
An E�cient Multi-Attribute Pattern Matching

Machine

Kazuaki Ando, Masami Shishibori and Jun-ichi Aoe

Department of Information Science & Intelligent Systems

Faculty of Engineering

Tokushima University

2-1 Minami-Josanjima-Cho

Tokushima-Shi 770

Japan

e-mail: fando, aoeg@is.tokushima-u.ac.jp

Abstract. We describe an e�cient multi-attribute pattern matching machine

to locate all occurrences of any of a �nite number of the sequence of rule struc-

tures (called matching rules) in a sequence of input structures. The proposed al-

gorithm enables us to match set representations containing multiple attributes.

Therefore, in proposed algorithm, con�rming transition is decided by the re-

lationship, whether the input structure includes the rule structure or not. It

consists in constructing a �nite state pattern matching machine from matching

rules and then using the pattern matching machine to process the sequence of

input structures in a single pass. Finally, the pattern matching algorithm is

evaluated by theoretical analysis and the evaluation is supported by the simu-

lation results with rules for the extraction of keywords.

Key words: string pattern matching, set representation, multi-attribute pat-

tern matching, �nite state pattern matching machine, matching algorithm

1 Introduction

String pattern matching [Aho75, Aho90, Knut77, Aoe84, Fan93, Boye77] is an im-

portant component of many areas in science and information processing. A string

pattern matching machine has been applied to various �elds such as the lexical anal-

ysis of a compiler [Aho86], voice recognition [Take93], bibliographic search [Aho75],

spelling checking [Pete80], text editing and so on. Aho and Corasick describe a sim-

ple, e�cient string pattern matching machine [Aho75] (hereafter called C machine)

to locate all occurrences of �nite number of keywords in a text string in a single

pass. However, in the AC machine, the input is restricted to characters. In addition,

a multi-attribute input is very useful for many applications, such as, extraction of

keywords [Kimo91, Ogaw93], document processing [Ikeh93], and so on. Moreover,

the multi-attribute pattern matching is necessary for the realization of higher pattern

matching.

This paper describes an e�cient multi-attribute pattern matching machine (here-

after called MAPM machine) to locate all occurrences of any of a �nite number of

1

Proceedings of the Prague Stringologic Club Workshop '96

matching rules in a sequence of input structures and a method for constructing the

multi-attribute pattern matching machine. The proposed algorithm enables us to

match set representations containing multiple attributes.

In the following chapters, the multi-attribute pattern matching scheme is described

in detail. Chapter 2 explains an e�cient string pattern matching machine based on

Aho and Corasick. Chapter 3 describes the multi-attribute matching rules for the

MAPM machine and an e�cient algorithm for these matching rules. Chapter 4

explains the construction of the goto, output and failure functions for the MAPM

machine. Chapter 5 shows the theoretical estimations and experimental evaluations

for the MAPM machine. Finally, in Chapter 6 the future research is discussed.

2 The Aho-Corasick Algorithm

This chapter explains an e�cient string pattern matching machine, where a �nite

state string pattern matching machine based on Aho and Corasick [Aho75] locates

all occurrences of any of a �nite number of keywords in a text string.

Let K SET be a �nite set of strings which we shall call keywords and let TX be

an arbitrary string which we shall call the text string. The AC machine is a program

which takes as input the text string TX and produces as output the locations in TX

at which the keywords (elements of K SET) appear as substrings. The AC machine

is constructed as a set of states. Each state is represented by a number. The state

number 0 represents an initial state.

With I as the set of input symbols, the behavior of the AC machine is de�ned by

next three functions:

goto function g : S � I ! S [ffailg,

failure function f : S ! S,

output function output : S ! A, subset of K SET .

Figure 1 shows the functions, from Aho et. al., used by the machine AC for the

set of keywords K SET = f\another", \other", \to", \he", \with"g. Here, :f`a', `o',

`t', `h', `w'g denotes all input symbols other than `a', `o', `t', `h' or `w'.

The directed graph in Figure 1 (a) represents the goto function. For example, the

transition labeled `a' from state 0 to state 1 indicates that g(0,`a') = 1. The absence

of the arc indicates fail. The AC machine has the property that g(0;`�') 6= fail for

all input symbols �. The behavior of the AC machine is summarized below.

2

An E�cient Multi-Attribute Pattern Matching Machine

(b) The failure function.

 s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(s) 0 0 8 9 10 11 12 0 13 15 16 0 0 8 0 0 0 0 13 15

(c) The output function.

 s output (s)

 6 { he }

 8 { another, other }

11 { he }

12 { other }

14 { to }

16 { he }

20 { with }

51 2 3 40 6 7

8

a n o t h

9 10 11 12

13 14

15 16

17 18 19 20

e r

o t h e

e

w

o

r

t

t

h

hi

 {a,o,t,h,w}

(a) The goto function.

Figure 1: The function of the AC machine.

Algorithm 1: The AC machine.

[Input]: A target text TX = c

1

c

2

:::c

n

, where each c

i

, for 1 � i � n, is an input

symbol and an AC machine with goto function g, failure function f , and output

function output.

[Output]: Locations at which the keywords occur in TX.

[Method]:

begin

s 0;

for i 1 until n do

begin

while g(s; c

i

) = fail do s f(s);

s g(s; c

i

);

if output(s) 6= � then

print i; output(s);

end

end

(Example 1) Consider the behavior of the AC machine that uses the functions in

Figure 1 to process the text string \stothe". Since g(0,`s') = 0, the machine enters

the state 0. Since g(0,`t') = 13, g(13,`o') = 14, the AC machine enters state 14,

3

Proceedings of the Prague Stringologic Club Workshop '96

advances to the next input symbol and emits output(14), indicating that it has found

the keywords \to" at the end of position 3 in the text string. In state 14 with the

input symbol `t', the AC machine makes two state transitions in its operating cycle.

Since g(14,`t') = fail, the AC machine enters the state 8 = f(14). At this point, since

g(8,`t') = 9, the AC machine enters state 9. Hereafter since g(9,`h') = 10, g(10,`e')

= 11, the AC machine enters state 11 and computes the matching operation after

detecting keyword \he". (END)

The AC algorithm consists in constructing a �nite state pattern matching machine

from the keywords and then using the machine to process the text string in a single

pass. Construction of the AC machine takes a time proportional to the sum of the

lengths of the keywords.

3 AMulti-Attribute Pattern Matching Algorithm

This chapter explains an algorithm of an e�cient multi-attribute pattern matching

machine (called MAPM machine). The MAPM machine is a extension of the Aho-

Corasick Algorithm. Section 3.1 describes the multi-attribute matching rules for the

MAPM machine. In Section 3.2, an e�cient algorithm of these matching rules is

presented.

3.1 Matching rules for the MAPM machine

Let ATTR be the attribute name and let V ALUE be the attribute value. Let R be

a �nite set of pairs (ATTR; V ALUE), then we shall call R a rule structure. For

example, the following attributes are considered.

STR : string, that is, word spelling.

CAT : category, or, a part of speech.

SEM : semantic information such as concepts and categories.

For example, the rule structure R of \doctor" is de�ned using the above attributes

as follows:

R = f(STR, \doctor"), (CAT;Noun); (SEM;Human)g

If RULE is the matching rule consisting of a sequence of rule structures, RULE

is de�ned as follows:

RULE = R

1

R

2

:::R

n

(1 � n)

Let R SET be a set of RULE.

(Example 2) Consider the following example of a R SET .

R SET = fRULE

1

; RULE

2

g

RULE

1

= R

1

R

3

; RULE

2

= R

2

R

3

R

1

= f(STR; \male")g

R

2

= f(STR; \female")g

R

3

= f(SEM1;Male); (SEM2; Imago)g

4

An E�cient Multi-Attribute Pattern Matching Machine

RULE

1

is a rule to detect tautology expressions and RULE

2

is a rule to detect

contradictory expressions. For example, RULE

1

can detect the expression of \male

man" or \male bull" and so on, RULE

2

can detect the expression of \female ram" or

\female stallion" and so on. By using the multiple attributes for pattern matching,

it is easy to de�ne an abstraction rule. (END)

Input structures to be matched by rule structures are also de�ned by the same

set representation. N is used as the notation for input structures to distinguish them

from R. In order to consider the abstraction of the rule structure, matching of the

rule structure R and the input structure N are decided by the relationship such that

N includes R (N � R).

3.2 A Matching Algorithm

Let � be a sequence of the input structures. The MAPM machine is a program which

takes as input � and produces as output the locations in a � at which every RULE in

R SET appears as subsequences of structures. The MAPM machine consists of a set

of states. Each state is represented by a number. One state (usually 0) is designated as

the initial state. The MAPMmachine processes a � by successively reading the input

structure N in a �, making state transitions and occasionally emitting an output.

Let S

e

be a set of states and let J be a set of the rule structure R, then the

behavior of the MAPM machine is de�ned by next three functions:

goto function g

e

: S

e

� J ! S

e

[ffailg,

failure function f

e

: S

e

! S

e

,

output function output

e

: S

e

! A

e

; subset ofR SET .

Figure 2 shows the functions used by the machine MAPM for a R SET =

fRULE

1

; RULE

2

; RULE

3

; RULE

4

g. Here : indicates all input structures except

R

1

and R

3

.

As the AC machine, the goto function g

e

maps a pair consisting of a state and an

input structure into a state or the message fail. The directed graph in Figure 2 (a)

represents the goto function. The failure function f

e

maps a state into a state. The

failure function is constructed whenever the goto function reports fail. Certain states

are designated as output states which indicate that a RULE has been found. The

output function formalizes this concept by associating R SET (possible empty) with

every state.

In the MAPM machine, a con�rming transition is decided by the relationship,

whether the input structure N includes the rule structure R or not. Therefore, in

order to con�rm a transition from certain state to next state using the relationship,

we de�ne a function CHECK(state;N) as follows:

[Function CHECK(state;N)]

For each transition g

e

(state;R) = next state in the goto graph, if some transi-

tion labeled R which satis�es the relationship (N � R) exists, then it returns all

next state, otherwise it returns fail.

(Example 3) Suppose that g

e

(s

1

; R

1

) = s

2

and g

e

(s

1

; R

2

) = s

3

are de�ned in the goto

graph and R

1

and R

2

are de�ned as follows:

5

Proceedings of the Prague Stringologic Club Workshop '96

(a) The goto function.

 s 1 2 3 4 5 6 7 8

f(s) 0 0 6 9 0 0 0 1

(b) The failure function.

(c) The output function.

 R_SET = { RULE1, RULE2, RULE3, RULE4 }

 RULE1 = R1 R2

 RULE2 = R1 R3 R4 R5

 RULE3 = R3 R6

 RULE4 = R3 R6 R1

 R1 = { (CAT, Adjective) }

 R2 = { (CAT, Noun), (SEM1, Flower) }

 R3 = { (CAT, Noun), (SEM1, Human),

 (SEM2, Female) }

 R4 = { (STR, "like"), (CAT, Verb) }

 R5 = { (CAT, Noun) }

 R6 = { (STR, "are"), (CAT, Verb) }

(d) R_SET = { RULE1, RULE2, RULE3, RULE4 }.

1 20

5

R1 R2

3 4

6 7 8

R3 R4

R6R3 R1

{R1, R3 }

R5

 s outpute (s)

 2 { R1, R2 }

 5 { R1, R3, R4, R5 }

 7 { R3, R6}

 8 { R3, R6, R1}

Figure 2: The functions of the MAPM machine for R SET .

R

1

= (SEM;Human)

R

2

= (CAT;Noun))

Consider the behavior of the function CHECK to process the following N

1

and

N

2

.

N

1

= (STR, \mother"), (CAT;Noun); (SEM;Human)

N

2

= (STR, \beautiful"), (CAT;Adjective)

For N

1

the function CHECK returns s

2

and s

3

to satisfy R

1

� N

1

and R

2

� N

1

.

In the case of N

2

, R

1

� N

2

and R

2

� N

2

are not satis�ed, therefore the function

CHECK returns fail. (END)

Algorithm 2 summarizes the behavior of the MAPM machine.

6

An E�cient Multi-Attribute Pattern Matching Machine

Algorithm 2: A Multi-Attribute Pattern Matching machine (MAPM machine).

[Input]: A sequence of input structures � = N

1

; N

2

; :::; N

n

, where each N

i

is an

input structure and a MAPM machine with goto function g

e

, failure function f

e

, and

output function output

e

.

[Output]: Locations at which sequences of structure were extracted.

[Method]:

begin

queue

1

 0;

for i 1 until n do

begin

queue

2

 empty;

while queue

1

6= � do

begin

temp empty;

let state be the next state in queue

1

;

queue

1

 queue

1

� state;

while CHECK(state;N

i

) = fail do state f

e

(state);

temp CHECK(state;N

i

);

queue

2

 queue

2

[temp;

while temp 6= � do

begin

let element be the next state in temp;

temp temp� element;

if output

e

(element) 6= � then

begin

print i;

output

e

(element)

end

end

end;

queue

1

 queue

2

end

end.

As we have mentioned before, in this algorithm, con�rming transitions are decided

by the relationship (N � R). Therefore, it has the possibility that some R such that

N includesR exist among those transitions. In order to solve this problem, Algorithm

2 stores all states returned by the function CHECK in a �rst-in-�rst-out list denoted

by the variable queue

1

, and the MAPM machine continues to process for each state

in queue

1

.

(Example 4) Figure 2 shows the functions used by the MAPMmachine for a R SET =

RULE

1

; RULE

2

; RULE

3

; RULE

4

. Consider the behavior of the MAPM machine

that uses the functions in Figure 2 to process the sequence of the input structures

� = N

1

N

2

N

3

N

4

N

5

N

6

.

N

1

= (STR, \beautiful"), (CAT;Adjective)

N

2

= (STR, \rose"), (CAT;Noun), (SEM1; F lower)

7

Proceedings of the Prague Stringologic Club Workshop '96

N

3

= (STR, \and"), (CAT;Conjunction)

N

4

= (STR, \pretty"), (CAT;Adjective)

N

5

= (STR, \girl"), (CAT;Noun), (SEM1;Human), (SEM2; F emale)

N

6

= (STR, \are"), (CAT; V erb)

Since N

1

includes R

1

and N

2

includes R

2

, CHECK(0,N

1

) = 1 and CHECK(1, N

2

)

= 2, the MAPM machine enters state 2, advances to the next input structure and

emits the output

e

(2), indicating that it has found the RULE

1

at the end of position

2 in the �. Since N

3

doesn't include R

1

or R

3

, CHECK(0, N

3

) = 0, the MAPM

machine enters the state 0. Since N

4

includes R

1

and N

5

includes R

3

, CHECK(0,

N

4

) = 1, CHECK(1, N

5

) = 3, the MAPM machine enters state 3. In state 3 with the

input structure N

6

, the MAPM machine makes two state transitions in this operating

fashion. Since N

6

doesn't include R

4

, CHECK(3, N

6

) = fail, the MAPM machine

enters the state 6 = f

e

(3). At this point, since N

6

includes R

6

, CHECK(6, N

6

) = 7,

the MAPM machine enters state 7, emits output

e

(7), indicating that it has found the

RULE

3

at the end of position 6 in the �. (END)

The MAPM algorithm consists in constructing a �nite state pattern matching

machine from matching rules and then using the machine to process the sequence of

input structures in a single pass.

4 Construction of Goto, Output and Failure Func-

tion for the MAPM Machine

This chapter explains the construction of the goto, output and failure function for

the MAPM machine. Although the construction of the MAPM machine is similar to

the construction of the AC machine [Aho75], the point which changes a transition

label for the goto function to a set is di�erent from the AC machine. Therefore,

the decision of the same transition when the goto, failure and output functions are

constructed is de�ned as follows:

[Condition for the equivalency of rule structures]

If the number of elements of rule structure R

1

and R

2

are equal and each of the

elements (ATTR; V ALUE) of R

1

and R

2

are equal, then we de�ne R

1

equal to R

2

(R

1

= R

2

).

In order to examine the equivalency of rule structures, we de�ne a function

ARC(state;R). The function ARC returns a next state that satis�es the condition

for the equivalency of rule structures. The following shows the function ARC.

[Function ARC(state;R

2

)]

For each transition g

e

(state;R

1

) = next state in the goto graph, if R

1

= R

2

, then

the function ARC returns a next state, otherwise it returns fail.

(Example 5) Suppose that g

e

(state

1

; R

1

) = state

2

is de�ned in the goto graph and

R

1

is de�ned as:

8

An E�cient Multi-Attribute Pattern Matching Machine

R

1

= (CAT;Noun); (SEMHuman)

Consider the behavior of the function ARC to process the following rule structures

R

2

and R

3

:

R

2

= (CAT;Noun); (SEM;Human)

R

3

= (CAT;Noun)

For R

2

, ARC returns state

2

to satisfy the condition for the equivalency of rule

structures R

1

= R

2

. For R

3

, the function CHECK doesn't satisfy the condition for

the equivalency of rule structures R

1

= R

3

and therefore returns fail. (END)

Algorithm 3 summarizes the method for the construction of the goto and output

functions for the MAMP machine. Algorithm 4 summarizes the method for the

construction of the failure and output functions for the MAMP machine.

Algorithm 3: Construction of the goto function.

[Input]: Set of RULE R SET = RULE

1

; RULE

2

; :::; RULE

k

.

[Output]: Goto function g

e

and a partially computed output function output

e

.

[Method]: We assume output

e

(s) is empty when state s is �rst created, and

g

e

(s;R) = fail if R is unde�ned or if g

e

(s;R) has not yet been de�ned. The procedure

enter(RULE) inserts into the goto graph a path that spells out RULE.

begin

newstate 0;

for i 1 until k do enter(RULE

i

);

for all R such that ARC(0, R) = fail do g

e

(0; R) 0;

end

procedure enter(R

1

; R

2

; :::; R

m

)

begin

state 0; j 1;

while ARC(state;R

j

) 6= fail do

begin

state ARC(state;R

j

);

j j + 1

end

for p j until m do

begin

newstate newstate+ 1;

g

e

(state;R

p

) newstate;

state newstate;

end

output

e

(state) R

1

; R

2

; :::; R

m

end

9

Proceedings of the Prague Stringologic Club Workshop '96

Algorithm 4: Construction of the failure function.

[Input]: Goto function g

e

and output function output

e

from Algorithm 3.

[Output]: Failure function f

e

and output function output

e

.

[Method]:

begin

queue empty;

for each R such that ARC(0, R) = s 6= 0 do

begin

queue queue[s;

f

e

(s) 0

end

while queue 6= empty do

begin

let r be the next state in queue;

queue queue� r;

for each R such that ARC(r;R) = s 6= fail do

begin

queue queue[s;

state f

e

(r);

while ARC(state;R) = fail do state f

e

(state);

f

e

(s) ARC(state;R);

output

e

(s) output

e

(s) [output

e

(f

e

(s))

end

end

end

(Example 6) Consider the construction of the MAPM machine for the R SET =

RULE

1

; RULE

2

; RULE

3

; RULE

4

in Figure 2 (d). In the �rst place, the states and

the goto function are determined according to Algorithm 3. Second, the failure func-

tion is computed according to Algorithm 4. The output function is constructed

according to both Algorithms. The decision of the same transition when the goto,

failure and output functions are constructed is decided by the equivalency of the rule

structures.

Firstly, consider the construction of goto function. Adding the �rst rule RULE

1

to the graph, g

e

(0; R

1

) = 1 and g

e

(1; R

2

) = 2 are constructed as shown in Figure 3 (a).

At this point, the output \R

1

; R

2

" is associated with state 2.

Adding the second rule RULE

2

, Figure 3 (b) is obtained. Since ARC(0, R

1

)

= 1, notice that when the rule structure R

1

in RULE

2

is added there is already

a transition labeled \R

1

" from state 0 to state 1. Therefore it is not needed to add

another transition labeled \R

1

" from state 0 to state 1. After that, g

e

(1; R

3

) = 3,

g

e

(3; R

4

) = 4 and g

e

(4; R

5

) = 5 are constructed as shown Figure 3 (b). The output

\R

1

; R

3

; R

4

; R

5

" is associated with state 5.

Adding the third rule RULE

3

, g

e

(0; R

3

) = 6 and g

e

(6; R

6

) = 7 are constructed as

shown in Figure 3 (c). The output \R

3

; R

6

" is associated with state 7.

Adding the last rule RULE

4

, Figure 3 (d) is obtained. The output \R

3

; R

6

; R

1

"

is associated with state 8. Here, since ARC(0, R

3

) = 6 and ARC(6, R

6

) = 7, we have

been able to use the existing transition labeled R

3

from state 0 to state 6 and the

10

An E�cient Multi-Attribute Pattern Matching Machine

1 20
R1 R2

(a) The graph for RULE1.

1 20

5

R1 R2

3 4
R3 R4 R5

(b) The graph for RULE1 and RULE2.

1 20

5

R1 R2

3 4

6 7

R3 R4

R6R3

R5

(c) The graph for RULE1, RULE2 and RULE3.

1 20

5

R1 R2

3 4

6 7 8

R3 R4

R6R3 R1

R5

(d) The graph for RULE1, RULE2, RULE3 and RULE4.

1 20

5

R1 R2

3 4

6 7 8

R3 R4

R6R3 R1

 {R1, R3 }

R5

(e) The graph for R_SET.

Figure 3: The construction of the goto graph for R SET .

existing transition labeled R

6

from state 6 to state 7. To complete the construction

of the goto function, a loop from state 0 to state 0 on all the input structures other

than \R

1

" and \R

3

", is added to the graph. Finally, Figure 3 (e) is obtained.

Next, consider the construction of the failure function. To compute the failure

function from Figure 3 (e), f

e

(1) = f

e

(6) = 0 is set since state 1 and 6 are the states

of depth 1. Then the failure function for state 2, 3 and 7, the states of depth 2,

is computed. To compute f

e

(2), state = f

e

(1) = 0 is set; and since ARC(0, R

2

) =

0, f

e

(2) = 0 is determined. To compute f

e

(3), state = f

e

(1) = 0 is set, and since

ARC(0, R

3

) = 6, f

e

(3) = 6 is determined. To compute f

e

(7), state = f

e

(6) = 0 is

set; and since ARC(0, R

6

) = 0, f

e

(7) = 0 is determined. Continuing in this fashion,

the failure function shown in Figure 2 (b) is obtained.

Finally, the goto, failure and output functions are constructed as shown in Fig-

ure 2 (b) and (c). (END)

11

Proceedings of the Prague Stringologic Club Workshop '96

5 Evaluation

In this chapter, the theoretical estimations and experimental evaluations for the

MAPM machine are presented. Section 5.1, describes the theoretical estimations

for the MAPM machine, and in Section 5.2, it is evaluated by applying it to the

extraction of keywords [Kimo91, Ogaw93].

5.1 Theoretical Estimations

Suppose that the time complexity for con�rming a transition in the MAPM machine

is O(1). Let m be the length of sequence of input structures �. The time complexity

of matching Algorithm 2 by the MAPM machine is O(m), because the matching

cost of the AC machine is independent of the number of matching rules (keywords).

However, the precise complexity for con�rming a transition depends on the cost of

the function CHECK and queue

1

in Algorithm 2.

Consider the time complexity of the function CHECK. By using the order of

attributes names, sets of input and rule structures can be represented as the sorted-

list whose nodes are denoted by (attribute-name, attribute-value, pointer). Similarly,

the goto function is represented by the list structure. Let K be the kinds of attribute

names. In the function CHECK, the time complexity for judging the relationship,

whether the input structure includes the rule structure or not, is similar to the cost

(K + K = 2K) of merging two sorted lists of maximum length K into one list.

Therefore, the time complexity of judging the relationship is O(K). Suppose that B

is the maximum number of transitions leaving from certain state s. Then, the time

complexity of the function CHECK is O(KB). Although this cost is more than that

of the AC machine, an expression ability of rules for the MAPM machine is higher

than the rule for the AC machine.

From the above observation, consider the time complexity of con�rming a tran-

sition. Let D be the maximum number of the states in queue

1

. The complexity is

O(KBD), because queue

1

has all states returned by the function CHECK in Algo-

rithm 2.

The time complexity for constructing the AC machine is proportional to the total

length h of keywords. On the other hand, the time complexity for the construction of

the MAPM machine is O(hK) in the worst-case, because con�rming transitions de-

pends on the function ARC and the time complexity for determining the equivalency

of the rule structures in the function ARC is the same cost O(K) as the function

CHECK.

5.2 Experimental Evaluations

The MAPM machine is evaluated by applying it to the extraction of keywords

[Kimo91, Ogaw93]. For experimental evaluations, the MAPM machine has been

implemented on a DELL OptiPlex GXMT5133 and it has been written in the C

language.

In order to evaluate the e�ciency of the proposed algorithm, we de�ned 112 rules

for the extraction of keywords. Table 1 shows the information about the rules for

the extraction of keywords. The information about RULE are the values for each

12

An E�cient Multi-Attribute Pattern Matching Machine

Total number of kinds of attribute names 5

Information about RULE

Total number 112

Average length 2.5

Average number of kind of attributes names 1.9

Construction time of the MAPM machine [sec] 0.543

Table 1: Information about RULE and construction time.

Text1 Text2 Text3 Average

Number of words 411 233 197 280.0

Matching time [ms] 20.9 10.3 7.4 12.9

Number of extracted keywords 18 15 15 16.0

Table 2: The results of the simulation.

rule structure. From the average number, 1.9, of kinds of attribute names, it turns

out that the attribute of each structure was abstracted e�ectively. It seems that the

construction time (CPU time), 0.543 second, is practical.

Table 2 shows the results of the simulation using the above rule. To perform the

simulation of the extraction of keywords, the following three texts were used.

Text1: General document, such as letter, journal, etc.

Text2: Abstract of a paper.

Text3: Document of patents.

From the average matching time in Table 2, the e�ciency of the proposed algo-

rithm could be veri�ed. As shown by the theoretical estimations, the time complexity

of the MAPM machine depends on the cost of the function CHECK. In the simula-

tion, the attribute of each structure was abstracted e�ectively, such that the average

of number of kinds of attribute names is 1.9. Consequently, good results could be

obtained.

6 Conclusions

We have described an e�cient method for multi-attribute pattern matching in this

paper. A multi-attribute pattern matching is useful for many applications and the

proposed algorithms enable the realization of higher pattern matching. The presented

algorithm are evaluated by theoretical estimation and the experimental evaluation is

supported by simulation results for the extraction of keywords.

In the proposed algorithms, it takes time to judge whether the input structure

includes the rule structure or not. Therefore, as future extension, we are considering

an e�cient data structure and an e�cient decision algorithm for the judging of the

relationship, whether the input structure includes the rule structure or not. We

13

Proceedings of the Prague Stringologic Club Workshop '96

believe the proposed method is very useful for any existing and future computing

system that would require an e�cient multi-attribute pattern matching.

References

[Aho75] A.V. Aho { M.J. Corasick: E�cient String Matching : An Aid to

Bibliographic Search. Comm. ACM, Vol.18, No.6, pp.333-340, 1975.

[Aho90] A.V. Aho: Algorithms for Finding Patterns in Strings. in J. Leeuwen,

ed., Handbook of Theoretical Computer Science, Elsevier Science Pub-

lishers, pp.275-300, 1990.

[Aho86] A.V. Aho { R. Sethi { J.D. Ullman: Compilers Principles, Techniques

and Tools. Reading MA: Addison-Wesley, ch. 2, 1986.

[Knut77] D.E. Knuth { J.H. Morris, Jr. { V.R. Pratt: Fast pattern matching in

strings. SIAM J.Comput., Vol.6, pp.323-350, June 1977.

[Kimo91] H. Kimoto: Automatic Indexing and Evaluation of Keywords for

Japanese Newspapers. Ttrans. of the Institute of Electronics, Informa-

tion and Communication Engineers of Japan, D-I Vol.J74-D-I, No.8,

pp.556-566, Aug. 1991. (in Japanese)

[Aoe84] J. Aoe { Y. Yamamoto { R. Shimada: A Method for Improving String

Pattern Matching Machine. IEEE Trans. Software. Eng., Vol.10, No.6,

pp.116-120, 1984.

[Fan93] J.-J. Fan { K.-Y. Su: An e�cient algorithm for matching multiple

patterns. IEEE Trans. Knowledge and Data Eng., KDE-5, 2, pp.339-

351, 1993.

[Pete80] J. L. Peterson: Computer Programs for Spelling Correction. Lecture

Notes in Computer Science, New York: Springer-Verlag, 1980.

[Boye77] R.S. Boyer { J.S. Moore: A fast string pattern matching algorithm.

Comm. ACM, Vol.20, No.10, pp.762-772, 1977.

[Ikeh93] S. Ikehara { E. Ohara { S. Takagi: Natural Language Processing for

Japanese Text Revision Support System. Journal of Information Pro-

cessing Society of Japan, Vol.34, No.10, pp.1249-1258, Oct. 1993. (in

Japanese)

[Ogaw93] Y. Ogawa { M. Mochinushi { A. Bessho: A Compound Keyword As-

signment Method for Japanese Texts. Research Report, Information

Processing Society of Japan, 93-NL-97-15, pp.103-109, Sep. 1993. (in

Japanese)

[Take93] Y. Takebayashi: Natural Language Processing in Speech Understand-

ing and Dialogue. Journal of Information Processing Society of Japan,

Vol.34, No.10, pp.1287-1296, Oct. 1993. (in Japanese)

14

