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1 Introduction

The common subsequence problem of two strings is to determine one of the subse-

quences that can be obtained by deleting zero or more symbols from each of the given

strings.

The longest common subsequence problem (LCS Problem) of two strings is to

determine the common subsequence with the maximal length.

For example, the strings AGI is a common subsequence and the string ALGI is

the longest common subsequence of the strings ALGORITHM and ALLEGATION.

Algorithms for this problem can be used in chemical and genetic applications and

in many problems concerning to the data and to the text processing. Genetic and

chemical applications comprise the study of di�erences between long molecules such

as proteins [14]. In the data processing and in the text processing the algorithms are

used to determine an equivalence or a similarity of two strings [11] and to compress

data when similar texts are being stored [4].

Further applications include the string-to-string correction problem [11] and de-

termining the measure of di�erences between text �les [4]. The length of the longest

common subsequence (LLCS Problem) can determine the measure of di�erences (or

similarities) of text �les.

D. S. Hirschberg [6] presented O(p � n)-time and O(p � (m � p) � log n)-time LCS

algorithms, where m;n are the lengths of strings and p is the length of any longest

common subsequence.
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J. W. Hunt and T. G. Szymanski [10] have presented O((m+ r) � log n)-time and

O(m + r)-space algorithm, where m;n are lengths of strings and r = jfhi; ji : a

i

=

b

j

; 1 � i � m; 1 � j � ngj. G. Andrejkov�a, Y. Robert and M. Tchuente [1, 15,

16] have presented systolic systems for LCS Problem with the combined complexity

measures - A�T

2

= O(n

3

) and A�P

2

= O(n

2

), where A;T; P are complexitymeasures:

area, time and period.

D. S. Hirschberg and L. L. Larmore [7] have discussed a generalization of LCS

Problem, which is called Set LCS Problem (SLCS Problem) of two strings where

however the strings are not of the same type. The �rst string is a sequence of the

symbols and the second string is a sequence of subsets over an alphabet 
. The

elements of each subset can be used as an arbitrary permutation of elements in the

subset. The longest common subsequence in this case is a sequence of symbols with

maximal length. The SLCS Problem has an application to problems in computer

driven music [7]. D. S. Hirschberg and L.L. Larmore have presented O(m � n)-time

and O(m+ n)-space algorithm, m;n are lengths of strings.

The Set-Set LCS Problem (SSLCS Problem) is discussed by D. S. Hirschberg and

L. L. Larmore [8] in 1989. In this case both strings are the strings of subsets over an

alphabet 
. In the paper is presented an O(m � n)-time algorithm which solves the

general SSLCS Problem.

In this paper we present an algorithm for special case of the LCS Problem, it

means Longest Restricted Common Subsequence Problem (LRCS Problem) and its

using to the solution of SSLCS Problem.

2 Basic De�nitions

In this section, some basic de�nitions and results concerning to LRCS Problem and

SSLCS Problem are presented.

Let 
 be a �nite alphabet, j
j = s; P (
) the set of all subsets of 
; jP (
)j = 2

s

.

Let A = a

1

a

2

: : : a

m

; a

i

2 
; 1 � i � m be a string over an alphabet 
, jAj = m

is the length of the string A. A sequence of indices, h

A

= h

A

0

h

A

1

h

A

2

: : : h

A

k

A

; 0 = h

A

0

<

h

A

1

< h

A

2

< : : : < h

A

k

A

= m; 1 � k

A

� m is a partition of the string A.

The sequence h

A

divides the string A in the following way:

A = ja

1

a

2

: : : a

h

A

1

ja

h

A

1

+1

: : : a

h

A

2

j : : : ja

h

A

k�1

+1

: : : a

h

A

k

A

j = subst

A

1

: : : subst

A

k

A

, where

subst

A

i

= a

h

A

i�1

+1

: : : a

h

A

i

; 1 � i � k

A

. A pair [A;h

A

] is called the string with the

partition. 
(subst

A

r

) is the alphabet of the substring subst

A

r

.

For example, 
 = fa; b; c; d; eg, A = jabcjdababcajbdjdaaj;m= 15, h

A

= 0; 3; 10;

12; 15; subst

A

1

= abc; subst

A

2

= dababca; subst

A

3

= bd; subst

A

4

= daa.

A string C = c

1

c

2

: : : c

p

; 1 � p � m is a restricted subsequence of the string with

the partition [A;h

A

], i�

1. there exists a sequence of indices 1 � i

1

< i

2

< : : : < i

p

� m such that

a

i

t

= c

t

; 1 � t � p, and

2. if h

A

r�1

< i

u

; i

v

� h

A

r

then c

u

6= c

v

, for all r, 1 � r � k

A

,

(this means that each element of an alphabet 
(subst

A

r

) can be used in C once

at most).
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The string C is a common restricted subsequence of two strings with partition

[A;h

A

] and [B;h

B

] if C is the restricted subsequence of [A;h

A

] and C is the restricted

subsequence of [B;h

B

] at once. jCj is the length of the restricted common subse-

quence.

The string C is a longest common restricted subsequence of two strings with par-

tition [A;h

A

] and [B;h

B

] if C is a common restricted subsequence of the maximal

length.

For example, 
 = fa; b; cg; A = jabajabacacjbabj;m = 12; B = jbabcjcacjcbcbj; n =

11. The string C = bacb is the restricted subsequence, C

0

= bacab is the longest

restricted common subsequence but the string D = babccbb is not the restricted

common subsequence for [A;h

A

] and [B;h

B

] as it can be seen in Figure 1. The string

C" = babcacbb is the longest common subsequence of the strings A = abaabacacbab

and B = babccaccbcb if the partition does not matter.

m m m m m m m m m m m m

m m m m m m m m m m m

a

b

a a

b

a c a c

b

a

b

b

a

b

c c a c c

b

c

b

A=

B=

Figure 1. Restricted longest common subsequence of two strings A and B.
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A string of sets A over an alphabet 
 is any �nite sequence of sets from P (
).

Formally, A = A

1

A

2

: : : A

m

; A

i

2 P (
); 1 � i � m, m is the number of sets in the

string A. The length of the symbol string described by A is M = �

m

i=1

jA

i

j.

A string of symbols C = c

1

c

2

: : : c

p

; c

i

2 
; 1 � i � p, is subsequence of symbols (in

short, a subsequence) of string A if there is nonincreasing mapping F : f1; 2; : : : ; pg !

f1; 2; : : : ;mg, such that

1. if F (i) = k then c

i

2 A

k

, for i = 1; 2; : : : ; p

2. if F (i) = k and F (j) = k and i 6= j then c

i

6= c

j

.

Let A = A

1

: : : A

m

;B = B

1

: : : B

n

; 1 � m � n, be two strings of sets over the

alphabet 
. The string of symbols C is a common subsequence of symbols of A and

B is C a subsequence of symbols of A and C is a subsequence of symbols of the string

B. The longest common subsequence problem of the strings A and B (SSLCS(A;B)

consists of �nding a common subsequence of symbols C of the maximal length.

The length of SSLCS(A;B) will be denoted LSSLCS(A;B). Note that C is not

unique in general way.

m m m m m m m m

m m m m m m m m m m m

a

d
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e
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Figure 2. Longest common subsequence of two set strings A and B.
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For example, let 
 = fa; b; c; d; eg;A = fa; dgfa; b; cgfa; b; eg;B = fc; d; egfa; d; eg

fb; c; dgfb; dg. C = abc is a common subsequence of symbols and C

0

= adbcb and

C

00

= dcaeb are the longest common subsequences of symbols for A;B. C

00

can be

seen in Figure 2.

3 Algorithm for LRCS Problem

Designation.

� A[i::k] = a

i

a

i+1

: : : a

k

, for 1 � i � k � m,

� hi; ji represents i-th position in the string with the partition [A;h

A

] and j-th

position in [B;h

B

], there exist indices r; s such that 1 � r � k

A

; 1 � s � k

B

and h

A

r�1

< i � h

A

r

; h

B

s�1

< j � h

B

s

,

� LRCS(A,B) is the longest restricted common subsequence of strings [A;h

A

] and

[B;h

B

],

� LLRCS(A;B) is the length of LRCS(A,B),

� L(i; j) = LLRCS(A[1::i]; B[1::j]).

Principle of the recursive algorithm:

LLRCS(A;B) = max

jCj

fjCj : C is the restricted common subsequence of [A;h

A

]

and [B;h

B

]g.

Recursive version of the algorithm is constructed according to the following idea:

If an element c

t

= a

k

t

= b

l

t

is in the LRCS([A;h

A

]; [B;h

B

]) then

LLRCS([A;h

A

]; [B;h

B

]) = 1+ LLRCS([A[1::k

t

� 1]; h

A

0

]; [B[1::l

t

� 1]; h

B

0

])+

LLRCS([A[k

t

+ 1::m]; h

A

00

]; [B[l

t

+ 1::n]; h

B

00

]);

where h

A

0

; h

A

00

; h

B

0

; h

B

00

are partitions of the related substrings. The recursive version

of the algorithm has the exponential time complexity.

A modi�ed Hirschberg's method [6] will be used in the construction of the following

time-polynomial algorithm.

A pair h0; 0i is a 0-candidate with an empty generating sequence.

A pair of indices hi; ji; 1 � i � m; 1 � j � n; h

A

r�1

< i � h

A

r

; h

B

s�1

< j � h

B

s

, will

be named a k-candidate, k � 1, i�

1. a

i

= b

j

, and

2. there exists a sequence of pairs which is called a generating sequence:

h0; 0i = hi

0

; j

0

i; hi

1

; j

1

i; : : : ; hi

k�1

; j

k�1

i such that i

k�1

< i and j

k�1

< j and

hi

t

; j

t

i is the t-candidate with the generating sequence hi

0

; j

0

i; hi

1

; j

1

i; : : : ;

hi

t�1

; j

t�1

i and (a

i

t

6= a

i

or (i

t

� h

A

r�1

) and (b

j

t

6= b

j

or j

t

� h

B

s�1

) for

0 � t � k � 1.

17



Proceedings of the Prague Stringology Club Workshop '98

The set of all k-candidates will be designed C

k

and the generating sequence of k-

candidate will be designed I

k�1

.

For example, h1; 2i; h2; 1i; h3; 2i; h2; 3i; h9; 4i; h9; 5i; h10; 6i 2 C

1

, h3; 2i; h9; 4i; h9; 5i;

h10; 6i 2 C

2

, h9; 4i; h9; 5i; h10; 6i 2 C

3

; h10; 6i 2 C

4

; : : : for the strings with partitions

A = jabajabacacjbabj; B = jbabcjcacjcbcbj.

Remark. hi; ji; h

A

r�1

< i � h

A

r

; h

B

s�1

< j � h

B

s

is 1-candidate with the generating

sequence h0; 0i if a

i

= b

j

.

Lemma 3.1 If the pair hi; ji; h

A

r�1

< i � h

A

r

; h

B

s�1

< j � h

B

s

is a k-candidate then

L(i; j) � k.

Proof. Let k=1 and hi; ji is 1-candidate with the generating sequence h0; 0i. a

i

= b

j

,

then L(i; j) � 1. Let hi; ji be a k-candidate. There exist two sequences of indices

such that i

1

< i

2

< : : : < i

k�1

< i and j

1

< j

2

< : : : < j

k�1

< j. hi

k�1

; j

k�1

i is

k � 1-candidate and we suppose L(i

k�1

; j

k�1

) � k � 1. a

i

= b

j

and a

i

t

= b

j

t

for

1 � t � k� 1. The string C = a

i

1

a

i

2

: : : a

i

k�1

a

i

is the restricted common subsequence

of A[1::i] and B[1::j] because of if h

A

r�1

< i

t

; i

u

� h

A

r

then a

i

t

6= a

i

u

is ful�lled for all

r; 1 � r � k

A

. Analogously for B[1::j]. It follows that L(i; j) � L(i

k�1

; j

k�1

)+ 1 � k.

2

Lemma 3.2 If L(i; j) = k then there exists k-candidate hi

�

; j

�

i with the generating

sequence I

k�1

such that i

�

� i and j

�

� j and L(i

�

; j

�

) = k.

Proof. If L(i; j) = k then there is the restricted common subsequence C = c

1

c

2

: : : c

k

which is created by elements in the positions determined by sequences 1 � i

1

< i

2

<

: : : < i

k

� i; 1 � j

1

< j

2

< : : : < j

k

� j, such that a

i

t

= c

t

= b

j

t

for 1 � t � k, and

from the de�nition of the restricted common subsequence follows:

1. if h

A

r�1

< i

u

; i

v

� h

A

r

, then a

i

u

6= a

i

v

, for 1 � r � k

A

, and

2. if h

B

s�1

< j

u

; j

v

� h

B

s

, then b

j

u

6= b

j

v

, for 1 � s � k

B

,

Let i

u

; i

v

2 fi

1

; : : : ; i

k

g. The 1. condition can be formulated as not (h

A

r�1

< i

u

; i

v

�

h

A

r

) or a

i

u

6= a

i

v

. The �rst part means that i

u

; i

v

are not in the same interval of

the partition h

A

. If i

u

< i

v

� h

A

r

then i

u

� h

A

r�1

. The condition can be explained

a

i

v

6= a

i

u

or i

u

� h

A

r�1

. Analogously for the condition 2.

Suppose that i

�

= i

k

; j

�

= j

k

and h

A

r�1

< i

k

� h

A

r

; h

B

s�1

< j

k

� h

B

s

. The pair

hi

k

; j

k

i is the k-candidate with the generating sequence h0; 0i; hi

1

; j

1

i; : : : ; hi

k�1

; j

k�1

i,

since a

i

k

= b

j

k

and for all t; 1 � t � k � 1, the pair hi

t

; j

t

i is the t-candidate with the

generating subsequence I

t�1

and (a

i

t

6= a

i

k

or i

t

� h

A

r�1

) and (b

j

t

6= b

j

k

or j

t

� h

B

s�1

).

2

Lemma 3.3 Let C = c

1

c

2

: : : c

k

= a

i

1

a

i

2

: : : a

i

k

= b

j

1

b

j

2

: : : b

j

k

be the longest restricted

common subsequence of A[1::i] and B[1::j] and L(i; j) = k is its length. Let h

A

r�1

<

i+ 1 � h

A

r

; h

A

s�1

< j + 1 � h

B

s

. Let Cond A is the following condition:

a

i+1

= b

j+1

and (a

i+1

6= a

i

t

or (i

t

� h

A

r�1

)) and (b

j+1

6= b

j

t

or (j

t

� h

B

s�1

)) for all

t; 1 � t � k.

If the Cond A is ful�lled then hi+1; j+1i is (k+1)-candidate and L(i+1; j+1) =

L(i; j) + 1, and the longest restricted common subsequence is C

�

= c

1

c

2

: : : c

k

a

i+1

. If

Cond A is not ful�lled then L(i+1,j+1)=max fL(i; j+1); L(i+1; j)g and the longest

restricted common subsequence is in the same form as for maxfL(i; j+1); L(i+1; j)g.
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Proof. Suppose that Cond A is ful�lled. The sequence hi

1

; j

1

i; : : : ; hi

k

; j

k

i is the

generating sequence for (k+1)-candidate hi+1; j+1i since i

k

< i+1; j

k

< j+1, and

for all t; 1 � t � k the pair hi

t

; j

t

i is t-candidate with the generating subsequence I

t�1

and (a

i

t

6= a

i+1

or i

t

� h

A

r�1

) and (b

j+1

6= b

j

t

or j

t

� h

B

s�1

). If assumptions of lemma

are not ful�lled then hi+ 1; j + 1i is not (k+1)-candidate and L(i+ 1; j + 1) can not

be greater than L(i; j + 1) or L(i+ 1; j). 2

Lemma 3.3 is the base for the construction of the algorithm for a computing of

the restricted longest common subsequence of two strings with partitions. We use the

dynamic data structure for the construction of linear lists representing the generating

sequences of k-candidates, k = 1; 2; : : : as follows:

S

S

S

Sw

- - -










q q q

pm

i

k

j

k

i

1

j

1

i

k�1

j

k�1

Algorithm will work with the following data types

{Omega is an alphabet of strings;}

type vertex = record {element of generating sequence}

x, y : integer; {indices}

p: pointer;

end;

type pointerv = ^vertex; {pointer to the element of

the generating sequence }

type genseq = record {record of the length and pointer}

length: integer; {to the generating sequence}

pt: pointer;

end;

The de�nition of the k-candidate gives the method for the construction of the

k-candidate if the generating sequence is known. The next function Candidate �nds

if the element hi; ji is a potential k-candidate with a generating subsequence with

pointer pm.

function Candidate(pm: pointer; ab: Omega; uA, uB: integer): Boolean;

{It returns the value "true" if <i,j> is a potential k-candidate

else returns "false".

pm - pointer to the generating subsequence,

ab - the candidate in positions i, j,

uA, uB - upper bounds of intervals for current positions

i, j: uA<=i, uB<=j.}

var pp:pointerv; q: Boolean; ii, jj:integer;
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begin

pp:= pm; q:=true;

while (pp<>nil) and q do

begin

ii:=pp^.x; jj:=pp^.y;

if (a[ii]=ab) and (ii>=uA)

or (b[jj]=ab) and (jj>=uB) then q:=false;

pp:= pp^.p

end;

Candidate:= q;

end; {Candidate}

Lemma 3.4 The function Candidate computes the value true if hi; ji is a potential

k-candidate else the value false in O(k)-time.

Proof. pm is a pointer to the generating sequence of pairs hi; ji, hi; ji is k-candidate.

The function Candidate computes the value false if in this sequence there exists hi

�

; j

�

i

such that a

i

�

= a

i

= b

j

and i

�

� uA or b

j

�

= a

i

= b

j

and j

�

� uB. It means that

the condition of k-candidate for hi; ji is not ful�lled. In the other case Candidate

gives the value true, hi; ji is k-candidate with the given generating sequence. Time

complexity is O(k) because of each element of the generating sequence is compared

with a

i

k-times in the worst case. 2

The function Candidate is used in the algorithm for computing a longest restricted

common subsequence of two strings with some partitions.

ALGORITHM A:

fAlgorithm constructs a longest restricted common subsequence of two strings with

partitions.g

Input: [A;hA]; [B;hB] - two strings of symbols with partitions over alphabet Omega;

Output: pptr - pointer to the longest restricted common subsequence of A and B;

Variables:

Arrays C, D[0. .m] of the type genseq.

C[i], D[i] - pointers to the longest common subsequences of A[1. .i] and B[1. .j];

hA[1::kA]; hB[1::kB] - arrays of partitions of the strings A and B;

uA; uB - upper bounds of intervals for current positions i; j : uA � i; uB � j.

dA, dB - the recent numbers of intervals in the partitions,

pp - a pointer to the vertex.

Method:

begin

for i:=0 to n do

begin

D[i].pt:=nil; D[i].length:=0;

end;

C[0].pt:=nil; C[0].length:=0;
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dA:=1; uA:=1;

for i:=1 to m do

begin

if i>hA[dA] then begin inc(dA); uA:=hA[dA-1]+1 end;

dB:=1; uB:=1;

for j:=1 to n do

begin

if j>hB[dB] then begin inc(dB); uB:=hB[dB-1]+1 end;

if a[i]=b[j] then q:=Candidate(D[j-1].pt,a[i],uA,uB)

else q:=false;

if q then

begin

new(pp);

pp^.p:=D[i-1].pt; pp^.x:=i; pp^.y:=j;

C[i].pt:=pp; C[i].length:=D[i-1].length+1;

end else

if D[i].length>=C[i-1].length then C[i]:=D[i]

else C[i]:=C[i-1];

{Invariant1}

end;

for j:=1 to n do D[j]:=C[j];

{Invariant2}

end;

len := C[n].length; pptr := C[n].pt;

{ "len" contains the length of the longest restricted common

subsequence and C[n].pt contains pointer to the LRCS(A,B)}

writeln('Length LRCS(A,B) =', len:3);

while pptr<>nil do

begin

write(pptr^.x:3,pptr^.y:3,'**');

pptr:=pptr^.p

end;

end;

Theorem 3.1 The Algorithm A computes correctly LRCS(A;B) in O(m �n �p)-time

and O(n + r)-space, where p is the length of LRCS(A;B) and r = jfhi; ji : a

i

=

b

j

; 1 � i � m; 1 � j � ngj.

Proof. We specify the invariants of the cycles in the algorithm A.

Invariant1:

C[j

0

] contains the length and the pointer to the LCSS(A[1::i]; B[1::j

0

]), for 1 �

j

0

� j, and C[j

�

] contains the length and the pointer to the LRCS(A[1::i�1]; B[1::j

�

])

for j < j

�

� n.

Invariant2:

C[j];D[j] contains the length and the pointer to the LRCS(A[1::i]; B[1::j]) for

1 � j � n and i � n.
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The correctness of the algorithm follows immediately from the Invariant1 and

Invariant2.

Time complexity: The function Candidate requires O(k) steps, k � p, and it can

be repeated at most m � n times. Thus, total time is O(m � n � p).

Space complexity: The arrays C, D require O(n) space, strings [A;h

A

] and [B;h

B

]

require O(m+ n) space. If a

i

= b

j

then function Candidate can give a value true and

in this case a next element is added to the dynamic data structure that requires O(r)

space. If m � n then the algorithm requires O(n + r) space. 2

Let C

k

be the set of all k-candidates, for some k � 1. Partial ordering "�" can

be de�ned on C

k

in the following way:

hi; ji � hi

�

; j

�

i i� i � i

�

and j � j

�

, for hi; ji; hi

�

; j

�

i 2 C

k

.

An element hi; ji is a minimal k-candidate i� for all hi

�

; j

�

i 2 C

k

; hi

�

; j

�

i 6= hi; ji

is i

�

< i or j

�

< j.

The set of all minimal k-candidates for k � 1, will be designed C

min

k

.

Remarks. It is clear that

1. C

1

� C

2

� : : : � C

p

� C

p+1

= ;

2. C

min

1

6= C

min

2

6= : : : 6= C

min

p

3. Let 1 � k � p; hi; ji 2 C

k

and hi; ji 62 C

k+1

then L(i; j) = k.

Hirschberg's method of minimal k-candidates [6] can be applied in this special case

of strings with partitions and gives O(n � p

2

)-time algorithm, where p is the length of

the longest restricted common subsequence.

4 Transformation of SSLCS Problem to LRSC

Problem

Let A = A

1

A : : :A

m

; 1 � m be the string of the sets over 
. Elements of a subset

A

i

; A

i

2 P (
); 1 � i � m, can be chosen in an arbitrary order and there are jA

i

j!

permutations of these elements.

Let p(A

i

) be a permutation of elements inA

i

(it is a string consisting of all symbols

in A

i

).

We de�ne a string of symbols A in the following way:

A = p(A

1

)p(A

2

) : : : p(A

m

); (1)

A is the concatenation of strings p(A

1

); p(A

2

) : : : ; p(A

m

).

Let A be the set of all strings of symbols created by (1). The number of elements

in A is jAj = �

jAj

i=1

jA

i

j!. Let the elements in A are enumerated in some way, A =

fA

i

g; i = 1; : : : ; jAj.

Analogously, it is possible to construct the set B to the string B. Let be

L(A;B) = max fLLCS(A

i

; B

j

) : 1 � i � jAj; 1 � j � jBjg: (2)

Lemma 4.1 L(A;B) = LSSLCS(A;B).
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Proof. Let 1 � i � jAj; 1 � j � jBj. LLCS(A

i

; B

j

) is the length of the longest

common subsequence of strings of symbols A

i

and B

j

. Both strings are constructed

as a special cases of strings A;B, and LLCS(A

i

; B

j

) � LSSLCS(A;B), for 1 � i �

jAj; 1 � j � jBj. It means L(A;B) = max

i;j

fLLCS(A

i

; B

j

g � LSSLCS(A;B).

Since all possible strings A

i

and B

j

have been used, the following inequality holds

L(A;B) � LSSLCS(A;B). 2

Let 1 � k � m. p

�

(A

k

) is constructed from p(A

k

) by adding some elements of A

k

into arbitrary positions of p(A

k

). Each element of A

k

is in the p

�

(A

k

) once at least.

Lemma 4.2 Let i; j be indices such that L(A;B) = LLCS(A

i

; B

j

); A

i

= p(A

1

)p(A

2

)

: : : p(A

m

). Let 1 � k � m and A

i�

= p(A

1

) : : : p(A

k�1

)p

�

(A

k

)p(A

k+1

) : : : p(A

m

).

If each element of A

k

can be chosen from p

�

(A

k

) once at most then L(A;B) =

LLCS(A

i�

; B

j

).

Proof. Since each element of A

k

can be chosen from p

�

(A

k

) once at most (some

permutation of elements in A

k

), we have L(A;B) � LLCS(A

i�

; B

j

). p

�

(A

k

) has been

constructed by adding some elements to p(A

k

) and the following inequality is ful�lled:

LLCS(A

i�

; B

j

) � LLCS(A

i

; B

j

). 2

Lemma 4.3 Let i; j be indices such that L(A;B) = LLCS(A

i

; B

j

). Let A

i�

=

p

�

(A

1

) : : : p

�

(A

m

); B

j�

= p

�

(B

1

) : : : p

�

(B

n

). If each element of A

k

; 1 � k � m can

be chosen from p

�

(A

k

) once at most and each element of B

t

; 1 � t � n can be chosen

from p

�

(B

t

) once at most then L(A;B) = LLCS(A

i�

; B

j�

).

Proof. A

i�

and B

j�

are constructed by adding some elements to the strings A

i

; B

j

and thus LLCS(A

i�

; B

j�

) � LLCS(A

i

; B

j

). Since each part p

�

(A

k

), or p

�

(B

t

) can be

used as a permutation of A

k

or B

t

respectively, we have L(A;B) � LLCS(A

i

; B

j

).

Thus L(A;B) = LLCS(A

i

; B

j

). 2

Let A = A

1

A

2

: : : A

m

;m � 1 be the string of the sets over 
. Let p

+

(A

k

); 1 �

k � m be the string of all permutations of A

k

(permutations of elements in A

k

are

in p

+

(A

k

) as the subsequences). Let A

�

= p

+

(A

1

)p

+

(A

2

) : : : p

+

(A

m

). Analogously for

B, B

�

= p

+

(B

1

)p

+

(B

2

) : : : p

+

(B

n

).

Theorem 4.1 L(A;B) = LLCS(A

�

; B

�

) if each element of A

k

, respectively B

t

, can

be used once at most from the part p

+

(A

k

), respectively p

+

(B

t

).

Proof. There are the indices i; j such that L(A;B) = LLCS(A

i

; B

j

). According to

Lemma 4.3 LLCS(A

i

; B

j

) = LLCS(A

i�

; B

�j

). The strings A

�

; B

�

are some special

cases of strings A

i�

; B

j�

and it implies L(A;B) = LLCS(A

�

; B

�

). 2

Lemma 4.4 The length of the string A

�

is less or equal than M

2

, the length of B

�

is less or equal than N

2

.

Proof. p+(A

k

) can be constructed by a repeating of A

k

jA

k

j times. This construction

gives the length jA

k

j

2

. In [12] is presented the construction of shorter string with the

length jA

k

j

2

� 2 � jA

k

j + 4; jA

k

j � 4. The length of A

�

is jA

�

j = �

m

k=1

jp

+

(A

k

)j �

�

m

k=1

jA

k

j

2

� (�

m

k=1

jA

k

j)

2

= M

2

. Analogously, jB

�

j � N

2

. 2
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For example, let 
 = fa; b; c; d; eg;A = fa; dgfa; b; cgfa; b; eg;B = fc; d; egfa; d; eg

fb; c; dgfb; dg. It is possible to construct the following strings with partitions [A

�

; h

A

�

]

and [B

�

; h

B

�

] to A and B respectively:

A

�

= jadajcabcacbjebaebeaj; h

A

�

= 0; 3; 10; 17; k

A

�

= 3;

B

�

= jdecdedcjadeadaejbdcbdbcjbdbj; h

B

�

= 0; 7; 14; 21; 24; k

B

�

= 4:

And the longest common subsequence of A and B can be computed by the algo-

rithm for the restricted common subsequence problem of the strings with partitions

[A

�

; h

A

�

] and [B

�

; h

B

�

]: LSSLCS(A;B) = LLRCS([A

�

; h

A

�

]; [B

�

; h

B

�

]).

Theorem 4.2 Set-Set LCS Problem for two strings of sets can be computed in O(M

2

�

N

2

� p) time and O(N

2

+ r) space, where M;N are the numbers of symbols in subsets

A or B, respectively, p is the length of the longest common subsequence and r =

jfhi; ji : a

i

= b

j

; a

i

2 A

�

; b

j

2 B

�

; 1 � i �M

2

; 1 � j � N

2

gj.

Proof. It follows from the Lemmas 4.2, 4.3, 4.4 and Theorem 4.1. 2

5 Concluding Remarks

The polynomial algorithm for the solution of the LRCS Problem with a restricted

using of elements has been presented. The algorithm can be used to show in the very

simple way that SSLCS Problem has a polynomial complexity.

The LRCS Problem o�ers a generalization that is leading to the following problem:

Let [A;h

A

]; [B;h

B

] be two strings with the partitions and with the restricted using

of elements, let f

A

; f

B

are integer functions called weights of elements in positions:

f

A

; f

B

: 
� f1; 2; : : : ; ng ! Integer. For example, A = abacbda the function f

A

can

have values f

A

(a; 3) = 7; f

A

(a; 7) = 4; : : :. The measure of a common subsequence

is the sum of weights of the matching elements. A weight of matching elements is

the sum (or maximum) of weights of these elements in strings A and B in matching

positions. Construct restricted common subsequence with the maximal measure.
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