
Fast Full Text Search Using Tree Structured [TS]

File

Takashi SATO

Dept. Arts and Sciences (Computer Science)

Osaka Kyoiku University

4-698-1 Asahigaoka, Kashiwara, 582 Japan

e-mail: sato@cs.osaka-kyoiku.ac.jp

Abstract. The author proposes a new data structure (TS{�le) in order to

make a fast search for an arbitrary string in a large full text stored in secondary

storage. The TS{�le stores the location of every string of length L (the level)

in the text. Using this, we can e�ciently search for, not only strings of length

L but also those shorter than or longer than L. From an analysis of search

cost, the number of accesses to secondary storage in order to �nd the �rst

match to a key is two when the key length l

k

is shorter than or equal to L, and

2(L � l

k

+ 1) otherwise. And the time required to �nd all matching patterns

is proportional to the number of matches, which is the lowest rate of increase

for these kind of searches. Because of the high storage cost of the basic TS{�le,

a compressed TS{�le is introduced in order to lower storage costs for practical

use without losing search speed. The experimental results on compression using

UNIX online manuals and network news show that the space overhead of the

TS{�le against the text searched is from 17% (when L = 3) to 212% (when

L = 12) which is small enough for practical use.

Key words: data storage and indexing, gram based index, full text search, no

false drop, TS{�le

1 Introduction

The capability to search for strings which are not speci�ed in advance is required

more and more recently in the various ways of processing online data such as docu-

ments, articles, books, manuals, news, dictionaries and so on. When a text becomes

huge, methods which search the full text directly

[1]{[4]

are not practical. So aux-

iliary data structures are used in order to speed up the search

[5]{[8]

. A signature

�le

[9],[10]

is a typical data structure for such purposes and it is widely used in practical

applications

[11]{[13]

. However, when we consider the recent status of secondary storage

which is rapidly increasing in space per drive and decreasing in cost per bit, faster

and more exible string searches are needed more than those which require less space.

In this paper, we propose a new data structure called a TS{�le (Tree Structured

�le) and a set of algorithms using this in order to make arbitrary string searches

especially fast. In a previous paper, using a compressed data �le we proposed an

algorithm which is e�cient when the length of the search string is rather long

[14]

.

42

Fast Full Text Search Using Tree Structured [TS] File

The method in this paper is most suitable when the length of the search string is

rather short. The basic ideas of the TS{�le is to store the location of every string

of length L in the text. Using a TS{�le, not only strings of length L but also those

shorter than or longer than L can be searched e�ciently.

A retrieval system using transposed �les based on single characters, pairs of adja-

cent characters and longer strings of adjacent characters has been reported for searches

of Japanese text

[15]

. Since the size of the Japanese character set is large, multiple data

structures are provided for these combinations of character classes. This system is

analogous to our method for each L = 1; 2; � � �, however, our method prepares only

one data structure and it has a unique L value.

Since one can �nd arbitrary strings using the TS{�le alone, the proposed method

is more accurate than the one using signature �les or PAT tree

[7]

by which one can

only know the possibility of existence. The proposed data structure is not made from

a word by word index stored as an inverted index

[16]

. In other words, it does not

depend on any speci�c language styles, for example, in which words are separated by

blanks and so on. So, the proposed method is applicable to a wide variety of pattern

matches which includes bit strings and genetic information.

From the analysis of search cost, the number of accesses to secondary storage

in order to �nd the �rst match to a key is two when the key length l

k

is shorter

than or equal to L, and 2(L � l

k

+ 1) otherwise. This is far less than in the case of

signature �le search. The proposed algorithm is one of the fastest for arbitrary string

searches. And the time required to �nd all matching patterns is proportional to the

number of matches, which is the lowest rate of increase for these kind of searches.

Because of the high storage cost of the basic TS{�le, we introduce a compressed TS{

�le by (1)making the data structure a tree to remove unused slots (null pointers), and

(2)storing di�erences between adjacent elements if possible in order to lower storage

costs for practical use without losing search speed.

Experiments using UNIX online manuals (up to 6.1Mbyte) and network news (up

to 500Mbyte) as source text show that the searches are very fast and their time is

less than 200msec in most cases and several hundred milli seconds even when keys

have many matches or their length is much longer than the level. The overhead of

storing the TS{�le compared to text size is 30% when L = 4 and 66% when L = 6

for UNIX online manuals and 47% when L = 4 and 212% when L = 12 for network

news. These overheads are small enough for practical use.

2 De�nitions

The alphabet is denoted by �. � (=j�j) denotes the size of the alphabet. The TS{�le

stores the location of every string of a given length (called a gram) in the text. This

length is called the level, L. A string sought is a key, k, whose length is l

k

. A key

is constituted of characters c

i

. So a key is denoted by k = c

1

c

2

� � � c

l

k

(c

i

2 �). The

length of the text searched is n characters. The text is assumed to be large compared

with the size of main memory and is stored on secondary storage. Data are transferred

to and from the main memory in blocks of size B words. The units of memory are

word, half word and character. The number of characters per word is w. In typical

cases, 1 word = 4 byte and 1 character = 1 byte so that w = 4.

43

Proceedings of the Prague Stringologic Club Workshop '96

0 1 σL–1

aaaa aaaab aaaa

leaf

locator

text

aaaa

aaab

aaac 9999

n[character]

n–L+1[word]

σL[word]

buckets

slot

Figure 1: TS-�le: Basic Structure (L = 4).

3 Basic TS{�le and Its Storage Cost

3.1 Basic Data Structures

The basic TS{�le consists of a leaf and a locator. Because the number of combinations

of strings with length L is �

L

, the leaf has addresses of L digits in the �-ary system

(0; 1; � � � ; �

L

� 1)(see Fig. 1). We call each leaf address a slot. Each slot has a pointer

which points to a bucket in the locator or null. Each bucket has pointers which

point to locations in the text. The bucket which is pointed to by a slot stores the

locations where the strings corresponding to the slot are found in the text. If there

is no corresponding string in the text, the pointer in the slot is null.

3.2 Storage Cost

The size of the leaf is �

L

words assuming 1 word/slot. The size of the locator is

n� L+1 ' n words assuming 1 word/pointer because there are n� L+ 1 strings of

length L in the text. Summing these up, the storage cost becomes

�

L

+ n [word]: (1)

When slots used (i.e. not null) are sparse, we collect only used slots. Then slots

become two words each because each slot should contain a slot value also. In this

case a leaf is at most 2n words because the number of slots does not exceed n. Taking

account of this collection of used slots, the storage cost becomes less than

minf2n; �

L

g+ n [word]: (2)

If we can store information without having to align word boundaries, we can store

data in every bit. The slot value is expressed in Ldlog

2

�e bits and the pointer is

expressed in dlog

2

ne bits, so the above cost becomes as follows.

minfn(Ldlog

2

�e+ dlog

2

ne); �

L

dlog

2

neg+ ndlog

2

ne [bit]: (3)

4 Search Algorithm and Its Cost

This section shows concrete algorithms based on the data structure introduced in 3.

We obtain a search cost by estimating the number of block transfers between main

44

Fast Full Text Search Using Tree Structured [TS] File

memory and secondary storage.

4.1 Search Algorithm

The algorithm is explained in terms of three cases according to the relation between

l

k

and L.

(A) l

k

= L

(1) Obtain a slot address for k by

s =

l

k

X

i=1

ord(c

i

)�

L�i

; (4)

where `ord' represents an arbitrary function which maps each character uniquely

onto 0; 1; � � � ; � � 1.

(2) Find a bucket of the locator which stores pointers to the same strings as k by

following the pointer in the slot obtained in (1).

(3) List the locations where k appears in the text by following the contents in the

bucket found in (2).

(B) l

k

< L

(1) Obtain lower and upper limit of slots (s

1

and s

2

respectively) since the slots to

be searched are consecutive.

s

1

=

l

k

X

i=1

ord(c

i

)�

L�i

; (5)

s

2

=

l

k

X

i=1

(ord(c

i

) + �

i;l

k

)�

L�i

� 1; (6)

where �

i;i

= 1; �

i;j

= 0(i 6= j).

(2) Obtain buckets of the locator which are pointed to by the pointers in the slots

of between s

1

and s

2

.

(3) List the locations where k appears in the text by following contents in the

buckets found in (2).

(C) l

k

> L

(1) Obtain l

k

� L+ 1 slots from the following equation.

s

j

=

L

X

i=1

ord(c

i+j

)�

L�i

(j = 0; � � � ; l

k

� L): (7)

(2) Obtain buckets of the locator which are pointed to by the pointers in the slots

s

j

(j = 0; � � � ; l

k

� L)

45

Proceedings of the Prague Stringologic Club Workshop '96

(3) Find candidate locations where k may appear by following contents in the buck-

ets found in (2). Candidate locations for the appearance of the key k in the

text are the o�sets of the obtained buckets contents minus j.

(4) List the locations where k truly appears by intersecting the sets of candidates

for each j.

When l

k

< L, we compute the set sum of locations in the buckets pointed to by the

slots corresponding to strings containing the key. When l

k

> L, we have to compute

the set product of locations in the buckets pointed to by the slots contained in the

key.

[Example1] Fig. 2 (a), (b) and (c) show how to follow the pointers in leaves and

locators of a L = 4 TS{�le when the key is `text', `ftr' and `search' respectively. Since

the buckets of the locator are stored sequentially, they are drawn in one box and

separated by double lines. 2

4.2 Search Cost

We estimate the cost to execute the algorithms in 4.1. Because the TS{�le is on the

secondary storage, the search cost becomes the number of block transfers (fetches)

from secondary storage to main memory.

(A) l

k

= L

One fetch is required to read a slot computed from equation (4). When the number

of matches for the key is M , dM=Be fetches are required in order to read all matches

in the locator. Summing these up, we obtain the cost f

a

eq

.

f

a

eq

= 1 + dM=Be (8)

The fetches required to �nd a �rst match is f

1

eq

= 2 because only the �rst block of

the locator has to be read.

(B) l

k

< L

The algorithm fetches consecutive slots from s

1

to s

2

and buckets of the locator

pointed to by these slots. Not only slots but also the buckets pointed to by the

consecutive slots are expected to be stored in adjacent regions of secondary storage.

Then the number of fetches to �nd all matches becomes

f

a

lt

= d(s

2

� s

1

+ 1)=Be+ d

s

2

X

i=s

1

M

i

=Be;

= d�

L�l

k

=Be+ d

s

2

X

i=s

1

M

i

=Be; (9)

where M

i

is the number of matches for slot i. The �rst term of this equation becomes

quite small under the compression proposed in 6.2 because it comes from a sequential

scan of the leaf. The fetches required to �nd a �rst match is f

1

lt

= 2 because only the

�rst block of the locator for the slot s

1

has to be read.

(C) l

k

> L

Although the algorithm fetches l

k

�L+1 slots and the related parts of the locator,

they are not necessarily adjacent on the secondary storage. So the number of fetches

to �nd all matches becomes

f

a

gt

= l

k

� L + 1 +

l

k

�L+1

X

j=1

dM

j

=Be: (10)

46

Fast Full Text Search Using Tree Structured [TS] File

leaf

locator

text

text

text text text text

(a) l

k

= L; key = \text" (l

k

= L = 4).

leaf

locator

text ftra ftrb ftra

ftra ftsa
ftrb

ftr

(b) l

k

< L; key = \ftr" (l

k

= 3; L = 4).

leaf

locator

text search

earc sear arch

(c) l

k

> L; key = \search" (l

k

= 6; L = 4).

Figure 2: Example of TS{�le search

47

Proceedings of the Prague Stringologic Club Workshop '96

The fetches required to �nd a �rst match is f

1

gt

= 2(l

k

� L+ 1).

We have analyzed the cost in three cases from the relations between l

k

and L; the

search cost is independent of n as long as the number of matches (M;M

i

;M

j

) are

constant. And we have to pay attention to the fact that slots are accessed sequentially

when l

k

< L, but randomly when l

k

> L.

5 Comparison with Other Methods

In this section, we review signature �les, which are widely used for full text searches,

and PAT trees which provide fast retrieval times. Both are not based on word indices

and can be retrieved by arbitrary strings. We then compare these with the TS{�le.

5.1 Signature Files

In section 6, we present a way of compressing TS{�les without losing the features

of a fast full text search. Since we have to handle many parameters there, we will

compare our method with search using signature �les from the viewpoint of search

speed before section 6. The signature �le is a typical example of an auxiliary data

structure which is used in order to make a full text search fast. In this section, we

compare the method proposed in the previous sections with the method of signature

�les, and we show the former is much faster than the latter. The signature �le is known

as an e�ective method for fast search and has been studied extensively. Because there

are many forms of signature �les, we �rst outline the signature �le which is the object

of comparison with the method proposed. Next we estimate the search cost when the

signature �le is used and compare this with the results discussed in section 4.

Since the TS{�le can search for a string in a text which is not necessarily composed

of words, we assume that the signature �les with which we are comparing are also

made from grams (i.e. strings of characters) and not words. We divide the text

into logical blocks of D characters. For each logical block, we make a bit vector

of length b bits. We make each bit vector as follows. The bit vector is bit string

of all zeros initially. For each pair of adjacent characters from the beginning of the

logical block, one obtains a number between 0; 1; � � � ; b�1 by applying an appropriate

hash function. The i-th position of the bit vector is set to `1' when the number is i.

Because the number of such pairs is (D� 1), the hash function sets bits to `1' in this

bit vector (D � 1)-times. Although the hash function should be selected carefully so

as to distribute `1's randomly and uniformly, we cannot avoid collisions. Combining

the bit vectors of all blocks, we get a signature �le. As we assume n is the length

of the text, the number of logical blocks is dn=De. We use � for the ratio of b to D

(� = b=D). Then the size S in bytes of the signature �le becomes

S = b=8� dn=De ' �n=8 [byte]: (11)

In order to make the search fast, this signature �le is sliced column wise when the bit

vectors to be looked at are stored row wise. S is divided into b sub-�les whose size is

S

b

= S=b ' �n=8b = n=8D.

Next we consider a key search using the above sliced signature �le. Since the key

length is l

k

, we compute the locations where `1' is set (l

k

� 1) times from the pairs of

adjacent characters in the key. As we assume l

k

� D, hash collisions are negligible,

48

Fast Full Text Search Using Tree Structured [TS] File

so the number of these locations is approximately (l

k

� 1). Searching the (l

k

� 1)

sub-�les which store the location in the bit vectors corresponding to the locations

of 1's computed from the key, we return as candidates the rows which have 1's in

all these sub-�les. In this case the number of fetches f

a

sg

of the signature sub-�les

becomes

f

a

sg

= S

b

(l

k

� 1)=B

' n(l

k

� 1)=(8DB) (12)

We know that this search returns the numbers of logical blocks which may contain

the key. So we have to access the text blocks directly and examine them in order to

know whether the key truly exists or not and what are the o�sets in these blocks if

it exists.

[Example2] When n = 10

8

; B = 1024;D = b = 256; L = 6; l

k

= 7;M

1

= M

2

= 100,

the numbers of fetches of the two methods are

f

a

sg

= 286

f

a

gt

= 4:

In this case, we see that the method proposed in this paper is about seventy times

faster than the method using signature �les. 2

f

a

gt

does not change with n, however, f

a

sg

grows in proportion to n (i.e. O(n)).

5.2 PAT Trees

A PAT tree

[7]

is a Patricia tree constructed over all the possible strings (called sistring)

formed by starting at a given position and continuing to the end of a text. A Patricia

tree

[17, 18]

is a digital tree where the individual bits of the keys are used to decide

on the branching. A zero bit will cause a branch to the left subtree, a one bit will

cause a branch to the right subtree. Hence Patricia trees are binary digital trees. In

addition, Patricia trees have in each internal node an indication of which bit of the

query is to be used for branching. This may be given as a count of the number of

bits to skip. This allows internal nodes with single descendants to be eliminated, and

thus all internal nodes of the tree produce a useful branching, that is, both subtrees

are non-null.

Patricia trees store key values at external nodes; the internal nodes have no key

information, just the skip counter and the pointers to the subtrees. The external

nodes in a PAT tree are sistrings, that is, integer displacements. For a text of size n,

there are n external nodes in the PAT tree and n� 1 internal nodes.

Retrieval using a PAT tree follows edges from a root towards leaves by considering

skip counts in nodes. The contents of leaves in a subtree which follow edges where the

bit comparisons end are candidate places for the key. Since there may have been bits

skipped which should have been compared, we have to access the text and con�rm

whether we can �nd the key at that place or not. This method can not avoid false

drops.

The depth of a leaf is the number of comparisons required to distinguish its sistring

from others. The average depth is d = log

2

n. It is natural to assume that PAT

trees are stored in secondary memory because the texts being searched are large and

therefore also stored in secondary memory.

49

Proceedings of the Prague Stringologic Club Workshop '96

We store skip counts of a complete binary tree of e levels

�

and pointers from nodes

at the lowest level of the tree into a one block space in memory. If we assume these

are represented in a one word space, the size of data in one block is 2

e+1

� 1[word].

Then the number of levels which �t into a block is at most e = log

2

(B+1)�1. When

we cache one block which stores the root of a PAT tree in main memory, the average

number of block accesses to a leaf in order to �nd a pattern which may match with

the key is at least dd=ee � 1. Including one access to the text for con�rmation, this

becomes dd=ee.

The whole subtree lying under a point where the bit comparisons end has to be

searched in order to �nd all patterns which match with the key in a text. If we assume

that the point is at level t, the average number of nodes in the subtree becomes 2

d�t

.

Dividing by the number of words in a block, the number of block accesses becomes

2

d�t

=B

y

[Example 3] When n = 2

30

(' 10

9

), B = 1024, d = 30; e = 9, the number of disk

accesses to �nd a pattern which matches the key is 4, and the number of accesses to

�nd all patterns when t = 15 is 32. 2

We compare these results with the TS{�le when l

k

� L. The number of accesses

to �nd one matching string is two in the case of the TS{�le. To �nd all strings

matching a key, we scan a part of the locator of the TS{�le. It contains the same

data as the leaf of a subtree of the PAT tree which starts at a point at level t but its

size is half that of the PAT subtree. Based on this, we estimate that the search speed

of the TS{�le is twice as fast as that of the PAT tree in this case. On the other hand,

when l

k

� L, a PAT tree becomes advantageous in terms of the search speed.

The problem with a PAT tree is its high construction cost. In order to make a PAT

tree, all the sistrings in the text have to be sorted. When n sistrings whose average

length is n=2 are sorted in main memory whose work size is p blocks by multi-way

merge sort, the number of disk accesses is f

s

PAT

= (n=Bw)

2

dlog

p

(n=Bw)

2

=2e

z

. On

the other hand in the case of a TS{�le it is f

s

TS

= 2(nL=Bw)dlog

p

(nL=Bw)e.

[Example 4] When n = 2

25

; B = 1024; w = 8; L = 12; p = 2048,

f

s

PAT

' 50; 332; 000

f

s

TS

' 131; 000: (13)

The sort used in making a TS{�le is about 400 times faster than that for a PAT tree.

2

6 Compression of the TS{�le

Although we can search for arbitrary strings fast by the method explained in the

earlier sections, the TS{�le often becomes too large to store in practice. So we want

to compress the data structure without losing the features of fast full text searches.

We explain compression methods for the locator and the leaf respectively in the

following.

�

in a PAT tree a level is a set of nodes which are at the same depth from the root.

y

This is the case when every block is 100% �lled up. If we use log

e

2� 100% , an average value

reported in the literature [7], the number of accesses becomes 2

d�t

=B log

e

2.

z

In general, the number of disk accesses required to sort x blocks of data by p{way merge sort is

2xdlog

p

xe.

50

Fast Full Text Search Using Tree Structured [TS] File

6.1 Compression of the Locator

6.1.1 Using Block Numbers for Locations

In this paper, we are not concerned with searches making use of the text structure

(for example SMGL or Hyper text)

[19],[20]

. When we search a large text, however, it

is rather rare that it have no structure. Usually texts have logical blocks at least. So,

numbering each logical block in sequence, we adopt the method in which the numbers

are output as the result of the search instead of the locations (pointers) where the

key appears in the text. Because the number of pointers in one logical block is (the

number of characters in the block �L + 1), the number expressed should decrease

considerably if we use the logical block numbers instead of pointers as output results.

Using block number, a half word may be enough in most cases even if the pointer

is one word in these cases. For example, in section 7 we use a UNIX online manual

whose size is 6.11 Mbyte. Although we use 4 bytes (1 word) to express pointers, 2

bytes (half word) is enough to express the number of logical blocks (manual pages)

which is 2707 in total. So we halve the amount of storage. Moreover, since the same

strings often appear in the same logical block, duplicated logical block numbers for the

same string should be removed. If we assume c is the average number of duplications,

the compression rate �

c

by this compression method in storing the locations where

the key appears becomes

�

c

= 1=2c: (14)

When the locations are stored by block number, �j in the algorithm of 4.1(c)(3)

should be removed, and the result gives only the possibility of existence. Now we

have to access the logical blocks of the text whether the key is truly there or not.

However, we have con�rmed experimentally that if L is large enough (L � 6), false

drops are very rare in practice.

6.1.2 Run-length Encoding

According to 6.1.1, each bucket of the locator contains the numbers of the logical

blocks which include a given string of length L. If the di�erences between adjacent

numbers are small, we can store them in less storage space by sorting these numbers

and storing their di�erences. This method is called run-length encoding

[16]

.

For example, if 7bits is used to express the di�erence and 1 bit to express whether

the next data is di�erenced or not, 1 byte (=8bits) is enough to store a block number

when the di�erence is less than 128. We can halve the memory required for the locator

compared with the case when 2 bytes is used for each logical block number. Assuming

that p

d

is the probability of being able to store by di�erence, the compression factor

�

d

by this method becomes

�

d

= 1� p

d

=2: (15)

When we apply both 6.1.1,6.1.2 methods, the total compression rate for the locator

becomes �

c

�

d

.

51

Proceedings of the Prague Stringologic Club Workshop '96

6.2 Compression of the Leaf

6.2.1 Using a Tree Structure

Although in 3.1 we prepared slots for every sub string of length L, the results of

the experiments in 7 show that the usage rate of slots is not high. As we stated in

3.2, we can remove slots that are not used in order to save space. If these slots are

simply removed and the leaf is compacted, we can no longer compute, using just the

sub string, the slots where the desired pointer to the locator is stored. So another

auxiliary data structure should be added in order to access slots quickly. Firstly, in

each slot we store not only a pointer to the locator but also a slot value computed from

the sub string. Though each slot size increases from 1 word to 2 words, assuming

a slot value can be expressed in 1 word, considerable compression is expected as

a result because slots which have null pointers can be removed. If u

s

is the usage rate

of the slots, the compression factor becomes

�

s

= 2u

s

: (16)

Secondly, we prepare the root, a data structure which stores the values of regularly

spaced slots (interval=b

f

) of the leaf in order to guarantee fast accesses to the required

slots of the leaf. In order to make leaf access only one block, b

f

is set as

b

f

= B=2 (17)

from the fact that the physical block size is B (transfer unit between main and

secondary memory) and each slot is 2 words (one for the slot value and one for

a pointer to the leaf). Using this data structure, two fetches are required to access

the leaf, as long as accessing the root is one fetch. Since the slots of the leaf are

accessed in only one fetch for the basic TS{�le, one more fetch is required in this

case. But from the fact that physical data accesses are not required when we retrieve

keys successively because the root is cached in main memory, the inuence on search

performance is negligible. If b

c

is the number of blocks that can be used as the root

cache, the whole root can be put in cache when the usability of slots u

s

is

u

s

� b

c

b

f

B=2�

L

= b

c

B

2

=4�

L

: (18)

Although in most cases, a two-level structure (root and leaf) is enough, we can make

the root into a multi-level structure, i.e. a tree structure, if we can not put the whole

root in main memory. Fig. 3 shows this tree structure.

6.2.2 Compression of Slots

When we adopt the structure for the leaf proposed in 6.2.1, each slot is composed

of a slot value and a pointer to a bucket of the locator. Among these, the former

is compressed to 1 byte by the run-length encoding as 6.1.2, when the di�erence of

neighboring slot values is less than 128. Because buckets are stored in the order of

corresponding slot value, the pointers which point to buckets can be also compressed

by run-length encoding.

Assuming p

s

and p

p

(0 � p

s

; p

p

� 1) are the possibilities of storing di�erences for

slot values and pointers respectively, the compression factor by this method becomes

�

p

= 1� (3=8)(p

s

+ p

p

): (19)

52

Fast Full Text Search Using Tree Structured [TS] File

aaaa aaaab aaaa

leaf

locator

text

n[character]

n–L+1[word]

≤ min{2n,σL}

 [word]

root
tree structure

pointer

slot value
in main memory

buckets

block boundary

Figure 3: Compressed TS{�le.

If both 6.2.1,6.2.2 are applied, the size of the leaf becomes �

L

�

s

�

p

and the root

becomes �

L

�

s

=b

f

.

7 Experimental Results

In order to con�rm that the proposed data structure and algorithm provide very fast

searches and that the compression methods proposed are e�ective we did experiments

and measured the parameters appearing in 6. The computer mainly used is a SUN

Microsystems Sparc Server 630 (28.5MIPS) and the text searched is a UNIX online

manual. In 7.3 where second stage compression is applied, we also show the results

using network news, whose total size is 100, 300, 500Mbyte, as a source text. Each

search time is measured under the condition that the whole root is cached and no

parts of the leaf and the locator are cached in main memory initially.

7.1 Basic Structure

Experiments were done for the basic TS{�le of 3 �rst (see Table 1). Fig. 4(a) shows

the relationship between text size and search time, and (b) shows the relationship

between level and search time. To make the alphabet size small, upper-case letters

are converted to lower-case and letters other than numerical or alphabetical are all

converted to blanks. That is, �=f0,1,� � �,9,a,b,� � � ,z, g and � = 37. Although this

manual consists of 2707 separate �les (called manual pages), we concatenated them

into one large non-structured �le. In order to change the text size in the experiments,

four di�erent size texts were made from the concatenation of 200, 500, 1000, 2707

pages of online manual respectively. As shown in Table 1, the maximum size of these

texts is 6.11 Mbyte. Because 37

6

� 2

32

and 1 word = 4 bytes in this case, the

slot values can be expressed in one word if L � 6. The pointers to the locator are

expressed in one word. The size of the locator and the leaf of each level are shown in

Table 1. In the �rst experiment, we measured the search time for a key set of `1234',

53

Proceedings of the Prague Stringologic Club Workshop '96

100

300

200

0

0

text(MB)

time
(ms)

string

123456

stri

strin

1234

12345

(a) Text size { Time (Level: 5)

3 4 5

100

300

200

0

level

time
(ms)

string

123456
strin

stri
12345

1234

(b) Level { Time (Text: 6.1MB)

Figure 4: Basic

`12345', `123456', `stri', `strin', `string'. Among these strings, `1234', `12345', `123456'

are used as low selectivity examples, on the other hand, `stri', `strin', `string' are used

as relatively hight selectivity examples. The numbers of matches are shown in the

`unix manual' column of Table 2. Since no false drop occurs in basic TS{�le search,

we don't have to access the text in order to determine the locations where the key

appears. Because the case l

k

< L is faster than the case l

k

> L, L is preferably set

somewhat larger than the average key length expected. The number of slots, however,

grows exponentially with L, so we should take care that the leaf does not become too

large by referring to the analysis of 3. The size of the locator is not related to L. It

is four times the text size because one pointer is four times longer than one character

(=1 byte). In this experiment, however, it is less than three times as large because

the pointers which point to characters which are neither alphabetic nor numeric are

not stored in order to save storage space.

54

Fast Full Text Search Using Tree Structured [TS] File

level 4 5 signature �le

page# 200 500 1000 2707 200 500 1000 2707 200 500 1000 2707

text(MB) .751 1.89 2.80 6.11 .751 1.89 2.80 6.11 .751 1.89 2.80 6.11

leaf(MB) 7.29 7.29 7.29 7.29 270 270 270 270

locator(MB) 2.16 5.43 8.05 17.5 2.16 5.43 8.05 17.5

.092 .232 .343 .750

1234 69.7 78.1 73.3 62.3 93.2 89.0 93.9 89.8 .42s .82s 1.2s 2.2s

12345 111 104 157 119 112 90.0 95.9 81.1 .35s .67s .98s 1.9s

time 123456 205 159 234 166 163 197 187 133 .34s .59s .83s 1.7s

(ms) stri 84.3 88.9 83.4 93.6 148 120 149 120 .39s .77s 1.1s 2.2s

strin 191 171 173 170 148 109 146 121 .41s .78s 1.1s 2.1s

string 278 262 267 269 257 214 241 184 .41s .78s 1.1s 2.1s

Table 1: Experimental Results 1 { Basic Structure

unix manual (page#) news (MB)

200 500 1000 2707 100 300 500

1234 3 5 6 13 125 516 771

12345 2 3 3 8 51 136 223

123456 2 3 3 6 24 87 137

stri 57 151 248 601 9798 15184 21817

strin 40 95 143 376 867 3288 4993

string 40 95 143 376 867 3285 4988

database { { { { 1082 4540 6706

cryptograph { { { { 9 75 156

Table 2: Number of Matches

The search time measured is that for �nding all addresses of matched strings. It is

very fast as predicted in the analysis of 4 and it is less than 300 msec. In particular,

it is faster, less than 150msec, when l

k

< L. Search time does not increase with

text size. The time required to search these texts using the signature �les (b = 256)

described in 5.1 is also recorded for reference. In the table `s' indicates that this is

the only search measured in seconds. The size of the signature �les is written between

the rows for leaf and locator in this table. We can read the relationship between l

k

; L

and measured time qualitatively although, because the times measured are short and

apt to include measurement errors, it doesn't necessarily agree with the analysis.

Although a fast search is accomplished with this basic TS{�le, the locator and

the leaf which constitute the TS{�le are quite large and storing them is burdensome.

7.2 Compression by Block Number and Tree Structure

For the �rst stage compression of the TS{�le, page numbers, which are expressed in

half word (=2 bytes), instead of locations are put in the locator, and a tree structure

is made in order to remove unused slots of the leaf. Table 3(a) shows the experimental

results in this case. The size of the locator, leaf and root are also measured in the

table. The usage rate u

s

of the slots and the average duplication count c of the same

string in a logical block of the text which relate to the compression rate of the leaf

is measured also. The size of the locator is decreased by 1/4 to 1/10 and the leaf

is decreased as per equation (16). The manual pages don't have to be concatenated

in this experiment. Each manual page corresponds to a logical block in 6 and the

output is page numbers. Search time was measured for the same key set as in 7.1.

But it should be noted that when l

k

> L the time measured is until determining the

possibility of existence. According to another experiment there are no false drops

55

Proceedings of the Prague Stringologic Club Workshop '96

for the search strings in the table. The result of these experiments shows that the

searches are quite a lot faster than those using the basic TS{�le, because the amount

of data accessed is reduced due to compression.

level 4 5 6

page# 200 500 1000 2707 200 500 1000 2707 200 500 1000 2707

u

s

� 100(%) 1.04 1.47 1.81 2.84 .0688 .104 .130 .214 .0034 .0057 .0072 .0122

c 3.06 2.95 2.92 2.74 2.28 2.21 2.22 2.12 1.90 1.84 1.87 1.82

root(kB) .612 .864 1.06 1.67 1.49 2.26 2.82 4.64 2.76 4.54 5.77 9.80

leaf(kB) 156 220 272 426 381 578 722 1187 704 1163 1477 2509

locator(kB) 353 919 1377 3197 474 1232 1814 4128 570 1475 2151 4828

1234 48.1 58.5 78.4 63.5 61.4 61.2 68.6 64.8 61.1 52.5 72.9 81.2

12345 48.2 80.1 82.1 66.0 62.7 60.9 68.5 63.8 61.5 52.1 62.2 91.8

time 123456 49.0 80.9 77.1 73.6 59.3 83.2 69.4 65.3 69.5 50.3 69.0 89.6

(ms) stri 83.2 94.2 97.9 116 90.2 107 111 115 108 77.3 118 124

strin 97.1 122 126 151 90.2 116 108 109 114 76.6 126 138

string 158 187 205 242 94.3 136 149 205 114 76.8 126 135

(a) Compression { 1

level 4 5 6

page# 200 500 1000 2707 200 500 1000 2707 200 500 1000 2707

p

s

.902 .918 .931 .951 .773 .801 .811 .837 .633 .680 .690 .711

p

p

1.00 .972 .959 .937 1.00 .992 .988 .977 1.00 .997 .996 .991

p

d

.886 .923 .919 .912 .794 .846 .840 .824 .684 .746 .738 .717

root(kB) .612 .864 1.06 1.67 1.49 2.26 2.82 4.60 2.75 4.54 5.77 9.80

leaf(kB) 44.8 64.1 79.2 124 128 189 234 380 273 431 544 907

locator(kB) 197 495 744 1739 286 710 1053 2426 375 925 1358 3096

space overhead(%) 32.3 29.6 29.4 30.5 55.3 47.7 46.0 46.0 86.7 72.0 68.1 65.7

1234 81.9 62.4 77.7 67.7 68.9 60.0 69.0 65.7 67.9 69.3 66.4 101

12345 82.3 62.9 79.6 56.7 67.3 61.7 57.2 64.6 65.5 69.7 63.6 101

time 123456 72.2 65.7 79.0 74.6 66.3 61.2 71.2 70.2 63.5 66.6 66.5 101

(ms) stri 79.0 85.7 78.0 111 100 93.0 94.1 124 96.8 65.6 119 121

strin 92.1 112 105 162 110 102 90.4 127 110 74.6 128 135

string 126 160 187 241 111 106 161 219 111 74.7 128 135

(b) Compression { 2

Table 3: Experimental Results 2

Since a larger L increases the chance of l

k

� L, it decreases search time. Moreover

if L � l

k

we know the page numbers which contain the key without accessing the text

because then there are no false drops. So a larger L is more advantageous as long as

storage space permits it.

7.3 Compression by Run-length Encoding

For the second stage of compression, we did an experiment in which the locator and

the leaf are compressed by run-length encoding (see Table 3(b)). Fig. 5(a) shows

the relationship between text size and search time, and (b) shows the relationship

between level and search time. The size of the compressed locator and leaf agree with

the values which are computed from the equations in 6 with the original size and

the compressing probability (p

s

; p

p

; p

d

) measured. When L = 4 and the text is 2707

pages, the size of the TS{�le (sum of the locator, leaf and root) is 1.86Mbyte which

is 30% overhead against 6.11Mbyte (the text size). This ratio is 65.7% when L = 6

(see space overhead row of the table). Fig. 6(a) shows how TS{�le is compressed by

the �rst and second compression. We also show how search time changes by these

compressions in (b).

56

Fast Full Text Search Using Tree Structured [TS] File

level 4 6 12 sig

root(MB) .0191 .115 1.20 |

leaf(MB) 1.23 10.6 111 |

locator(MB) 46.1 67.9 99.7 |

space overhead(%) 47.4 78.6 212 12.3

1234 95.8 105 84.3 41s

12345 184 115 83.5 36s

123456 271 92.4 92.0 37s

time stri 106 163 183 37s

(ms) strin 206 133 167 38s

string 331 134 165 37s

database 363 290 86.6 38s

cryptograph 611 505 78.0 13s

Table 4: Experimental Results 3

100MB (Compression{2)

For this compression only, we also tried using 100Mbyte of network news as text

(see Table 4). Fig. 7 shows the relationship between level and search time. Creating

TS{�les for the levels of 4,6 and 12, we measured the space and search time. Slots have

twice the length, i.e. 8 bytes, for L = 12 only. we added `database' and `cryptograph'

(l

k

= 8 and 12 respectively) to the previous list of search strings. The number of

matches are shown in the `news' column of Table 2. 17.5% false drops were observed

for the search string `strin' and level L = 4; however, no false drop was observed for

any other combinations of search strings and levels.

The ratio of the size of the TS{�le to the text size is less than half (47.4%)

when L = 4 and about twice (212%) when L = 12 (see space overhead in Table 4).

Considering the average length of words is from �ve to seven, L = 12 is a su�ciently

large level. The size of the root is 1.2Mbyte even when L = 12, which may easily

be put in the main memory. From the fact that ordinary key word indices, which

cannot be used for arbitrary string searches, often become bigger than the text and

that secondary storage devices are increasing their space and decreasing the price per

byte recently, the TS{�le is su�ciently small for practical use.

The search time measured is less than 200msec for the strings whose length is less

than six when L = 6 and for all strings searched when L = 12. The search time is

very fast for the arbitrary string searches of the 100Mbyte text.

Searches using signature �les (b = 256) are also recorded for reference. Although

the overhead in size (12.3%) is smaller than that of a TS{�le, the search speed is very

slow.

We also used 300 and 500Mbyte network news as a text with level L = 12. We

use di�erent computers in this case. A Silicon Graphics Challenge is used to make

the TS{�les, and a Silicon Graphics Indy R4600 (62.8 Specint92) is used to search for

keys. We measured the time required to search for the �rst matches as well as that

for all match (see Table 5). Fig. 8(a) and (b) show the relationship between level and

search time for all and �rst match respectively. It is proved by this experiment that

the search is fast even when the text size is quite large and its time depends only on

the number of matches.

57

Proceedings of the Prague Stringologic Club Workshop '96

.751 2.80 6.11

100

300

200

0

0

text(MB)

time
(ms)

string

123456

stri

strin

1234

12345

(a) Text size { Time (Level: 5).

3 4 5

100

300

200

0

level

time
(ms)

string

123456

strin

stri

12345

1234

(b) Level { Time (Text: 6.1MB).

Figure 5: Compression

58

Fast Full Text Search Using Tree Structured [TS] File

2

64

Basic Comp. 1 Comp. 2

size
(MB)

.5

1

4

16

256

locator

leaf

(a) Size of leaf and locator.

Basic Comp. 1 Comp. 2

100

300

200

0

time
(ms)

string

123456

strin

stri

12345

1234

(b) Time (Text: 6.1MB; Level: 5).

Figure 6: Basic, Comp. 1 and Comp. 2

59

Proceedings of the Prague Stringologic Club Workshop '96

4 6 12

100

300

200

0

0

level

time
(ms)

string

123456 stri

1234

400

500

600

database

cryptograph

Figure 7: 100MB text Level { Time.

text(MB) 100 300 500

root(MB) 1.20 3.94 7.71

leaf(MB) 111 263 555

locator(MB) 99.7 248 442

space overhead(%) 212 172 201

1234 33.2 33.1 37.3

12345 36.6 37.1 36.8

�rst 123456 31.0 37.6 37.2

match stri 40.2 39.2 38.1

(ms) strin 34.6 38.7 41.9

string 35.7 34.2 38.8

database 39.1 40.6 37.3

cryptograph 36.1 36.4 34.6

1234 41.8 42.1 42.4

12345 39.0 33.1 35.7

all 123456 34.9 41.7 39.2

match stri 72.1 120 152

(ms) strin 43.3 57.7 75.3

string 47.9 63.1 78.1

database 45.1 63.9 78.3

cryptograph 39.6 39.8 41.8

Table 5: Experimental Results 4

L = 12 (Compression{2)

8 Conclusions

In this paper we introduced the TS{�le, a new gram based data structure for fast

full text search, and we gave a set of concrete search algorithms using the TS{�le.

Because the proposed method can �nd an arbitrary string using the TS{�le alone,

the proposed method is more accurate than the one using signature �les by which one

60

Fast Full Text Search Using Tree Structured [TS] File

100 300 500

50

150

100

0

text(MB)

time
(ms)

string

123456

stri

1234 database

cryptograph

(a) all match.

100 300 500

50

150

100

0

text(MB)

time
(ms)

(b) �rst match.

Figure 8: Text size { Time (Level: 12)

61

Proceedings of the Prague Stringologic Club Workshop '96

can only know the possibility of existence. We also showed that this method is much

faster than searches using signature �les by analysis. From the experimental results,

we con�rmed that sub string matches of rather short strings, which are common

in practice, can be done very fast. We were able to reduce the size of the TS{�le

without losing search speed by introducing two stage compression methods by which

the storage required became su�ciently small for practical use.

References

[1] D. E. Knuth, J. H Morris. and V. R. Pratt: \Fast pattern matching in strings",

SIAM J. Comput., 6, 2, pp.322{350 (1977{06).

[2] R. S. Boyer and J. S. Moore: \A fast string searching algorithm", Commun.

ACM, 20, 10, pp.762{772 (1977{10).

[3] A. V. Aho and M. J. Corasick: \E�cient string matching : An aid to biblio-

graphic search", Commun. ACM, 18, 6, pp.333{340 (1975{06).

[4] R. M. Karp and M. O. Rabin: \E�cient randomized pattern-matching algo-

rithms", IBM J. Res. Develop., 31, 2, pp.249{260 (1987).

[5] C. Faloutsos: \Access methods for text", ACM Comput. Surveys, 17, 1, pp.49{74

(1985{03).

[6] J. Aoe: Computer algorithms { String pattern matching strategies, IEEE Com-

puter Society Press (1994).

[7] G. Gonnet, R. Baeza-Yates and T. Snider: New indices for text: Pat trees, in

Information retrieval: data structure & algorithms chapter 5, W. Frakes and R.

Baeza-Yates Ed., pp. 66{82 (1992).

[8] H. Shang: Trie methods for text and spatial data on secondary storage, Ph.D

Dissertation, Faculty for Graduate Studies and Research of McGill University

(1995).

[9] M. C. Harrison: \Implementation of the substring test by hashing", Commun.

ACM, 14, 12, pp.777{779 (1971-12).

[10] C. Faloutsos: \Signature �les: Design and performance comparison of some

signature extraction methods", Proc. 1985 ACM SIGMOD International Con-

ference on Management of Data, pp.63{82.

[11] D. L. Lee and C. Leng: \A partitioned signature �le structure for multiattribute

and text retrieval", Proc. 6th IEEE International Conference on Data Engineer-

ing, Feb. 1990, pp.389{397.

[12] T. Kinoshita, J. Aoe and T. Sato: \A method for speeding up a hash search using

a substring test", Trans. Inst. Electron. Inf. Commun. Eng. D{I, J73{D{I, 5,

pp.535{538(1990{05) [in Japanese].

62

Fast Full Text Search Using Tree Structured [TS] File

[13] W.W. Chang and H. J. Schek: \A signature access method for starburst database

system", Proc. 15th International Conference on VLDB 1989, pp.145{153.

[14] T. Sato: \Fast string pattern matching by using compressed data �les", Trans.

Inst. Electron. Inf. Commun. Eng. D{I , J73{D{I, 4, pp.451{452 (1990{04) [in

Japanese].

[15] Y. Ogawa and M. Iwasaki: A new character-based indexing method using fre-

quency data for Japanese documents, In Proc. 18th ACM SIGIR Conf., Seattle,

USA, July 9{13 1995, pp. 121{129.

[16] J. Zobel, A. Mo�at and R. Sacks-Davis: \An e�cient indexing technique for

full-text database systems", Proc.18th International Conference on VLDB 1992,

pp.352{362.

[17] D. Morrison: PATRICIA { Practical algorithm to retrieve information coded in

alphanumeric, J.ACM,, 15, 4þ pp. 514{534 (1968).

[18] D. Knuth: The art of computer programming: Vol.3 sorting and searching,

Addison-Wesley, Reading, Mass., pp. 490{499 (1973).

[19] C. Clifton and H. Garcia-Molina: \Indexing a hypertext database", Proc.16th

International Conference on VLDB 1990, pp.36{49.

[20] R. Sacks-Davis, T. Arnold-Moore and J. Zobel: \Database systems for struc-

tured documents", Proc. Int. Symp. Advanced Database Technologies and Their

Integration ADTI'94, Nara, Japan, Oct. 26{28 1994, pp.272{283.

[21] T.Sato: \Fast Full Text Search with Free Word Using TS{�le", Proc. 19th ACM

SIGIR Conf., Zurich, Switzerland, Aug. 18{22 1996, p.342.

63

