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Abstract. Approximate string matching is a sequential problem and therefore

it is possible to solve it using �nite automata. Nondeterministic �nite automata

are constructed for string matching with k mismatches and k di�erences. The

corresponding deterministic �nite automata are base for approximate string

matching in linear time. Then the space complexity of both types of determin-

istic automata is calculated. Moreover, reduced versions of nondeterministic

automata are taken into account and the space complexity of their determinis-

tic equivalents is calculated.
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1 Introduction

Approximate string matching can be described in the following way:

Given a text string T = t

1

t

2

� � � t

n

; a pattern P = p

1

p

2

� � � p

m

; and an integer k,

k � m � n; we are interested in �nding all occurrences of a substring X in the text

string T such that the distance D(P;X) between the pattern P and the string X is

less than or equal to k: In this paper we will consider two types of distances called

Hamming distance and Levenshtein distance.

The Hamming distance, denoted by D

H

, between two strings P and X of equal

length is the number of positions with mismatching symbols in the two strings. We

will refer to approximate string matching as string matching with k mismatches when-

ever D is the Hamming distance. The Levenshtein distance, denoted by D

L

, or edit

distance, between two strings P and X, not necessarily of equal length, is the minimal

number of editing operations insert, delete and replace needed to convert P into

X. We will refer to approximate string matching as string matching with k di�erences

whenever D is the Levenshtein distance.

Approximate string matching is a sequential problem and therefore it is possible

to solve it using �nite automata. Two variants of nondeterministic �nite automata

are constructed for string matching with k mismatches and for string matching with

k di�erences ([Me95], [Me96]).
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There are two ways how to use these automata as a base for the matching algo-

rithm:

1. To simulate the nondeterministic automaton in a deterministic way.

2. To construct an equivalent deterministic automaton.

Several known algorithms use simulation of nondeterministic automata in a de-

terministic way [BG92], [MW92], [Uk85], [WM92]. The simulation leads to the time

complexity which is greater than linear. The only exception are SHIFT-OR based

algorithms ([BG92], [WM92]) which simulate the nondeterministic automata in lin-

ear time for small m and k using bit vectors. The advantage of the simulation of

nondeterministic automata is the low space complexity.

Use of deterministic �nite automata leads to the linear time complexity for all m

and k. The drawback of this approach is a high expected space complexity. Therefore

we try to �nd the space complexity of deterministic �nite automata for matching

which is less pessimistic than in [Uk95].

A nondeterministic �nite automaton (NFA) is a 5 - tuple M = (Q;A; �; q

0

; F );

where Q is a �nite set of states, A is a �nite set of input symbols, � is a state transition

function from Q� (A[ f"g) to the power set of Q, q

0

2 Q is the initial state, F � Q

is the set of �nal states.

A �nite automaton is deterministic (DFA) if �(q; a) has exactly one element for

any q 2 Q and a 2 A and �(q; ") = ; for any q 2 Q:

In the following, we will use the alphabet A = fs

1

; s

2

; � � � ; s

jAj

g:

If p 2 A then �p is the complement set A� fpg; in our case.

2 String Matching with k Mismatches

First, we construct a nondeterministic �nite automaton M

H

for a given pattern P =

p

1

p

2

� � � p

m

; alphabet A = fs

1

; s

2

; � � � ; s

jAj

g, and k � m: This automaton is depicted

in Fig. 1.

Each state q 2 Q has a label (i; j); where i; 0 � i � k; is a level of q, and j, 0 � j �

m, is a depth of q. In the automaton M

H

, there are k + 1 levels of states sequences.

Every level ends in one of the �nal states (0;m); (1;m); � � � ; (k;m). These �nal states

are accepting states of strings with 0; 1; 2; � � � ; k mismatching symbols, respectively.

The sequence of states of the level 0 corresponds to the given pattern without any

mismatch. Levels 1; 2; � � � ; k correspond to the strings with 1; 2; � � � ; k mismatching

symbols, respectively. From each non�nal state of level j, 0 � j < k, there exists

a transition to the state of the level j + 1, which means, that a mismatch occurs.

Moreover, there is a self loop in the state (0; 0) for every symbol of the alphabet A.

This automaton accepts all strings having a post�x X such that D

H

(P;X) � k: The

number of states of the automaton M

H

is

(k + 1)(m+ 1 �

k

2

) = (m+ 1) + (m) + (m� 1) + � � �+ (m� k + 1):

Because this �nite automaton is nondeterministic, it is necessary to construct

an equivalent deterministic �nite automaton (DFA

H

) using the standard algorithm

[AU71,2].

Let us use the number of items of the transition table of DFA

H

as a measure of

the space complexity of the algorithm of string matching with k mismatches. This
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Figure 1: Nondeterministic �nite automaton M

H

.

number of items is the number of states (number of rows) of DFA

H

multiplied by

number of columns.

For the evaluation of the number of states of the DFA

H

in question we will use

the following lemma.

Lemma 1 Let M

H

be a nondeterministic �nite automaton for given pattern P =

p

1

p

2

� � � p

m

; k � m (see Fig. 1). Let DFA

H

be the deterministic �nite automaton

constructed by the standard algorithm for M

H

. Then each state of the automaton

DFA

H

contains at most one state of M

H

with depth j, 0 � j � m.

Proof. The standard construction of the deterministic �nite automaton equivalent to

the nondeterministic one is based on the \parallel simulation" of the nondeterministic

automaton.

The assertion of the lemma can be formulated in this way:

(�) The nondeterministic automaton M

H

can reach at most one state at each depth

during parallel simulation.

This assertion can be proven by induction on the length of input string l; 0 � l � n.

For l = 0 assertion (�) holds, because M

H

is in state (0; 0). Let us assume, that

assertion (�) is true for all l � n

0

. That means that M

H

is in some number of states

(i

1

; j

1

); (i

2

; j

2

); � � � ; (i

q

; j

q

), where all j

r

; 0 � r � q, are di�erent. For the state (i

r

; j

r

),

j

r

< m; i

r

< k, there are two possible transitions:

1. to the state (i

r

; j

r+1

) in case when the input symbol matches the symbol p

r+1

of the pattern,

2. to the state (i

r+1

; j

r+1

) in case when no match occurs.
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For the state (0; 0) there is moreover the sel
oop. For the state (i

r

; j

r

), where i

r

= k,

there is possible only transition when match occurs. For the state (i

r

; j

r

), where

j

r

= m, there is no transition possible. From this follows that at most one state in

the depth j

r+1

will be reached from each state (i

r

; j

r

) and the assertion holds. This

completes the proof of the lemma.

2

From the Lemma 1 follows the method of computation of the maximum number

of states of the deterministic automaton DFA

H

.

There are p+1 states in each depth p of the nondeterministic automaton M

H

for

0 � p � k � 1. Moreover, there are k + 1 states in M

H

for each depth p, k � p � m.

The number of subsets of these states can be computed as a product of numbers

of states of all depths between 1 and m increased by one, for the case, when no state

of particular depth is present in the subset. Therefore the maximumnumber of states

of the deterministic automaton DFA

H

is

3 � 4 � � � � � (k + 1) � (k + 2)

m�k+1

=

(k + 1)!

2

� (k + 2)

m�k+1

:

The number of states of DFA

H

is

O((k + 1)! � (k + 2)

m�k+1

):

For the computation of the number of columns of the transition table of the DFA

the following lemma is useful.

Lemma 2 Let P = p

1

p

2

� � � p

m

be a pattern. Let M

H

= (Q;A; �; q

0

; F ) be nonde-

terministic automaton for P and k � 0: Let X = fx : x 2 A;x 6= p

i

; 1 � i � mg:

Then for a deterministic automaton DFA

H

= (Q

D

; A; �

D

; q

0D

; F

D

) constructed for

M

H

holds: for all q 2 Q

D

exists p 2 Q

D

such that �

D

(q; x) = p for all x 2 X.

Proof. The set X is a subset of A containing symbols not used in the pattern P .

The automaton M

H

has for all symbols x 2 X identical columns in the transition

table. Thus �(q; x) = fp

1

; p

2

; � � � ; p

r

g and �(q; y) = fp

1

; p

2

; � � � ; p

r

g holds for all q 2 Q

and all pairs x; y 2 X: Due to the construction of the deterministic automaton, for

q 2 Q

D

and q = fq

1

; q

2

; � � � ; q

S

g, it holds

�

D

(fq

1

; q

2

; � � � ; q

S

g; x) =

s

[

i=1

�(q

i

; x)

and

�

D

(fq

1

; q

2

; � � � ; q

S

g; y) =

s

[

i=1

�(q

i

; y):

Because

�(q

i

; x) = �(q

i

; y), 1 � i � S, then �

D

(fq

1

; q

2

; � � � ; q

S

g; x) = �

D

(fq

1

; q

2

; � � � ; q

S

g; y):

2

From this lemma the consequence follows: If the pattern has length m then no

more than m di�erent symbols from an alphabet A may appear in it. For all other

symbols, both deterministic and nondeterministic automata behave in the same way.

It means, that the subset X � A of symbols not present in the pattern may be

replaced by some x 2 X and the size of alphabet will be m+ 1.
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From it follows, that the space complexity of the deterministic automaton DFA

does not depend on the size of alphabet if it is large enough.

It follows from this discussion, that the number of columns of the transition table

of DFA is a = min(jAj;m+ 1):

The total space complexity of deterministic automaton DFA

H

is:

O((k + 1)!(k + 2)

m�k+1

�min(jAj;m+ 1)):

The nondeterministic automaton M

H

can be reduced as described in [Ho96]. This

reduction leads to the nondeterministic automaton RM

H

having just (m + 1 � k)

states at each level. States

(0;m� k); (0;m� k + 1); � � � ; (0;m);

(1;m� k + 1); (1;m� k + 2); � � � ; (1;m),

.

.

.

(k � 1;m)

can be removed when we need not know the number of mismatches in the found

string. Moreover states (0;m� k + 1); (1;m� k); � � � ; (k;m) will be �nal states.

Because Lemma 1 is valid for RM

H

as well as for M

H

, it is possible to use sim-

ilar approach for computation of maximum number of states of deterministic �nite

automaton RDFA

H

constructed for RD

H

. Let us assume k �

m

2

. In this case the

automaton RM

H

has p+ 1 states in each depth p for 0 � p � k + 1. There are k + 1

states in each depth p; k � p � m � k � 1. Moreover, there are m� p + 1 states in

RM

H

for each depth p, m� k + 1 � p � m.

From this follows, that the maximumnumber of states of the reduced deterministic

automaton RDFA

H

is

NS(RDFA

H

) = 3 � 4 � � � � � (k + 1) � (k + 2)

m�2k+1

� (k + 1) � � � � � 3 � 2 =

=

1

2

((k + 1)!)

2

� (k + 2)

m�2k+1

::

If

m

2

< k < m then the situation is di�erent. In this case the maximal number

of states of RM

H

in one depth is lower than k + 1 and it is equal to m � k + 1.

The expression NS

0

(RDFA

H

) for the evaluation of number of states of deterministic

automaton has the form:

NS

0

(RDFA

H

) = 3 � 4 � � � � � (m� k+1) � (m� k+2)

2k�m+1

(m� k+1) � � � � � 3 � 2 =

=

1

2

((m� k + 1)!)

2

� (m� k + 2)

2k�m+1

Because Lemma 2 is also valid for reduced automaton RM

H

, the space complexity of

the reduced deterministic �nite automaton RDFA

H

is:

O(((k + 1)!)

2

� (k + 2)

m�2k+1

�min(jAj;m+ 1));

when k <

m

2

and

O(((m� k + 1)!)

2

� (m� k + 2)

2m�k+1

�min(jAj;m+ 1))

when

m

2

< k < m.
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Figure 2: Nondeterministic �nite automaton M

L

.

3 String Matching with k Di�erences

We will construct a nondeterministic �nite automaton M

L

for a given pattern P =

p

1

p

2

� � � p

m

; alphabet A = fs

1

; s

2

; � � � ; s

jAj

g, and k � m: This automaton is depicted

in Fig. 2. Each state q 2 Q has a label (i; j), where i; 0 � i � k; is the level of q, and

j; 0 � j � m; is the depth of q.

The automaton is composed of k+1 levels of state sequences. Every level ends in

one of the �nal states (0;m); (1;m); � � � ; (k;m) which accept strings with 0; 1; � � � ; k

di�erences, respectively. In each level, with exception of the level 0, there arem states

with depth 1; 2; � � � ;m � 1;m, where the depth of a state is its \distance" from the

state (0; 0) of level 0. In the level 0, there are m + 1 states and the state (0; 0) has

the depth equal to 0.

The transitions between adjacent levels correspond to the edit operations insert,

replace and delete in the following way:

1. The transitions corresponding to the operation insert are \vertical" transitions

from each non�nal state of level j, 0 � j < k, with the exception of the initial

state, to the state of level j + 1 with the same depth for all symbols of the

alphabet A.

2. The transitions corresponding to the operation replace are \diagonal" transi-

tions from each non�nal state (i; j) of level j, 0 � j < k to the state (i+1; j+1)

of level j + 1. The label of such transition is the complement of the label of

transition from state (i; j) to state (i; j + 1).

3. The transitions corresponding to the operation delete are \diagonal" "-transi-

tions from each non�nal state (i; j) of level j, 0 � j < k, and depth less than

m to the state (i+ 1; j + 1) of the level j + 1.
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Finally, there are self loops in the state (0; 0) for all symbols of the alphabet A.

This automaton accepts all strings with post�x X such that D

L

(P;X) � k. The

automaton has m(k + 1) + 1 states.

As in the case of the automaton for mismatching problem, we will construct an

equivalent deterministic automaton DFA

L

for M

L

.

The approach we use for evaluation of the space complexity of the DFA

L

is based

on the notion of "-diagonals. Because we can leave out "-diagonals below the initial "-

diagonal starting with state (0; 0) for reasons described in [Ho96], the nondeterministic

automaton M

L

contains (m+ 1) "-diagonals containing the following states:

number of diagonal set of states number of states

0 (0; 0); (1; 1); � � � ; (k; k) k + 1

1 (0; 1); (1; 2); � � � ; (k; k + 1) k + 1

2 (0; 2); (1; 3); � � � ; (k; k + 2) k + 1

.

.

.

m� k (0;m� k); (1;m� k + 1); � � � ; (k;m) k + 1

.

.

.

m� 2 (0;m� 2); (1;m� 1); (2;m) 3

m� 1 (0;m� 1); (1;m) 2

m (0;m) 1

For the computation of number of states of the equivalent deterministic automaton

DFA

L

for M

L

we will use the following lemma.

Lemma 3 Let M

L

be a nondeterministic �nite automaton for given pattern P =

p

1

p

2

� � � p

m

, k � m (see Fig. 2). Let DFA

L

be the deterministic �nite automaton

constructed by the standard algorithm for M

L

. Then each state of the automaton

DFA

L

contains at most one state of M

L

from each "-diagonal.

Proof. The proof is based on the observation, that if automaton M

L

reaches some

state (p; q) at the "-diagonal d, then, due to "-transitions, it reaches all next states

(p + 1; q + 1); (p + 2; q + 2); � � � ; (p + k; q + k) of the same "-diagonal. Therefore

we can select such state (p; q) of each diagonal, where the level p is minimal, as

a \representative" of the set of all next states at the same "-diagonal.

2

The number of states of deterministic automaton DFA

L

for M

L

we can compute

as a product of the number of states at diagonals 1; 2; � � � ;m increased by one because

some states of DFA

L

may contain no state from particular diagonal. The diagonal

0 plays special role, because automaton M

L

is always in the state (0; 0) due to the

sel
oop in the initial state.

Because the number of \full" "-diagonals having length k+1 others than diagonal

0 is m� k and there is k \short" diagonals having length k; k� 1; � � � ; 1; respectively,

the number of di�erent subsets of the representatives (the maximumnumber of states

of DFA

L

) is given by

NS(DFA

L

) = (k + 2)

m�k

�

(k + 1)!

2
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Using the previous result on number of rows of transition table we can express the

space complexity of the deterministic �nite automaton for approximate string match-

ing with k-di�erences as:

O((k + 2)

m�k

� (k + 1)! �min(jAj;m+ 1)):

The nondeterministic automaton M

L

can also be reduced as described in [Ho96].

This reduction leads to the reduced automaton RM

L

having \full" "-diagonals only.

The number of states of reduced deterministic automaton RDFA

L

we can express as

NS(RDFA

L

) = (k + 2)

m�k

and the space complexity of the reduced deterministic automaton for approximate

string matching with k-di�erences is

O((k + 2)

m�k

�min(jAj;m+ 1)):

4 Conclusion

The main result presented here is upper bound of space complexity of four variants

of deterministic �nite automata for approximate string matching. While the number

of states of nondeterministic �nite automata is O(k � m) in all cases, the number

of states of corresponding deterministic automata is much lower then O(2

k�m

). In

the case of string matching with k di�erences, the presented space complexity is still

pessimistic and the computing of more realistic upper bound is open problem.
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