
A Collection of New Regular Grammar Pattern

Matching Algorithms

Bruce W. Watson

Ribbit Software Systems Inc.

IST Technologies Research Group

Box 24040, 297 Bernard Ave.

Kelowna, B.C., V1Y 9P9, Canada

e-mail: watson@RibbitSoft.com

Abstract. A number of new algorithms for regular grammar pattern matching

is presented. The new algorithms handle patterns speci�ed by regular grammars

| a generalization of multiple keyword pattern matching and single keyword

pattern matching, both considered extensively in and [14, Chapter 4] and in

[18].

Among the algorithms is a Boyer-Moore type algorithm for regular grammar

pattern matching, answering a variant of an open problem posed by A.V. Aho in

1980 [2, p. 342]. Like the Boyer-Moore and Commentz-Walter algorithms, the

generalized algorithm makes use of shift functions which can be precomputed

and tabulated.

It appears that many of the new algorithms can be e�ciently implemented.

Key words: pattern matching, algorithms, regular grammars, regular pattern

matching, algorithmics, string algorithms

1 Introduction

The pattern matching problem is: given a regular pattern grammar (for a formal

de�nition see Section 2) and an input string S (over an alphabet V), �nd all substrings

of S which correspond to the language denoted by some production in the grammar.

Several restricted forms of this problem have been solved (all of which are discussed

in detail in [14, Chapter 4], and in [3, 18]):

� The Knuth-Morris-Pratt [12] and Boyer-Moore [5] algorithms solve the problem

when there is only a single production and its right-hand side has no nontermi-

nals | it is in V

�

(the single keyword pattern matching problem).

� The Aho-Corasick [1] and Commentz-Walter [6, 7] algorithms solve the problem

when all productions in the grammar have right-hand sides without nontermi-

nals | all of them are in V

�

(this is the multiple keyword pattern matching

problem). The Aho-Corasick and Commentz-Walter algorithms are generaliza-

tions of the Knuth-Morris-Pratt and Boyer-Moore algorithms respectively.

64

A Collection of New Regular Grammar Pattern Matching Algorithms

To date, very few regular grammar pattern matching algorithms have been developed.

Only recently, the generalized Boyer-Moore algorithm was developed [14, 16, 17]

�

.

It should be noted that there do exist other regular pattern matching algorithms

with good performance | for example, the one which was developed by R. Baeza-

Yates [4, 10]. Those algorithms are not, however, considered here since they either

use regular expressions

y

or they require some precomputation on the input string,

and are therefore not suited to the type of application presented in this paper.

This paper is structured as follows:

� Section 2 gives the problem speci�cation, and a na��ve algorithm.

� Section 3 gives a family of algorithms which process the input string in a left-

to-right manner.

� Section 4 gives a family of algorithms which process the input string in a right-

to-left manner. These algorithms are not symmetrical with the ones in Section 3,

due to our asymmetrical choice of right-linear grammars for our regular pattern

grammars.

� Section 5 presents the conclusions of this paper.

Before continuing with the developement of the algorithms, we �rst give some of the

de�nitions required for reading this paper.

1.1 Mathematical preliminaries

Most of the following de�nitions are standard ones relating to regular grammars and

languages.

De�nition 1.1 (Alphabet): An alphabet is a �nite, non-empty set of symbols. 2

Throughout this paper, we will assume some �xed alphabet V .

De�nition 1.2 (Functions pref and su�): For a given string z, de�ne pref(z)

(respectively su�(z)) to be the set of pre�xes (respectively su�xes), including string

z and the empty string ", of z. 2

De�nition 1.3 (String manipulation operators): Since we will be manipulating

the individual symbols of strings, and we do not wish to resort to such low-level

details as indexing, we de�ne the following four operators (all of which are in�x

operators, taking a string as the left operand, a natural number as the right operand,

and yielding a string):

� w- k is the kmin jwj left-most symbols of w.

� w% k is the kmin jwj right-most symbols of w.

�

That research was performed jointly with Richard E. Watson of the Department of Mathematics,

Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; he can now be reached at

rwatson@RibbitSoft.com.

y

Although regular grammars and regular expressions have the same descriptive power, they can

yield algorithms which are substantially di�erent.

65

Proceedings of the Prague Stringologic Club Workshop '96

� w. k is the jwj � kmax0 right-most symbols of w.

� w& k is the jwj � kmax0 left-most symbols of w.

2

De�nition 1.4 (Regular pattern grammar): A (right) regular grammar (also

known as a right linear grammar) is de�ned to be a three tuple, (V;N; P), where:

� V is our alphabet, known as the terminal alphabet.

� N is an alphabet, known as the nonterminal alphabet.

� P � N � (V

�

[V

�

N) is a �nite and nonempty set of (right linear) productions.

We usually write a given production (A;w) as A �! w. We also de�ne left-

hand side and right-hand side functions lhs and rhs (respectively) such that

lhs(A �! w) = A and rhs(A �! w) = w.

We also de�ne a function vpart on right-hand sides as follows: vpart(w) is

the longest pre�x of w containing only symbols in V ; that is, we drop the

nonterminal on the right, if there is one. More formally, for a right-hand side

x (for x 2 V

�

) we have vpart(x) = x; for a right-hand side xB (for B 2 N ,

x 2 V

�

) we have vpart(xB) = x.

2

We assume some �xed regular grammar (V;N; P) throughout this paper. Note that,

unlike usual grammars (for parsing, etc.), we do not have a \start symbol". We have

chosen to use right regular grammars, instead of left regular grammars (which have

the same descriptive power), because they are symmetrical (under reversal); with of

this choice, we must treat both left-to-right and right-to-left algorithms.

De�nition 1.5 (Languages of strings and productions): We de�ne function L,

mapping strings in V

�

[V

�

N to regular languages over V , as follows (for w 2 V

�

):

L(w) = fwg

and (for B 2 N)

L(wB) = fwgL(B)

We extend function L to map productions and nonterminals to the regular languages

they denote as follows (for A �! w 2 P):

L(A �! w) = L(w)

and

L(A) = ([w : p 2 P ^ A 2 lhs(p) : L(p))

Since this de�nition may be recursive, we naturally take the usual �xed-point de�ni-

tion, which always yields regular languages. 2

66

A Collection of New Regular Grammar Pattern Matching Algorithms

Property 1.6 (Language of a production): We have the following useful prop-

erty of the language of a production p 2 P :

L(p) � vpart(rhs(p))V

�

2

Intuitively, the above property holds because all words in the language denoted by

some production p have vpart(rhs(p)) as their pre�x.

Throughout this paper, we adopt the convention of extending a given function

which takes elements of some set D so that it takes elements of 2

D

(sets of elements

taken from D). (Typically, this is used to extend a function which takes one produc-

tion, giving a function which takes a set of productions.)

De�nition 1.7 (Chain rules): Productions of the form A �! B (for A;B 2 N)

are known as chain rules. (When B has been recognized as the left-hand side of

a production matching a substring, production A �! B has been matched as well.)

For this reason, we de�ne function crule 2 2

P

�! 2

P

(where 2

P

denotes the set of

all subsets of our production set P) as:

crule(U) = fA �! B j A �! B 2 P ^ B 2 lhs(U) g

We de�ne function crule

�

to be the reexive and transitive closure of function crule.

2

2 Problem speci�cation and a na��ve algorithm

We begin this section with a precise speci�cation of the regular grammar pattern

matching problem.

De�nition 2.1 (Regular pattern matching problem): Given an input string

S 2 V

�

, and our regular grammar, establish postcondition RPM :

O = f (l; p) j lu = S ^ pref(u) \ L(p) 6= � g

2

Intuitively, this means that we are registering all productions which match some

substring of S, along with the left context (in S) of the match location. (That is,

for simplicity, we are registering our matches by their begin-point.) We will use the

notation O

x

to refer to the set of productions in O which match with left context x

(a pre�x of S). More formally, O

x

= f p j (x; p) 2 O g.

We can now give our na��ve (and nondeterministic) algorithm

Algorithm 2.2:

O := �;

for l; u : lu = S !

O := O [flg � f p j p 2 P ^ pref(u) \ L(p) 6= � g

roff RPM g

2

67

Proceedings of the Prague Stringologic Club Workshop '96

Note that we are still making some assumptions about our ability to evaluate

membership in L(p).

In the next two sections, we consider adding more determinism to our �rst algo-

rithm. We will use the property that substrings of S can be characterized as \pre�xes

of su�xes" of S or as \su�xes of pre�xes" of S.

3 Left-to-right algorithms

We begin by deciding to traverse input string S from left-to-right in the following

algorithm.

Algorithm 3.1:

l; u := "; S; O := f"g � f p j p 2 P ^ pref(S) \ L(p) 6= � g;

do u 6= "!

l; u := l(u-1); u. 1;

O := O [flg � f p j p 2 P ^ pref(u) \ L(p) 6= � g

odf RPM g

2

This algorithm is still far from practical to implement, and we now consider adding

an inner repetition to implement the update of O. The inner repetition can consider

pre�xes of u in either increasing order or decreasing order. We begin by considering

the former.

Algorithm 3.2:

l; u := "; S; O := f"g � f p j p 2 P ^ pref(S) \ L(p) 6= � g;

do u 6= "!

l; u := l(u-1); u. 1;

v; r := "; u; O := O [flg � f p j p 2 P ^ " 2 L(p) g;

do r 6= "!

v; r := v(r- 1); r. 1;

O := O [flvg � f p j p 2 P ^ v 2 L(p) g

od

odf RPM g

2

The test v 2 L(p) is particularly di�cult to implement | indeed, almost as

di�cult as the problem we are trying to solve. There does not appear to be an easy

manner in which to improve the algorithm, and we abandon its development here.

The following (alternative) algorithm considers pre�xes of u in order of decreasing

length.

68

A Collection of New Regular Grammar Pattern Matching Algorithms

Algorithm 3.3:

l; u := "; S; O := f"g � f p j p 2 P ^ pref(S) \ L(p) 6= � g;

do u 6= "!

l; u := l(u-1); u. 1;

v; r := u; "; O := O [flg � f p j p 2 P ^ u 2 L(p) g;

do v 6= "!

v; r := v& 1; (v% 1)r;

O := O [flvg � f p j p 2 P ^ v 2 L(p) g

od

odf RPM g

2

Improving this algorithm appears to be as di�cult as the previous one. As a result,

we do not pursue either of them any further.

3.1 A recursive algorithm

We can also develop a recursive algorithm which traverses input string S from left-

to-right. Before presenting the recursive version, we �rst examine another imperative

algorithm traversing S from left-to-right. It considers productions p and decomposi-

tions u; r : ur = S such that vpart(p) 2 su�(u). For this algorithm only, we make

two trivial restrictions to patterns and the input string: S 6= " and there is no pro-

duction p such that rhs(p) = ". We also de�ne the following predicate, which makes

the subsequent algorithms more concise:

De�nition 3.4 (Predicate R): Predicate R takes an argument in N � V

�

� (N [

V)� V

�

:

R(A;w; a; u) � A �! wa 2 P ^ w 2 su�(u)

2

Algorithm 3.5:

u; r := "; S; O := �;

do r 6= "!

f ur = S g

f Deal with productions without a nonterminal in the RHS. g

O := O [f (u&jwj; A �! w(r- 1)) j R(A;w; r- 1; u) g;

f Deal with productions with a nonterminal in the RHS. g

O := O [f (u&jwj; A �! wB) j R(A;w;B; u) ^ B 2 N ^

pref(r) \ L(B) 6= � g;

u; r := u(r- 1); r. 1;

odf RPM g

2

69

Proceedings of the Prague Stringologic Club Workshop '96

We now present the recursive version of the same algorithm. Beginning with

O = �, the procedure invocation mat("; S) will yield postcondition RPM .

Algorithm 3.6:

proc mat(u; r)!

f ur = S ^ r 6= " g

f Deal with productions without a nonterminal in the RHS. g

O := O [f (u&jwj; A �! w(r- 1)) j R(A;w; r- 1; u) g;

f Deal with productions with a nonterminal in the RHS. g

O := O [f (u&jwj; A �! wB) j R(A;w;B; u) ^ B 2 N ^

pref(r) \ L(B) 6= � g;

if (r. 1) 6= "! mat(u(r- 1); r. 1)

[] (r. 1) = "! skip

fi

corp

2

This algorithm is guaranteed to terminate, since S is a �nite string, and the division

between u and r (in S) is monotonically moving from left-to-right with each recursive

call.

The algorithm can be made more e�cient (in the next few pages) by moving the

second update of O below the recursive call.

The expression su�(u) occurs in several places within the update of O. We could

introduce a new parameter such that U : U = su�(u). In the above algorithm, all

tests for membership in su�(u) involve pre�xes of rhs(P). For this reason, we can

introduce the more general U : su�(u) \ pref(rhs(P)). This is established with

U = f"g in the initial invocation of mat . We now derive the new value for U in the

recursive invocation of mat , based upon the old value:

su�(u(r- 1)) \ pref(rhs(P))

= fproperty of su� g

(su�(u)(r- 1) [f"g) \ pref(rhs(P))

= f[distributes over \; " 2 pref(rhs(P)) g

(su�(u)(r- 1) \ pref(rhs(P))) [f"g

= f fwag \ pref(W) 6= � � (fwg \ pref(W))fag \ pref(W) 6= � g

((su�(u) \ pref(rhs(P)))(r- 1) \ pref(rhs(P))) [f"g

= fde�nition of U g

(U(r- 1) \ pref(rhs(P))) [f"g

The domain of U is �nite, and it conceptually represents a state. There are some

very e�cient means of representing this particular domain, which is related to the

Aho-Corasick state function. The new value of U can be more easily computed using

the following function.

70

A Collection of New Regular Grammar Pattern Matching Algorithms

De�nition 3.7 (Function �): We de�ne function � 2 2

pref(rhs(P))

� (N [V) �!

2

pref(rhs(P))

as

� (U; a) = (Ua \ pref(rhs(P))) [f�g

2

This function is easily precomputed, since it corresponds to the forward trie con-

structed from the right-hand sides of productions. The updates of O can be made

much simpler with the introduction of the following function (most of which can also

be precomputed):

De�nition 3.8 (Function Output): Function Output 2 2

pref(rhs(P))

� V

�

�!

V

�

� 2

pref(rhs(P))

is de�ned as

Output (U; u) = ([A;w : A �! w 2 P ^ w 2 U : fu&jwjg � crule

�

(A �! w))

2

These two functions are used in the following version of our algorithm:

Algorithm 3.9:

proc mat(u; r; U)!

f ur = S ^ r 6= " ^ U = su�(u) \ pref(rhs(P)) g

O := O [Output (� (U; r- 1); u);

if (r. 1) 6= "! mat(u(r- 1); r. 1; � (U; r- 1))

[] (r. 1) = "! skip

fi;

O := O [([B : B 2 N ^ pref(r) \ L(B) 6= � : Output (� (U;B); u))

corp

2

The second update of O still contains the predicate pref(r) \ L(B) 6= �. With this

update appearing after the recursive call to mat , all productions matching at u will

already appear in O. The predicate can therefore be replaced with B 2 lhs(O

u

) in

the following algorithm:

Algorithm 3.10:

proc mat(u; r; U)!

f ur = S ^ r 6= " ^ U = su�(u) \ pref(rhs(P)) g

O := O [Output (� (U; r- 1); u);

if (r. 1) 6= "! mat(u(r- 1); r. 1; � (U; r- 1))

[] (r. 1) = "! skip

fi;

O := O [([B : B 2 N ^ B 2 lhs(O

u

) : Output (� (U;B); u))

corp

2

71

Proceedings of the Prague Stringologic Club Workshop '96

For our �nal improvement, we change the algorithm such that at any given u; r :

ur = S, we only register local matches (those p matching at u). Any other (nonlocal)

matches are returned by the procedure to be locally registered at their appropriate

local u level. To make the new version concise, we rede�ne our output function as

follows:

De�nition 3.11 (Function Output): Function Output 2 2

pref(rhs(P))

�!

Naturals � 2

P

now registers matching productions with the number of levels that

they must be passed back for matching

Output (U) = ([A;w : A �! w 2 P ^ w 2 U : fjwjg � crule

�

(A �! w))

2

Since this function does not depend upon u (unlike our earlier de�nition), we can fully

precompute it. The new matching scheme is presented in the �nal recursive algorithm

(in which we introduce variable matches to hold the intermediate matches):

Algorithm 3.12:

proc mat(u; r; U)!

f ur = S ^ r 6= " ^ U = su�(u) \ pref(rhs(P)) g

matches := Output(� (U; r- 1));

if (r. 1) 6= "! matches := matches [mat(u(r- 1); r. 1; � (U; r- 1))

[] (r. 1) = "! skip

fi;

matches := matches [([B : B 2 N ^

B 2 lhs(matches

0

) : Output (� (U;B)));

O := O [fug �matches

0

;

mat := ([i : 0 < i : fi� 1g �matches

i

)

corp

2

For e�ciency reasons, we also consider two methods by which we can represent the

set matches. Both of the methods rely upon the fact that P is a �nite set, and that

the integers (in the �rst components of variable matches) are in [0; (MAX p : p 2

P : jpj)� 1] (the upperbound is one less than the length of the longest production).

1. Use signature matches 2 P �! 2

[0;(MAX p:p2P :jpj)�1]

. In other words, map

each production to a set of levels that it must be passed up to match locally.

The representation can use an array (indexed by an integer associated with

each production in P) of bit vectors (each of length (MAX p : p 2 P : jpj))

indicating the number of levels back that the production must be passed for

local registration. All of the updates of matches can be done using bit vector

operations (bitwise-OR). Finding which productions have matched locally is

done by looking up those productions whose corresponding bit vector has the

0 bit set. Computing the �nal return value of the procedure is done by bit

shifting all of the entries in the representation of matches.

72

A Collection of New Regular Grammar Pattern Matching Algorithms

2. Use signature matches 2 [0; (MAX p : p 2 P : jpj) � 1] �! 2

P

. In this repre-

sentation, we map each level (to be passed on the return) to the set of produc-

tions which match at that level. The representation can use an array (indexed

by level number) of bit vectors (each of length jP j). Again, all of the updates of

matches can be done using bit vector operations (bitwise-OR). Finding which

productions have matched locally is done by looking up those productions in

entry 0 of matches . The return value can be computed trivially if the array is

represented as a circular array (in which the current 0 position is determined

by a separate pointer); in this case, the return value only involves updating the

pointer.

These representations would also yield interesting representations for functionOutput .

4 Right-to-left algorithms

In this section, we consider algorithms which traverse input string from right-to-left

in general. Our �rst algorithm consists of a single repetition:

Algorithm 4.1:

l; u := S; "; O := fSg � f p j p 2 P ^ " 2 L(p) g;

do l 6= "!

l; u := l& 1; (l% 1)u;

O := O [flg � f p j p 2 P ^ pref(u) \ L(p) 6= � g

odf RPM g

2

The update of O in the repetition must still be implemented. This will be addressed

shortly in Section 4.1. Another possible implementation is to use a nested repetition

to traverse the pre�xes of u in order of increasing length, as in the following algorithm:

Algorithm 4.2:

l; u := S; "; O := fSg � f p j p 2 P ^ " 2 L(p) g;

do l 6= "!

l; u := l& 1; (l% 1)u;

v; r := "; u; O := O [flg � f p j p 2 P ^ " 2 L(p) g;

do r 6= "!

v; r := v(r- 1); r. 1;

O := O [flg � f p j p 2 P ^ v 2 L(p) g

od

odf RPM g

2

In Section 4.2, this algorithm will be used as the starting point for the derivation of

a particularly e�cient new algorithm.

The inner repetition of the above algorithm could also be structured to consider

pre�xes of u in order of decreasing length:

73

Proceedings of the Prague Stringologic Club Workshop '96

Algorithm 4.3:

l; u := S; "; O := fSg � f p j p 2 P ^ " 2 L(p) g;

do l 6= "!

l; u := l& 1; (l% 1)u;

v; r := u; "; O := O [flg � f p j p 2 P ^ u 2 L(p) g;

do v 6= "!

v; r := v& 1; (v% 1)r;

O := O [flg � f p j p 2 P ^ v 2 L(p) g

od

odf RPM g

2

It does not appear that there are any straightforward methods for improving the

e�ciency of Algorithm 4.3.

4.1 Improving the single-repetition algorithm

In this section, we make some improvements to Algorithm 4.1. The update of O can

be made much simpler by introducing a new variable W :

W = fx j x 2 su�(rhs(P)) ^ pref(u) \ L(x) 6= � g

The resulting algorithm is:

Algorithm 4.4:

l; u := S; ";

W := fx j x 2 su�(rhs(P)) ^ " 2 L(x) g;

O := fSg � f p j p 2 P ^ rhs(p) 2 W g;

do l 6= "!

l; u := l& 1; (l% 1)u;

W := fx j x 2 su�(rhs(P)) ^ pref(u) \ L(x) 6= � g;

O := O [flg � f p j p 2 P ^ rhs(p) 2 W g

odf RPM g

2

The initialization of W can be greatly simpli�ed using the chain-rule relation crule:

Algorithm 4.5:

l; u := S; ";

W := f"g [lhs(crule

�

(f p j rhs(p) = " g));

O := fSg � f p j p 2 P ^ rhs(p) 2 W g;

do l 6= "!

l; u := l& 1; (l% 1)u;

W := fx j x 2 su�(rhs(P)) ^ pref(u) \ L(x) 6= � g;

O := O [flg � f p j p 2 P ^ rhs(p) 2 W g

odf RPM g

2

74

A Collection of New Regular Grammar Pattern Matching Algorithms

We now need an e�cient implementation of the update of W . We can derive the

update as follows, starting with the new value (after the updates of l and u):

fx j x 2 su�(rhs(P)) ^ pref((l% 1)u) \ L(x) 6= � g

= fproperty of pref g

fx j x 2 su�(rhs(P)) ^ (f"g [(l% 1)pref(u)) \ L(x) 6= � g

= f\ distributes over [g

fx j x 2 su�(rhs(P)) ^ ((l% 1)pref(u) \ L(x) 6= � _ " 2 L(x)) g

= f split quanti�cation g

fx j x 2 su�(rhs(P)) ^ " 2 L(x) g

[fx j x 2 su�(rhs(P)) ^ (l% 1)pref(u) \ L(x) 6= � g

= fuse crule

�

for �rst quanti�cation g

f"g [lhs(crule

�

(f p j p 2 P ^ rhs(p) = " g))

[fx j x 2 su�(rhs(P)) ^ (l% 1)pref(u) \ L(x) 6= � g

= f change of bound variable in second quanti�cation: x = (l% 1)x

0

g

f"g [lhs(crule

�

(f p j p 2 P ^ rhs(p) = " g))

[f (l% 1)x

0

j (l% 1)x

0

2 su�(rhs(P)) ^ (l% 1)pref(u) \ L((l% 1)x

0

) 6= � g

= f apref(u) \ L(ax

0

) 6= �) pref(u) \ L(x

0

) 6= �; �rst conjunct g

f"g [lhs(crule

�

(f p j p 2 P ^ rhs(p) = " g))

[f (l% 1)x

0

j (l% 1)x

0

2 su�(rhs(P)) ^ pref(u) \ L(x

0

) 6= � g

= f az 2 su�(W)) z 2 su�(W) g

f"g [lhs(crule

�

(f p j p 2 P ^ rhs(p) = " g))

[f (l% 1)x

0

j (l% 1)x

0

2 su�(rhs(P)) ^ x

0

2 su�(rhs(P)) ^

pref(u) \ L(x

0

) 6= � g

= f invariant on W g

f"g [lhs(crule

�

(f p j p 2 P ^ rhs(p) = " g))

[(l% 1)fx

0

j (l% 1)x

0

2 su�(rhs(P)) ^ x

0

2 W g

Since the domain of W is �nite, we can de�ne a state set, and an initial state.

De�nition 4.6 (State set): State set is de�ned as Q = su�(rhs(P)). The initial

state q

0

is de�ned to be

f"g [lhs(crule

�

(f p j rhs(p) = " g))

2

Using this state set, we can also de�ne a transition function (using the derivation

above).

De�nition 4.7 (Function �): Transition function � 2 Q� V �! Q is de�ned as

�(q; a) = q

0

[af y j ay 2 su�(rhs(P)) ^ y 2 q g

2

The state set and the transition function can be used in the �nal algorithm:

75

Proceedings of the Prague Stringologic Club Workshop '96

Algorithm 4.8:

l; u := S; ";

W := q

0

;

O := fSg � f p j p 2 P ^ rhs(p) 2 W g;

do l 6= "!

l; u := l& 1; (l% 1)u;

W := �(W; l% 1);

O := O [flg � f p j p 2 P ^ rhs(p) 2 W g

odf RPM g

2

This algorithm can be simpli�ed somewhat by de�ning an output function for the

update of O, and by applying Aho-Corasick-like simpli�cation of the state set.

4.2 Improving an algorithm with two repetitions

We begin with Algorithm 4.2, duplicated here:

Algorithm 4.9:

l; u := S; "; O := fSg � f p j p 2 P ^ " 2 L(p) g;

do l 6= "!

l; u := l& 1; (l% 1)u;

v; r := "; u; O := O [flg � f p j p 2 P ^ " 2 L(p) g;

do r 6= "!

v; r := v(r- 1); r. 1;

O := O [flg � f p j p 2 P ^ v 2 L(p) g

od

odf RPM g

2

In this algorithm, as we consider pre�xes of u of increasing length, we can make use

of some information already stored in the set O. We will use the variable v to keep

track of partial matches corresponding to right-hand sides of productions. Once we

have a completed right-hand side, the match can be registered, along with any other

matches induced by chain rules. We consider the two possible forms of right-hand

sides separately.

We begin by rewriting the set

f p j p 2 P ^ v 2 L(p) g

(used in the inner repetition's update of O in the algorithm above, and catering to

the simpler form of right-hand side) as

crule

�

(f p j p 2 P ^ rhs(p) = v g)

We now turn to the second form of right-hand side. In the following derivation, we

rely upon the fact that the outer repetition considers string S from right-to-left. We

76

A Collection of New Regular Grammar Pattern Matching Algorithms

would like to register a match when there is some nonterminal A 2 lhs(O

lv

) (that is,

A is the left-hand side of some production matching in r, with left context lv) and

vA is the right-hand side of some production. More formally, the set of such matches

is

crule

�

(f p j p 2 P ^ rhs(p) = vA ^ A 2 lhs(O

lv

) g)

We use these two formulas in the following algorithm:

Algorithm 4.10:

l; u := S; "; O := fSg � crule

�

(f p j p 2 P ^ rhs(p) = " g);

do l 6= "!

l; u := l& 1; (l% 1)u;

v; r := "; u; O := O [flg � crule

�

(f p j p 2 P ^ rhs(p) = " g);

do r 6= "!

v; r := v(r- 1); r. 1;

O := O [flg � crule

�

(f p j p 2 P ^ rhs(p) = v g);

O := O [flg � crule

�

(f p j p 2 P ^ rhs(p) = vA ^ A 2 lhs(O

lv

) g);

od

odf RPM g

2

The twin updates of O in the inner repetition arise from the fact that we have two

di�erent types of right-hand sides to consider.

In the above algorithm, we note that, once v 62 pref(vpart(rhs(P))), it is not

possible to �nd a further match by extending v on the right. It is thus possible

to terminate the inner repetition once further iterations are futile. This is done by

extending the inner repetition guard to r 6= " cand v(r- 1) 2 pref(vpart(rhs(P))).

This change also happens to give us the inner repetition invariant

v 2 pref(vpart(rhs(P))), which is initially true by the redundant initialization of v.

This invariant encompasses the information which we will later use to improve the

algorithm. For this reason, we would also like to have this as an invariant of the outer

repetition. This can be done by adding the initialization v; r := "; " at the beginning

of the program. All of these improvements yield the following algorithm:

Algorithm 4.11:

l; u := S; ";

v; r := "; "; O := fSg � crule

�

(f p j p 2 P ^ rhs(p) = " g);

do l 6= "!

l; u := l& 1; (l% 1)u;

v; r := "; u; O := O [flg � crule

�

(f p j p 2 P ^ rhs(p) = " g);

do r 6= " cand v(r- 1) 2 pref(vpart(rhs(P)))!

v; r := v(r- 1); r. 1;

O := O [flg � crule

�

(f p j p 2 P ^ rhs(p) = v g);

O := O [flg � crule

�

(f p j p 2 P ^ rhs(p) = vA ^ A 2 lhs(O

lv

) g);

od

odf RPM g

2

77

Proceedings of the Prague Stringologic Club Workshop '96

The evaluation of the inner repetition guard can be done by using a trie.

De�nition 4.12 (Function �

red

): The trie for (the �nite set of keywords)

rhs(P) (over combined alphabet N [V) is function �

red

2 pref(rhs(P))� V �!

pref(rhs(P)) [f?g de�ned by

�

red

(w; a) =

(

aw if wa 2 pref(rhs(P))

? if wa 62 pref(rhs(P))

This function is known as the reduced trie | a compressed version of the function �

given in De�nition 3.7. 2

Using the trie, we rewrite the conditional conjunct v(r- 1) 2 pref(vpart(rhs(P)))

as

�

red

(v; r- 1) 6= ?

(This hinges upon the fact that pref(vpart(rhs(P))) � pref(rhs(P)) and S 2 V

�

.)

To make the algorithm more concise, we also de�ne the following output function:

De�nition 4.13 (Output function): Function Out 2 pref(rhs(P)) �! 2

P

is

de�ned by

Out (w) = crule

�

(f p j p 2 P ^ rhs(p) = w g)

2

Function Out is easily precomputed. It is obvious that we can use Out for the �rst

update of O in the inner repetition. We can use this function, along with the reverse

trie, to rewrite the second update of O in the inner repetition, as follows:

crule

�

(f p j p 2 P ^ rhs(p) = vA ^ A 2 lhs(O

lv

) g)

= fde�nition of �

red

g

crule

�

(f p j p 2 P ^ rhs(p) = �

red

(v;A) ^ A 2 lhs(O

lv

) g)

= fde�nition of Out g

Out (f �

red

(v;A) j A 2 lhs(O

lv

) g)

Using these two functions yields the following algorithm:

Algorithm 4.14:

l; u := S; ";

v; r := "; "; O := fSg �Out (");

do l 6= "!

l; u := l& 1; (l% 1)u;

v; r := "; u; O := O [flg �Out(");

do r 6= " cand �

red

(v; r- 1) 6= ? !

v; r := v(r- 1); r. 1;

O := O [flg �Out (v);

O := O [flg �Out (f �

red

(v;A) j A 2 lhs(O

lv

) g n f?g);

od

odf RPM g

2

78

A Collection of New Regular Grammar Pattern Matching Algorithms

4.3 Greater shift distances

In a manner analogous to the Commentz-Walter and Boyer-Moore algorithm deriva-

tions in [14, Chapter 4] or [18, 20], we can use the invariant v 2 pref(vpart(rhs(P)))

on subsequent iterations of the outer repetition to make a shift of k � 1 symbols by

replacing the assignment l; u := l& 1; (l% 1)u by l; u := l& k; (l% k)u.

As with the Commentz-Walter and Boyer-Moore algorithms, we would like an ideal

shift distance | the shift distance to the nearest match to the left (in input string S).

Formally, this distance is given by: (MIN n : 1 � n � jlj ^ pref((l%n)u) \L(P) 6=

� : n). Any shift distance less than this is also acceptable, and we de�ne a safe shift

distance (similar to that given in [14, Chapter 4] and in [18, 20]).

De�nition 4.15 (Safe shift distance): A shift distance k satisfying

1 � k � (MIN n : 1 � n � jlj ^ pref((l%n)u) \ L(P) 6= � : n)

is a safe shift distance. We call the upperbound (the quanti�cation) the maximal safe

shift distance or the ideal shift distance. 2

Using a safe shift distance, the update of l; u then becomes l; u := l& k; (l% k)u.

In order to compute a safe shift distance, we will weaken predicate pref((l%n)u) \

L(P) 6= � (which we call the ideal shift predicate) in the range of the maximal safe

shift distance quanti�cation. This technique of using predicate weakening to �nd

a more easily computed shift distance was introduced in [18] and used in [14, 20].

The weakest predicate, true, yields a shift distance of 1 | which, in turn, yields our

last algorithm. We now �nd a weakening of the ideal shift predicate which is stronger

than true, but still precomputable.

In the following weakening, we will �rst remove the dependency of the ideal shift

predicate on r and then l. The particular weakening that we derive will prove to

yield precomputable shift tables. Assuming 1 � n � jlj and the (implied) invariant

u = vr, we begin with the ideal shift predicate:

pref((l%n)u) \ L(P) 6= �

� f invariant: u = vr g

pref((l%n)vr) \ L(P) 6= �

) fdiscard lookahead to r: r 2 V

�

, monotonicity of pref and \g

pref((l%n)vV

�

) \ L(P) 6= �

) fdomain of l and n: n � jlj, so (l%n) 2 V

n

g

pref(V

n

vV

�

) \ L(P) 6= �

� fproperty of pref (see [14, Chapter 2]) g

V

n

vV

�

\ L(P)V

�

6= �

) fproperty of L(P): L(P) � vpart(rhs(P))V

�

g

V

n

vV

�

\ vpart(rhs(P))V

�

V

�

6= �

� fV

�

V

�

= V

�

g

V

n

vV

�

\ vpart(rhs(P))V

�

6= �

� fproperty of languages (see [14, Chapter 2]) g

V

n

vV

�

\ vpart(rhs(P)) 6= � _ V

n

v \ vpart(rhs(P))V

�

6= �

79

Proceedings of the Prague Stringologic Club Workshop '96

Note that we have removed the dependence upon l, meaning that we can remove the

upper bound on n in the MIN quanti�cation. Given the last line above, we have the

following approximation:

(MIN n : 1 � n � jlj ^ pref((l%n)u) \ L(P) 6= � : n)

� fderivation above, disjunction in the resulting range predicate g

(MIN n : 1 � n ^ V

n

vV

�

\ vpart(rhs(P)) 6= � : n)

min(MIN n : 1 � n ^ V

n

v \ vpart(rhs(P))V

�

6= � : n)

This last line above can be written more concisely with the introduction of a pair of

auxiliary functions.

De�nition 4.16 (Functions b

1

; b

2

): We de�ne two functions b

1

; b

2

with signatures

b

1

; b

2

2 pref(vpart(rhs(P))) �! Naturals (the domain comes from the fact that

v 2 pref(vpart(rhs(P)))) as:

b

1

(x) = (MIN n : 1 � n ^ V

n

xV

�

\ vpart(rhs(P)) 6= � : n)

b

2

(x) = (MIN n : 1 � n ^ V

n

v \ vpart(rhs(P))V

�

6= � : n)

These two functions are, in fact, reversed versions of the Commentz-Walter shift func-

tions (known as d

1

and d

2

) for (�nite) keyword set vpart(rhs(P)). Their precompu-

tation is extremely well understood, and is detailed in [18, 20]. The precomputation

algorithm involves the trie (for rhs(P)) �

red

, introduced earlier. 2

Using the auxiliary functions, our approximation of the ideal shift distance is

b

1

(v)minb

2

(v). Using the new shift distance yields our �nal algorithm (with new

variable h to hold the shift distance):

Algorithm 4.17:

l; u := S; ";

v; r := "; "; O := fSg �Out (");

do l 6= "!

h := b

1

(v)minb

2

(v);

l; u := l&h; (l%h)u;

v; r := "; u; O := O [flg �Out(");

do r 6= " cand �

red

(v; r- 1) 6= ? !

v; r := v(r- 1); r. 1;

O := O [flg �Out (v);

O := O [flg �Out (f �

red

(v;A) j A 2 lhs(O

lv

) g n f?g);

od

odf RPM g

2

4.3.1 Specializing the pattern matching algorithm

By restricting the form of the regular grammars, we can specialize Algorithm 4.17 to

obtain a reversed version of the Commentz-Walter and the Boyer-Moore algorithms.

80

A Collection of New Regular Grammar Pattern Matching Algorithms

The most straightforward specialization is to restrict the productions to be of

the form A �! w for w 2 V

�

and each nonterminal appears as at most one left-

hand side. From this restriction, we have vpart(rhs(P)) = rhs(P). In this case,

the set of productions essentially represents a �nite set of keywords rhs(P) (the

left-hand sides are redundant). We can then delete the second update of O in the

inner repetition, since it is used exclusively for productions with a nonterminal as

the right-most symbol of the right-hand side. The resulting algorithm is the reversal

to the Commentz-Walter algorithm without lookahead. (For a presentation of the

Commentz-Walter algorithm, see [14, Section 4.4] or [19].)

We can similarly restrict the set of productions to consist of a single production

A �! w for w 2 V

�

. In this case, we obtain a variant of the Boyer-Moore algorithm.

(For a number of variants of the Boyer-Moore algorithm, see [14, Section 4.5] and

[11].)

4.3.2 Improving the algorithm

We now briey mention two approaches to improving this algorithm (both of which

are discussed in more detail in [14, Chapters 4 and 5]):

� In the derivation of a weakened range predicate, we eliminated any (right)

lookahead into string r by replacing it with V

�

. We could have retained a single

symbol of lookahead, by replacing r with (r- 1)V

�

. We could then have further

manipulated the predicate and de�ned a third shift function.

� Also in the derivation, we discarded any (left) lookahead into l by replacing

l%n with V

n

. We could have kept a single symbol of lookahead by replacing

l%n with V

n�1

(l% 1). This would also have yielded a di�erent shift function.

5 Conclusions

We have succeeded in deriving and presenting a number of new algorithms for the

regular grammar pattern matching problem. The interesting, and possibly e�cient,

algorithms include a generalization of the Boyer-Moore algorithm, a recursive al-

gorithm (which resembles a generalized Aho-Corasick algorithm), and an algorithm

based on a type of �nite automaton.

Interestingly, the Boyer-Moore type algorithm presented here was only derived

after a regular tree pattern matching version of the algorithm was developed [15].

Future directions include implementing all of the algorithms and collecting bench-

marking data.

Acknowledgements:

I would like to thank Richard Watson, Dr. Kees Hemerik, Dr. Gerard Zwaan, and

Prof. Dr. Frans Kruseman Aretz for their technical assistance during the development

of these algorithms. A great deal of feedback was also provided by the participants

at the Prague Stringologic Club Workshop '96 in Prague, in particular the organizers

Prof. Dr. Melichar, Dr. Martin Bloch, and Ing. Jan Holub (who also provided a great

deal of help with the typesetting). I thank Drs. Nanette Saes for proofreading and

o�ering suggestions for improvement of this paper.

81

Proceedings of the Prague Stringologic Club Workshop '96

References

[1] Aho, A.V., Corasick, M.J.: E�cient string matching: an aid to bibliographic

search, Comm. ACM, 18(6) (1975) 333{340.

[2] Aho, A.V.: Pattern matching in strings, in: Book, R.V., ed., Formal Language

Theory: Perspectives and Open Problems. (Academic Press, New York, 1980)

325{347.

[3] Aho, A.V.: Algorithms for �nding patterns in strings, in: van Leeuwen, J., ed.,

Handbook of Theoretical Computer Science, Vol. A. (North-Holland, Amster-

dam, 1990) 257{300.

[4] Baeza-Yates, R.: E�cient Text Searching. (Ph.D dissertation, University of Wa-

terloo, Canada, May 1989).

[5] Boyer, R.S., Moore, J.S.: A fast string searching algorithm, Comm. ACM, 20(10)

(1977) 62{72.

[6] Commentz-Walter, B.: A string matching algorithm fast on the average, in:

Maurer, H.A., ed., Proc. 6th Internat. Coll. on Automata, Languages and Pro-

gramming (Springer-Verlag, Berlin, 1979) 118{132.

[7] Commentz-Walter, B.: A string matching algorithm fast on the average, Tech-

nical Report TR 79.09.007, IBM Germany, Heidelberg Scienti�c Center, 1979.

[8] Crochemore, M., Rytter, W.: Text Algorithms. (Oxford University Press, Oxford,

England, 1994).

[9] Fredkin, E.: Trie memory, Comm. ACM 3(9) (1960) 490{499.

[10] Gonnet, G.H., Baeza-Yates, R.: Handbook of Algorithms and Data Structures

(In Pascal and C). (Addison-Wesley, Reading, MA, 2nd edition, 1991).

[11] Hume, S.C., Sunday, D.: Fast string searching, Software|Practice and Experi-

ence 21(11) (1991) 1221{1248.

[12] Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings, SIAM

J. Comput. 6(2) (1977) 323{350.

[13] Watson, B.W.: The performance of single-keyword and multiple-keyword pattern

matching algorithms, Computing Science Report 94/19, Eindhoven University of

Technology, The Netherlands, 1994. Available for ftp from ftp.win.tue.nl in

directory /pub/techreports/pi/pattm/.

[14] Watson, B.W.: Taxonomies and Toolkits of Regular Language Algorithms. (Ph.D

dissertation, Eindhoven University of Technology, The Netherlands, 1995). Con-

tact watson@RibbitSoft.com.

[15] Watson, B.W.: A Boyer-Moore (or Watson-Watson) type algorithm for regu-

lar tree pattern matching, in: Aarts, E.H.L., ten Eikelder, H.M.M., Hemerik,

C., Rem, M., eds., Simplex Sigillum Veri: Een Liber Amicorum voor prof.dr.

82

A Collection of New Regular Grammar Pattern Matching Algorithms

F.E.J. Kruseman Aretz (Eindhoven University of Technology, ISBN 90-386-0197-

2, 1995) 315{320.

[16] Watson, B.W.: A new algorithm for regular grammar pattern matching, Pro-

ceedings of the Fourth European Symposium on Algorithms, Barcelona, Spain,

1996.

[17] Watson, B.W., Watson, R.E.: A Boyer-Moore type algorithm for regular

expression pattern matching, Computing Science Report 94/31, Eindhoven

University of Technology, The Netherlands, 1994. Available by e-mail from

watson@RibbitSoft.com.

[18] Watson, B.W., Zwaan, G.: A taxonomy of keyword pattern matching algo-

rithms, Computing Science Report 92/27, Eindhoven University of Technology,

The Netherlands, 1992. Available by e-mail from watson@RibbitSoft.com or

wsinswan@win.tue.nl.

[19] Watson, B.W., Zwaan, G.: A taxonomy of sublinear multiple keyword

pattern matching algorithms, Computing Science Report 95/13, Eindhoven

University of Technology, The Netherlands, 1994. Available by e-mail from

wsinswan@win.tue.nl.

[20] Watson, B.W., Zwaan, G.: A taxonomy of sublinear multiple keyword pattern

matching algorithms, to appear in: Science of Computer Programming, (1996).

[21] Zwaan, G.: Sublinear pattern matching, in: Aarts, E.H.L., ten Eikelder, H.M.M.,

Hemerik, C., Rem, M., eds., Simplex Sigillum Veri: Een Liber Amicorum voor

prof.dr. F.E.J. Kruseman Aretz (Eindhoven University of Technology, ISBN 90-

386-0197-2, 1995) 335{350.

83

