con
lusion and Perspe
tives

In this arti
le, we presented a both spa
e and time linear algorithm for the dete
tion

of evolutive tandem repeats. Furthermore, we implemented this approa
h, developed

a web interfa
e (see Fig. 12, http://abiss.
rihan.fr/~rgroult/index.php) that
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Fig. 11: Exe
ution times on sequen
es, where l is the length of the 
opies, e is the

maximal Hamming distan
e and j is the jump

presents the 
opies, the alterations and sums up informations relative to the repeats.

We are now looking for this kind of repeats in 
omplete genomes, we found several

interesting e.t.r. that are not inherited from approximate tandem repeats. We are

still in the pro
ess of studying the way it works, from the biologist viewpoint and we

are trying to �gure out their role, preferred lo
ation and number in di�erent genomes.

Sin
e 
onsidering Hamming distan
e is somehow restri
tive, we are moving forward

by designing an algorithm that makes use of Levenshtein distan
e (whi
h allows indels

as well as substitution) instead of Hamming distan
e.
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A An Example of e.t.r. O

urring in A. thaliana,


hr 4 (17Mb)

We found numerous e.t.r. in 
hr 4 (17Mb) of A. thaliana, here is an example appearing

in an exon of the AT4G38590.1 gene.

./evorep -m11 -e3 -j1 -r4 -f ~/at4.fasta

->

- number of e.t.r.: 662

- time: 0m38.758s

Example of found e.t.r.

#================================================

# Parameters: length=11, error=3, jmin=-1, jmax=1, rMin=4

# Sequen
e: > at4.seq (17Mb)

# Exe
ution time: 38 se
.

17245698 17245709 17245719 17245731 17245743 17245755 17245767

a
aagatgagaagaagaagaaagaagataaaga
gaagaggaagagga
gatgaagatgatgatgaagaagaag

[ aagaag

17245698 a
aagatgaga

17245709 agaagaagaaa

17245719 agaagataaag

17245731 
gaagaggaag

17245743 gga
gatgaag

17245755 tgatgatgaag

17245767 agaagaagaag

#================================================

We investigated this sequen
e using �tandem repeat �nder� [2℄ and �mreps� [7℄ and

obtained:

->

Tandem Repeat Finder:

Indi
es Period Copy Consensus Per
ent Per
ent S
ore A C G T Entropy(0-2)

Size Number Size Mat
hes Indels

No Repeats Found!

->

./mreps -err 3 -minp 2 -from 1 -exp 3.0

* Pro
essing window [1 : 80℄ *

from -> to : size <per.> [exp.℄ repetition

----------------------------------------------------

1 -> 18 : 18 <5> [3.60℄ a
aag atgag aagaa gaa
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5 -> 25 : 21 <6> [3.50℄ gatgag aagaag aagaaa gaa

8 -> 40 : 33 <4> [8.25℄ gaga agaa gaag aaag aaga taaa ga
g aaga g

10 -> 32 : 23 <7> [3.29℄ gaagaag aagaaag aagataa ag

11 -> 33 : 23 <5> [4.60℄ aagaa gaaga aagaa gataa aga

20 -> 80 : 61 <6> [10.17℄ aaagaa gataaa ga
gaa gaggaa gagga
 gatgaa

[ gatgat gatgaa gaagaa gaagaa g

30 -> 80 : 51 <9> [5.67℄ aaga
gaag aggaagagg a
gatgaag atgatgatg

[ aagaagaag aagaag

30 -> 80 : 51 <12> [4.25℄ aaga
gaagagg aagagga
gatg aagatgatgatg

[ aagaagaagaag aag

36 -> 47 : 12 <4> [3.00℄ aaga ggaa gagg

60 -> 80 : 21 <4> [5.25℄ atga tgaa gaag aaga agaa g

----------------------------------------------------

RESULTS: There are 10 maximal repetitions in the segment pro
essed
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Abstra
t. We present an O(n log n) algorithm for 
omputing the set of repe-

titions in a weighted sequen
e with probability of appearan
e larger than 1/k ,

where k is a given 
onstant.

1 Introdu
tion

The key problem today in sequen
ing a large string of DNA is that only a small

amount of DNA 
an be sequen
ed in a single read. That is, whether the sequen
ing is

done by a fully automated ma
hine or by a more manual method, the longest unbroken

DNA substring that 
an be reliably determined in a single laboratory pro
edure is

about 300 to 1000 (approximately 500) bases long [Celera1, Celera2℄. A longer string


an be used in the pro
edure but only the initial 500 bases will be determined. Hen
e

to sequen
e long strings or an entire genome, the DNA must be divided into many

short strings that are individually sequen
ed and then used to assemble the sequen
e

of the full string. The 
riti
al distin
tion between di�erent large-s
ale sequen
ing

methods is how the task of sequen
ing the full DNA is divided into manageable

subtasks, so that the original sequen
e 
an be reassembled from sequen
es of length

500.

Reassembling DNA substrings introdu
es a degree of un
ertainty for various posi-

tions in a biosequen
e. This notion of un
ertainness was initially expressed with the

use of �don't 
are� 
hara
ters denoted as ���. A don't 
are symbol has the property of

mat
hing with any symbol in the given alphabet. For example the string p = AC �C�

mat
hes the pattern q = A�DCT . In some 
ases s
ientists determine the appearan
e

of a symbol in a position of a sequen
e by assigning a probability of appearan
e for
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every symbol. In other words a don't 
are symbol is repla
ed by a list of probabilities

of appearan
e for a set of 
hara
ters. Su
h a sequen
e is 
alled a weighted sequen
e.

Other immediate appli
ations in mole
ular biology in
lude: using sequen
es 
ontain-

ing degenerate bases, IUB 
odes [IUB℄, where a letter 
an repla
e several bases (for

example, a B will represent a G, T or C and a H will represent A, T or C); using logo

sequen
es [SS90℄ whi
h are more or less related to 
onsensus: either from assembly

or from blo
ks obtained by a multiple alignment program.

In this paper we present an e�
ient algorithm for 
omputing all possible repe-

titions of primitive words in a weighted sequen
e. The stru
ture of the paper is as

follows. In Se
tion 2 we give all the basi
 de�nitions used in the rest of the paper, in

Se
tion 3 we present our algorithm while in Se
tion 4 we give a brief time 
omplexity

analysis of the proposed method. Finally in Se
tion 5 we 
on
lude and dis
uss our

resear
h interest in open problems of the area.

2 Ba
kground

A lot of work has been done for identifying the repetitions in a word. In [Cro81℄,

[Apo83℄, [Mai84℄ and [Sto98℄, authors have presented e�
ient methods that �nd

o

urren
es of squares in a string of length n in time O(nlogn) plus the time to report

the dete
ted squares. Moreover in [Kol99a℄ and [Kol99b℄ authors presented e�
ient

algorithms to �nd maximal repetitions in a word. In the area of 
omputational

biology, algorithms for �nding identi
al repetitions in biosequen
es are presented in

[Kur99℄, [Tsu99℄ and [Mar83℄. In this se
tion we will give all the basi
 de�nitions

used in the paper.

2.1 Basi
 De�nitions

Let � be a �nite alphabet whi
h 
onsists of a set of 
hara
ters (or symbols). The


ardinality of an alphabet denoted by j�j expresses the number of distin
t 
hara
ters

in the alphabet. A string or word is a sequen
e of zero or more 
hara
ters drawn

from an alphabet. The set of all words over the alphabet � is denoted by �

+

. A

word w of length n is represented by w[1::n℄ = w[1℄w[2℄ � � �w[n℄, where w[i℄ 2 � for

1 � i � n, and n = jwj is the length of w. The empty word is the empty sequen
e (of

zero length) and is denoted by "; we write �

�

= �

+

[ f"g. Moreover a word is said

to be primitive if it 
annot be written as v

e

with v 2 �

+

and e � 2.

A fa
tor f of length p is said to o

ur at position i in the word w if f = w[i; � � � i+

p� 1℄. In other words f is a substring of length p o

urring at position i in word w.

A word has a repetition when it has at least two 
onse
utive equal fa
tors. More

pre
isely, a repetition in w is de�ned as a triple (i; p; e) so that w[i; � � � i+p�1℄=w[i+

p; � � � i+ 2 � p� 1℄ = � � � = w[i+ (e� 1) � p; � � � i+ e � p� 1℄. The integers p and e are


alled respe
tively the period and exponent of the repetition.

In the 
ase that for a given position of a word w we 
onsider the presen
e of a

set of 
hara
ters with a given probability of appearan
e ea
h we de�ne the sense of a

weighted word w, de�ned as follow:

De�nition 1. A weighted word w = s

1

s

2

� � � s

n

is a 
ontinuous set of 
ouples

(s; �

i

(s)), where �

i

(s) is the probability of having the 
hara
ter s at position i. For

every position 1 � i � n, ��

i

(s) = 1.

92



Computing the Repetitions in a Weighted Sequen
e

For example, if we 
onsider the DNA alphabet � = fA;C;G; Tg the word w=

[(A,0.5),(C,0.25),(G,0.25),(T,0)℄ [(A,0),(C,1),(G,0),(T,0)℄ [(A,1),(C,0),(G,0),(T,0)℄,

represents a word having three letters: the �rst one is either A,C,G with respe
tive

probabilities 0.5, 0.25 and 0.25, the se
ond one is always a C, while the third letter

is ne
essarily an A, sin
e its probability of presen
e is 1. That means that in a given

biologi
al sequen
e one of the following words: ACA, CCA, GCA might appear with

probability 0.5, 0.25 and 0.25 ea
h. We observe that the probability of presen
e of

a word is the 
umulative probability whi
h is 
al
ulated by multiplying the relative

probabilities of appearan
e of ea
h 
hara
ter in every position. For the above example

the probability of the word ACA to appear in positions 1 to 3 
an be analyzed as

follows: �(ACA) = �

1

(A) ��

2

(C) ��

3

(A)=0.5*1*1=0.5. The de�nition of a weighted

fa
tor 
an be easily extended.

A weighted sequen
e has a repetition when it has at least two identi
al o

urren
es

of a fa
tor (weighted or not). The probability of appearan
e of the fa
tor may vary

a

ording to the position it appears. In biologi
al problems s
ientists are interested in

dis
overing all the repetitions of all possible words having a probability of appearan
e

larger than a prede�ned 
onstant.

2.2 Equivalent Classes of Repetitions

In our methodology, in order to re
ord the repetitions of all possible words we use

a list (L

p

)

p�1

of equivalent repetitions of length p on the positions of a weighted

sequen
e, de�ned as follows:

De�nition 2. Let x be a weighted sequen
e of length jxj=n; then (i; j) 2 L

p

i�

i+p � n, j+p � n and x

i

� � �x

i+p�1

= x

j

� � �x

j+p�1

, while �(x

i

� � �x

i+p�1

) � 1=k and

�(x

j

� � �x

j+p�1

) � 1=k :

So, two positions in x are equivalent when the fa
tors of x of length p starting at

i and j respe
tively are equal although the respe
tive probabilities of appearan
e 
an

vary. The positions of appearan
e of the fa
tors as well as the respe
tive probabilities

are stored in a set of 
lasses C

p

.

De�nition 3. Let x be a weighted sequen
e of length jxj=n; then the (C

p

f

) 
lass

is the ordered list of at least 2 
ouples (i

f

; �

i

(f)), whi
h in
ludes all positions of

appearan
e of the fa
tor f of length p in the weighted sequen
e. We ex
lude all 
ouples

with probability less than 1/k .

Moreover we also de�ne a fun
tion on the positions of x, whi
h gives for every

position the next position in the same equivalen
e 
lass.

De�nition 4. D

p

(i) = the least integer k > 0, so that (i; i+ k) 2 L

p

. (If there is

no su
h k the fun
tion is not de�ned).

One 
an easily 
he
k that any list L

p+1

is a re�nement of L

p

(L

p+1

� L

p

), sin
e

list L

p+1


ontains all possible repetitions of length p that 
an be extended by one


hara
ter. Furthermore there 
learly exists a smallest integer N, 1 � N � n, so that

L

1

� L

2

� � � � L

N

. Thus the 
omputation of the equivalen
es L

p


an be done using

the values of L

p�1

, the respe
tive 
lasses C

p�1

and a proper 
hoi
efun
tion f .

De�nition 5. A 
hoi
efun
tion f is a fun
tion

f : fC

0

1

; � � � ; C

0

k

g �! fC

1

; � � � ; C

k

g, with the properties: for any C

0

2 fC

0

1

; � � � ; C

0

k

g

[f(C

0

) � C

0

and for any C 2 fC

1

; � � � ; C

k

gC � C

0

=) jCj � jf(C

0

)j℄;

where fC

0

1

; � � � ; C

0

k

g and fC

1

; � � � ; C

k

g the equivalen
e 
lasses of L

p�1

and L

p

re-

spe
tively .
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So f asso
iates to ea
h E

p�1

� 
lass one of its E

p

� sub
lasses of maximal size.

Given a 
hoi
e fun
tion f , ea
h L

p


lass f(C

0

) is 
alled a big_
lass; the others are


alled small_
lasses. By de�nition, all the L

1

-
lasses are small.

Now we de�ne a new sequen
e (S

p

)

p�1

of equivalen
es on the positions of x as

follows:

De�nition 6. (i; j) 2 S

p

i� for any small 
lass L

p

-
lass C

p

, i 2 C

p

i� j 2 C

p

.

Lemma. For any p � 1 , (i; j) 2 L

p+1

i� (i; j) 2 L

p

and (i+ 1; j + 1) 2 S

p

.

For more information on the proof of the Lemma the reader 
an refer to [Cro81℄.

3 Computing the Repetitions

In this paper we address the problem of 
omputing the set of repetitions in a weighted

biologi
al sequen
e. More formally the problem 
an be stated as follows:

Problem Given a weighted sequen
e X and an integer k �nd all the repetitions

of all possible words having a probability of appearan
e larger than 1/k .

0.5
 0
 1
 1
0.5
 0
A


T


G


C


0
0
0
0
0
0


0
0
0.25
0
0
0.25


0
1
0.25
0
1
0.25


Figure 1: Graphi
al approa
h of the problem.

In a graphi
al approa
h the problem 
an be represented as in the Figure 1. For

ea
h position of the weighted sequen
e we write down the probability of appearan
e

of ea
h 
hara
ter of the alphabet. For the DNA alphabet whi
h 
onstitutes of 4


hara
ters we write down 4 respe
tive probabilities. The probability of appearan
e

of a word is the 
umulative probability 
al
ulated following the respe
tive dire
ted

path.When the probability is larger than 1/k , the dire
ted path is a s
hema that 
an

be extended by one 
hara
ter, in the following step and graphi
ally we sear
h for

a repeated s
hema. In the above Figure the red dire
ted path has a probability of

appearan
e larger than 1/2 , (k=2 ) thus we sear
h for su
h repeated s
hemas.

Solution. For every 
hara
ter s in the alphabet we de�ne a 
lass C

1

as the

ordered list of 
ouples (i

s

; �

i

(s)), whi
h in
ludes all equivalent positions of appearan
e

of the 
hara
ter s in the weighted sequen
e. We ex
lude all 
ouples with probability

less than 1/k. The set of C

1


lasses forms the L

1

list for all possible repetitions of

length one. We 
ontinue by 
omputing D

1

for ea
h position in the sequen
e.All L

1

-


lasses are small. The pro
ess is 
ontinued by 
omputing all C

p


lasses for p � 2
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and updating L

p

thus forming D

p

. The pro
ess stops when we rea
h the maximal (in

length) repeated words with probability of appearan
e larger than 1/k .

The above solution uses ideas from the algorithm presented by Cro
hemore (see

[Cro81℄). The major di�eren
e is the 
hoi
e fun
tion that we have used in order to

in
orporate the notion of probability of appearan
e in repetitions. A s
hema of the

algorithm is presented below.

FIND-WEIGHTED REPETITIONS(X,k)

Compute all possible repetitions of any length with probability larger than 1/k

FOR all s 2 � DO


reate the small 
lasses C

1

of 
ouples (s; �

i

(s)),

where �

i

(s) is the probability of having the 
hara
ter s at position i.

IF �

i

(s) � 1=k ex
lude it from the respe
tive 
lass

Compute for p = 1 L

p

and D

p

;

WHILE

S

small_
lasses 6= 0, DO

report the repetitions of period p.

p � p+ 1; if p > jxj=2 return repetitions;

L

p

 � L

p

\ S

p

; update D

p

;

small_
lasses � {indi
es of small L

p

� 
lassesg

END FIND-WEIGHTED REPETITIONS

Example Suppose we want to �nd all repetitions of the weighted sequen
e: X=

ACTT[(A,0.5),(C,0.5)℄TC[(A,0.5),(C,0.3),(T,0.2)℄TTT, with probability larger than

1/4. We will illustrate the steps following the above presented algorithm.

1. For all 
hara
ters s 2 �

DNA

= fA;C;G; Tg 
reate the C

1


lasses.

C

1

A

= (1

A

; 1)(5

A

; 0:5)(8

A

; 0:5):

C

1

C

= (2

C

; 1)(5

C

; 0:5)(7

C

; 1)(8

C

; 0:3):

C

1

G

= empty:

C

1

T

= (3

T

; 1)(4

T

; 1)(6

T

; 1)(9

T

; 1)(10

T

; 1)(11

T

; 1):

2. De�ne L

1


lass as the union of C

1


lasses and the values D

1

.

L

1

= C

1

A

[ C

1

C

[ C

1

T

.

D

1

= f1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g.

3. Sin
e

S

small_
lasses 6= 0 we will 
ompute all possible repetitions of length

p � 2, using the lemma we presented in subse
tion 2.2.

C

2

AT

= (5

AT

; 0:5)(8

AT

; 0:5):

C

2

CT

= (2

CT

; 1)(5

CT

; 0:5)(8

CT

; 0:3):

C

2

TC

= (4

TC

; 0:5)(6

TC

; 1):

C

2

TT

= (3

TT

; 1)(9

TT

; 1)(10

TT

; 1):

4. De�ne L

2


lass as the union of C

2


lasses and the values D

2

.

L

2

= C

2

AT

[ C

2

CT

[ C

2

TC

[ C

2

TT

.

D

2

= {not de�ned, 1, 1, 1, 1, 2, not de�ned, 1, 1, not de�ned, not de�ned}.

5. Following the above pro
edure we 
on
lude that the repetitions with probability

larger than 1/k are:.

L

3

= C

3

CTT

= (2

CTT

; 1)(8

CTT

; 0:3)
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Theorem The above algorithm 
omputes all repetitions in a weighted sequen
e

X of length jnj.

Proof. It is easy to see that the algorithm stops. The length of L

1

in the algorithm

is bounded by O(j�j

jXj

). As far as it 
on
erns the values of the list L

p

for p � 2, are


omputed using the Lemma in subse
tion 2.2 and the values of L

p�1

list. Ea
h list of

repetitions p+ 1 is at most half the size of the list of repetitions of length p.

4 Time Complexity Analysis

The time 
omplexity analysis of our algorithm is based on the 
ombination of the

following two fa
ts:

1. The well known �smaller-half tri
k� used also in [Cro81℄, [Apo83℄, [Sto98℄,

for �nding tandem repeats. A

ording to the �smaller-half tri
k� ea
h list of

repetitions of length p + 1 is at most half the size of the list of repetitions of

length p.

2. The probability of existen
e of a fa
tor f in a weighted sequen
e X is the 
umu-

lative probability whi
h is 
al
ulated by multiplying the relative probabilities

of appearan
e of ea
h 
hara
ter/symbol in every position. Note that we inter-

ested in repetitions with probability greater than 1=k. It is not di�
ult to see

that given a position i of x, then there is only a 
onstant number of di�erent

substrings that 
an o

ur at position i with probability greater than 1=k. (The

proof follows).

For every weighted sequen
e w of length n, w[1::n℄ = w[1℄w[2℄ � � �w[n℄, ea
h

position w[i℄ for 1 � i � n, is the starting position of a weighted fa
tor i� the

respe
tive 
hara
ter s has �(s

i

) � 1=k . Therefore the maximum probability of

appearan
e for the rest of the 
hara
ters in position i is bounded by p = 1�1=k .

Assume that the number of starting positions inside a weighted fa
tor, produ
ed

from position i is l. In order this fa
tor to be interesting its probability of

appearan
e must be grater than 1=k . This is mathemati
ally formulated as

follows:

p

l

� 1=k �! l � log

p

(k).

That means that the number of weighted positions inside a weighted fa
tor is

bounded by a 
onstant and thus the number of di�erent substrings that 
an

o

ur at position i with probability greater than 1=k is also a 
onstant number.

Based on the above two fa
ts the time 
omplexity of our algorithm for 
omputing

the set of repetitions in a weighted sequen
e with probability of appearan
e larger

than 1/k is O(n logn).

5 Con
lusions

Our future dire
tion is fo
used on de�ning the notion of borders for a weighted se-

quen
e and developing e�
ient algorithms for 
omputing the 
overs and the seeds of

weighted sequen
es.
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Moreover we are studying the same problem using the su�x tree as the fundamen-

tal data stru
ture. The basi
 idea behind this approa
h is to in
orporate the notion

of probability of appearan
e in the path labels and in the leaves in the su�x tree of

a weighted sequen
e [Ili03℄.

Another potential appli
ation of our algorithm is in de�ning a basis for the re-

peated motifs of a weighted sequen
e. In our algorithm we 
reate in an exhaustive

way all possible repetitions with probability larger than 1/k . We 
an use all primitive

repetitions and a set of allowed operations in order to de�ne a basis that e�
iently

produ
es all repeated motifs. As any repeated word 
an be expressed as an array of

primitive repetitions, it is often desirable to �nd only primitive repetitions.
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Abstra
t. Numeri
 string is a sequen
e of symbols from an alphabet � �

U, where U is some numeri
al universe 
losed under addition and subtra
tion.

Given two numeri
 strings A = a

1

� � � a

m

and B = b

1

� � � b

n

and a distan
e

fun
tion d(A;B) that gives the s
ore of the best (partial) mat
hing of A and

B, the transposition invariant distan
e is min

t2U

fd(A + t; B)g, where A + t =

(a

1

+ t)(a

2

+ t) : : : (a

m

+ t). The 
orresponding mat
hing problem is to �nd

o

urren
es j ofA inB where d(A+t; B

j

0

:::j

) is smaller than some given threshold

and B

j

0

:::j

is a substring of B. In this paper, we give e�
ient algorithms for

mat
hing numeri
 strings � with and without transposition invarian
e � under

noise; we 
onsider distan
e fun
tions d(A;B) su
h that symbols a 2 A and b 2 B


an be mat
hed if jb�aj � Æ, or the � largest di�eren
es jb�aj 
an be dis
arded.

Keywords: approximate mat
hing, transposition invarian
e, (Æ; 
)�mat
hing

1 Introdu
tion

Transposition invariant string mat
hing is the problem of mat
hing two strings when

all the 
hara
ters of either of them 
an be �shifted� by some amount t. By �shifting�

we mean that the strings are sequen
es of numbers and we add number t to ea
h


hara
ter of one of them.

Interest in transposition invariant string mat
hing problems has re
ently arisen in

the �eld of musi
 information retrieval (MIR) [CIR98, LT00, LU00℄. In musi
 analysis

and retrieval, one often wants to 
ompare two musi
 pie
es to test how similar they

are. A reasonable way of modeling musi
 is to 
onsider the pit
hes and durations

of the notes. Often the durations are omitted, too, sin
e it is usually possible to

re
ognize the melody from a sequen
e of pit
hes. Hen
e, our fo
us is on distan
e

measures for pit
h sequen
es (of monophoni
 musi
) and their 
omputation.

We studied the 
omputation of edit distan
es under transposition invarian
e in

[MNU03℄. We noti
ed that sparse dynami
 programming is useful in transposition

�
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h, Grant P01-029-F, Mideplan, Chile.

99



Pro
eedings of the Prague Stringology Conferen
e '03

invariant mat
hing, and obtained e.g. an O(mn log logm) algorithm for transposition

invariant longest 
ommon subsequen
e problem.

In this paper, we 
omplement our earlier results by studying �non-gapped� distan
e

measures for numeri
 strings. That is, we study measures where the ith symbol of

the sour
e is mat
hed with the ith symbol of the target. To allow some noise in the

values to be 
ompared, we study measures that either allow mat
hing symbols that

approximately mat
h (i.e. values are within Æ distan
e apart), or allow dis
arding some

amount (�) of largest di�eren
es. We show how to 
ompute the transposition invariant

Hamming distan
e under noise inO(m logm) time, and transposition invariant sum of

absolute di�eren
es (SAD) and maximum absolute di�eren
e (MAD) distan
es under

noise in O(m+ � log�) time, where m is the length of both strings to be 
ompared.

For the 
orresponding sear
h problems we only give the trivial algorithm that

repeats the distan
e 
omputation at ea
h of the n text positions. However, the upper

bound obtained this way for SAD distan
e is in fa
t the same as what is known without

transposition invarian
e (see [Mut95℄, �weighted k�mismat
hes problem�). We also


onsider the 
ombined sear
h problem with SAD and MAD distan
es, known as the

(Æ; 
)�mat
hing problem; we give an O(mn) algorithm for the transposition invariant


ase of this problem. Again the best known upper bound for (Æ; 
)�mat
hing without

transpositions is O(mn) (be
ause of the SAD distan
e).

In addition to the distan
e-spe
i�
 results we introdu
e a more general approa
h to

ta
kle with noise; many distan
e measures that allow mat
hing two 
hara
ters a and b

for free when jb�aj � Æ 
an be 
omputed easily on
e the set of possible mat
hes jM

Æ

j =

jM

Æ

j(A;B) = f(i; j) j jb

j

� a

i

j � Æ; a

i

2 A; b

j

2 Bg has been 
omputed. We show

how to 
onstru
t this set in O(m log j�j + n log j�j + jM

Æ

jmin(log(Æ + 2); log logm))

time, where � is the alphabet of the two strings to be 
ompared. After the set M

Æ

is


onstru
ted, Hamming and MAD distan
es and (Æ; 
)�mat
hing under noise 
an be


omputed in time linear in the size of the set.

In the transposition invariant 
ase, the 
onstru
tion of the sets of possible mat
hes

for all relevant transpositions is useful as well (e.g. for edit distan
e under noise). We

show how to do this in linear time in the overall size of these sets (plus some additive

fa
tors of m,n, and log j�j).

Some of the results of this paper appear in a te
hni
al report [MNU02℄.

2 De�nitions

Let � be a �nite numeri
al alphabet, whi
h is a subset of some universe U that is


losed under addition and subtra
tion. Let A = a

1

a

2

: : : a

m

and B = b

1

b

2

: : : b

n

be

two numeri
 strings over �

�

, i.e. the symbols (
hara
ters) a

i

; b

j

of the two strings

are in � for all 1 � i � m; 1 � j � n. We will assume w.l.o.g. that m � n. String

A

0

is a substring of A if A

0

= A

i:::j

= a

i

: : : a

j

for some 1 � i � j � m. String A

00

is a subsequen
e of A, denoted by A

00

v A, if A

00

= a

i

1

a

i

2

: : : a

i

jA

00

j

for some indexes

1 � i

1

< i

2

< � � � < i

jA

00

j

� m.

When m = n, the following distan
es 
an be de�ned. The Hamming distan
e

d

H

between strings A and B is d

H

(A;B) = m � jf(i; i) j a

i

= b

i

; 1 � i � mgj.

The maximum absolute di�eren
e distan
e d

MAD

between A and B is d

MAD

(A;B) =

max

1�i�m

fja

i

� b

i

j j 1 � i � mg. The sum of absolute di�eren
es distan
e d

SAD

between A and B is d

SAD

(A;B) =

P

m

i=1

ja

i

� b

i

j. Note that d

MAD

is in fa
t the
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maximum metri
 (l

1

norm) and d

SAD

the Manhattan metri
 (l

1

norm) when we

interprete A and B as points in m dimensional Eu
lidean spa
e.

String A is a transposed 
opy of B (denoted by A =

t

B) if B = (a

1

+ t)(a

2

+

t) � � � (a

m

+ t) = A + t for some t 2 U. The transposition invariant versions of

the above distan
e measures d

�

where � 2 fH;MAD; SADg 
an now be stated as

d

t

�

(A;B) = min

t2U

d

�

(A+ t; B).

So far our de�nitions allow either only exa
t (transposition invariant) mat
hes

between some 
hara
ters (d

t

H

) or approximate mat
h between all 
hara
ters (d

t

MAD

and d

t

SAD

). To relax these 
onditions, we introdu
e a 
onstant Æ > 0. We write a =

Æ

b

when ja � bj � Æ, a; b 2 �. By repla
ing the equality a = b with a =

Æ

b in the

de�nition of d

t

H

, we get a more error-tolerant version of the distan
e; let us denote

the new distan
e d

t;Æ

H

. Similarly, by introdu
ing another 
onstant � > 0, we 
an de�ne

distan
es d

t;�

MAD

; d

t;�

SAD

su
h that the � largest di�eren
es ja

i

� b

i

j are dis
arded.

The approximate string mat
hing problem, based on the above distan
e fun
tions,

is to �nd the minimum distan
e between A and any substring of B. In this 
ase we


all A the pattern and denote it P

1:::m

= p

1

p

2

� � �p

m

, and 
all B the text and denote

it T

1:::n

= t

1

t

2

� � � t

n

, and usually assume that m << n. A 
losely related problem is

the thresholded sear
h problem where, given P , T , and a threshold value k � 0, one

wants to �nd all the text positions j su
h that d(P; T

j

0

:::j

) � k for some j

0

. We will

refer 
olle
tively to these two 
losely related problems as the sear
h problem.

Noti
e that sear
hing under Hamming distan
e is known as the k�mismat
hes

problem [Abr87, ALP01, BYG94, BYP96, GG86, LB86℄. Also, a sear
h prob-

lem related to distan
es d

MAD

and d

SAD

is known as the (Æ; 
)�mat
hing problem

[CCIMP99, CILP01, CILPR02℄ in whi
h o

urren
es j are sear
hed for su
h that

d

MAD

(P; T

j

0

:::j

) � Æ and d

SAD

(P; T

j

0

:::j

) � 
.

Our 
omplexity results are di�erent depending on the form of the alphabet �. We

will distinguish two 
ases. An integer alphabet is any alphabet � � Z. For integer

alphabets, j�j will denote max(�) � min(�) + 1. A real alphabet will be any other

� � R, and then j�j denotes the 
ardinality of �. For any string A = a

1

: : : a

m

, we

will 
all �

A

= fa

i

j 1 � i � mg the alphabet of A.

Last, we will need some orders for a set of pairs P = f(i; j)g, where a

i

2 A and

b

j

2 B. The row order of P is su
h that P is sorted �rst by i (in in
reasing order)

and se
ondary by j (in in
reasing order). In 
olumn order P is sorted �rst by j and

se
ondary by i. In diagonal order P is sorted �rst by j � i and se
ondary by i.

3 Mat
hing under Noise without Transposition In-

varian
e

We will now present a general and e�
ient method that 
an be used with little

modi�
ations for solving both the k�mismat
hes problem and the (Æ; 
)�mat
hing

problem. The time 
omplexities will depend on the number of possible mat
hes

between pattern and text 
hara
ters. A similar approa
h will also be used later in

the transposition invariant 
ase.

Let M

Æ

(P; T ) = M

Æ

= f(i; j) j jp

i

� t

j

j � Æg be the set of possible mat
hes. Let

us assume that we are given M

Æ

in diagonal order. By one traversal over M

Æ

one 
an
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easily 
ompute values S(d) and N(d) for ea
h diagonal d, where S(d) =

P

fjp

i

� t

j

j j

(i; j) 2 M

Æ

; j � i = dg and N(d) = jf(i; j) j (i; j) 2 M

Æ

; d = j � igj.

Given the arrays S(0 : : : n�m) and N(0 : : : n�m), one 
an solve various problems.

For example, all values d su
h that S(d) � 
 and N(d) = m, 
orrespond to a (Æ; 
)�

mat
h starting at position d + 1 of the text. Similarly, if N(d) � m � k when


omputed for M

0

, then there is an o

urren
e starting at position d + 1 of the text

for the k�mismat
hes problem.

Thus we have an O(jM

Æ

j + n) algorithm for several problems, if we just manage

to 
onstru
t M

Æ

in linear time in its size.

Theorem 1 Given numeri
 strings P (pattern) and T (text) of lengths m and n

(m << n), the set of possible mat
hes M

Æ

(P; T ) = f(i; j) j jp

i

� t

j

j � Æg 
an be


onstru
ted in time O(j�j + m + n + jM

Æ

jmin(log(Æ + 2); log logm)) on an integer

alphabet, and in time O(m log j�j+n log j�j+jM

Æ

jmin(log(Æ+2); log logm)) on a real

alphabet. Within the same bounds, the set M

Æ


an be 
onstru
ted in row, 
olumn,

or diagonal order.

Proof. Let us �rst 
onsider the integer alphabet with Æ = 0. We 
onstru
t an array

L(1 : : : j�j), where ea
h entry L(
) stores an in
reasing list of all positions of P , where


hara
ter 
 o

urs. Array L 
an obviously be 
onstru
ted by one traversal over P

in O(j�j + m) time. The set M

0


an then be 
onstru
ted in 
olumn order in one

traversal over T by 
on
atenating lists L(t

1

); L(t

2

); : : : L(t

n

). The running time is

O(m+ n+ j�j+ jM

0

j).

For Æ > 0, we 
onstru
t the array L as above but the traversal over T is now

more 
ompli
ated. To 
onstru
t the 
olumn j of M

Æ

we need to merge the 2Æ+1 lists

L(t

j

� Æ); : : : ; L(t

j

+ Æ) into a single list. This merging 
an be done using a priority

queue P as follows. Add the �rst element, say i, of ea
h list L(
) into P by using i

as the priority and 
 as the key. Then repeat the following until all lists are empty:

Take the element with minimum priority, say (i; 
), from P, and add the next element

from list L(
) into P. Column j of M

Æ

is 
onstru
ted by inserting pair (i; j) at the

end of M

Æ

at ea
h step. The operations on a priority queue 
an be supported in

O(log(Æ + 2)) time by using some standard implementation.

Sin
e the priority values that need to be stored are in the range [1; m℄, we 
an

implement the priority queue more e�
iently using a data stru
ture of van Emde

Boas [vEB77℄. It supports, among other operations, retrieving the smallest value,

inserting a new value, and deleting the smallest value, in O(log logm) amortized time

on values in the range [1; m℄. We 
an store the values i using this data stru
ture.

Then we 
an repeat retrieving and deleting the smallest value i until the stru
ture is

empty, adding (i; j) at the end of M

Æ

at ea
h step. Thus the 
laimed bound on the

integer alphabet follows.

When the alphabet is real, we 
an use exa
tly the same pro
edure, expe
t that

the array L needs to be repla
ed by a binary sear
h tree. It takes O(m log j�j) time

to 
onstru
t this sear
h tree. For ea
h 
hara
ter of T we need to do a range query

on this tree to retrieve the lists of positions that 
orrespond to 
hara
ters in range

[t

j

� Æ; t

j

+ Æ℄. This will take O(n log j�j) time. Merging 
an be done similarly as in

the 
ase of an integer alphabet, so the 
laimed bound follows.

Finally, the set is in 
olumn order after the above 
onstru
tion. Other orders 
an

be 
onstru
ted easily from the 
olumn order in time O(m+ n+ jM

Æ

j). �

102



Mat
hing Numeri
 Strings under Noise

The above theorem gives e.g. an O(j�j + m + n + jM

0

j) time solution for the

k�mismat
hes problem on an integer alphabet. This 
an be �(mn), but in the ex-

pe
ted 
ase it is mu
h smaller. An expe
ted bound �(mn=j�j) is easy to prove; see

e.g. [BYP96℄, where the above algorithmwas originally proposed for the k�mismat
hes

problem.

4 Mat
hing under Noise and Transposition Invari-

an
e

For this se
tion, let T = ft

i

= b

i

� a

i

j 1 � i � mg = ft

i

g be the set of transpositions

that make some 
hara
ters a

i

and b

i

mat
h. Note that the optimal transposition does

not need, in prin
iple, to be in
luded in T, but we will show that this is the 
ase for

d

t

H

and d

t;�

SAD

. Note also that jTj = O(j�j) on an integer alphabet and jTj = O(m) in

any 
ase.

4.1 Hamming Distan
e

Let A = a

1

: : : a

m

and B = b

1

: : : b

m

, where a

i

; b

i

2 � for 1 � i � m. We 
onsider

the 
omputation of transposition invariant Hamming distan
e d

t;Æ

H

(A;B). That is, we

sear
h for a transposition tmaximizing the size of set fi j jb

i

�(a

i

+t)j � Æ; 1 � i � mg.

Theorem 2 Given two numeri
 strings A and B, both of length m, there is an

algorithm for 
omputing distan
e d

t;Æ

H

(A;B) inO(j�j+m) time on an integer alphabet,

or in O(m logm) time on a general alphabet.

Proof. It is 
lear that the Hamming distan
e is minimized for the transposition in T

that makes the maximum number of 
hara
ters mat
h. What follows is a simple voting

s
heme, where the most voted transposition wins. Sin
e we allow a toleran
e Æ in the

mat
hed values, t

i

votes for range [t

i

� Æ; t

i

+ Æ℄. Constru
t sets S = f(t

i

� Æ; �open�) j

1 � i � mg and E = f(t

i

+ Æ; �
lose�) j 1 � i � mg. Sort S [ E into a list I using

order

(x

0

; y

0

) <

H

(x; y) if x

0

< x or (x

0

= x and y

0

< y);

where �open�<�
lose�. Initialize variable 
ount = 0. Do for i = 1 to jIj if I(i) =

(x; �open�) then 
ount = 
ount+1 else 
ount = 
ount�1. Letmax
ount be the largest

value of 
ount in the above algorithm. Then 
learly d

t;Æ

H

(A;B) = m�max
ount, and

the optimal transposition is any value in the range [x

i

; x

i+1

℄, where I(i) = (x

i

; �), for

any i where max
ount is rea
hed. The 
omplexity of the algorithm is O(m logm).

Sorting 
an be repla
ed by array lookup when � is an integer alphabet, whi
h gives

the bound O(j�j+m) for that 
ase. �

4.2 Sum of Absolute Di�eren
es Distan
e

We shall �rst look at the basi
 
ase where � = 0. That is, we sear
h for a transposition

t minimizing d

SAD

(A+ t; B) =

P

m

i=1

jb

i

� (a

i

+ t)j.
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Theorem 3 Given two numeri
 strings A and B, both of length m, there is an algo-

rithm for 
omputing distan
e d

t

SAD

(A;B) in O(m) time on both integer and general

alphabets.

Proof. Let us 
onsider T as a multiset, where the same element 
an repeat multiple

times. Then jTj = m, sin
e there is one element in T for ea
h b

i

�a

i

, where 1 � i � m.

Sorting T in as
ending order gives a sequen
e t

i

1

� t

i

2

� : : : � t

i

m

. Let t

opt

be the

optimal transposition. We will prove by indu
tion that t

opt

= t

i

bm=2
+1

, that is, the

optimal transposition is the median transposition in T.

To start the indu
tion we 
laim that t

i

1

� t

opt

� t

i

m

. To see this, noti
e that

d

SAD

(A+(t

i

1

� �); B) = d

SAD

(A+ t

i

1

; B)+m�, and d

SAD

(A+(t

i

m

+ �); B) = d

SAD

(A+

t

i

m

; B) +m�, for any � � 0.

Our indu
tion assumption is that t

i

k

� t

opt

� t

i

m�k+1

for some k. We

may assume that t

i

k+1

� t

i

m�k

, sin
e otherwise the result follows anyway. First

noti
e that, independently of the value of t

opt

in the above interval, the 
ost

P

k

l=1

jb

i

l

� (a

i

l

+ t

opt

)j +

P

m

l=m�k+1

jb

i

l

� (a

i

l

+ t

opt

)j will be the same. Then no-

ti
e that

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

k+1

� �)j =

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

k+1

)j+ (m � 2k)�, and

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

m�k

+ �)j =

P

m�k

l=k+1

jb

i

l

� (a

i

l

+ t

i

m�k

)j+(m�2k)�. This 
ompletes

the indu
tion, sin
e we showed that t

i

k+1

� t

opt

� t

i

m�k

.

The 
onsequen
e is that t

i

k

� t

opt

� t

i

m�k+1

for maximal k su
h that t

i

k

� t

i

m�k+1

,

that is, k = dm=2e. Whenm is odd, it holdsm�k+1 = k and there is only one optimal

transposition, t

i

dm=2e

. When m is even, one easily noti
es that all transpositions t

opt

,

t

i

m=2

� t

opt

� t

i

m=2+1

, are equally good. Finally, the median 
an be found in linear

time [BFPRT72℄. �

To get a fast algorithm for d

t;�

SAD

when � > 0 largest di�eren
es 
an be dis
arded,

we need a lemma that shows that the distan
e 
omputation 
an be in
rementalized

from one transposition to another. Let t

i

1

; t

i

2

; : : : ; t

i

m

be the sorted sequen
e of T.

Lemma 4 On
e values S

j

and L

j

su
h that d

SAD

(A + t

i

j

; B) = S

j

+ L

j

, S

j

=

P

j�1

j

0

=1

t

i

j

� t

i

j

0

, and L

j

=

P

m

j

0

=j+1

t

i

j

0

� t

i

j

, are 
omputed, the values of S

j+1

and

L

j+1


an be 
omputed in O(1) time.

Proof. Value S

j+1


an be written as

S

j+1

=

j

X

j

0

=1

t

i

j+1

� t

i

j

0

=

j

X

j

0

=1

t

i

j+1

� t

i

j

+ t

i

j

� t

i

j

0

= j(t

i

j+1

� t

i

j

) + S

j

:

Similar rearranging gives

L

j+1

=

m

X

j

0

=j+2

t

i

j

0

� t

i

j+1

= (m� j)(t

i

j

� t

i

j+1

) + L

j

:

Thus both values 
an be 
omputed in 
onstant time given the values of S

j

and L

j

(and t

i

j+1

). �

Theorem 5 Given two numeri
 strings A and B both of length m, there is an algo-

rithm for 
omputing distan
e d

t;�

SAD

(A;B) in O(m+ � log �) time on both integer and

general alphabets. On integer alphabets, time O(j�j+m+ �) 
an also be obtained.
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Proof. Consider the sorted sequen
e t

i

1

; t

i

2

; : : : ; t

i

m

as in the proof of Theorem 3.

Clearly the 
andidates for the � outliers (largest di�eren
es) are M(k

0

; k

00

) =

ft

i

1

; : : : ; t

i

k

0

; t

i

m�k

00

+1

; : : : t

i

m

g for some k

0

+ k

00

= �. The naive algorithm is then to


ompute the distan
e in all these �+1 
ases: Compute the median of TnM(k

0

; k

00

) for

ea
h k

0

+ k

00

= � and 
hoose the minimum distan
e indu
ed by these medians. These

� + 1 medians 
an be found as follows: First sele
t values t

�+1

and t

m��

using the

linear time sele
tion algorithm [BFPRT72℄. Then 
olle
t and sort all values smaller

than t

�+1

or larger than t

m��

. After sele
ting the median m

0;�

of T nM(0; �) and

m

�;0

of TnM(�; 0), one 
an 
olle
t all medians m

k

0

;k

00

of TnM(k

0

; k

00

) for k

0

+k

00

= �,

sin
e the m

k

0

;k

00

values are those between m

0;�

and m

�;0

. The �+1 medians 
an thus

be 
olle
ted and sorted in O(m + � log �) time, and the additional time to 
ompute

the distan
es for all of these � + 1 medians is O(�m). However, the 
omputation of

distan
es given by 
onse
utive transpositions 
an be in
rementalized using Lemma 4.

First one has to 
ompute the distan
e for the median of TnM(0; �), d

SAD

(A+m

0;�

; B),

and then 
ontinue in
rementally from d

SAD

(A+m

k

0

;k

00

; B) to d

SAD

(A+m

k

0

+1;k

00

�1

; B),

until we rea
h the median of T nM(�; 0), d

SAD

(A +m

�;0

; B) (this is where we need

the medians sorted). Sin
e the set of outliers 
hanges when moving from one median

to another, one has to add value t

i

k

0

� t

i

m

to S

m

and value t

i

m

� t

i

k

00

to L

m

, where

S

m

and L

m

are the values given by Lemma 4 (here we need the outliers sorted). The

time 
omplexity of the whole algorithm is O(m + � log�). On an integer alphabet,

sorting 
an be repla
ed by array lookup to yield O(j�j+m+ �). �

4.3 Maximum Absolute Di�eren
e Distan
e

We 
onsider now how d

t;�

MAD


an be 
omputed. In 
ase � = 0, we sear
h for a trans-

position t minimizing d

MAD

(A + t; B) = max

m

i=1

jb

i

� (a

i

+ t)j. In 
ase � > 0, we are

allowed to dis
ard the k largest di�eren
es jb

i

� (a

i

+ t)j.

Theorem 6 Given two numeri
 strings A and B both of length m, there is an algo-

rithm for 
omputing distan
e d

t;�

MAD

(A;B) in O(m+� log�) time on both integer and

general alphabets. On integer alphabets, time O(j�j+m + �) 
an also be obtained.

Proof. When � = 0 the distan
e is 
learly d

t

MAD

(A;B) = (max

i

ft

i

g � min

i

ft

i

g)=2,

and the transposition giving this distan
e is (max

i

ft

i

g + min

i

ft

i

g)=2. When � > 0,


onsider again the sorted sequen
e t

i

1

; t

i

2

; : : : ; t

i

m

as in the proof of Theorem 3. Again

the � outliers are M(k

0

; k

00

) for some k

0

+ k

00

= � in the optimal transposition. The

optimal transposition is then the value (t

i

m�k

00

+ t

i

k

0

+1

)=2 that minimizes (t

i

m�k

00

�

t

i

k

0

+1

)=2, where k

0

+k

00

= �. The minimum value 
an be 
omputed in O(�) time, on
e

the � + 1 smallest and largest t

i

values are sorted. These values 
an be sele
ted in

O(m) time and then sorted in O(� log�) time, or O(j�j+ �) on integer alphabets. �

4.4 Sear
hing

Up to now we have 
onsidered distan
e 
omputation. Any algorithm to 
ompute the

distan
e between A and B 
an be trivially 
onverted into a sear
h algorithm for P in

T by 
omparing P against every text window of the form T

j�m+1:::j

. A
tually, we do

not have any sear
h algorithm better than this.
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Lemma 7 For distan
es d

t;Æ

H

, d

t;�

SAD

, and d

t;�

MAD

, if the distan
e 
an be evaluated in

O(f(m)) time, then the 
orresponding sear
h problem 
an be solved in O(f(m)n)

time.

On the other hand, it is not immediate how to perform transposition invariant

(Æ; 
)�mat
hing. We show how the above results 
an be applied to this 
ase.

Note that one 
an �nd in O(mn) time all the o

urren
es fjg su
h that

d

t

MAD

(P; T

j�m+1:::j

) � Æ, and all the o

urren
es fj

0

g where d

t

SAD

(P; T

j

0

�m+1:::j

0

) � 
.

The (Æ; 
)�mat
hes are a subset of fjg \ fj

0

g, but identity does not ne
essarily hold.

This is be
ause the optimal transposition 
an be di�erent for d

t

MAD

and d

t

SAD

.

What we need to do is to verify this set of possible o

urren
es fjg \ fj

0

g. This


an be done as follows. For ea
h possible mat
h j

00

2 fjg \ fj

0

g one 
an 
ompute

limits s and l su
h that d

MAD

(P + t; T

j

00

�m+1:::j

00

) � Æ for all s � t � l: If the distan
e

d = d

MAD

(P + t

opt

; T

j

00

�m+1:::j

00

) is given, then s = t

opt

� (Æ� d) and l = t

opt

+ (Æ� d).

On the other hand, note that d

SAD

(P +t; T

j

00

:::j

00

+m�1

), as a fun
tion of t, is de
reasing

until t rea
hes the median of the transpositions, and then in
reasing. Thus, depending

on the relative order of the median of the transpositions with respe
t to s and l, we

only need to 
ompute distan
e d

SAD

(P + t; T

j

00

�m+1:::j

00

) in one of them (t = s, t = l,

or t = t

dm=2e

). This gives the minimum value for d

SAD

in the range [s; l℄. If this value

is � 
, we have found a mat
h.

One 
an see that using the results of Theorems 3 and 6 with � = 0, the above

pro
edures 
an be implemented so that only O(m) time at ea
h possible o

urren
e

is needed. There are at most n o

urren
es to test.

Theorem 8 Given two numeri
 strings P (pattern) and T (text) of lengths m and

n, there is an algorithm for �nding all the transposition invariant (Æ; 
)�o

urren
es

of P in T in O(mn) time on both integer and general alphabets.

4.5 Set of Possible Mat
hes Revisited

Re
all that an edit distan
e between two strings A and B is the 
ost of single sym-

bol insertions, deletions, and substitutions to 
onvert A into B. The unit 
ost or

Levenshtein distan
e [Lev66℄ assigns 
ost 1 to ea
h operation. If substitutions are

forbidden and other operations have 
ost 1 the resulting distan
e is related to the

longest 
ommon subsequen
e (LCS) of A and B. See e.g. [MNU03℄ and the referen
es

therein (like [Sel80℄) for an introdu
tion and formal de�nition of these edit distan
es.

For the sequel, it is only ne
essary to know the fa
t [MNU03℄ that the above edit

distan
es 
an be 
omputed e�
iently on
e the set of possible mat
hes M = f(i; j) j

a

i

= b

j

; a

i

2 A; b

j

2 Bg is given. Sin
e we gave an e�
ient algorithm in Se
t. 3

for 
onstru
ting M

Æ

= f(i; j) j jb

j

� a

i

j � Æg we immediatedly have algorithms for

edit distan
es under noise; just use the sparse dynami
 programming algorithms of

[MNU03℄ (or others' 
ited therein) on M

Æ

instead of on M . The e�e
t of parameter Æ

is that two symbols 
an be mat
hed if their values are 
lose enough. For example, the

method sket
hed above 
an be used to 
ompute the longest approximately 
ommon

subsequen
e of two numeri
 strings.

Now we fo
us on the transposition invariant edit distan
es under noise. Let us

denote the size of M

Æ

as r = r(A;B; Æ) = jM

Æ

(A;B)j. Let us rede�ne T in this se
tion

to be the set of those transpositions that make some 
hara
ters between A and B
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exa
tly Æ apart, that is T = fb

j

� a

i

� Æ j 1 � i � m; 1 � j � ng. The mat
h set


orresponding to a transposition t 2 T is M

Æ

t

= f(i; j) j jb

j

� a

i

� tj � Æg. Noti
e that

there is always some t 2 T whose mat
h set M

Æ

t

is equal to M

Æ

t

0

, where t

0

2 U. For

most edit distan
es (like Levensthtein distan
e or LCS) same mat
h set means that

the distan
e will also be the same.

As noti
ed in [MNU03℄ (in the 
ase Æ = 0) one 
ould 
ompute the above edit

distan
es by running the basi
 dynami
 programming algorithms [Sel80℄ over all pairs

(A+t; B), where t 2 T. In 
ase Æ > 0, one would just interpret symbols a be b the same

when jb� aj � Æ. One 
an obtain a more e�
ient method using advan
ed algorithms

at ea
h transposition. Let us �rst assume that Æ = 0 and let r(A;B) = r(A;B; 0).

The following 
onne
tion was shown in [MNU03℄:

Lemma 9 ([MNU03℄) If an algorithm 
omputes a distan
e d(A;B) in

O(r(A;B)f(m;n)) time, then there is an algorithm that 
omputes the transposition

invariant distan
e d

t

(A;B) = min

t2T

d(A+ t; B) in O(mnf(m;n)) time.

As a 
onsequen
e of the above lemma, we have O(mn polylog(n)) time algorithms

for di�erent edit distan
es, sin
e we manage to 
onstru
t the mat
h sets for all trans-

positions in O(mn polylog(n)) time [MNU03℄. In our noisy 
ase, the above lemma

extends to giving an O(

P

t2T

jM

Æ

t

jf(m;n)) algorithm, whi
h equals O(mn polylog(n))

when Æ = 0. To a
hieve total running time O(

P

t2T

jM

Æ

t

jf(m;n)), we still need to

show that the sets M

Æ

t


an be 
onstru
ted in linear time in their overall size.

Theorem 10 The mat
h sets M

Æ

t

= f(i; j) j a

i

+ t = b

j

g, ea
h sorted in the 
olumn

order, for all transpositions t 2 T, 
an be 
onstru
ted in time O(j�j+Æmn) on an inte-

ger alphabet, and in time O(m log j�

A

j+n log j�

B

j+ j�

A

jj�

B

j log(min(j�

A

j; j�

B

j))+

P

t2T

jM

Æ

t

j) on a real alphabet.

Proof. (We extend the proof given in [MNU03℄ for the 
ase Æ = 0.) On an integer

alphabet we 
an pro
eed naively to obtain O(j�j +mn) time using array lookup to

get the transposition where ea
h pair (i; j) has to be added. For Æ > 0 ea
h pair (i; j)

is added to entries from b

j

� a

i

� Æ to b

j

� a

i

+ Æ, in O(j�j+ Æmn) time.

The 
ase of real alphabets is solved as follows. Let us �rst 
onsider the 
ase Æ = 0.

Create a balan
ed tree T

A

where every 
hara
ter a = a

i

of A is inserted, maintaining

for ea
h su
h a 2 �

A

a list L

a

of the positions i of A, in in
reasing order, su
h that

a = a

i

. Do the same for B and T

B

. This 
osts O(m log j�

A

j+n log j�

B

j). Now, 
reate

an array R(1 : : : j�

A

jj�

B

j), where ea
h R(k) stores the subset of the mat
h set M

t

k

(in 
olumn order), where t

k

= b� a, b

j

= b, and a

i

= a for all (i; j) 2 R(k). There is

an entry in R for ea
h possible pair (a; b), where a 2 �

A

, b 2 �

B

. Clearly R 
an be


onstru
ted in O(mn) time on
e T

A

, T

B

, and the asso
iated lists L are given. How-

ever, many pairs 
an produ
e the same transposition, thus we have to (i) sort R based

on values t

k

and (ii) merge the partial mat
h sets that 
orrespond to the same trans-

position. Phase (i) 
an be implemented to run in O(j�

A

jj�

B

j log(min(j�

A

j; j�

B

j)))

time; 
onsider w.l.o.g. that j�

A

j � j�

B

j. For �xed a 2 �

A

, we 
an get the j�

B

j trans-

positions b � a, b 2 �

B

, in in
reasing order by a depth-�rst sear
h on T

B

. Thus we

have j�

A

j lists, ea
h 
ontaining j�

B

j transpositions already in order. Merging these

lists (using standard te
hniques) takes O(j�

A

jj�

B

j log j�

A

j) time. Phase (ii) 
an be

implemented to run in O(mn) time; we 
an traverse through B and for ea
h b

j

add a
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new 
olumn to ea
h M

t

, where b

j

� a = t, a 2 �

A

. The 
orre
t set M

t


an be found

in 
onstant time sin
e we 
an maintain suitable pointers when sorting R in phase (i).

Finally, let us 
onsider the 
ase where Æ > 0. As dis
ussed earlier, ea
h pair

(a; b) produ
es two relevant transpositions, b � a � Æ and b � a + Æ. We pro
eed as

before until array R is 
onstru
ted and sorted. Consider sliding a window of length

2Æ over the transpositions t

k

in R. Let the middle point of 
urrent window be at

t. Clearly, the pairs that are in
luded in the 
urrent window produ
e the whole

mat
h set for transposition t. That is, partial mat
h sets R(l); R(l + 1); : : : ; R(r)

are merged into mat
h set M

Æ

t

, where t

l

= b

j

� a

i

� t � Æ for (all) (i; j) 2 R(l),

t

r

= b

j

0

�a

i

0

� t+Æ for (all) (i

0

; j

0

) 2 R(r), and [l; r℄ is maximal range of R where this

holds. The mat
h sets 
hange only when the middle points of the sliding window are

from set T = fb� a� Æ j a 2 �

A

; b 2 �

B

g. We 
an 
onstru
t this set in O(j�

A

jj�

B

j)

time. After sorting it, we 
an slide the window of length 2Æ stopping at ea
h middle

point t 2 T , and 
onstru
t ea
h mat
h set M

Æ

t

by merging the mat
h sets in the

entries of R that are 
overed by the 
urrent window.

What is left is to 
onsider how the merging 
an be done e�
iently. Noti
e that the

mat
h sets 
orresponding to 
onse
utive transpositions share a lot in 
ommon; the

merging does not have to be done by brute for
e. We have two 
ases depending on

whether the 
onse
utive mat
h sets di�er (i) only by one entry of R, or (ii) by several

entries. In 
ase (i), the range [l; r℄ of R is 
hanged either to [l + 1; r℄ or to [l; r + 1℄.

Both situations 
an be handled by one traversal over mat
h set 
orresponding to [l; r℄

and in the latter 
ase also over R(r + 1). In 
ase (ii), the range [l; r℄ of R is 
hanged

either to [l+ k; r℄ or to [l; r+ k℄ for some k (by de�nition both ranges 
an not 
hange

at the same time). Let us 
onsider the latter situation, sin
e the �rst is analogous. It

follows that t

r+1

= � � � = t

r+k

, sin
e otherwise there would be a relevant transposition

t

r+k

0

� Æ, for some 1 < k

0

< k, in between t

r

� Æ and t

r+k

� Æ, whi
h 
on�i
ts the fa
t

that we are moving from one relevant transposition to the next. What follows is that

we 
an prepro
ess R just like in the 
ase when Æ = 0, merging 
onse
utive entries

of R having exa
tly the same transposition in O(mn) time. After this is done, 
ase

(ii) 
an be handled just like 
ase (i). The time 
omplexity of this merging phase is

bounded by

P

t2T

jM

Æ

t

j. �

Noti
e that

P

t2T

jM

Æ

t

j � Æmn on an integer alphabet. So the bound on a real

alphabet is analogous to the bound on an integer alphabet.

5 Con
luding Remarks

The motivation to study transposition invariant distan
es 
omes from musi
 infor-

mation retrieval. However, there are also other appli
ations where these distan
e

measures are useful. For example, in image 
omparison one 
ould use the trans-

position invariant SAD distan
e to sear
h for the o

urren
es of a small template

inside a large image. With gray-level images the sear
h would then be �lighting in-

variant�. Combining other invarian
es, su
h as rotation or s
aling invarian
e, with

transposition invarian
e in a sear
h algorithm, is a major 
hallenge.
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Abstra
t. The fa
tor automaton is used for time-optimal sear
hing for sub-

strings in text. In general, if the text is 
hanged the new fa
tor automaton has

to be 
onstru
ted. When the text 
hange is simple enough we 
an 
hange the

original fa
tor automaton to re�e
t the 
hanges of the text and save the time of

the new fa
tor automaton 
onstru
tion.

This paper deals with operation L-INSERT and des
ribes the algorithm modi-

fying the fa
tor automaton when a new symbol is prepended to the text. This

algorithm 
an be also used for on-line ba
kward 
onstru
tion of fa
tor automa-

ton.

Keywords: fa
tor automaton, DAWG, operation on fa
tor automaton, 
on-

stru
tion of fa
tor automaton, �nite automaton.

1 Introdu
tion

The fa
tor automaton is a �nite automaton a

epting the set of all fa
tors (substrings)

of the given text (string) T . The fa
tor automaton 
an be 
onstru
ted for arbitrary

text by one of the 
ommon 
onstru
tion algorithms. The time 
omplexity of the


onstru
tion is linear to the size of the text T , while pattern mat
hing for pattern P

is linear to the size of the pattern P and is independent of the size of text T . So, in

the most 
ommon 
ase the fa
tor automaton is on
e 
onstru
ted and many time used

for pattern mat
hing. However, when we 
hange the text T the fa
tor automaton

must be dropped and new fa
tor automaton has to be 
onstru
ted.

If the 
hanges in the text are simple enough then we 
an �nd an algorithm mod-

ifying the original fa
tor automaton a

ording text T . The time 
omplexity of this

algorithm is often better then the 
omplete 
onstru
tion of the new fa
tor automaton

for the 
hanged text.

A ni
e example of su
h algorithm is the APPEND algorithm des
ribed in [1, Chap-

ter 6.3℄, whi
h 
an modify given fa
tor automaton when a new symbol is appended to

the text T . The authors use this algorithm as a part of their on-line fa
tor automa-

ton 
onstru
tion algorithm for text T = t

1

t

2

� � � t

n

: they start with one-node fa
tor

�

This resear
h has been partialy supported by the Ministry of Edu
ation, Youth, and Sports
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h Republi
 under resear
h program No. J04/98:212300014 (Resear
h in the area of

information te
hnologies and 
ummuni
ations) and by Grant Agen
y of Cze
h Republi
 grant No.

201/01/1433.
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automaton for empty text " and 
ompute su

essively fa
tor automata for texts t

1

,

t

1

t

2

, t

1

t

2

t

3

, � � �, t

1

t

2

� � � t

n

.

Another known fa
tor automaton modifying algorithm is the L-DELETE algo-

rithm [2℄. It 
an make desired 
hanges to the fa
tor automaton when the text T is

redu
ed by deleting the leftmost symbol. The L-DELETE algorithm 
an be used in


onjun
tion with the APPEND algorithm to implement fast substring mat
hing in

sliding window data 
ompression method.

This paper des
ribes an L-INSERT algorithm modifying the fa
tor automaton

when the text T is prepended by a new symbol. Like the APPEND algorithm,

this algorithm 
an also be used for the 
onstru
tion of the fa
tor automaton. The

well-known 
onstru
tion using operation APPEND 
reates the fa
tor automaton by

appending symbols of the text T from left to right. On the 
ontrary, the 
onstru
tion

based on L-INSERT 
reates the fa
tor automaton starting with the rightmost symbol

to the left.

2 Basi
 De�nitions

The fa
tor automaton for text T is de�ned as a �nite automaton M a

epting the

language L(M) = Fa
(T ) of all fa
tors of T . There is an in�nite number of su
h

automata, hen
e we sele
t one with very regular stru
ture of its transition diagram

(Figure 1). All its states are both initial and �nal.

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

Figure 1: Canoni
al nondeterministi
 fa
tor automaton (CNFA)

De�nition 2.1 � Canoni
al nondeterministi
 fa
tor automaton (CNFA)

Canoni
al nondeterministi
 fa
tor automaton CNFA for text T = t

1

t

2

t

3

� � � t

n

is a

nondeterministi
 �nite automaton M = (Q;A; Æ; I; F ) whi
h satis�es:

1. Q = fq

0

; q

1

; q

2

; � � � q

n

g

2. 8q

i

2 Q; a 2 A : Æ(q

i

; a) =

(

fq

i+1

g 8i < n; a = t

i+1

; in other 
ases

3. I = Q

4. F = Q

We 
annot dire
tly use CNFA be
ause of a nondeterminism. Ea
h nondetermin-

isti
 �nite automaton 
an be transformed to deterministi
 one a

epting the same

language. The transformation 
an be done by subset 
onstru
tion [3℄. We use the

variant of the transformation whi
h does not insert ina

esible states into the resulting

DFA [4, algorithm 3.6℄ and we denote it as the standard determinization method.

The standard determinization method is based on the following state-sets 
on-

stru
tion: For ea
h nondeterministi
 �nite automaton M = (Q;A; Æ; I; F ) we 
an
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�nd a deterministi
 �nite automaton

^

M = (

^

Q;A;

^

Æ; q̂

0

;

^

F ) a

epting the same lan-

guage satisfying the following 
onditions:

�

^

Q � P(Q) su
h that

^

Q = fq̂ : q̂ = Æ

�

(I; w);w 2 A

�

g

�

^

Æ is a mapping

^

Æ :

^

Q�A 7!

^

Q

8q̂ 2 Q; a 2 A :

^

Æ(q̂; a) =

S

q2q̂

Æ(q; a),

� q̂

0

2

^

Q q̂

0

= I,

�

^

F �

^

Q

^

F = fq̂ 2

^

Q : q̂ \ F 6= ;g.

We use the hat a

ent to denote deterministi
 automaton, its states and transition

fun
tion. States of CDFA are sets of CNFA. Note, that that CDFA 
ontains only

rea
hable states.

De�nition 2.2 � Canoni
al deterministi
 fa
tor automaton (CDFA)

Canoni
al deterministi
 fa
tor automaton CDFA for text T is a deterministi
 au-

tomaton given as the result of the standard determinization of the 
anoni
al nonde-

terministi
 fa
tor automaton for the same text T .

The L-INSERT algorithm modifying CNFA is very simple (it just inserts a new

state and one transition). We use that algorithm and the standard determinization to

�nd L-INSERT algorithm modifying CDFA. To keep the relationship between states

of CNFA and CDFA automata we use several adja
ent data stru
tures.

3 Adja
ent Data Stru
tures

To enable e�
ient algorithm modifying CDFA we extend CDFA by following addi-

tional information:

� su�x links,

� text pointers,

� in-degree of nodes.

3.1 Su�x Links

Ea
h state q̂ of the CDFA represents a set of a
tive states of the CNFA � after

a

epting any string w the a
tive state q̂

w

=

^

Æ

�

(q̂

0

; w) of CDFA represents a set of

a
tive states Q

w

= Æ

�

(I; w) of CNFA, formally q̂

w

= Q

w

.

Lemma 3.1 If two states q̂

u

; q̂

w

2

^

Q have nonempty interse
tion, q̂

u

\ q̂

w

6= ;, then

one of them is a subset of the other (q̂

w

� q̂

u

).
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w

T = t

1

t

2

t

3

� � � t

n

n

t

n

� � �

t

i+1

i

t

i

i-1

t

i�1

� � �

t

2

1

t

1

0

Figure 2: If state q̂

w

=

^

Æ

�

(q̂

0

; w) 
ontains a state q

i

then string w ends at position i

Proof:

If both two states q̂

u

and q̂

w


ontain state q

i

then both represent the CNFA

a
tive state q

i

. Be
ause of very regular stru
ture of CNFA the state q

i

be
omes a
tive only if the a

epted string is a fa
tor of the text T ending

at position i (see Figure 2). It means that both strings u and w (leading

to states q̂

u

and q̂

w

) are fa
tors of the text T ending on the same position

i. Therefore one of them must be a su�x of the other (Figure 3). Let

u

w

n

t

n

� � �

t

i+1

i

t

i

i-1

t

i�1

� � �

t

2

1

t

1

0

Figure 3: Strings u and w end in the same position.

u be a su�x of w. The state q̂

w

represents states q̂

w

= fq

j

1

; q

j

2

; q

j

3

; � � �g

where j

k

are ending positions of all o

urren
es of the string w in the text.

The string u is a su�x of w so that it o

urs at least on the same ending

positions, therefore q̂

w

� q̂

u

(Figure 4).

uuuu

www

T = t

1

t

2

t

3

� � � t

n

Figure 4: String u ends at least on the same ending positions as string w.

From the lemma above, any pair of CDFA states 
ontaining any 
ommon CNFA

state q

i

are ordered by set in
lusion. Therefore all CDFA states representing any

CNFA state q

i


reate ordered set (
hain of states). The initial state q̂

0

= I = Q =

fq

0

; q

1

; � � � q

n

g 
ontaining all CNFA states is a superset of any set of CNFA states and

it is the biggest set of any 
hain of sets. We 
an say that all states of CDFA are
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ordered in a rooted tree with the root q̂

0

. The 
ommon name for su
h tree is su�x

tree.

CNFA:

4

a

3

b

2

b

1

a

0

CDFA:

a

b

23

4

a

3

b

2

b

14

b

a

01234

Su�x tree:

324

2314

01234

Positions in text T :

0

a

1

b

2

b

3

a

4

state words ending pos.

q̂

fq

0

;q

1

;q

2

;q

3

;q

4

g

" 0, 1, 2, 3, 4

q̂

fq

1

;q

4

g

a 1, 4

q̂

fq

2

;q

3

g

b 2, 3

q̂

fq

2

g

ab 2

q̂

fq

3

g

bb 3

abb

q̂

fq

4

g

ba 4

bba

abba

Figure 5: An example of su�x tree for T = abba

This su�x tree (as a data stru
ture) 
an be implemented by pointers from ea
h

state q̂ 2

^

Q to its parent p̂ in the su�x tree. We 
all su
h pointer as su�x link and

denote p̂ = suf [q̂℄. The state suf

k

[q̂℄ means k

th

iteration of su�x link and suf

�

[q̂℄

(transitive 
losure) denotes a set of all iterations of su�x link of the state q̂.

suf

�

[q̂℄ = fq̂; suf [q̂℄; suf

2

[q̂℄; suf

3

[q̂℄; � � �g

Lemma 3.2 If two nonequal states p̂; q̂ 2

^

Q di�er by a one state q 2 Q i.e. p̂ = q̂[fqg

then there exists a dire
t su�x link between them: p̂ = suf [q̂℄.
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Proof:

Any two states p̂; q̂ 2

^

Q where q̂ is a proper subset of p̂ (; � q̂ � p̂) are


onne
ted by a su�x link i� there does not exist another state r su
h that

q̂ � r̂ � p̂. As states p̂ and q̂ di�er only by one state, no su
h state r̂ may

exist.

g

q

i

;

= fp̂

q

i

T = t

1

t

2

t

3

� � � t

n

w

p̂

Figure 6: The state p̂ has no in
oming su�x link i� it 
ontain only one state

Lemma 3.3 State p̂ 2

^

Q has no in
oming su�x link if and only if the set q̂ 
ontains

exa
tly one state q 2 Q.

Proof:

We divide the proof of equivalen
e to proofs of the both impli
ations. The

proof of the �rst impli
ation (the state p̂ has no in
oming su�x link =)

the set p̂ 
ontains only one state) follows from this 
ontradi
tion:

g

q

j

;

= fq̂

g

q

j

;

q

i

;

= fp̂

q

j

q

i

T = t

1

t

2

t

3

� � � t

n

waw

q̂p̂

Figure 7: If the state p̂ 
ontains two states then it has in
oming su�x link.

If the set p̂ would 
ontain more than one state (see Figure 7) then there

would exist the longest fa
tor w of the text T , whi
h would end at ending

positions represented by members of p̂. Not all o

urren
es of string w are

pre
eded by the same symbol (be
ause w is the longest string with these

endings) and therefore there would exist a string aw whi
h is a fa
tor of

the text T and would end at positions q̂ where q̂ � p̂. Due to this in
lusion

both states p̂ and q̂ would share the same bran
h of su�x tree whi
h would

lead from q̂ to p̂. The state p̂ would have at least one in
oming su�x link,

whi
h gives the 
ontradi
tion.
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The se
ond part, the proof of ba
kward impli
ation (the set p̂ 
ontains

only one state =) the state p̂ has no in
oming su�x link) is trivial be
ause

a su�x link 
an lead only from a subset to a superset and a set with just

only one state has no regular subsets.

Lemma 3.4 If a state p̂ 2

^

Q has just one in
oming su�x link and w is the longest

string leading to this state p̂ =

^

Æ

�

(q̂

0

; w) (see Figure 8) then

a) there are at least two o

urren
es of the string w in the text T ,

b) the string w is a pre�x of the text T ,


) all o

urren
es of w in T ex
ept the very �rst one (the pre�x of T ) are pre
eded

by the same symbol.

g

q

k

3

q

k

2

;q

k

1

;

q

i

;

= fq̂

q

i

T = t

1

t

2

t

3

� � � t

n

awawaww

q̂

Figure 8: The only one in
oming su�x link leads to a state p̂.

Proof:

The proof of part a) follows from the Lemma 3.3.

There are no 
ouple of o

urren
es of string w following two di�erent

symbols. If two strings aw and bw (where a 6= b) would o

ur in text

T then both states q̂

aw

and q̂

bw

would be disjun
t subsets of p̂ and their

su�x links would lead to state p̂. At least one o

urren
e of w must not

be pre
eded by the same symbol as others be
ause w is the longest string

leading to state p̂. Therefore w o

urs at the beginning of T and all next

o

urren
es are pre
eded by the same symbol. w is a pre�x of T . This

proves parts b) and 
).

Lemma 3.5 If a su�x link suf [q̂℄ = p̂ is the only su�x link leading to state p̂ then

set p̂ is larger then q̂ by just one state q

i

(i.e. p̂ = fq

i

g [ q̂).

Proof:

Let w be a string leading to the state p̂ =

^

Æ

�

(q̂

0

; w) (see Figure 8). Due to

Lemma 3.4, string w is a pre�x of the text T and all other o

urren
es of

w in the text T are pre
eded by the same symbol a. The string aw o

urs

at the same ending positions as string w ex
ept the very �rst one (w is a

pre�x of T ). We 
an divide the set p̂ into the �rst o

urren
e (the state

q

i

) and the rest (o

urren
es of aw): p̂ = fq

i

g[

^

Æ

�

(q̂

0

;aw). Due to Lemma

3.2 it holds p̂ = suf [

^

Æ

�

(q̂

0

;aw)℄. There is only one su�x link leading to p̂

so that states

^

Æ

�

(q̂

0

;aw) and q̂ are identi
al and we 
an write p̂ = fq

i

g[ q̂.
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3.2 Text Pointers

Most of algorithms operating on fa
tor automaton need to resolve whi
h states of

CDFA represent given state q of CNFA. Sin
e all relevant CDFA states 
ontain q they


reate a separate bran
h in the su�x tree. We 
an store only the starting state of the

bran
h and 
ontinue over the su�x tree to its root. Text pointers is a data stru
ture

whi
h keeps the information about the starting state. It 
an be implemented as an

array TextPos[i℄ of CDFA states indexed by position i in text. In fa
tor automata it

holds TextPos[i℄ =

^

Æ

�

(q̂

0

; t

1

t

2

� � � t

i

). An example of text pointers array for T = abba

is on Figure 9.

position 4

position 3

324

position 2

2314

position 1

01234

position 0

su�x tree

text pointers

a

b

23

4

a

3

b

2

b

14

b

a

01234

pos.4pos.3pos.2pos.1pos.0

Text positions: T =

0

a

1

b

2

b

3

a

4

text pointers table

position state

0 q̂

fq

0

;q

1

;q

2

;q

3

;q

4

g

1 q̂

fq

1

;q

4

g

2 q̂

fq

2

g

3 q̂

fq

3

g

4 q̂

fq

4

g

Figure 9: An example of the su�x tree and the automaton with text pointers for

T = abba.

Note that the number of states is often larger then the number of positions in

the text. Therefore, there exist states whi
h are not the value of any TextPos. An

example of that is on Figure 9. Although the state q̂

fq

2

;q

3

g

represents ending positions

2 and 3 for string b, it is neither a value of TextPos[2℄ nor TextPos[3℄. We 
an get

all states representing the ending position 2 by inspe
ting the whole bran
h of su�x

tree (a sequen
e of su�x links) from the state q̂

fq

2

g

= TextPos[2℄.
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3.3 Node In-degree

We use the number of transitions leading to this state (in
oming transitions) as a

referen
e 
ounter for dete
ting unrea
hable states. If the automaton has unrea
hable

states then one of them must have in-degree equal to zero be
ause the CDFA has no

loops. After its removing it holds that either another unrea
hable state be
omes zero

in-degree or we are sure there are no unrea
hable states in the automaton.

3.4 Operation L-INSERT

The 
anoni
al nondeterministi
 fa
tor automata (CNFA) for the texts T = t

1

t

2

t

3

� � � t

n

and aT = at

1

t

2

t

3

� � � t

n

are shown on the Figure 10.

M

T

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

M

aT

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

a

X

Figure 10: The 
hange in CNFA when a new symbol is prepended.

The operation L-INSERT 
reates a new state q

X

, whi
h is both initial and �nal

and a new transition from the state q

X

into the state q

0

.

The algorithm modifying CDFA follows from the relationship between nondeter-

ministi
 and deterministi
 fa
tor automaton.

When the new initial state q

X

is 
reated, CDFA's initial state q̂

0

� see Figure 11

(step 1) � is 
hanged to the new state q̂

0

0

= q̂

0

[ fq

X

g. The outgoing transitions from

this state are still the same as from q̂

0

(step 2). Now, we 
reate a new transition

in CNFA leading from q

X

to q

0

for symbol a. In the CDFA, we should redire
t the

transition leading from q̂

0

0

labeled by a symbol a to another state whi
h 
ontains

similar set of states extended by the state q

0

, be
ause q

0

= Æ(q

X

; a) is the new

transition (step 3).

The algorithm is based on the re
ursive fun
tion GetExtendedState(q̂; i), whi
h

takes the set of states q̂ and integer i as arguments, and �nds a state q̂

0

= q̂ [ fq

i

g. If

there is no su
h state in the automaton, it is 
reated by the fun
tion. The value of

the fun
tion is the state q̂

0

(Figure 12).

Using this fun
tion the whole algorithm 
an be written in �ve steps:

1. 
reate a new state q̂

0

0

with the same outgoing transitions as q̂

0

,

2. get the old target of the �rst transition: q̂ =

^

Æ(q̂

0

0

; a),

3. 
ompute new state for that transition: q̂

0

= GetExtendedState(q̂; 0),

4. redire
t the transition:

^

Æ(q̂

0

0

; a) = q̂

0

,

5. 
hange the initial state to q̂

0

0

.
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t

2

t

1

q̂

0

(step 1)

t

2

t

1

q̂

0

t

1

q̂

0

0

(step 2)

t

2

t

1

q̂

0

a

a

t

1

q̂

0

0

(step 3)

Figure 11: The 
hange in CDFA when symbol a is inserted.

q̂

0

q

i

T = t

1

t

2

t

3

� � � t

na

wwww

q̂

Figure 12: The state q̂

0


ontains state q

i

and all states from q̂
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We assume any unrea
hable state is removed as soon as it looses the last in
oming

transition (or the last referen
e).

Let us 
on
ern the fun
tion GetExtendedState(q̂; i). It assumes that the string

w = at

1

t

2

t

3

� � � t

i

leads to the state q̂ (i.e. q̂ =

^

Æ

�

(q̂

0

; w)). It is the shortest string

leading to this state be
ause the text shorter by the �rst symbol a would be a pre�x

of T an would o

ur in advan
e at ending position i.

Note that the string w = at

1

t

2

t

3

� � � t

i

may not be a fa
tor of the text T . In this


ase the state q̂ may be q̂ = fg = ;. In su
h 
ase, the solution is a state q̂

0

= fq

i

g.

Of 
ourse, this state may or may not be present in the 
urrent automaton. We 
an

�nd it by inspe
ting the text pointer at position i. The value of TextPos[i℄ may be

the required state q̂

0

= fq

i

g or its superset. A

ording to Lemma 3.3: if there is no

su�x link leading to this state then it 
ontains only one CNFA state fq

i

g and it is

the result value of the fun
tion GetExtendedState (Figure 13). If there exists a

� � �

su�x links

t

i+1

t

i

� � �

TextPos[i℄

Figure 13: The fo
used state has no in
oming su�x links therefore it 
ontains only

one state q

i

su�x link leading to this state then we must 
reate a new state q̂

0

= fq

i

g and set its

outgoing transitions. In this 
ase the state q̂

0

will have only one outgoing transition

for the symbol t

i

leading to state fq

i+1

g (whi
h 
an be obtained by re
ursive 
alling

the fun
tion GetExtendedState(nil; i + 1)). In addition, we should set up the su�x

link of this state to lead to TextPos[i℄ and update TextPos[i℄ to new value � state

q̂

0

. (See Figure 14).

Now, we 
on
ern the 
ase when q̂ is an already existing state of CDFA. The

fun
tion GetExtendedState should lo
ate the state representing the set q̂ [ fq

i

g. If

there is no su
h state, it should be 
reated. Due to the Lemma 3.2 if there exists

su
h state it must be the target of the su�x link from state q̂. But the su�x parent

p̂ = suf(q̂) of the state q̂ may not be the required state in any 
ase, of 
ourse. We 
an

test it by inspe
ting the number of su�x links leading to it. There are two disjun
t


ases:

� only one su�x link leads to state p̂,

� the state p̂ is a target of more su�x links.

At �rst we assume the su�x link from the state q̂ to the state p̂ is the only link

leading to p̂ (Figure 15). As the string w = at

1

t

2

t

3

� � � t

i

is the shortest string leading

to q̂ then the �rst su�x � string u = t

1

t

2

t

3

� � � t

i

leads to state suf(q̂) = p̂. We are

sure that string t

1

t

2

t

3

� � � t

i

o

urs at position i and therefore p̂ 
ontain the required
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Figure 14: If any su�x link leads to the state found by TextP tr[i℄ then we have

to 
reate a new state q̂

0

, 
onne
t its su�x link, outgoing transition and redire
t

TextP tr[i℄

g
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3

q

k

2
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Figure 15: q̂ 7! p̂ is the only su�x link leading to p̂ therefore p̂ = q̂ [ fq

i

g = p̂

0
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state q̂

i

. On the other side, the state p̂ does not 
ontain any other state then fq

i

g or

q̂ (see Lemma 3.5) therefore state p̂ is the value of the fun
tion GetExtendedState .

Now, assume there exist at least two su�x links leading to the state p̂. One of

them is the link from q̂ and let another one lead from a state q̂

q

(Figure 16). The

g
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q

k

1

q

i

= f

q̂
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g

q

k
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= f
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q
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k
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k

1
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k
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q
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i
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q
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t
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t
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� � � t

n

aubuauua
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(w)

q̂

q̂

q

q̂

q̂

0
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su�x tree

Figure 16: If the state p̂ re
eives more su�x links then it is unusable. A new state q̂

0

has to be 
reated.

sets q̂ and q̂

q

are disjun
t be
ause they are in the di�erent bran
hes of the su�x tree.

The state p̂ is the superset of both sets. Therefore, the set p̂ 
ontains more states

then q̂ [ fq

i

g and will be unusable for us. The resulting state is still not in the set of

states of the automaton and we have to 
reate it.

We 
reate a new state q̂

0

whi
h should represent the set q̂ [ fq

i

g and therefore

it inherits the same outgoing transition as q̂. However the transition for the symbol

t

i+1

should be redire
ted to the state (the set of CNFA states) extended by the state

q

i+1

. We 
an lookup this state using the fun
tion GetExtendedState in re
ursion.

The redire
tion is made by assigning

^

Æ(q̂

0

; t

i+1

) = GetExtendedState(

^

Æ(q̂; i); i + 1).

Finally, we should update su�x links. The new state q̂

0

is a subset of p̂ and a superset

of q̂ therefore we in
lude it between states p̂ and q̂: suf [q̂

0

℄ = p̂ and suf [q̂℄ = q̂

0

.

Algorithm 3.1 � Operation L-INSERT using fun
tion GetExtendedState

Input: CDFA automaton

^

M = (

^

Q;A;

^

Æ; q̂

0

;

^

F ) with su�x links, text T and

text pointers

symbol a

Output: CDFA automaton

^

M with su�x links, text T and text pointers

Lo
al: integer n

state p̂

state q̂

0

state q̂

0

0

state

^

t

Require:

^

M a

epts fa
tors of T = t

1

t

2

t

3

� � � t

n

Ensure:

^

M will a

ept fa
tors of T = at

1

t

2

t

3

� � � t

n

1: fun
tion GetExtendedState(state q̂; integer i)

2: if (q̂ == nil) then
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3:

^

t = TextP tr[i℄

4: n = jsuf

�1

(

^

t)j { the number of su�x links in
omming to

^

t }

5: if (n == 0) then

6: q̂

0

=

^

t

7: return q̂

0

8: else

9: q̂

0

=new state

10:

^

Æ(q̂

0

; a) = GetExtendedState(nil; i + 1)

11: suf [q̂

0

℄ =

^

t

12: return q̂

0

13: end if

14: else

15: p̂ = suf [q̂℄

16: n = jsuf

�1

(p̂)j

17: if (n == 1) then

18: q̂

0

= p̂

19: return q̂

0

20: else

21: q̂

0

= dupli
ate(q̂)

22:

^

Æ(q̂

0

; t

i+1

) = GetExtendedState(

^

Æ(q̂; t

i+1

); i+ 1)

23: suf [q̂

0

℄ = p̂

24: suf [q̂℄ = q̂

0

25: return q̂

0

26: end if

27: end if

28: endfun
tion

29: q̂

0

0

= dupli
ate(q̂

0

)

30:

^

Æ(q̂

0

0

; a) = GetExtendedState(

^

Æ(q̂

0

; a); 0)

31: SetInitialState(q̂

0

0

)

4 E�
ien
y of the Algorithm

4.1 Time Complexity

The best 
ase from the time 
omplexity point of view appears when the new inserted

symbol a is equal to ea
h symbol in the text: T = a

n

. In su
h 
ase, the re
ursive

fun
tion GetExtendedState is 
alled only on
e. Neither this fun
tion nor the main

algorithm 
ontain loop, therefore the time 
omplexity is 
onstant O(1) � independent

on the size of the text T .

The worst 
ase o

urs if all symbols in text T are the same but di�erent from the

new inserted symbol a: T = b

n

. In su
h 
ase, the original automaton has n+1 states

and the new automaton will have 2n� 1 states, and so the algorithm have to 
reate

n � 2 states and it has asymptoti
ally time 
omplexity linear O(n) with respe
t to

the size of the text T .

124



Operation L-INSERT on Fa
tor Automaton
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Figure 17: The worst 
ase

4.2 Spa
e Complexity

The algorithm requires extra spa
e for following data stru
tures:

� text pointers,

� su�x links,

� states,

� transitions,

� sta
k for re
ursion.

Text pointers is an array indexed by the position in text T . The size of the array is

linear to the size of text T . Text pointers are more useful for other operations with fa
-

tor automata. In the 
ase of L-INSERT algorithm, text pointers 
an be substituted by

text T, be
ause we need su

essively the values TextPos[0℄; T extPos[1℄; T extPos[2℄; :::

and TextPos[i℄ =

^

Æ(TextPos[i�1℄; t

i

) while TextPos[0℄ = q̂

0

. So that we 
ould 
om-

pute the values of TextPos during re
ursion of the fun
tion GetExtendedState.

Both su�x links and states take the same spa
e 
omplexity be
ause there is just

one outgoing su�x link per a state. The number of states is at most 2n (proved in

[1℄).

The number of transitions in the fa
tor automaton is less than 3n (proved in [1℄).

The size of the sta
k required for the re
ursion is limited by the number of re
ursive


alls. As a new states is 
reated before any re
ursive 
all, the total number of re
ursive


alls is limited by the number of inserted states. Moreover, the re
ursion fun
tion

GetExtendedState 
an be transformed into an iteration loop without a need of an

extra data spa
e.

As the all data stru
tures require spa
e at most linear to the size of the automaton,

we 
an say the L-INSERT algorithm is spa
e-linear.
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5 Con
lusion

This paper deals with the fa
tor automaton and its modi�
ations when the text often


hanges. We dis
uss several operations on the text and 
ite algorithms re�e
ting

these operations into the fa
tor automaton. Moreover we des
ribe some adja
ent

data stru
tures (su�x links and text pointers) used in algorithms modifying the fa
tor

automaton. We present a new algorithm of operation L-INSERT. The algorithm 
an

e�
iently modify a fa
tor automaton when a new symbol is inserted before the �rst

symbol of the text. This algorithm 
an be also used for on-line ba
kward 
onstru
tion

of the fa
tor automata. This means that the text grows from right to left while


onstru
ting the automaton. Finally, the time and spa
e 
omplexity of the L-INSERT

algorithm is also dis
ussed.
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Abstra
t. This paper proposes an e�
ient algorithm to solve the problem of

string mat
hing with mismat
hes. For a text of length n and a pattern of length

m over an alphabet �, the problem is known to be solved in O(j�jn logm)

time by 
omputing a s
ore by the fast Fourier transformation (FFT). Atallah

et al. introdu
ed a randomized algorithm in whi
h the time 
omplexity 
an

be de
reased by the trade-o� with the a

ura
y of the estimates for the s
ore.

The algorithm in the present paper yields an estimate with smaller varian
e


ompared to that the algorithm by Atallah et al., moreover, and 
omputes the

exa
t s
ore in O(j�jn logm) time. The present paper also gives two methods to

improve the algorithm and an exa
t estimation of the varian
e of the estimates

for the s
ore.

Keywords: string mat
hing with mismat
hes, FFT, 
onvolution, deterministi


algorithm, randomized algorithm.

1 Introdu
tion

String mat
hing [4, 5℄ is the problem to obtain all the o

urren
es of a (short) string


alled a pattern in a (long) string 
alled a text. We 
onsider string mat
hing with

mismat
hes whi
h allows inexa
t mat
h introdu
ed by substitution. Let � be an

alphabet and Æ the Krone
ker fun
tion from � � � to f0; 1g, that is, for a; b 2 �,

Æ(a; b) is 1 if a = b, 0 otherwise. The problem with mismat
hes is generally solved

by 
omputing the s
ore ve
tor C(T; P ) between a text T = t

1

� � � t

n

and a pattern

P = p

1

� � � p

m

as follows:

C(T; P ) = (


1

; : : : ; 


i

; : : : ; 


n�m+1

); where 


i

=

m

X

j=1

Æ(t

i+j�1

; p

j

):
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We 
an 
ompute the s
ore ve
tor using the fast Fourier transform (FFT) in

O(n logm) time, if the s
ore ve
tor is represented as a 
onvolution, that is, if the

Krone
ker fun
tion is expressed by a produ
t of two mappings from � to a set of

numbers. This approa
h was developed by Fis
her and Paterson [6℄ and is simply

summarized in Gus�eld [7℄. However, pra
ti
ally, the time 
omplexity of the algo-

rithm depends on the number of alphabets. One of the reason for the di�
ulties is

that the Krone
ker fun
tion 
an not be written as a produ
t of mappings dire
tly.

For example, if � = fa; b; 
g, the generalized algorithm in [7℄ needs three mappings

�

1

, �

2

, and �

3

whi
h 
onvert symbols into f1; 0g as the following table.

�

1

�

2

�

3

a 1 0 0

b 0 1 0


 0 0 1

Then, we have Æ(a; b) =

P

3

`=1

�

`

(a) � �

`

(b) and the s
ore ve
tor is obtained by 
om-

puting the 
onvolution

P

m

j=1

�

`

(t

i+j�1

) � �

`

(p

j

) for 1 � i � n three times.

Atallah et al. [1℄ introdu
ed a randomized algorithmwhere the time 
omplexity has

a trade-o� with the a

ura
y of the estimates for the s
ore ve
tor. In this algorithm,

symbols are 
onverted into 
omplex numbers with a primitive �-th root ! of unity

and the Hermitian inner produ
t is used for the 
onvolution. Then, the s
ore ve
tor

is obtained as the average of the results of 
onvolutions with respe
t to all possible

mappings '

`

from � to f0; : : : ; j�j � 1g, that is,




i

=

1

j�j

j�j

X

`=1

m

X

j=1

!

'

`

(t

i+j�1

)�'

`

(p

j

)

;

where � is the set of all mappings �

`

. (A deterministi
 algorithm 
onstru
ted by those

mappings requires the 
omputation of the 
onvolution j�j

j�j

times.) An estimate

for the s
ore ve
tor is the average of the results with respe
t to some mappings


hosen independently and uniformly from �. Let k be the number of randomly


hosen samples. Then, the time 
omplexity is O(kn logm). They showed that the

expe
tation of the estimates equals to the s
ore ve
tor and the varian
e is bounded

by (m� 


i

)

2

=k. Baba et al. [2℄ improved this algorithm by simplifying the mappings

whi
h 
onverts the strings into numbers. The 
odomain of the mappings is the set

f�1; 1g instead of the set of 
omplex numbers. Then, the s
ore ve
tor is




i

=

1

j�j

j�j

X

`=1

m

X

j=1

�

`

(t

i+j�1

) � �

`

(p

j

):

Baba et al. [3℄ pointed out that the algorithms whi
h 
ompute the s
ore ve
tor by

FFT are distinguished by the mappings whi
h 
onvert strings into numbers in ea
h

algorithm, and the exa
t s
ore is obtained by repeating the O(n logm) operation j�j

times.

In this paper, we propose an e�
ient algorithm to solve string mat
hing in whi
h

the varian
e of the estimates is not greater than (m � 


i

)

2

=k. Moreover, the exa
t

s
ore ve
tor is 
omputed in O(j�jn logm) time. We also give a stri
t evaluation of

the varian
e and introdu
e two methods to improve our algorithm.
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2 E�
ient Algorithm

We propose an e�
ient algorithm for string mat
hing with mismat
hes. The time


omplexity of a deterministi
 algorithm and the varian
e of the estimates for the

s
ore ve
tor are obtained by analyzing the mappings whi
h 
onvert the symbols to

the numbers. Let p be the smallest prime number whi
h is greater than or equal to the


ardinality j�j of the alphabet. The 
odomain of the mappings is the p-adi
 number

�eld Z

p

. Sin
e su
h a prime number is less than 2j�j � 2 (Chebyshev's theorem), a

deterministi
 algorithm with this mappings 
omputes the s
ore ve
tor between a text

of length n and a pattern of length m in O(j�jn logm) time. Moreover, in the same

way as the algorithm by Atallah et al, we 
an 
onstru
t a randomized algorithm in

whi
h the varian
e of the estimates for the s
ore ve
tor is independent to j�j.

2.1 E�
ient Mapping

Let ' be a bije
tive mapping from � to f0; 1; � � � j�j � 1g. For 0 � x � p � 1 and

a 2 �, we de�ne a mapping �

x

as

�

x

(a) = !

x�'(a)

; (1)

where ! is a primitive p-th root of unity. Then, we have the following lemma.

Lemma 1 For any a; b 2 �,

Æ(a; b) =

1

p

p�1

X

x=0

�

x

(a) � �

x

(b);

where !

y

= !

�y

.

Proof. If a = b, we have �

x

(a) � �

x

(b) = !

0

= 1 for any 0 � x � p � 1. Hen
e,

the right side of the equation is equal to 1. If a 6= b, the di�eren
e '(a)� '(b) is an

element of Z

p

nf0g. Therefore, x � ('(a) � '(b)) is valued 0; : : : ; p � 1 modulo p for

0 � x � p� 1. Thus, we have

P

p�1

x=0

�

x

(a) � �

x

(b) =

P

p�1

x=0

!

x�('(a)�'(b))

= 0. 2

Lemma 2 By using the mapping �

x

, the s
ore ve
tor between a text of length n and

a pattern of length m over an alphabet � 
an be 
omputed in O(j�jn logm) time.

Proof. By the de�nition of the s
ore ve
tor and Lemma 1, the s
ore ve
tor is




i

=

1

p

p�1

X

x=0

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

): (2)

Therefore, the s
ore ve
tor is obtained by 
omputing the 
onvolution

f(i) =

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

) (1 � i � n)

p times. Sin
e p = O(j�j), we have the lemma. 2
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2.2 Analysis of Varian
e

In the same way as the algorithm by Atallah et al. [1℄, we 
an 
onstru
t a randomized

algorithm in whi
h an estimate for the s
ore ve
tor is obtained by 
hoosing some

mappings from �. We de�ne a sample s

i

of an element 


i

of the s
ore ve
tor to be

s

i

=

m

X

j=1

�

x(`)

(t

i+j�1

) � �

x(`)

(p

j

):

Let k be the number of 
hosen samples. Then, an estimate ŝ

i

for the element 


i

of

the s
ore ve
tor is de�ned by

ŝ

i

=

1

k

k

X

`=1

s

i

:

By Eq. (2), it is 
lear that the mean of the estimates is equal to 


i

. The following

lemma gives the upper-bound of the varian
e of the estimates.

Lemma 3 In a randomized algorithm 
onstru
ted with the mapping �

x

, the varian
e

of the estimates for the s
ore ve
tor is bounded by (m� 


i

)

2

=k.

Proof. We denote by V (X) the varian
e of a random variable X. By the de�nition

of the estimate and the basi
 property of varian
e, we have V (ŝ

i

) = V (s

i

)=k. Sin
e

�

x(`)

(a) � �

x(`)

(a) = 1 and j�

x(`)

(a) � �

x(`)

(b)j = 1 for any 1 � ` � j�j and any a; b 2 �,

the varian
e of the samples is V (s

i

) =

P

j�j

`=1

(

P

m

j=1

�

x(`)

(t

i+j�1

) � �

x(`)

(p

j

)� 


i

)

2

=j�j �

(m� 


i

)

2

. 2

2.3 Des
ription of Algorithm

We des
ribe the algorithm whi
h uses the mapping �

x

in detail. The input is a text

string T = t

1

� � � t

n

, a pattern string P = p

1

� � � p

m

over an alphabet �, and a number k

of iterations in this algorithm. The output is an estimate for the s
ore ve
tor C(T; P )

if k < p, the exa
t s
ore ve
tor if k = p, where p is the smallest prime number su
h

that j�j � p. By the standard te
hnique [4℄ of partitioning the text, we 
an assume

n = (1 + �)m for � = O(m). The algorithm is 
onstru
ted by iterations of the

following operations.

� 
onvert the text into a numeri
al sequen
es �

x

(T ) = !

'

x

(t

1

)

� � �!

'

x

(t

(1+�)m

)

by

the mapping �

x

from � to f!

0

; : : : ; !

p�1

g;

� 
onvert the pattern into �

x

(P ) = !

�'

x

(p

1

)

� � �!

�'

x

(p

m

)

by �

x

and pad with �m

zeros;

� 
ompute the sample s

i

for 1 � i � (1 + �)m as the 
onvolution of �

x

(T ) and

the reverse of the padded �

x

(P ) by FFT.

The output is 
omputed as the average of the results of the 
onvolution for 1 �

x � k. If k = p, by Lemma 2, the output is equal to the s
ore ve
tor. If k < p,

the output is regarded as an estimate for the s
ore ve
tor obtained by a randomized

algorithm with �sampling without repla
ement�. Therefore, by Lemma 3 the varian
e

of the estimates is ((p� k)=(p� 1)) � (V (s

i

)=k).
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Theorem 1 By the algorithm with the mapping �

x

, the exa
t s
ore between a text of

length n and a pattern of length m over an alphabet � is 
omputed in O(j�jn logm)

time. Moreover, an estimate for the s
ore ve
tor is 
omputed in O(kn logm) time,

where k is the number of iterations in the algorithm and the varian
e of the estimates

is bounded by (p� k)(m� 


i

)

2

=(p� 1)k.

In generally, the varian
e of the estimates obtained by sampling without repla
e-

ment is

j�j � k

j�j � 1

� V (ŝ

i

)

where � is the set of all mappings whi
h 
onvert symbols into numbers. The 
ardi-

nality j�j of the set is j�j

j�j

in the algorithm by Atallah et al [1℄. and 2

j�j

in one

by Baba et al [2℄. Hen
e, the �nite-size 
orre
tion term (j�j � k)=(j�j � 1) is not so

e�e
tive.

A key distinguishing feature of our algorithm is that the exa
t s
ore 
an be 
om-

puted in a pra
ti
al time. Sin
e j�j is large in the two randomized algorithms, their

deterministi
 versions 
onstru
ted in a similar way as our algorithm are not pra
ti
al

for a large alphabet. Although the deterministi
 algorithm generalized by Gus�eld [7℄


an be extended to a randomized algorithm in the same way as our algorithm, the

varian
e of the estimates depends on the number of alphabets.

3 Improvement of Algorithm

We propose two te
hniques to improve the algorithm in the previous se
tion.

3.1 Removal of Defe
tive Mapping

Our mappings 
onvert the di�erent symbols to the distin
t numeri
al values. But

only the mapping �

0


onverts all symbols to 0. Therefore, we remove the mapping

�

0

from the set �. That is possible without 
omputing 
onvolution.

By Eq. (1), Æ(a; b) =

1

p

P

p�1

x=0

�

x

(a) � �

x

(b) =

1

p

(

P

p�1

x=1

�

x

(a) � �

x

(b) + �

0

(a) � �

0

(b)) =

1

p

(

P

p�1

x=1

�

x

(a) � �

x

(b) + 1). Therefore, the s
ore ve
tor is 


i

=

P

m

j=1

1

p

(

P

p�1

x=1

�(t

i+j�1

) �

�(p

j

)+1) =

1

p

P

p�1

x=1

P

m

j=1

�

x

(t

i+j�1

) ��

x

(p

j

)+

m

p

: To randomize the 
omputation of 


i

,

we de�ne 


0

i

as follows: 


0

i

=

1

p�1

P

p�1

x=1

P

m

j=1

�

x

(t

i+j�1

) � �

x

(p

j

): Hen
e, 


i

=

p�1

p




0

i

+

m

p

:

We de�ne a sample s

0

i

of an element 


0

i

to be

s

0

i

=

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

):

And an estimate

^

s

0

i

is de�ned by

^

s

0

i

=

1

k

k

X

`=1

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

)

where 1 � k � p� 1.
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And an estimate ŝ

i

for the element 


i

of the s
ore ve
tor is de�ned by

ŝ

i

=

p� 1

p

1

k

k

X

`=1

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

) +

m

p

(3)

where 1 � k � p� 1.

By the di�nition of a varian
e, V (s

i

) =

(p�1)

2

p

2

V (s

0

i

). Moreover, be
ause the number

of mappings de
rease by one, the varian
e in 
onsideration of that is bounded by

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

(m� 


i

)

2

k

: (4)

3.2 Removal of Imaginary Part

The magnitude of �

x

(a) � �

x

(b) in Eq. (1) is 1. We used this magnitude for the

analysis of the varian
e until this point. However, the real part is independent of the

imaginary part. Therefore, those parts of Eq. (1) 
an be 
omputed separately.

Let <(v) be a real part of a 
omplex number v. By Lemma 1,

1

p

P

p�1

x=0

�

x

(a) ��

x

(b)

returns 0 or 1. Therefore, we 
an remove the imaginary part. Then, Æ(a; b) =

<(

1

p

P

p�1

x=0

�

x

(a) � �

x

(b)) for any a; b 2 �. By the de�nition of the s
ore, 


i

=

P

m

j=1

<(

1

p

P

p�1

x=0

�

x

(t

i+j�1

) � �

x

(p

j

)): Sin
e the order of addition is not restri
ted, the

s
ore ve
tor is




i

=

1

p

p�1

X

x=0

<(

m

X

j=1

�

x

(t

i+j�1

) � �

x

(p

j

)):

The 
omputation of the 
omplex number is ne
essary to 
ompute 
onvolution with

FFT. We only have to omit the imaginary part after the 
omputation of FFT. By this

omission, the 
omputation of both the sum of the imaginary part and the magnitude

of 
omplex number be
ome unne
essary.

The varian
e is the poorest when in
onsistent m � 
 
hara
ters are ea
h a kind

of symbol on the text and the pattern. In su
h a 
ase, �

`

(a) � �

`

(b) is �xed without

in�uen
e of j. By Eq. (1), <(�

x

(a) � �

x

(b)) = 
os �

`

, where �

`

=

2�x�('(a)�'(b))

p

. Then,

the random variable s

i

is following.

s

i

=

m

X

j=1

<(�

`

(a) � �

`

(b)) =

m

X

j=1


os �

`

= 


i


os 0+(m�


i

) 
os �

`

= 


i

+(m�


i

) 
os �

`

:

The varian
e V (s

i

) of this random variable s

i

are followings.

V (s

i

) =

p

X

`=1

(


i

+ (m� 


i

) 
os �

`

� 


i

)

2

�

1

p

=

1

p

p

X

`=1

((m� 


i

) 
os �

`

)

2

=

1

p

(m� 


i

)

2

p

X

`=1


os

2

�

`

=

(m� 


i

)

2

p

p

X

`=1

1 + 
os �

`

2
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=

(m� 


i

)

2

2p

(

p

X

`=1

1 +

p

X

`=1


os �

`

)

=

(m� 


i

)

2

2p

(p+ 0)

=

(m� 


i

)

2

2

(5)

By V (ŝ

i

) = V (s

i

)=k, the varian
e of the estimates ŝ

i

is bounded by

(m� 


i

)

2

2k

: (6)

3.3 Varian
e of Improved Algorithm

We showed two improvement points. That both 
an be applied to the basi
 algorithm

at a time.

Now, the 
hange point of the algorithm from the basis one shown in Subse
tion 2.3

is showed in the followings.

� We remove �

0

, and 
hoose a sample from the remaining mappings.

� An estimate ŝ

0

i

is 
omputed using that samples.

� Only a real part is used for a 
omputation of an estimate from the result of

FFT.

� We 
ompute ŝ

i

by Eq. (3), and make it the estimate of 


i

.

When these improvements are applied, by Eq. (4) and Eq. (6), the varian
e of the

estimates is bounded by

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

(m� 


i

)

2

2k

:

It is smaller than one in the algorithm of Se
tion 2.

4 Exa
t Estimation of Varian
e

Atallah et al. presented an upper bound of the varian
e of the estimates for the s
ore

in their algorithm as (m � 


i

)

2

=k. The reason for this varian
e is that their set of

mappings in
ludes many mappings whi
h 
onvert some di�erent symbols into same

numeri
al value. One of the features of our mappings is that it does not 
onvert some

di�erent symbols into same numeri
al value be
ause a single ex
eptional mapping

was removed in Subse
tion 3.1. Using this feature, we give an exa
t estimation of the

varian
e based on our mappings.

Let a; b be symbols in �. If a produ
t �(a) � �(b) in one position is independent

of it in other position, the estimate of

P

(m�


i

)

j

�

x

(t

j

) � �

x

(p

j

) is 0: The two following


onditions must be satis�ed for that. One of those 
onditions is that a symbol in one

position is independent of symbols in other positions. In this paper, we suppose that


ondition. The independen
e 
an not be expe
ted in the general English text mu
h.

But, we expe
t high independen
e about the 
omparison of the produ
t �(a) � �(b).

�

�

In this paper, we did not get to the veri�
ation of that point. It is a future work.
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Another 
ondition is the following lemma.

Lemma 4 If all mappings 
onvert di�erent symbols into distin
t numeri
al values,

then the produ
t �(a) � �(b) in one position is independent of that in other position.

Proof. Let t

1

; t

2

; p

1

; p

2

be symbols in �, x a value whi
h 
an be returned by mappings

and r the number of kinds of x. Let �

x

be a set of the mappings whi
h 
onvert more

than one of some symbols into x, and �

xy

denotes �

x

\ �

y

. We de�ne D

x

as the

di�eren
e between the number of x whi
h the mappings 
onvert a given symbol into

and the number of mappings used for it. The number of 
ertain value x whi
h a


ertain symbol a 
onvert to is

j�j

r

be
ause

P

j�j

`=1

�

`

(a) = 0. Then, the number of


ertain value x whi
h all the symbols 
onvert to is �. Therefore, j�

x

j = j�j �D

x

. In

the mapping that 
onverts the di�erent symbols to the distin
t numeri
al values, �

x

equal to �.

Pr(X) denotes the probability of event X. Let A be the event �(t

1

) � �(p

1

) = x

and B the event �(t

2

) � �(p

2

) = x. And let A

0

be the event �(t

1

) = d

1

, A

00

the event

�(p

1

) = d

2

, B

0

the event �(t

2

) = d

3

, and B

00

the event �(p

2

) = d

4

.

If a 
ertain event o

urred, that a result of a mapping was value x, the mapping in

the next event is restri
ted to mappings whi
h return value x. After the event A, a set

of mappings is �

d

1

d

2

be
ause the mapping returned d

1

and d

2

were used in the event

A. A probability that a mapping return a value x is (the number of 
ombinations

of the mapping and the symbol whi
h 
an return x)/(the produ
t of the number of

mappings and the number of symbols). Then we have

Pr(B

0

) =

1

r

� j�j � j�j

j�j � j�j

=

1

r

;

Pr(B

00

jB

0

) =

1

r

� j�j � j�j

j�

d

3

j � j�j

=

j�j

r � j�

d

3

j

;

Pr(B) =

r�1

X

d

3

=0

Pr(B

0

) Pr(B

00

jB

0

) =

r�1

X

d

3

=0

(

1

r

�

j�j

r � j�

d

3

j

) =

1

r

2

r�1

X

d

3

=0

(

j�j

j�

d

3

j

);

and

Pr(BjA) =

r�1

X

d

3

=0

(

j�j

r � j�

d

1

d

2

j

�

j�j

r � j�

d

1

d

2

d

3

j

) =

1

r

2

r�1

X

d

3

=0

(

j�j

2

j�

d

1

d

2

j � j�

d

1

d

2

d

3

j

):

We get Pr(BjA) 6= Pr(B), hen
e �(t

1

) � �(p

1

) is not independent of �(t

2

) � �(p

2

).

However, if � = �

d

1

d

2

= �

d

1

d

2

d

3

, then Pr(BjA) = Pr(B). This 
ondition is satis-

�ed only when all mappings should 
onvert di�erent symbols into distin
t numeri
al

values. 2

Other two mappings 
an not satisfy the 
ondition of Lemma 4 while only our

mappings 
an satisfy it in 
ase of j�j = p. Therefore, we add a dummy symbol in


ase of j�j < p. Then we 
an 
orre
t a sampling bias be
ause we 
an know that by

the dummy symbol in advan
e.

When �

`

is drawn uniformly randomly from �, the random variable ŝ is ŝ =

1

k

P

k

`=1

P

m

j=1

�

`

(t

j

) � �

`

(p

j

):

Then, we get the following lemma.
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Lemma 5 Given that the produ
t �(a)��(b) in one position is independent of that in

other position. When 
 symbols align in the m symbols, the varian
e V (ŝ) of random

variable s are

V (ŝ) =

m� 


i

k

:

Proof. Let s

j

be the random variable as �

`

(t

j

) � �

`

(p

j

), then s

j

= �

`

(t

j

) � �

`

(p

j

) =

!

d(t

j

;p

j

)

where d(t

j

; p

j

) = x � ( (t

j

)�  (p

j

)). s

(t

j

=p

j

)

denotes that s in t

j

= p

j

and

s

(t

j

6=p

j

)

denotes that s in t

j

6= p

j

.

If t

j

= p

j

, s

j

= 1. If t

j

6= p

j

, s

j

= !

d(t

j

;p

j

)

: Then, those means are E(s

(t

j

=p

j

)

) =

1; E(s

(t

j

6=p

j

)

) =

P

p�1

x=0

!

d(t

j

;p

j

)

�

1

p

= 0: And those varian
e are V (s

(t

j

=p

j

)

) = (s

(t

j

=p

j

)

�

E(s

(t

j

=p

j

)

))

2

� 1 = (1 � 1)

2

� 1 = 0; V (s

(t

j

6=p

j

)

) =

P

p�1

x=0

(s

(t
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=
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j

)

j)
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=

1

p

P

p�1

x=0

1 = 1:

Be
ause we assume that the produ
t �(a) � �(b) in one position is independent of

that in other position, a varian
e V (s) of s are the simple total of a varian
e of every

position. Then, V (s) =

P




V (s

(t

j

=p

j

)

)+

P

m�


i

V (s

(t

j

6=p

j

)

) =

P




0+

P

m�


i

1 = m� 


i

:

Using k samples s, a varian
e V (ŝ) of the estimate s is V (ŝ) =

1

k

V (s). Then

V (ŝ) =

m� 


i

k

:

2

This analysis 
an be applied to the algorithm whi
h improvement in Se
tion 3 was

added to.

Then Eq. (5) 
hanges as follow,
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p

=
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=
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p�1
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=
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p

p�1

X

x=0

1 + 
os
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p

2

=

1

2p
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p�1

X

x=0

1 +

p�1

X
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os

2�g(a; b)

p

)

=

1

2

(7)

By Eq. (7), we analyze the varian
e as the proof of Lemma 5.

V (ŝ) =

m� 


i

2k

: (8)

By Eq. (4) and Eq. (8), we get the following theorem.

Theorem 2 The varian
e of the estimates for the s
ore in our algorithm is

V (ŝ) =

(p� 1)

2

p

2

�

p� 1� k

p� 2

�

m� 


i

2k

:
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Con
lusion

We gave an e�
ient randomized algorithm for string mat
hing with mismat
hes. This

randomized algorithm uses 
onvolution with FFT, like that proposed by Atallah et

al. and Baba et al. We used the mappings whi
h 
onvert the symbols to the p-

adi
 number �eld. One of the features of our mappings is that it does not 
onvert

some di�erent symbols into same numeri
al value. By that feature, the varian
e of the

estimate of the s
ore ve
tor is smaller. The other feature of our mappings is that there

are not so many mappings. The number of mapping is p�1 where j�j � p < 2j�j�2.

We analyzed the varian
e of the estimates for the s
ore in this algorithm. And it

is very small as 
ompared to the randomized algorithms proposed in the past. The

varian
e in this algorithm is

(p�1)

2

p

2

�

p�1�k

p�2

�

m�


i

2k

. Its time 
omplexity is O(kn logm)

where k is the number of samples, and the upper bound of k is p � 1. When k is

p� 1, this algorithm is deterministi
, and the estimate be
omes the real value.

Experiments with read texts and the evaluation of 
omputation time are future

work. We have a plan to apply the method for pattern extra
tion from Web pages [8℄.
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