
6D Classi�cation of Pattern Matching Problems

1

Bo�rivoj Melichar, Jan Holub

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University

Karlovo n�am�est�� 13

121 35 Prague 2

Czech Republic

e-mail: fmelichar, holubg@cs.felk.cvut.cz

Abstract. We present our uni�ed view to pattern matching problems and their

solutions. We classify pattern matching problems by using six criteria and

therefore we can locate them into six-dimensional space. We also show basic

model of nondeterministic �nite automaton that can be used for constructing

models for all pattern matching problems.

Key words: string matching, sequence matching, classi�cation, �nite automata

1 Introduction

Pattern matching (string and sequence matching) appears as a very important com-

ponent of many applications, including text editing, word processing, data retrieval,

symbol manipulation, alignment in genetics, etc. This problem has been extensively

studied since beginning of seventies.

The exact string matching is based on the two historical papers by Knuth, Morris

and Pratt [KMP77] and by Boyer and Moore [BM77]. Matching of sequences started

by Chv�atal, Klainer and Knuth [CKK72]. They designed an algorithm for the longest

common subsequence problem. Approximate string matching is based on well known

paper by Wagner and Fischer [WF74]. Multiple string matching was originated by

Aho and Corasick [AC75].

Since this �rst algorithms, many di�erent problems of pattern matching were

studied and many excellent ideas are included in existing text algorithms [CR94].

All one-dimensional pattern matching problems are sequential problems and there-

fore it is possible to solve them using �nite automata. Below we discuss construction

of �nite automata for many pattern matching problems. These automata are mostly

nondeterministic. There are three ways how these automata can be used:

1. To serve as a model of algorithms for solving of di�erent problems.

2. To simulate the nondeterministic automaton in a deterministic way. Some of

known pattern matching algorithms use this approach.

1

This work was supported by grant FRV

�

S 0892/97.

24



6D Classi�cation of Pattern Matching Problems

3. To construct an equivalent deterministic �nite automaton. This approach may

lead to the high space complexity in some cases.

The use of �nite automata for the modelling of pattern matching algorithms

means, that there is a formal method introduced to this part of computer science.

It is well known from other areas (e.g. language theory) that introduction of formal

approach has positive consequences. The main advantage is that it is possible to

describe all problems using an uni�ed view. This leads to the possibility to transfer

know-how from another, well developed area, to compare di�erent solutions, to �nd

limitations, etc.

One of the consequences of the introduction of �nite automata formalism is:

The possibility of the construction of �nite automata for all problems in question

shows, that there exist algorithms for all pattern matching problems having the linear

time complexity. The space complexity is di�erent for di�erent problems. Existing

upper bounds on space complexity of some problems are pessimistic.

Evaluation of some existing algorithms as simulators of nondeterministic �nite

automata will lead to understanding how some classes of automata can be simulated.

This knowledge may serve for improvement of other algorithms and for the design of

new ones.

2 Pattern matching problems

2.1 Basic notions and notations

Some basic notions will be used in subsequent sections. This section collects de�ni-

tions of them. The notion pattern matching is used for string matching and sequence

matching.

\Don't care" symbol is a special universal symbol� that matches any other symbol

including itself.

De�nition 1 (Basic pattern matching problems)

Given a text string T = t

1

t

2

� � � t

n

and a pattern P = p

1

p

2

� � � p

m

. Then we may de�ne:

1. String matching: verify if string P is a substring of text T .

2. Sequence matching: verify if sequence P is a subsequence of text T .

3. Subpattern matching: verify if a subpattern of P (substring or subsequence)

occurs in text T .

4. Approximate pattern matching: verify if pattern P occurs in the text T so that

the distance D(P;X) � k for given k < m, where X = t

i

� � � t

j

is a part of

text T .

5. Pattern matching with \don't care" symbols: verify if pattern P containing

\don't care" symbols occurs in text T .

De�nition 2 (Matching a sequence of patterns)

Given a text string T = t

1

t

2

� � � t

n

and a sequence of patterns (string and sequences)

25



Proceedings of the Prague Stringology Club Workshop '97

P

1

; P

2

; � � � ; P

s

. Matching of sequence of patterns P

1

; P

2

; � � � ; P

s

is a veri�cation whether

an occurrence of pattern P

i

in text T is followed by an occurrence of P

i+1

, 1 � i < s.

De�nitions 1 and 2 de�ne pattern matching problems as a decision problems,

because the output is a Boolean value. A modi�ed version of these problems consists

in searching for the �rst, the last, or all occurrences of pattern and moreover the result

may be the set of positions of the pattern in the text. Instead of just one pattern,

one can consider a �nite or in�nite set of patterns.

De�nition 3 (Distance of patterns)

Three variants of distances between two patterns X and Y are de�ned as minimal

number of editing operations:

1. replace (Hamming distance, R-distance),

2. delete, insert and replace (Levenshtein distance, DIR-distance),

3. delete, insert, replace and transpose (generalized Levenshtein distance, DIR T -

distance),

needed to convert pattern X into pattern Y .

The Hamming distance is a metrics on the set of string of equal length. The

Levenshtein and the generalized Levenshtein distances are metrics on the set of strings

not necessarily of equal length.

2.2 Classi�cation of pattern matching problems

One-dimensional pattern matching problems for a �nite size alphabet can be classi�ed

according to several criteria. We will use six criteria for classi�cation leading to six-

dimensional space in which one point corresponds to particular pattern matching

problem.

Let us make a list of all dimensions including possible \values" in each dimension:

1. Nature of the pattern: string, sequence.

2. Integrity of the pattern: full pattern, subpattern.

3. Number of patterns: one, �nite number, in�nite number.

4. The way of matching: exact, approximate matching with Hamming distance (R-

matching), approximate matching with Levenshtein distance (DIR-matching),

approximatematching with generalized Levenshtein distance (DIRT -matching).

5. Importance of symbols in pattern: take care of all symbols, don't care of some

symbols.

6. Number of instances of pattern: one, �nite sequence.

The above classi�cation is visualized in Figure 1. If we count the number of

possible pattern matching problems, we obtain N = 2 � 2 � 3 � 4 � 2 � 2 = 192.

In order to make references to particular pattern matching problem easy, we will

use abbreviations for all problems. These abbreviations are summarized in Table 1.

26



6D Classi�cation of Pattern Matching Problems

32

6 5

Subpattern

Full pattern

Infinite

Finite

One

41
R-matching DIRT-matching

seQuence String Exact DIR-matching

One

Sequence of

Care

Don’t care

Figure 1: Classi�cation of pattern matching problems.

Dimension 1 2 3 4 5 6

S F O E C O

Q S F R D S

I D

G

Table 1: Abbreviations of pattern matching problems.

Using this method, we can, for example, refer to exact string matching of one string

as SFOECO problem.

Instead of single pattern matching problem we will use the notion of family of

pattern matching problems. In this case we will use symbol `?' instead of particular

letter. For example SFO??? is the family of all problems concerning one full string

matching.

Each of pattern matching problem can have several instances. For example,

SFOECO problem can have the following instances:

1. verify whether given string occurs in text or not,

2. �nd the �rst occurrence of given string,

3. �nd the number of all occurrences of given string,

4. �nd all occurrences of given string and where they are.

27



Proceedings of the Prague Stringology Club Workshop '97

If we take into account all possible instances, the number of pattern matching prob-

lems is further growing.

2.3 Pattern matching algorithms

Many algorithms for pattern matching problems were designed using ad hoc approach.

But pattern matching problems are sequential problems and therefore it is possible

to solve them using �nite automata. There is possible to use systematic approach

and to create a model of algorithm for each pattern matching problem. This model

is nondeterministic �nite automaton (NFA) in all cases.

We can convert an NFA to a deterministic �nite automaton (DFA) and run it

using the text as an input. If we suppose a �nite size alphabet, then the running time

of DFA is O(n), where n is the length of text.

It is well known, that the NFA to DFA conversion requires at most O(2

m

) time,

where m is the number of states of the NFA. The resulting DFA may have at most

O(2

m

) states.

Latest investigation shows, that this bound does not take place in the area of

pattern matching problems [Me95], [Me96]. The bound of number of states of DFA is

much lower and therefore this approach may have practical applications. Instead of

conversion of NFA to DFA, we can simulate the NFA in a deterministic way. Some of

known pattern matching algorithms use this approach. The problem of this approach

is a high time complexity while the space complexity is low. In case of approximate

string matching, \Shift-Or" based algorithms [BG92], [WM92] use this approach as

it is shown in [Me95], [Me96].

3 Models of pattern matching algorithms

We will show, in this section, basic model of pattern matching algorithms. Moreover,

we will show how to construct some models for more complicated problems using

models of simple problems.

3.1 Exact string and sequence matching

In Fig. 1 the basic model of pattern matching algorithms is represented by the circle

that meets all the axes in the points which are the closest to the junction of the axes.

This model is the model for exact string matching (SFOECO problem). For pattern

P = p

1

p

2

p

3

p

4

this model is shown in Fig. 2. The SFOECO automaton has m + 1

states for the pattern of the length m. This NFA can be transformed to DFA which

has the same number of states as its nondeterministic version. The transformation

can be performed in time O(m).

If we add loops labeled by mismatching characters into states, from which there

leads at least one edge, in the model for string matching we obtain a corresponding

model for sequence matching. The model of algorithm for exact sequence matching

(QFOECO problem) for pattern P = p

1

p

2

p

3

p

4

is shown in Fig. 3. Character p

represents any character mismatching character p. The QFOECO automaton has

m+ 1 states for the pattern of length m.

28



6D Classi�cation of Pattern Matching Problems

A

p1 p2 p3 p4

0 1 2 3 4

Figure 2: NFA for exact string matching (SFOECO automaton)

p2 p3 p4A

p1 p2 p3 p4

0 1 2 3 4

Figure 3: NFA for exact sequence matching (QFOECO automaton).

3.2 Substring and subsequence matching

The model of algorithm for exact substring matching (SSOECO problem) for pattern

P = p

1

p

2

p

3

p

4

is shown in Fig. 4. We can see that this automaton has been created

by connecting m SFOECO automata. The SSOECO automaton has (m+1)+m+

(m� 1) + � � �+ 2 =

m(m+3)

2

states and is called an initial "-treelis.

A

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4

ε

ε

ε

Figure 4: NFA for exact substring matching (SSOECO automaton).

The model of algorithm for exact subsequence matching (QSOECO problem) is

similar as for exact substring matching. We get this model from SSOECO model by

adding loops for mismatching characters and "-transitions into all states from which

just one transition leads. Each "-transition leads from state q

i

to the state q

j

such

that from state, which is just under state q

i

, a matching transition leads to state q

j

.

This automaton can be also constructed by connecting m QFOECO automata. The

QSOECO automaton has

m(m+3)

2

states and is called "-treelis.

29



Proceedings of the Prague Stringology Club Workshop '97

3.3 Approximate string matching

We will discuss three variants of approximate string matching corresponding to three

de�nitions of distances between strings: Hamming distance, Levenshtein distance,

and generalized Levenshtein distance.

A

p2

p2

p1 p3

p3

p3

p4

p4

p4

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4

Figure 5: NFA for string R-matching (SFORCO automaton).

Hamming distance Let us note, that Hamming distance between strings x and y

is equal to the minimal number of editing operations replace which are necessary to

convert string x into string y. Therefore this type of string matching is called string

R-matching. The model of algorithm for string R-matching (SFORCO problem) was

presented in [Me95] and in Fig. 5 it is shown for string P = p

1

p

2

p

3

p

4

and Hamming

distance k = 3.. This automaton has been created by connecting k + 1 SFOECO

automata by edges that represent editing operation replace. The SFORCO automa-

ton has (m+ 1) +m+ (m� 1) + � � �+ (m� k +1) = (k +1)(m+ 1�

k

2

) states. This

automaton is called R � treelis.

Levenshtein distance Let us note, that Levenshtein distance between strings x

and y is equal to the minimal number of editing operations delete, insert and replace

which are necessary to convert string x into string y. Therefore this type of string

matching is called string DIR-matching. The model of algorithm for string DIR-

matching (SFODCO problem) was presented in [Me96], [Ho96] and in Fig. 6 it is

shown for string P = p

1

p

2

p

3

p

4

. It has been created from SFORCO model by adding

edges representing editing operations insert and delete.

Generalized Levenshtein distance Let us note, that generalized Levenshtein

distance between strings x and y is equal to the minimal number of editing operations

delete, insert, replace and transpose which are necessary to convert string x into string

y. Therefore this type of string matching is called string DIRT -matching. The model

of algorithm for string DIRT -matching (SFOGCO problem) for string P = p

1

p

2

p

3

p

4

30



6D Classi�cation of Pattern Matching Problems

ε

A

p2

p2

p2

p1 p3

p3

p3

p3

p3

p4

p4

p4

p4

p4

p4

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4

ε

ε ε

ε ε

ε

ε ε

A

p2 p3

p2

p1

p3

p3

p4

p4

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4p4

Figure 6: NFA for string DIR-matching (SFODCO automaton).

is shown in Fig. 7. It has been constructed from SFODCO model by adding states

for editing operation transpose and corresponding edges.

Conclusion

We have presented uni�ed view to pattern matching. We have also shown the basic

model for pattern matching and several methods of constructing other models. These

models can be very useful in designing new methods or improving existing methods

for pattern matching. Since for each pattern matching problem there exists NFA

there exists algorithm running in linear time for each such problem.

References

[AC75] Aho, A. V., Corasick, M. J.: E�cient String Matching: An Aid to Bibli-

ographic Search. CACM, Vol. 18, No. 6, pp. 333{340, 1975.

[BG92] Baeza-Yates, R., Gonnet, G. H.: A New Approach to Text Searching.

Communications of the ACM, October 1992, Vol. 35, No. 10, pp. 74{82.

[BM77] Boyer, R. S., Moore, J. S.: A Fast String Searching Algorithm. Commun.

ACM, Vol. 20, No. 10, October 1977, pp. 762{772.

[CKK72] Chv�atal, V., Klarner, D. A., Knuth, D. E.: Selected Combinatorial Re-

search Problems. STAN-CS-72-292, Stanford University, June 1972, 26.

31



Proceedings of the Prague Stringology Club Workshop '97

p4

p4

p4

p4p3

p3

p4

p4

p3

p3

p2

p2

A

p2

p1

p3

p1 p2

p2

p3

p3

p3

p4

p4

p4

p4

ε ε

ε ε

ε ε

ε

ε ε

p2 p3

p3

p4

p4

p4

p1 p2

p2

p3

p3

p3

Figure 7: NFA for string DIRT -matching (SFOGCO automaton).

[CR94] Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press,

New York 1994, p. 414.

[Ho96] Holub, J.: Reduced Nondeterministic Finite Automata for Approximate

String Matching. Proceedings of the Prague Stringology Club Work-

shop '96, Czech Technical University, August 1996, pp. 19{27.

[KMP77] Knuth, D. E., Morris, J. H., Pratt, V. R.: Fast Pattern Matching in

Strings, SIAM J. Comput., Vol. 6, No. 2, June 1977, pp. 322{350.

[Me95] Melichar, B.: Approximate String Matching by Finite Automata. Com-

puter Analysis of Images and Patterns. LNCS 970, Springer 1995, pp. 342{

349.

[Me96] Melichar, B.: String Matching with k Di�erences by Finite Automata.

Proceedings of the 13

th

ICPR, Vol. II, August 1996, pp. 256{260.

[WF74] Wagner, R. A., Fisher, M. J.: The String-to-String Correction Problem.

Journal of ACM, January 1974, Vol. 21, No. 1, pp. 168{173.

[WM92] Wu, S., Manber, U.: Fast Text Searching Allowing Errors. Communica-

tions of the ACM, October 1992, Vol. 35, No. 10, pp. 83{91.

32


