
A Boyer-Moore (or Watson-Watson) Type

Algorithm for Regular Tree Pattern Matching

Bruce W. Watson

Ribbit Software Systems Inc.

(IST Technologies Research Group)

Box 24040, 297 Bernard Ave.

Kelowna, B.C., V1Y 9P9, Canada

e-mail: watson@RibbitSoft.com

Abstract. In this paper, I outline a new algorithm for regular tree pattern

matching. The Boyer-Moore family of string pattern matching algorithms are

considered to be among the most e�cient. The Boyer-Moore idea of a shift dis-

tance was generalized by Commentz-Walter for multiple keywords, and general-

izations for regular expressions have also been found. The existence of a further

generalization to tree pattern matching was �rst mentioned in the statements

accompanying my dissertation, [Wats95].

Key words: tree pattern matching, tree parsing, code selection, Boyer-Moore

algorithms, shift distances.

1 Introduction

The most popular exact pattern matching algorithms

1

(for strings or trees) can be

classi�ed into one of two families: the Knuth-Morris-Pratt (KMP) or Boyer-Moore

(BM) families.

Interest in Boyer-Moore type algorithms is driven by the fact that they are fre-

quently much faster (in practice) than their KMP counterparts. For a discussion

of this phenomenon, see [Wats95]. Since a KMP type algorithm for regular tree

pattern matching was presented in [1], the missing piece has been a BM type al-

gorithm for tree pattern matching. This algorithm is an extension (to trees) of

one of the algorithms presented at the Prague Workshop in 1996 [4]; it is also re-

lated to the algorithm presented at the European Symposium on Algorithms in

1996 [3]. For more background material, consult the links on my homepage at

http://www.RibbitSoft.com/research/watson/index.html

Instead of providing a set of formal de�nitions, we introduce most of the concepts

using examples.

1

As opposed to approximate pattern matching algorithms.

33



Proceedings of the Prague Stringology Club Workshop '97

2 The problem

For the regular tree pattern matching problem, we consider node labeled trees (the

labels are taken from a �xed alphabet). All nodes with a particular label have a �xed

arity (number of children). We will write all of our trees in a linear (pre�x) form,

instead of drawing pictures; for example:

+(a; �(b; a))

Each of the nodes has an associated depth, with the depth of the root being 0.

A tree grammar is a �nite set of productions, with nonterminals (written as upper-

case letters, as opposed to regular node labels which are written in lowercase letters or

as mathematical operators) on the left and tree templates on the right. Nonterminals

are permitted to appear at the leaves of the tree templates. For example, each of the

following lines is a production:

A �! +(B;B)

B �! a

B �! �(C; a)

C �! b

C �! �(b;B)

The productions match at the input tree nodes in the intuitive way. In our sample

input tree (+(a; �(b; a))), we have the following matched patterns:

� The left a is matched by B �! a.

� The right a is matched by B �! a.

� The b node is matched by C �! b.

� The � node is matched by B �! �(C; a) and by D �! �(b;B).

� The + node is matched by A �! +(B;B).

In the next section, we will subdivide the pattern matching problem into a smaller

problem which can be solved more readily.

3 Subproblems

One way of reducing the pattern matching problem to a simpler one, is to encode

the trees as strings. We do this using so-called path strings. In this scheme, the tree

is represented as a set of strings (there is one string for each leaf in the tree). Each

string consists of alternating node labels and child numbers. For example, our input

tree +(a; �(b; a)) is represented by +1a, +2 � 1b, and +2 � 2a.

In a similar manner, we encode each of the right sides of the productions as a set

of path strings. The only di�erence is that we omit the nonterminals. For example,

production A �! +(B;B) is represented by the two path strings +1B and +2B,

from which we drop the nonterminals to get +1 and +2. The example set of right

sides is encoded as +1, +2, a, �1, �2a, b, �1b, and �2. These path strings can then

be mapped back to their corresponding production right sides. These pattern path

34



A Boyer-Moore (or Watson-Watson) Type Algorithm for Regular Tree Pattern Matching

strings will be used in a reduced problem. Note that the pattern path strings will

always begin with a node label.

Given this encoding, we will only concern ourselves with �nding matches of the

pattern path strings in the set of strings representing the input tree. The matching

tree productions can then be easily reconstructed | this is not considered further

here. In our example set of input path strings, we have the following pattern path

string matches:

� +1 and +2 match at the root.

� a matches at the left and the right a nodes.

� �1, �2, �1b, and �2a match at the � node.

� b matches at the b node.

From this information, we can then piece together the tree matches. Note that, in

e�ect, we are making use of multiple keyword pattern matching with the pattern path

strings as the keywords. To solve this problem, we could use the Commentz-Walter

algorithm (among others) [Wats95, Section 4.4].

4 Solving the reduced problem

We begin by presenting a brute-force (na��ve) algorithm, solving our simplest subprob-

lem. In presenting the algorithm, we will assume (as in the string pattern matching

algorithms presented in my dissertation) the following:

� We use a forward trie � (constructed from the pattern path strings) for the

actual pattern matching. The symbol ? is used to indicate when the trie takes

an unde�ned value.

� We assume that the start state for the trie is named q

0

.

� There is a special procedureRM (for `register matches') which is used to register

matches at nodes in the tree. Precisely how it registers the matches is not

relevant.

The mainline of the algorithm is:

lev := (MAX n : n 2 nodes : n:level);

do lev � 0 �!

for n : n 2 nodes ^ n:level = lev �!

AM(q

0

; n)

rof;

lev := lev� 1

od

This algorithm simply traverses the tree from the bottom up, using procedure AM

(for `attempt match') to check for matches and RM to register the matches. The

procedure AM is given as:

35



Proceedings of the Prague Stringology Club Workshop '97

proc AM(q; n) is

RM(q; n);

if � (q; n:label) 6= ? then

q := � (q; n:label);

RM(q; n);

for i 2 [1; n:arity]�!

if � (q; i) 6= ? then

AM(� (q; i); n:child(i))

�

rof

�

corp

This procedure uses the trie and traverses the input tree (starting at node n) top-down

to �nd matches. Note that it is recursive.

As with the other BM type algorithms, we wish to make shifts of more than one

level (in the tree) in the mainline program. The shift will be computed in a manner

similar to that in the Commentz-Walter family of algorithms | since we are using

multiple keyword pattern matching.

Since procedure AM tries a number of possible paths rooted at a node n, there

will be a number of potential contributing shifts. In order to make a safe shift, we

will have to use the smallest of these contributing shifts.

We will use a novel method of implementing the actual shift: if a shift of distance

k is required after a match attempt at node n, we will store n:level� k in a location

permit[n] (permit is an array which is indexed by n). If a match attempt is initiated

at some node n

0

(above n), then the match attempt will not continue (down in the

tree) past node n unless n

0

� permit[n]. This can be done safely since all matches

that began lower than permit[n] cannot possibly lead to a match below n.

To implement this, we use the following mainline

2

:

for n : n 2 nodes ^ n:isleaf �!

permit[n] := n:level

rof;

lev := (MAX n : n 2 nodes : n:level);

do lev � 0 �!

for n : n 2 nodes ^ n:level = lev �!

permit[n] := n:level�AM(q

0

; n; lev)

rof;

lev := lev� 1

od

Correspondingly, we make use of the shift function shift which gives the shift distance

in levels in the tree

3

.

2

To abort a match attempt when it is futile, we also pass a third argument to AM | the level

at which the match attempt was started. The procedure now returns the integer shift (in terms of

levels).

3

The distance in levels is the ceiling of half of the distance given by the Commentz-Walter shift

functions, since the shift distance given for the pattern path strings will be in terms of the path

strings and a path string may be up to twice as long as the level of the leaf at which it ends because

path strings contain the edge numbers interspersed with node labels.

36



A Boyer-Moore (or Watson-Watson) Type Algorithm for Regular Tree Pattern Matching

proc AM(q; n; beginlev) returns sh is

RM(q; n);

if � (q; n:label) = ? _ beginlev > permit[n] then

sh := shift(q)

else

q := � (q; n:label);

RM(q; n);

if n:arity = 0 then

sh := shift(q)

else

for i 2 [1; n:arity] �!

if � (q; i) = ? then

sh := sh min shift(q)

else

sh := sh min AM(� (q; i); n:child(i); beginlev)

�

rof

�

�

corp

5 Conclusions

I have outlined a Watson-Watson type algorithm for regular tree pattern matching,

thereby backing-up the statement accompanying my dissertation [Wats95]. Unfortu-

nately, this algorithm has not yet been implemented and so nothing is known about

its running time performance in practice, though it could potentially be proportional

to the product of the input tree size and the size of the largest pattern tree. It there-

fore appears that the algorithm will not be as e�cient as the KMP type algorithm

(solving the same problem) given by Aho and Ganapathi in [1], which runs in time

linear to the size of the input tree.

Like the other classes of BM type algorithms (for single keyword, multiple key-

word, or regular expression string pattern matching), there are likely to be other

(perhaps more e�cient) variants of this algorithm. For example, it may be possi-

ble to devise such an algorithm which operates in a top-down manner, instead of in

a bottom-up manner. Alternatively, it may be possible to reduce the primary prob-

lem in a di�erent way than what we have done here. These alternatives are left as an

exercise for the reader.

Acknowledgements:

I would like to thank Richard Watson (co-developer of the Watson-Watson regular ex-

pression pattern matching algorithm for strings) and Nanette Saes for their assistance

in preparing this note.

37



Proceedings of the Prague Stringology Club Workshop '97

References

[1] Aho, A.V. and M. Ganapathi. E�cient tree pattern matching: an aid to code

generation, in: Proceedings of the 12th ACM Symposium on Principles of Pro-

gramming Languages, New Orleans, p. 334{340, 1985.

[2] Watson, B.W. Taxonomies and Toolkits of Regular Language Algorithms, Ph.D

dissertation, Faculty of Computing Science, Eindhoven University of Technology,

The Netherlands, 1995, ISBN 90-386-0396-7.

[3] Watson, B.W. A new regular grammar pattern matching algorithm, in: Diaz,

J. and M. Serna, eds., Proceedings of the European Symposium on Algorithms,

Barcelona, Spain, 1996.

[4] Watson, B.W. A collection of new regular grammar pattern matching algo-

rithms, in: J. Holub, ed., Proceedings of the First Annual Prague Stringology

Club Workshop, Prague, Czech Republic, 1996.

38


