
SPARE Parts: A C++ Toolkit for String PAttern

REcognition

Bruce W. Watson

Ribbit Software Systems Inc.

(IST Technologies Research Group)

Box 24040, 297 Bernard Ave.

Kelowna, B.C., V1Y 9P9, Canada

e-mail: watson@RibbitSoft.com

Abstract. In this paper, we consider the design and implementation of SPARE

Parts, a C++ toolkit for pattern matching. SPARE Parts is the second gen-

eration string pattern matching toolkit from the Ribbit Software Systems Inc.

and the Eindhoven University of Technology. The toolkit contains implementa-

tions of the well-known Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick and

Commentz-Walter algorithms (and their variants).

The toolkit is publicly available (though it is not in the public domain and it

may not be redistributed) for noncommercial use. A totally re-implemented

toolkit, known as SPARE Parts II, is available for commercial licensing from

Ribbit Software Systems Inc. In addition to the functionality of SPARE Parts,

it contains approximate pattern matchers, regular pattern matchers, multi-

dimensional pattern matchers, and a highly tuned set of foundation classes.

Key words: keyword pattern matching, C++ toolkits, C++ frameworks, gen-

eric algorithms, foundation classes, taxonomies.

1 Introduction and related work

In this paper, we outline the design, design rationale, and use of SPARE Parts, a C++

toolkit for string pattern matching. The algorithms implemented in the toolkit in-

clude:

� The Knuth-Morris-Pratt [KMP77] single keyword pattern matching algorithm.

� Several variants of the Boyer-Moore [BM77] single keyword pattern matching

algorithms.

� Several variants of the Aho-Corasick [AC75] multiple keyword pattern matching

algorithms.

� Several variants of the Commentz-Walter [Com79a, Com79b] multiple keyword

pattern matching algorithm.

47

Proceedings of the Prague Stringology Club Workshop '97

In addition to the original papers, all of these algorithms are extensively treated

(with full correctness arguments) in a taxonomy presented in [Wats95, Chapter 4].

SPARE Parts is the second generation string pattern matching toolkit from the Rib-

bit Software Systems Inc. and the Eindhoven University of Technology. The toolkit is

publicly available (though not in the public domain and it may not be redistributed)

for noncommercial use. A re-implemented (and greatly extended) toolkit, known as

SPARE Parts II, is available for commercial licensing from Ribbit Software Systems

Inc. In addition to the functionality of SPARE Parts, it contains approximate pat-

tern matchers, regular pattern matchers, multi-dimensional pattern matchers, and

a highly tuned set of foundation classes.

The �rst generation toolkit (called the Eindhoven Pattern Kit, written in C and

described in [Wats94, Appendix A]) is a procedural library based upon the original

taxonomy of pattern matching algorithms [WZ92]. Experience with the Eindhoven

Pattern Kit revealed a couple of de�ciencies (leading to the design of SPARE Parts),

detailed as follows. The rudimentary and explicit memory management facilities in C

caused numerous errors in the code and made it di�cult to perform pattern matching

over more than one string simultaneously (in separate threads of the program) without

completely duplicating the code. While the performance of the toolkit was excellent,

some of the speed was due to sacri�ces made in the understandability of the client

interface.

There are other existing pattern matching toolkits, notably the toolkit of Hume

and Sunday [HS91]. Their toolkit consists of a number of implementations of Boyer-

Moore type algorithms | organized so as to form a taxonomy of the Boyer-Moore

family of algorithms. Their toolkit was primarily designed to collect performance

data on the algorithms. As a result, the algorithms are implemented (in C) for speed

and they sacri�ce some of the safety (in terms of error checking) that would normally

be expected of a general toolkit. Furthermore, the toolkit does not include any of

the non-Boyer-Moore pattern matching algorithms (other than a brute-force pattern

matcher) and, most noticeably, does not contain multiple keyword pattern matchers.

SPARE Parts is a completely object-oriented implementation of the algorithms ap-

pearing in [Wats95, Chapter 4]. SPARE Parts is designed to address the shortcomings

of both of the toolkits described above. The following are the primary features of the

class library:

� The design of SPARE Parts follows the structure of the taxonomy in [Wats95,

Chapter 4] very closely. As a result, the code is easier to understand and

debug. In addition, SPARE Parts includes implementations of almost all of the

algorithms described in [Wats95, Chapter 4].

� The use of C++ (instead of C) for the implementation has helped to avoid

many of the memorymanagement-related bugs that were present in the original

toolkit.

� The client interface to the toolkit is particularly easy to understand and use.

The
exibility introduced into the interface does not reduce the performance of

the code in any signi�cant way.

� The toolkit supports multi-threaded use of a single pattern matching object.

48

SPARE Parts: A C++ Toolkit for String PAttern REcognition

This paper is structured as follows:

� Section 2 considers issues in the design and implementation of class libraries.

� Section 3 gives an introduction to the client interface of the toolkit. It includes

some examples of programs which use SPARE Parts.

� Section 4 presents some experiences with the toolkit and the conclusions of this

chapter.

� Section 5 gives some information on how to obtain and compile the toolkit.

2 Designing and implementing class libraries

In this section, we brie
y discuss some of the issues involved in designing, implement-

ing, and presenting class libraries (or toolkits). The following description of a toolkit

is taken from [GHJV95, p. 26]:

A toolkit is a set of related and reusable classes designed to provide useful,

general-purpose functionality. Toolkits don't impose a particular design

on your application; they just provide functionality that can help your ap-

plication do its job. They are the object-oriented equivalent of subroutine

libraries.

We will use the terms class library, library, and toolkit interchangeably. We will also

use the term client to refer to a program that makes use of classes in the toolkit, or

the author of such a program. The important aspects and design goals of a toolkit

are:

� Toolkits do not provide a user interface. (Toolkits that do provide user interfaces

should be placed in the category of `application program'.)

� The classes in the toolkit must have a coherent design, meaning that they are

designed and coded in the same style. They have a clear relationship and

a logical class hierarchy.

� The client interface to the library must be easily understood, permitting clients

to make use of the library with a minimum of reading.

� The e�ciency of using the classes in the toolkit must be comparable to hand-

coded special-purpose routines | the toolkit must be applicable to production

quality software.

� To provide an educational use for the toolkits, and to allow clients to easily

modify classes and member functions, the method of implementation must be

clear and understandable.

The toolkit is implemented in the C++ programming language, which was chosen

because of its object-oriented features and its widespread availability. E�orts were

made to refrain from using obscure features of C++ (such as RTTI or name spaces),

49

Proceedings of the Prague Stringology Club Workshop '97

or language features not easily found in other object-oriented programming languages

(such as multiple-inheritance).

Throughout this paper, we assume that the reader is familiar with the C++

language and object-oriented terminology (especially the C++ variety).

The general process of library design will not be described here, as there is a large

body of literature discussing this issue. The following books are of particular rele-

vance:

� [GHJV95, Souk94] discuss `design patterns' (not related to our pattern matching

problem) which are used heavily in library design.

� [CE95], [Stro91, Chapter 13] and [Stro94, Chapter 8] provide a general discus-

sion of C++ library design.

� [MeyB94] is an excellent treatment of the design of a number of loosely cou-

pled libraries in the Ei�el programming language. Many of the concepts and

techniques discussed in the book are broadly applicable to C++ as well.

� [Plau95, Teal93] discuss the design and implementation of speci�c C++ libraries

| the standard C++ library

1

and the IOStreams (input and output) class

libraries respectively.

We de�ne the following types of object-oriented classes:

User: A class intended for use by a client program.

Client: A class de�ned in the client program.

Implementation: A class de�ned in the toolkit for exclusive use by the toolkit. The

class is used to support the implementation of the client classes.

Foundation: Those implementation classes which are simple enough to be reused in

other (perhaps unrelated) class libraries.

Interface: An abstract (pure virtual) class which is declared to force a particular

public interface upon its inheritance descendants.

Base: An inheritance ancestor of a particular class.

Derived: An inheritance descendant of a particular class.

2.1 Motivations for writing class libraries

There are a number of motivations for creating the class libraries:

� Until now, few general purpose toolkits of pattern matchers existed. The ones

that do exist are not intended for general use in production quality software.

1

Plauger's book considers the implementation of an early, and now defunct, draft of the standard

library.

50

SPARE Parts: A C++ Toolkit for String PAttern REcognition

� The level of coherence normally required to implement a toolkit was not previ-

ously possible. The literature on pattern matching algorithms was scattered and

in some places incomplete. With the construction of the taxonomy, [Wats95,

Chapter 4], all of the algorithms are described in a coherent fashion, allowing

us to base the class library structures on the taxonomy structure.

� The uniformity of implementation that was possible (given the taxonomy) had

two important e�ects:

{ Clients need not examine the source code in order to make a decision on

which class to use; the quality of the implementations of each of the pattern

matchers is roughly the same.

{ Uniformity gives greater con�dence in the accuracy of relative performance

comparing di�erent algorithms.

� The toolkit and the taxonomy can serve as examples of implementation tech-

niques for class libraries; in particular methods for organizing template classes

2

and class hierarchies.

� Implementing the abstract algorithm can be painless and fun, given the taxon-

omy presentation of the algorithms and their correctness arguments.

2.2 Code sharing

One of the main aims of object-oriented programming is that it permits, and even

encourages, code sharing (or code reuse). The code reuse in object-oriented program-

ming corresponds neatly with the factoring of common parts of algorithms in the

taxonomy.

Although code sharing can be achieved in a number of ways, in this section we

discuss four techniques which could have been used in the design of the toolkits.

The �rst discussion centres around the use of base classes (with virtual member

functions) versus templates. The second discussion concerns the use of composition

versus protected inheritance.

2.2.1 Base classes versus templates

A number of the pattern matching objects have common functionality and it seems

wasteful to duplicate the code in each of the speci�c types of pattern matchers.

The obvious design involves creating a new base class and factoring the common

code into the base class. Each of the pattern objects would then inherit from this base

and provide speci�c virtual member functions to obtain the desired functionality. For

example, the Commentz-Walter algorithms all share a common algorithm skeleton:

they each have speci�c shift functions. We could create a CW base class with the

functionality of the skeleton and provide a virtual `shift distance' member function

to obtain the Commentz-Walter variants.

2

We use the term template class, as opposed to class template suggested by Carroll and Ellis in

[CE95]. Our choice was made to correspond to the term generic class used in some other object-

oriented programming languages.

51

Proceedings of the Prague Stringology Club Workshop '97

The advantage of this approach is its elegance. It provides a relatively easy to

understand class hierarchy, that re
ects the structure of the taxonomy. Furthermore,

a member function which takes (as a parameter) a pointer to a CW object need not

know which particular variant (of a CW object) the pointer points to, only that the

CW object satis�es the general CW functionality. This solution provides code reuse

at both the source language and executable image levels. The disadvantage is that

it would require a virtual function call for every shift. Indeed, if the same technique

was used to factor the common code from the Aho-Corasick variants, it would require

a virtual function call for every character of the input string.

The other approach is to create a template class CW, which takes a `shifter class'

as its template (type) parameter. We would then provide a number of such shifter

classes, for use as template parameters | each giving rise to one of the Commentz-

Walter variants. The primary advantage of this approach is that it is e�cient: when

used to implement the Aho-Corasick algorithms, each character in the input string

will require a non-virtual function call (which may be inlined, unlike virtual function

calls). The disadvantages are twofold: pointers to the variants of the CW algorithms

are not interchangeable and code will be generated for each of the CW variants. The

code reuse is at the source level and not at the executable image level.

It is expected, for example, that few clients of the toolkits will instantiate objects

of di�erent CW classes. A programmer writing an application using pattern matching

is more likely to choose a particular type of pattern matcher, as opposed to creating

objects of various di�erent types. For this reason, the advantages of the template

approach are deemed to outweigh its disadvantages, and we prefer to use it over base

classes in the toolkits.

2.2.2 Composition versus protected inheritance

Composition (sometimes called the has-a relationship) and protected inheritance

(sometimes called the is-a relationship) are two additional solutions to code sharing.

We illustrate the di�erences between these two solutions using an example. When

implementing a Set class, we may wish to make use of an already-existing Array class.

There are two ways to do this: composition and protected inheritance.

With protected inheritance, class Set inherits from Array in a protected way. Class

Set still gets the required functionality from Array, but the protected inheritance pre-

vents the is-a relation between Set and Array (that is, we cannot treat a Set as an

Array). The advantage of this approach is that it is elegant and it is usually the

approach taken in languages such as Smalltalk and Objective-C [Budd91]. The dis-

advantage is that the syntax of C++ places the inheritance clause at the beginning of

the class declaration of Set, making it plain to all clients of Set that it is implemented

in terms of Array. Furthermore, protected inheritance (and indeed private inheri-

tance) is one of the rarely-used corners of C++, and it is unlikely that the average

programmer is familiar with it [MeyS92, Murr93].

In a composition approach, an object of class Set has (in its private section) an

object of class Array. The Set member functions invoke the appropriate member func-

tions of Array to provide the desired functionality. The advantage of this approach

is that it places all implementation details in the private section of the class de�ni-

tion. The disadvantage is that it deviates from the accepted practice (in some other

languages) of inheriting for implementation. It is, however, the standard approach

52

SPARE Parts: A C++ Toolkit for String PAttern REcognition

in C++. At �rst glance, it would appear that composition can lead to some ine�-

ciency: in our example, an invocation of a Set member function would, in turn, call

an Array member function. These extra function calls, usually called pass-throughs,

are frequently eliminated through inlining.

There are no e�ciency-based reasons to choose one approach over the other. For

this reason, we arbitrarily choose composition because of the potential readability

and understandability problems with protected inheritance.

2.3 Coding conventions and performance issues

At this time, coding in C++ presents at least two problems: the language is not

yet stable (it is still being standardized) and, correspondingly, the \standard" class

libraries are not yet stable.

In designing the libraries, every e�ort was made to use only those language features

which are well-understood, implemented by most compilers and almost certain to

remain in the �nal language. Likewise, the use of classes from the proposed standard

library, or from the Standard Template Library [SL94], was greatly restricted. A number

of relatively simple classes (such as those supporting strings, arrays, and sets) were

de�ned from scratch, in order to be free of library changes made by the standardizing

committee. A future version of the toolkits will make use of the standard libraries

once the International Standards Organization has approved the C++ standard.

In the object-oriented design process, it is possible to go overboard in de�ning

classes for even the smallest of objects | such as alphabet symbols. In the interests

of e�ciency, we draw the line at this level and make use of integers for such basic

objects.

Almost all of the classes in the toolkits have a corresponding class invariant mem-

ber function, which returns TRUE if the class is structurally correct and FALSE

otherwise

3

. Structural invariants have proven to be particularly useful in debugging

and in understanding the code (the structural invariant is frequently a good �rst place

to look when trying to understand the code of a class). For this reason, they have

been left in the released code (they can be disabled as described in the next section).

We use a slightly non-traditional way of splitting the source code into �les. The

public portion of a class declaration is given in a .hpp �le, while the private parts

are included from a .ppp �le. There is a corresponding .cpp �le containing all of the

out-of-line member function de�nitions. A .ipp �le contains member functions which

can be inlined for performance reasons. By default the member functions in the .ipp

�le are out-of-line. The inlining can be enabled by de�ning the macro INLINING. To

implement such conditional inlining, the .ipp �le is conditionally included into the

.hpp or the .cpp �le. The inlining should be disabled during debugging or for smaller

executable images.

3 Using the toolkit

In this section, we describe the client interface of the toolkit and present some exam-

ples of programs using the toolkit.

3

This will be changed to use the new bool datatype once most compiler support it.

53

Proceedings of the Prague Stringology Club Workshop '97

The client interface de�nes two types of abstract pattern matchers: one for single

keyword pattern matching and one for multiple keyword pattern matching. (A fu-

ture version of SPARE Parts can be expected to include classes for regular expression

pattern matching | for example, an implementation of the algorithm described in

[Wats95, Chapter 5].) All of the single keyword pattern matching classes have con-

structors which take a keyword. Likewise, the multiple keyword pattern matchers

have constructors which take a set of keywords. Both types of pattern matchers

make use of call-backs (to be explained shortly) to register matched patterns. In

order to match patterns using the call-back mechanism, the client takes the following

steps (using single keyword pattern matching as an example):

1. A pattern matching object is constructed (using the pattern as the argument

to the constructor).

2. The client calls the pattern matching member function PMSingle::match, pass-

ing the input string and a pointer f to a client de�ned function which takes an

int and returns an int

4

. (This function is called the call-back function.)

3. As each match is discovered by the member function, the call-back function is

called; the argument to the call is the index (into the input string) of the symbol

immediately to the right of the match. (If there is no symbol immediately to

the right, the length of the input string is used.)

4. If the client wishes to continue pattern matching, the call-back function returns

the constant TRUE, otherwise FALSE.

5. When no more matches are found, or the call-back function returns FALSE, the

member function PMSingle::match returns the index of the symbol immediately

to the right of the last symbol processed.

We now consider an example of single keyword pattern matching.

The following program searches an input string for the keyword hisher, printing

the locations of all matches along with the set of matched keywords:

#include "com-misc.hpp"

#include "pm-kmp.hpp"

#include <iostream.h>

static int report(int index) f

cout << index <<
\n
;

return(TRUE);

g

int main(void) f 10

auto PMKMP Machine("hisher");

Machine.match("hishershey", &report);

return(0);

g

4

The integer return value is a Boolean value; recall that TRUE and FALSE have type int in C

and C++. The new bool keyword is not yet supported by all compilers.

54

SPARE Parts: A C++ Toolkit for String PAttern REcognition

The header �le com-misc.hppprovides a de�nition of constants TRUE and FALSE.

Header �le pm-kmp.hpp de�nes the Knuth-Morris-Pratt pattern matching class, while

header �le iostream.h de�nes the input and output streams, including the standard

output cout. Function report is our call-back function, simply printing the index of

the match (to the standard output) and returning TRUE to continue matching. The

main function (the program mainline) creates a local KMP machine, with keyword

hisher. The machine is then used to �nd all matches in string hishershey. (Recall

that, in C and C++, a pointer to the beginning of the string is passed to member

match, as opposed to the entire string.)

In addition to the KMP algorithm de�ned in pm-kmp.hpp, other single keyword

pattern matchers are de�ned in header �le bms.hpp, which contains suggestions for

instantiating some of the Boyer-Moore variants. Additionally, a brute-force single

keyword pattern matcher is de�ned in pm-bfsin.hpp.

Multiple keyword pattern matching is performed in a similarmanner, as the follow-

ing example shows. The following program searches an input string for the keywords

his, her, and she, printing the locations of all matches:

#include "com-misc.hpp"

#include "string.hpp"

#include "set.hpp"

#include "acs.hpp"

#include <iostream.h>

static int report(int index, const Set<String>& M) f

cout << index << M <<
\n
;

return(TRUE);

g 10

int main(void) f

auto Set<String> P("his");

P.add("her"); P.add("she");

auto PMACOpt Machine(P);

Machine.match("hishershey", &report);

return(0);

g

Header �le string.hpp de�nes a string class, while set.hpp de�nes a template

class for sets of objects. Header �le acs.hpp de�nes the Aho-Corasick pattern match-

ing classes. Function report is our call-back function, simply printing the index of

the match (to the standard output) and the set of keywords matching, and returning

TRUE to continue matching. Note that the call-back function has a di�erent sig-

nature for multiple keyword pattern matching: it takes the index of the symbol to

the right of the match and the set of keywords matching with index as their right

end-point.

The main function (the program mainline) creates a local AC machine from the

keyword set. The machine is then used to �nd all matches in string hishershey. In

the following two sections, we consider ways to use SPARE Parts more e�ciently in

certain application domains.

55

Proceedings of the Prague Stringology Club Workshop '97

3.1 Multi-threaded pattern matching

One important design feature (as a result of the call-back client interface) of SPARE

Parts is that it supports multi-threading. This can lead to high performance in ap-

plications hosted on multi-threading operating systems. For example, consider an

implementation of a keyword grep application in which 1000 �les are to be searched

for occurrences of a given keyword. The following are three potential solutions:

� In a sequential solution, a single pattern matching object is constructed and

each of the 1000 �les are scanned (in turn) for matches.

� In a na��ve multi-threaded solution, 1000 threads are created (each corresponding

to one of the input �les). Each of the threads construct a pattern matching

object, which is then used to search the �le.

� An e�cient solution is to create a single matching object, with 1000 threads

sharing the single object. Each of the threads proceeds to search its �le, using

its own invocation of member function PMSingle::match.

The last (most e�cient) solution would not have been possible without the call-back

client interface.

3.2 Alternative alphabets

The default structure in SPARE Parts is to make use of the entire ASCII character set

as the alphabet. This can be particularly ine�cient and wasteful in cases where only

a subset of these letters are used. For example, in genetic sequence searching, only

the letters a, c, g, and t are used. SPARE Parts facilitates the use of smaller alpha-

bets through the use of normalization. Header �le alphabet.hpp de�nes a constant

ALPHABETSIZE (which, by default is CHAR MAX). The alphabet which SPARE

Parts uses is the range [0;ALPHABETSIZE). An alternative alphabet can be used

by rede�ning ALPHABETSIZE and mapping the alternative alphabet in the required

range. The mapping is performed by functions alphabetNormalize and alphabetDenor-

malize, both declared in alphabet.hpp (by default, these functions are the identity

functions). The only requirement is that the functions map 0 to 0 (this is used to

identify the end of strings). In the genetic sequence example, we would make use of

the following version of header alphabet.hpp:

#include <assert.h>

#de�ne ALPHABETSIZE 5

inline char alphabetNormalize(const char a) f

switch(a) f

case 0: return(0);

case
a
: return(1);

case
c
: return(2);

case
g
: return(3);

case
t
: return(4); 10

default: assert(!"Non-genetic character");

g

56

SPARE Parts: A C++ Toolkit for String PAttern REcognition

g

inline char alphabetDenormalize(const char a) f

switch(a) f

case 0: return(0);

case 1: return(
a
);

case 2: return(
c
);

case 3: return(
g
); 20

case 4: return(
t
);

default: assert(!"Non-genetic image");

g

g

4 Experiences and conclusions

Designing and coding SPARE Parts lead to a number of interesting experiences in class

library design. In particular:

� SPARE Parts comprises 5787 lines of code in 59 .hpp, 32 .cpp, 43 .ppp, and 49

.ipp �les.

� Compiling the �les, with the Watcom C++32 Version 9.5b compiler, shows

that the size of the object code varies very little for the various types of pattern

matchers.

� The taxonomy presented in [Wats95, Chapter 4] was critical to correctly imple-

menting the many complex precomputation algorithms.

� Designing and structuring generic software (reusable software such as class li-

braries) is much more di�cult than designing software for a single application.

The general structure of the taxonomy proved to be helpful in guiding the

structure of SPARE Parts.

� In [Wats95, Chapter 4], we consider the relative performance of the algorithms

implemented in SPARE Parts. It is also helpful to consider how the implemen-

tations in SPARE Parts fare against commercially available tools such as the

fgrep program. Four fgrep-type programs were implemented (using SPARE

Parts), corresponding to the Knuth-Morris-Pratt, Aho-Corasick, Boyer-Moore

and Commentz-Walter algorithms. The four tools were benchmarked informally

against the fgrep implementation which is sold as part of the MKS toolkit for

MS-Dos. The resulting times (to process a 984149 byte text �le, searching for

a single keyword) are:

fgrep variant MKS KMP BM AC CW

Time (sec) 3.9 5.1 4.2 4.7 4.0

These results indicate that using a general toolkit such as SPARE Parts will

result in performance which is similar to carefully tuned C code (such as MKS

fgrep). Much more extensive test results are reported in [Wats95, Wats96].

57

Proceedings of the Prague Stringology Club Workshop '97

Detailed records were kept on the time required for designing, typing, compiling (and

�xing syntax errors) and debugging the toolkit. The time required to implement the

toolkit is broken down as follows (an explanation of each of the tasks is given below):

Task Design Typing Compile/Syntax Debug Total

Time (hrs:min) 6:00 13:40 10:05 5:15 35:00

Most of these times are quite short compared to what a software engineer could expect

to spend on a project of comparable size. The following paragraphs explain exactly

what each of the tasks entailed:

� The design phase involved the creation of the inheritance hierarchy and the

declaration (on paper) of all of the classes in the toolkit. (A C++ declaration

provides names and signatures of functions, types and variables, whereas a de�-

nition provides the implementation of these items.) The design phase proceeded

exceptionally smoothly thanks to a number of things:

{ The inheritance hierarchy followed directly from the structure of the tax-

onomy.

{ The decisions on the use of templates (instead of virtual functions) and

call-backs were made on the basis of experience gained with FIRE Engine,

Ribbit's �nite automata and transducer toolkit. These decisions were also

somewhat forced by the e�ciency requirements for the toolkit as well as

the need for multi-threading.

{ Representation issues, such as the selection of data structures, were re-

solved using experience gained with the earlier Eindhoven Pattern Kit.

� Once the foundation classes were declared and de�ned, typing the code amounted

to a simple translation of guarded commands (appearing in [Wats95]) to C++.

� The times required for compilation and syntax checking were minimized by using

a very fast integrated environment (Borland C++) for initial development.

Only the �nal few compilations were done using the (slower, but more thor-

oughly optimizing) Watcom C++ compiler. The advantages of using a fast

development environment on a single user personal computer should not be

underestimated.

� Since the C++ code in the toolkit was implemented directly from the abstract

algorithms (for which correctness arguments are given), the only (detected) bugs

were those involving typing errors (such as the use of the wrong variable, etc.).

Correspondingly, little time needed to be spent on debugging the toolkit.

New research in pattern matching requires that tools such as SPARE Parts evolve.

The following are some of the upcoming changes:

� The toolkit will use a version of the C++ Standard Template Library.

� In light of the success and widespread applicability of the commercialized ver-

sion, SPARE Parts II, SPARE Parts will be template parameterized to support

input strings and patterns over arbitrary alphabets (as opposed to the rudimen-

tary alphabet support now provided).

58

SPARE Parts: A C++ Toolkit for String PAttern REcognition

� E�orts will begin to integrate approximate pattern matching algorithms into

the toolkit.

5 Obtaining and compiling the toolkit

SPARE Parts is available via www.RibbitSoft.com/research/watson/. The toolkit

and some associated documentation are combined into a tar �le.

SPARE Parts has been successfully compiled with Borland C++ Versions 3.1 and

4.0, and Watcom C++32 Version 9.5b on MS-Dos and Microsoft Windows 95

platforms. Since theWatcom compiler is also a cross-compiler, there is every reason

to believe that the code will compile for Windows NT or for IBM OS/2. The

implementation of the toolkit makes use of only the most basic features of C++

and it should be compilable using any of the template-supporting Unix based C++

compilers.

A version of SPARE Parts will remain freely available (though not in the public

domain). Contributions to the toolkit, in the form of new algorithms or alternative

implementations, are welcome.

References

[AC75] Aho, A.V. and M.J. Corasick. E�cient string matching: an aid to

bibliographic search, Comm. ACM, 18(6) (1975) 333{340.

[BM77] Boyer, R.S. and J.S. Moore. A fast string searching algorithm,

Comm. ACM, 20(10) (1977) 62{72.

[Budd91] Budd, T.A.An introduction to object-oriented programming. (Addison-

Wesley, Reading, MA, 1991).

[CE95] Carroll, M.D. andM.A. Ellis.Designing and coding reusable C++.

(Addison-Wesley, Reading, MA, 1995).

[Com79a] Commentz-Walter, B. A string matching algorithm fast on the av-

erage, in: H.A. Maurer, ed., Proc. 6th Internat. Coll. on Automata,

Languages and Programming (Springer-Verlag, Berlin, 1979) 118{132.

[Com79b] Commentz-Walter, B. A string matching algorithm fast on the av-

erage, Technical Report TR 79.09.007, IBM Germany, Heidelberg Sci-

enti�c Center, 1979.

[GHJV95] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. (Addison-Wesley,

Reading, MA, 1995).

[HS91] Hume, S.C. and D. Sunday. Fast string searching, Software|Practice

and Experience 21(11) (1991) 1221{1248.

[KMP77] Knuth, D.E., J.H. Morris and V.R. Pratt. Fast pattern matching

in strings, SIAM J. Comput. 6(2) (1977) 323{350.

59

Proceedings of the Prague Stringology Club Workshop '97

[MeyB94] Meyer, B. Reusable Software: The Base Object-Oriented Component

Libraries. (Prentice Hall, Englewood Cli�s, NJ, 1994).

[MeyS92] Meyers, S. E�ective C++: 50 speci�c ways to improve your programs.

(Addison-Wesley, Reading, MA, 1992).

[Murr93] Murray, R.B. C++ strategies and tactics. (Addison-Wesley, Reading,

MA, 1993).

[Plau95] Plauger, P.J. The Draft Standard C++ Library. (Prentice Hall, New

Jersey, 1995).

[SL94] Stepanov, A. and M. Lee. Standard Template Library, Computer Sci-

ence Report, Hewlett-Packard Laboratories, 1994.

[Souk94] Soukup, J. Taming C++: Pattern Classes and Persistence for Large

Projects. (Addison-Wesley, Reading, MA, 1994).

[Stro91] Stroustrup, B. The C++ programming language. (Addison-Wesley,

Reading, MA, 2nd edition, 1991).

[Stro94] Stroustrup, B. The Design and Evolution of C++. (Addison-Wesley,

Reading, MA, 1994).

[Teal93] Teale, S. C++ IOStreams Handbook. (Addison-Wesley, Reading, MA,

1993).

[Wats94] Watson, B.W. The performance of single-keyword and multiple-

keyword pattern matching algorithms, Computing Science Report

94/19, Eindhoven University of Technology, The Netherlands, 1994.

[Wats95] Watson, B.W. Taxonomies and Toolkits of Regular Language Algo-

rithms. (Ph.D dissertation, Eindhoven University of Technology, The

Netherlands, 1995).

For availability, see www.RibbitSoft.com/research/watson/.

[Wats96] Watson, B.W. The performance of single and multiple keyword pat-

tern matching algorithms, Workshop on String Processing (Recife,

Brazil, 1996). Available via www.RibbitSoft.com/research/watson/.

[WZ92] Watson, B.W. and G. Zwaan. A taxonomy of keyword pattern

matching algorithms, Computing Science Report 92/27, Eindhoven Uni-

versity of Technology, The Netherlands, 1992.

[WZ95] Watson, B.W. and G. Zwaan.A taxonomy of sublinear keyword pat-

tern matching algorithms, Computing Science Report 95/13, Eindhoven

University of Technology, The Netherlands, 1995.

60

