
On the All Occurrences of a Word in a Text

O.C. Dogaru

West University of Timi�soara

Bd.V.Pârvan,nr.4,Timi�soara,1900,Romania

e-mail: dogaru@info.uvt.ro

Abstract. In this paper a simple straight string search algorithm is presented.

For a string s that consists of n characters and a pattern p that consists of m

characters the order of comparisons is O(n:m), 0 < m � n, in the worst case,

but the average time complexity is good. The algorithm presented �nds all

occurrences of p in s. It do not use a precompiling of the pattern p.

1991 Mathematical Subject Classi�cations: 68P10 [Searching and Sorting]

Key words: direct, string, pattern, search

1 Introduction

The string matching problem is following. Given an array s[0::n� 1] of n characters

and an array p[0::m � 1] of m characters where 0 < m � n, the task is to �nd

all occurrences of p in s. The string s is regarded as a text and the string p as a

word(pattern). Generally, s and p are item.

In [W86] it is presented a direct method to determine the �rst occurrence of p

in s. In the same book it is presented the fact that the algorithm proposed is very

ine�cient, for example, if the pattern is p=a

m�1

b and the string is s=a

n�1

b, then

m � n comparisons are necessary to determine that p is in s.

In this direct method the pattern and the text are aligned at the left ends. The

searching begins with p

0

and s

0

. If a mismatch appears then a new searching begins

always with p

0

, the �rst character of the pattern.

2 The algorithm

The algorithm proposed by us begins with p and s aligned at the left ends too but in

the case that a mismatch occurs in the process of comparisons of p and s (p

j

6= s

j

)

then the searching continues with the character of p which produced the mismatch,

that is p

j

, which is searched between s

j+1

and s

n�m+j

. On this idea the algorithm is

built. It will contain the followings.

1. One compares successively p

0

with s

i

, i=0,1,. . .,n�m. If it exists no match of

the p

0

with s

i

, i=0,1,. . .,n�m then 'p is not in s' and the process is terminated.

2. If s

i

is the �rst match of p

0

then one compares successively p

1

with s

i+1

, p

2

with s

i+2

etc. If all p

j

match with s

i+j

, j=0,1,. . .,m-1 then this is the �rst occurrence

of p in s. A new searching is resumed beginning with p

0

and s

i+m

.

51

Proceedings of the Prague Stringology Club Workshop '98

3. If in the process of searching a mismatch occurs between p

j

and s

i+j

(p

j

6= s

i+j

)

then p

j

is searched in the rest of string s between s

i+j+1

and s

n�m+j

. If p

j

is not in

this rest then the searching is ended.

4. If in the substring s

i+j+1

; :::; s

n�m+j

there exists a character which match with

p

j

, one renames this character s

i

. Therefore p

j

= s

i

. In this case one compares the

left and right neighbours of p

j

and s

i

that is p

0

; p

1

; :::; p

j

; :::;

p

m�1

with correspondings s

i�j

; :::; s

i

; :::; s

i�j+m�1

. If all occur then this is an occur-

rence of p in s and the process of searching is resumed. If in the time of veri�cation

the neighbours of p

j

and s

i

a mismatch occurs then a new searching of p

j

begins with

the character s

i+1

.

5. The algorithm stops if i >= n �m+ j.

Example.

p=abcd (m=4)

s=xabcdxabxxaycdxabcd (n=19)

a

abcd

a

abc

c

c

c

c

a?c

c

c

c

c

abcd

In this example there are 23 comparisons to �nd two occurrences of p in s.

The complete algorithm, presented as a procedure named DO3(written in a Pascal-

like language described in [HS83]), is the following.

procedure DO3(s,p,n,m)

//find all occurrences of the word p(0:m-1)//

//in the string s(0:n-1) if this exists. If yes//

//then procedure writes 'p is in s' else it//

// write 'p is not in s'. 0<m<=n//

char p(0:m-1),s(0:n-1); integer i,j,m,n,k; boolean f;

i:=0; f:=false;

loop

j:=0;

while (j<m) and (p(j)=s(i)) do i:=i+1;j:=j+1 repeat;

if (j=m) then write('p is in s');f:=true;cycle endif

// the character p(j) is a mismatch:p(j)<>s(j) //

1:i:=i+1;

while (i<=n-m+j)and(p(j)<>s(i)) do i:=i+1 repeat

52

On the All Occurrences of a Word in a Text

if i>n-m+j and not f then exit endif;

// it exists i thus p(j)=s(i),one verifies the //

//left and right neighbours of p(j) and s(i)//

k:=0;

while(k<=m-1) and (p(k)=s(i-j+k) do k:=k+1 repeat;

if k=m then write('p is in s'); f:=true; i:=i-j+m

else goto 1 endif

until i>=n-m+j repeat;

if not f then write('p is not in s') endif

endDO3;

3 Number of comparisons

The maximum number of comparisons to determine that 'p is or it is not in s',

theoretically, it is obtained when, after p

k

= s

k

; k = 0; 1; :::; j � 1 match, it appears

p

j

6= s

j

, but p

j

= s

i

; i = j + 1; :::; n � m + j and all the left neighbours of p

j

match with the corresponding neighbours of s

i

and the right neighbours of p

j

, that

is, p

j+1

; p

j+2

; :::; p

m�2

match with the right corresponding neighbours of s

i

excepting

p

m�1

. For i = n�m+ j; p

m�1

may or it may not match with his corresponding in s.

Therefore for:

i = j+1, p

0

= s

1

; :::; p

j

= s

i

; :::; p

m�2

= s

m�1

; p

m�1

6= s

m

there are m comparisons;

i = j+2, p

0

= s

2

; :::; p

j

= s

i

; :::; p

m�2

= s

m

; p

m�1

6= s

m+1

there are m comparisons;

. .

i = n � m + j, p

0

= s

n�m+j

; :::; p

j

= s

i

; :::; p

m�2

= s

n�2

and p

m�1

= s

n�1

or

p

m�1

6= s

n�1

, there are m comparisons. Therefore in all it exists j + 1 comparisons

p

k

with s

k

; k = 0; 1; :::; j; between j + 1 and n � m + j there exists (n � m + j)-

(j+1)+1 = n�m cases for which p

j

maymatch with s

i

; i = j+1; j+2; :::; n�m+j and

the neighbours of p

j

, that is p

0

; p

1

; :::; p

m�2

match with the corresponding neighbours

of s

i

, but p

m�1

6= s

m+k

; k = �1; 0; 1; :::; n�m� 1. Possibly, p

m�1

= s

n�1

. Every case

gives m comparisons. Hence the maximum number of comparisons is

N

max

= j + 1 + (n�m) �m � m� 1 + 1 + (n �m)m = m(n�m+ 1):

The complexity of the algorithm DO3 is O(n:m) too.

But in the most unfavourable cases the algorithm DO3 reduces the maximum

number of comparisons from m �n as in algorithm presented by N.Wirth in [W86] to

m(n�m+ 1).

For the example p=a

m�1

b and s=a

n�1

b presented in Section 1, the algorithm DO3

carries out n +m� 1 comparisons.

4 Pro�ling

The variant of this algorithm(OD) written to determine the �rst occurrence of p

in s [D98] has been compared with a direct method(DIR) presented in [W86] and

the Boyer-Moore algorithm(BM) [BM77].The tests have been realized for di�erent

53

Proceedings of the Prague Stringology Club Workshop '98

values of p(m=5, 10, 20, 50, 100) and s(n=1000, 2000, 3000, 4000, 5000). The p

and s have been generated randomly. One generated sequences of m and n decimal

integer random numbers between 32-127 and one has tacken the ASCII corresponding

characters for p respectively for s. For the same m and n the three methods have

been executed 10 times. The average time for an m and �ve values for n(=1000,

2000, 3000, 4000, 5000) are written down in the following table

m= 5 10 20 50 100 Average

OD 0.52 0.20 0.56 0.24 0.30 0.364

DIR 0.46 0.58 0.24 0.34 0.58 0.432

BM 0.12 0.22 0.44 0.42 0.22 0.284

Between the average times of three methods there are the relations

t

OD

= 1:28t

BM

; t

DIR

= 1:18t

OD

:

But if the three methods are executed 100 times then the values are the following

m= 5 10 20 50 100 Average

OD 0.362 0.374 0.396 0.376 0.368 0.372

DIR 0.408 0.398 0.408 0.414 0.396 0.404

BM 0.364 0.350 0.308 0.300 0.312 0.326

In this case the relations are

t

OD

= 1:14t

BM

; t

DIR

= 1:08t

OD

:

5 Correctness of the algorithm

Theorem.The algorithm DO3 works correctly.

Proof. To proof the correctness of the algorithm we use a proof table [TBCG92]

procedure DO3(s,p,n,m)

char p(0:m-1),s(0:n-1); integer i,j,m,n,k; boolean f;

fpre:input=(p

0

; p

1

; :::; p

m�1

)^(s

0

; s

1

; :::; s

n�1

)^

n � m > 0^8i2f0,1,. . .,n-1g:s

i

are characters^

8j2f0,1,. . .,m-1g:p

j

are charactersg

f:=false; i:=0;

loop

j:=0;

54

On the All Occurrences of a Word in a Text

while (j<m) and (p(j)=s(i)) do

finv:8 h2f0,1,. . .,j-1g:p

h

= s

h

^0�j,i�mg

i:=i+1;j:=j+1 repeat;

f8 h2f0,1,. . .,j-1g:p

h

= s

h

^(j=m_p

j

6= s

i

g

if (j=m) then write('p is in s');f:=true;

foutput f=trueg

cycle endif

// the character p(j) is a mismatch:p(j) 6= s(j) //

ff=false^j<m^p

j

6= s

i

g

1:i:=i+1;

f0<i�n-m+j^p

j

6= s

i

)_i>n-m+j)g

while (i<=n-m+j)and(p(j) 6=s(i)) do

finv:p

j

6= s

i�1

^ i� n-m+jg

i:=i+1 repeat;

f(p

j

6= s

i�1

^ :(i<=n-m+j^ p

j

6= s

i

)�

f(p

j

6= s

i�1

^ i>n-m+j)_(s

i

= p

j

^ i<=n-m+j)g

if i>n-m+j and not f then

fp

j

6= s

i

g

exit endif;

fp

j

= s

i

^ i<=n-m+jg

// it exists i thus p(j)=s(i) //

//one veri�es the left and right neighbours of p(j) and s(i)//

k:=0;

while(k<=m-1) and (p(k)=s(i-j+k) do

finv:8h2f0,1,. . .,k-1g:p

h

= s

i�j+h

^ 0� k � mg

k:=k+1 repeat;

f(8h2f0,1,. . .,k-1g:p

h

= s

i�j+h

)^ :(k� m-1^ p

k

= s

i�j+k

)g

�(8 k2f0,1,. . .,m-1g:p

k

= s

i�j+k

^ k=m)_

(8h2f0,1,. . .,k-1g:p

h

= s

i�j+h

^ p

k

6= s

i�j+k

g)

if k=m then write('p is in s'); f:=true; i:=i-j+m

f8k2f0,1,. . .,m-1g:p

k

= s

i�j+k

g

else

f9k2f0,1,. . .,m-1g:p

k

6= s

i�j+k

g

goto 1

endif

until i>=n-m+j repeat;

ff=false _ f=true ^ 0<=j<=m^ i>n-m+jg

if not f then write('p is not in s') endif;

fpost:output=;g

endDO3;

The justi�cations are based on the application of logical equivalences and the rules

of inference to the sequence of Pascal statements. These are:

i)the assignment rule of inference

fP(e)g v:=e fP(v)g

ii)the conditional rules of inference

a)fP ^ Bg s fQg b)fP ^ B g s1 fQg

55

Proceedings of the Prague Stringology Club Workshop '98

P ^ :B) Q P ^:Bg s2 fQg

|||||||||||| |||||||||||

fPg if B then s fQg fPg if B then s1 else s2 fQg

iii)the loop rules of inference

a)finv ^ Bg s finvg b)finv ^Bg s finvg

||||||||||||{ |||||||||||

finvg while B do s finv ^: Bg finvg repeat s until B finv^Bg

where P,Q denote propositions, B-Boolean expression, inv-the invariant of the loop

and s, s1, s2 are statements.

Conclusions

1)Algorithm OD is faster than algorithm DIR in average time;

2)There are pairs of p and s where algorithms OD or DIR are faster than algorithm

BM;

3)At limit, the average times of the three methods tend to approach;

4)Possibly, for other p and s, the relations between the average times of the three

methods can be slight di�erent.

References

[BM77] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Comm. ACM, 20,

10(1977), pp.762-772

[CH92] R.Cole, R.Hariharan, Tighter bounds on the exact complexity of string

matching, Proc. 33rd IEEE Symp. on Foundations of Computer Science,(1992),

pp.600-609

[C94] R.Cole, Tight bounds on the complexity of the Boyer-Moore string matching

algorithm, SIAM J.Comput, 23, 5(1994), pp.1075-1091

[CHPZ95] R.Cole, R.Hariharan, M.Paterson, U.Zwick, Tighter lower bounds on the

exact complexity of string matching, SIAM J. Comput., 24, 1(1995), pp.30-45

[CH97] R.Cole, R.Hariharan, Tighter upper bounds on the exact complexity of string

matching, SIAM J.Comput., 26, 3(1997), pp.803-856

[CCGJLPR94] M.Crochemore, A.Czumaj, L.Gasiniec, S.Jarominek, T.Lecroq,

W.Plandowski, W.Ritter, Speeding up two string-matching algorithms, Algo-

ritmica, 5(1994), pp.247-267

[D93] O.Dogaru, Algorithm of straight string search, Proceedings of the 9th RO-

manian SYmposium on Computer Science (ROSYCS), University of Iasi,(1993),

pp.172-177

56

On the All Occurrences of a Word in a Text

[D98] O.Dogaru, On the �rst occurence of a pattern in a text, Proceedings of MO-

SIS'98(Modelling and Simulation of Systems), International Conference, Volume

2, pp.45-50, May 5-7, 1998, Sv.Hostyn-Bistrice pod Hostynem, Czech Republic

[GG93] Z.Galil, R.Giancarlo, On the exact complexity of string matching:Upper

bounds, SIAM J. Comput., 3(1993), pp.407-437

[HS83] E.Horowitz, S.Sahni, Fundamentals of Computer Algorithm, Computer Sci-

ence Press(1983)

[KMP77] D.E.Knuth, J.H.Morris, V.R.Pratt,Fast pattern matching in string, SIAM

J.Comput. 6, 2(1977), pp.323-349

[TBCG92] A.B.Tucker, W.J.Bradley, R.D.Cupper, D.K.Garnick, Fundamentals of

Computing I, McGraw-Hill,Inc, (1992)

[W86] N.Wirth, Algorithm and Data Structures, Prentice Hall, N.J.(1986)

57

