
Collaborative Report DC{99{05

Proeedings

of the Prague Stringology Club Workshop '99

Edited by Jan Holub and Milan

�

Sim�anek

July 1999

Department of Computer Siene and Engineering

Faulty of Eletrial Engineering

Czeh Tehnial University

Karlovo n�am. 13

121 35 Prague 2

Czeh Republi

Program Committee

Gabriela Andrejkov�a, Jun-ihi Aoe, Maxime Crohemore, Jan Holub,

Costas S. Iliopoulos, Thierry Leroq, Bo�rivoj Melihar, Brue W. Watson

Organizing Committee

Miroslav Bal��k, Martin Bloh, Jan Holub, Martin R�yzl, Milan

�

Sim�anek,

Zden�ek Tron���ek

ii

Table of ontents

Prefae v

The Closest Common Subsequene Problems by Gabriela Andrejkov�a 1

A Fast String Mathing Algorithm and Experimental Results by T. Berry

and S. Ravindran 16

On Proedures for Multiple-string Math with Respet to Two Sets by

Weiler A. Finamore, Rafael D. de Azevedo

& Marelo da Silva Pinho 29

A New Pratial Linear Spae Algorithm for the Longest Common

Subsequene Problem by H. Goeman, M. Clausen 40

Centroid Trees with Appliation to String Proessing by Fei Shi and

Dong-Guk Shin 61

iii

iv

Prefae

This ollaborative report ontains the proeedings of the Prague Stringology Club

Workshop '99 (PSCW'99), held at the Department of Computer Siene and Engi-

neering of Czeh Tehnial University in Prague on July 8{9, 1999. The workshop was

preeded by PSCW'96 whih was the �rst ation of the Prague Stringology Club, by

PSCW'97 and by PSCW'98. The proeedings of PSCW'96, PSCW'97 and PSCW'98

were published as ollaborative reports DC{96{10, DC{97{03 and DC{98{06, respe-

tively, of Department of Computer Siene and Engineering and are also available in

the postsript form at Web site with URL: http://s.felk.vut.z/ps. While

the papers of PSCW'96 were invited papers, the papers of PSCW'97 and PSCW'98

were seleted from the papers submitted as a response to a all for papers. The papers

in this proeedings are alphabetially ordered by the authors.

The PSCW aims at strengthening the onnetion between stringology (the om-

puter siene on strings and sequenes) and �nite automata theory. The automata

theory has been developed and suessfully used in the �eld of ompiler onstrution

and an be very useful in the �eld of stringology too. The automata theory an fail-

itate the understanding of existing algorithms and the developing of new algorithms.

Jan Holub and Milan

�

Sim�anek, editors

v

vi

The Closest Common Subsequene Problems

1

Gabriela Andrejkov�a

Department of Computer Siene, Faulty of Siene, P. J.

�

Saf�arik University,

Jesenn�a 5, 041 54 Ko�sie, Slovakia

e-mail: andrejk�kosie.upjs.sk

Abstrat. EÆient algorithms are presented that solve general ases of the

Common Subsequene Problems, in whih both input strings ontain symbols

with ompetene values or sets of symbols with ompetene values. These prob-

lems arise from a searhing of the sets of most similar strings.

Key words: Subsequene, ommon subsequene, measure of the string, dy-

nami programming, design and analysis of algorithms.

1 Introdution

The motivation to the CCS Problems an be found in the typing of a text on the

keyboard. The following mistakes an be made in typing some string:

1. Typing a di�erent harater, usually from the neighbour area of the given har-

ater.

2. Inserting a single harater into the soure string.

3. Omiting (skipping) any single soure harater.

In the most frequent mistakes, a harater from the area on the keyboard adjaent

to the required harater was typed instead of the required harater. For example,

the neighborhood of the harater f is the set f = ff,d, g, r, t, , vg. The sequene of

sets A = f, r, e, s, , o belongs to the word freso. In this ase (typing mistakes)

let us assign ompetene value (.v.) to eah element of the neighborhood in suh

way that the harater itself has .v. 1 and the .v.'s of "more erroneous" harater

are smaller than those of the "better one". For example, for set f we have �(f) =

1; �(d) = 0:4; �(g) = 0:4; �(r) = 0:2; �(t) = 0:4; �() = 0:3; �(v) = 0:3. We onsider

that in the text, it is neessary to �nd the words whih are very lose to the word

freso. We onsider the sum of .v.'s of a given string as a measure of its similarity of

the string to the given word freso. The lengths of the found words an be di�erent

to the length of the given word freso. For example, if the word freso is found in the

text then the measure of the similarity to the given word freso is the length of the

word freso (6), if the word tres is found then the measure of the similarity is 4.4

beause the symbol t is very lose to the symbol f and symbol o is omitted.

1

This researh was partially supported by Slovak Grant Ageny for Siene VEGA, projet No.

1/4375/97

1

Proeedings of the Prague Stringology Club Workshop '99

It is possible to onsider the desribed problem as the losest ommon subsequene

problem of the two similar strings and its repetition for text of strings.

The ommon subsequene problem of two strings is to determine one of the sub-

sequenes that an be obtained by deleting zero or more symbols from eah of the

given strings. It is possible to demand some additional properties for the ommon

subsequene. Usually, it is the greatest length of the ommon subsequene, but we

an onsider some di�erent measures for the ommon subsequene.

The longest ommon subsequene problem (LCS Problem) of two strings is to de-

termine the ommon subsequene with the maximal length. For example, the string

AGI is a ommon subsequene and the string ALGI is the longest ommon subse-

quene of the strings ALGORITHM and ALLEGATION. Algorithms for this problem

an be used in hemial and geneti appliations and in many problems onerning

data and text proessing [15℄, [12℄, [3℄. Further appliations inlude the string-to-

string orretion problem [12℄ and determining the measure of di�erenes between

text �les [3℄. The length of the longest ommon subsequene (LLCS Problem) an

determine the measure of di�erenes (or similarities) of text �les. The simulation

method for the approximate strings and sequene mathing using the Levenstein

metri an be found in J. Holub [9℄ and the algorithm for the searhing of the subse-

quenes is in Z. Tron���ek and B. Melihar [16℄.

D. S. Hirshberg and L. L. Larmore [7℄ have disussed a generalization of LCS

Problem, whih is alled Set LCS Problem (SLCS Problem) of two strings where

however the strings are not of the same type. The �rst string is a sequene of symbols

and the seond string is a sequene of subsets over an alphabet
. The elements of

eah subset an be used as an arbitrary permutation of elements in the subset. The

longest ommon subsequene in this ase is a sequene of symbols with maximal

length. The SLCS Problem has an appliation to problems in omputer driven musi

[7℄. D. S. Hirshberg and L.L. Larmore have presented O(m � n)-time and O(m+ n)-

spae algorithm,m;n are the lengths of the strings. The Set-Set LCS Problem (SSLCS

Problem) is disussed by D. S. Hirshberg and L. L. Larmore [8℄. In this ase both

strings are strings of subsets over an alphabet
. In the paper [8℄ is presented the

O(m � n)-time algorithm for the general SSLCS Problem.

In this paper we present algorithms for general ases of the Common Subsequene

Problem, it means Closest Common Subsequene Problems:CCS Problem (for two

strings of symbols), CCRS Problem (for two strings of symbols with restrited using

of the symbols), SCCS Problem (for one string of symbols and seond string of symbol

sets) and SSCCS Problem (for two strings of symbol sets).

2 Basi De�nitions

In this setion, some basi de�nitions and results onerning to CCS Problem, SCCS

and SSCCS Problem are presented.

Let
 be a �nite alphabet, j
j = s; P (
) the set of all subsets of
; jP (
)j = 2

s

.

Let A = a

1

a

2

: : : a

m

; a

i

2
; 1 � i � m be a string over an alphabet
, where

jAj = m is the length of the string A.

Let �

A

(a

i

) 2 (0; 1i; 1 � i � m; be some ompetene (membership) values of

elements in the string A.

2

The Closest Common Subsequene Problems

The pair (A; �

A

) is the string A with the ompetene funtion �

A

, f-string (A; �

A

)

for short. V al(A; �

A

) is a measure of (A; �

A

) de�ned by the (1).

V al(A; �

A

) = �

m

i=1

�

A

(a

i

) (1)

The string C 2 P (
); C =

1

: : :

p

is a subsequene of the string A = a

1

: : : a

m

, if

a monotonous inreasing sequene of natural numbers i

1

< : : : < i

p

exists suh that

j

= a

i

j

; 1 � j � p. The string C is a ommon subsequene of two strings A;B if C

is a subsequene of A and C is a subsequene of B. jCj is the length of the ommon

subsequene. The lassial problem to �nd the longest ommon subsequene is de�ned

and solved in Hirshberg [5℄.

The string (C; �

C

) is a subsequene with the ompetene funtion �

C

, f-subsequene

for short of the f-string (A; �

A

) if C is a subsequene of the string A and 0 < �

C

(

t

) �

�

A

(a

i

t

), for 1 � t � p. The f-subsequene (C; �

C

) is a losest f-subsequene if

V al(C; �

C

) = �

p

j=1

�

C

(

j

) = �

p

j=1

�

A

(a

i

j

).

The string (C; �

C

) is a ommon f-subsequene of two f-strings (A; �

A

) and

(B; �

B

) if (C; �

C

) is a f-subsequene of (A; �

A

) and (C; �

C

) is a f-subsequene of

(B; �

B

).

The string (C; �

C

) is a losest ommon f-subsequene of the f-strings (A; �

A

) and

(B; �

B

) if (C; �

C

) is a ommon f-subsequene with the maximal value V al(C; �

C

).

It means, if (D; �

D

) is a ommon f-subsequene of the strings (A; �

A

) and (B; �

B

)

then V al(D; �

D

) � V al(C; �

C

).

If (C; �

C

) is a losest ommon f-subsequene of the f-strings, (A; �

A

) and (B; �

B

)

then �

C

(

t

) = minf�

A

(a

k

t

); �

B

(b

l

t

)g, for 1 � t � p.

The CCS Problem: Let (A; �

A

) and (B; �

B

) be f-strings. To �nd a losest

ommon subsequene of the f-strings (A; �

A

) and (B; �

B

), CCS((A; �

A

); (B; �

B

))

for short.

The MCCS Problem is to �nd the measure of CCS f-string, MCCS for

short. It means, MCCS((A; �

A

); (B; �

B

)) = V al(CCS((A; �

A

); (B; �

B

))). �

m m m m m m m m m

m m m m m m m

a

b

a a

b

a a

b

a

b

d b

b

A=

B=

Figure 1. The losest ommon subsequene of two f-strings A and B.

0.9 0.9 0.6 0.5 0.2 0.8 0.4 0.6 0.5

0.6 0.6 0.3 0.4 0.9 0.5 0.6

"

"

"

"

�

�

P

P

P

P

P

P

Example 1.
 = fa; b; g; A = abaabaab; m = 9; B = abdbb; n =

7, �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), �

B

= (0:6; 0:6; 0:3; 0:4; 0:9; 0:5; 0:6).

The string C = abb is a subsequene, C

0

= abbb is the longest ommon subsequene

of the strings A and B, and (C"; �

C"

), C" = abb; �

C"

= (0:6; 0:9; 0:4; 0:5) is the

losest ommon subsequene of the f-strings (A; �

A

) and (B; �

B

); V al(C"; �

C"

) =

MCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown in the Figure 1.

Let (A; �

A

) be the string A with the ompetene funtion �

A

. A sequene of

indies, h

A

= h

A

0

h

A

1

h

A

2

: : : h

A

k

A

; 0 = h

A

0

< h

A

1

< h

A

2

< : : : < h

A

k

A

= m; 1 � k

A

� m is a

partition of the string (A; �

A

).

3

Proeedings of the Prague Stringology Club Workshop '99

The sequene h

A

divides the string (A; �

A

) in the following way:

A = ja

1

a

2

: : : a

h

A

1

ja

h

A

1

+1

: : : a

h

A

2

j : : : ja

h

A

k�1

+1

: : : a

h

A

k

A

j = subst

A

1

subst

A

2

: : : subst

A

k

A

,

where subst

A

i

= a

h

A

i�1

+1

: : : a

h

A

i

; 1 � i � k

A

. [(A; �

A

); h

A

℄ is alled the f-string with

the partition.

For example,
 = fa; b; g, A = jabajabaajbabj; m = 12, �

A

= (0:4; :2; :8; :4; :7; :3;

:3; :7; :5; :4; :8; :6), h

A

= 0; 3; 9; 12; subst

A

1

= aba; subst

A

2

= abaa; subst

A

3

= bab.

A string C =

1

2

: : :

p

; 1 � p � m is a restrited subsequene of the f-string with

the partition [(A; �

A

); h

A

℄, if and only if

1. there exists a sequene of indies 1 � i

1

< i

2

< : : : < i

p

� m suh that

a

i

t

=

t

; 1 � t � p, and

2. if h

A

r�1

< i

u

; i

v

� h

A

r

then

u

6=

v

, for all r, 1 � r � k

A

,

(eah element of an alphabet
(subst

A

r

) an be used in C one at most).

The string (C; �

C

) is a ommon restrited f-subsequene of two f-strings with par-

tition [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ if (C; �

C

) is a restrited f-subsequene of

[(A; �

A

); h

A

℄ and (C; �

C

) is a restrited f-subsequene of [(B; �

B

); h

B

℄ at one.

The string (C; �

C

) is a losest ommon restrited f-subsequene of two f-strings

with partition [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ if (C; �

C

) is a ommon restrited f-

subsequene with maximal value de�ned by (1).

The CCRS Problem: Let [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ be the f-strings. To

�nd the losest ommon subsequene of the f-strings [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄,

CCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) for short.

The MCCRS Problem is to �nd the measure of CCRS f-string,MCCRS

for short. It means,MCCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) = V al(CCRS([(A; �

A

); h

A

℄;

[(B; �

B

); h

B

℄)). �

m m m m m m m m m m m m

m m m m m m m m m m m

a

b

a a

b

a a

b

a

b

b

a

b

 a

b

b

A=

B=

Figure 2. Closest ommon restrited subsequene of two strings A and B.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.4 0.2 0.8

0.4 0.7 0.3 0.3 0.7 0.5 0.4 0.8 0.6

0.4

0.3

0.4 0.5

0.3

0.5 0.6 0.3

0.7 0.6 0.5

Example 2.
 = fa; b; g, A = jabajabaajbabj; m = 12, �

A

= (0:4; 0:2; 0:8; 0:4;

0:7; 0:3; 0:3; 0:7; 0:5; 0:4; 0:8; 0:6), h

A

= 0; 3; 9; 12; B = jbabjajbbj; n = 11, �

B

=

(0:4; 0:3; 0:4; 0:5; 0:3; 0:5; 0:6; 0:3; 0:7; 0:6; 0:5). The string C = bab is a restrited sub-

sequene, C

0

= baab is the losest restrited ommon subsequene with measure 2.3

as it an be seen in Figure 2. The string C" = bababb is the longest ommon sub-

sequene of the strings A = abaabaabab and B = bababb if the partition does

not matter.

A string of sets, set-string for short, B over an alphabet
 is any �nite sequene of

sets from P (
). Formally, B = B

1

B

2

: : : B

n

; B

i

2 P (
); 1 � i � n, n is the number of

4

The Closest Common Subsequene Problems

sets in B. The length of the symbol string desribed by B is N = �

n

i=1

jB

i

j. The pair

(B; �

B

) is the set-string B with the ompetene funtions �

B

, set-f-string for short.

A string of symbols C =

1

2

: : :

p

;

i

2
; 1 � i � p, is a subsequene of symbols

(subsequene, for short) of the set-string B if there is a noninreasing mapping F :

f1; 2; : : : ; pg ! f1; 2; : : : ; ng, suh that

1. if F (i) = k then

i

2 B

k

, for i = 1; 2; : : : ; p

2. if F (i) = k and F (j) = k and i 6= j then

i

6=

j

.

The ombination of a string and a set-string and the �nding of their losest ommon

f-subsequene leads to the solution of problems in above motivation.

Let (A; �

A

), be f-string over
 and (B; �

B

) be a set-f-string over P (
). The

f-string (C; �

C

) is a ommon f-subsequene of (A; �

A

) and (B; �

B

) if (C; �

C

) is a

f-subsequene of A and (C; �

C

) is a f-subsequene of the set-string B. A los-

est ommon f-subsequene of the f-string (A; �

A

) and the set-f-string (B; �

B

),

SCCS((A; �

A

); (B; �

B

)) is a ommon f-subsequene (C; �

C

) with the maximal value

V al(C; �

C

). Note that (C; �

C

) is not unique in general way.

The SCCS Problem: The Set losest Common Subsequene problem of the f-

string (A; �

A

) and the set-f-string (B; �

B

), SCCS((A; �

A

); (B; �

B

)) for short, onsists

of �nding a losest ommon f-subsequene (C; �

C

).

The MSCCS Problem onsists of �nding the measure of SCCS f-string,

MSCCS for short.

This means that MSCCS((A; �

A

); (B; �

B

)) = V al(SCCS((A; �

A

); (B; �

B

))), �

m m m m m m m m m

m m m m m m m

a

b

a a

b

a a

b

a

b

b d b

A=

B=

Figure 3. The losest ommon subsequene of two strings A and B.

f gf gf g

0.9 0.9

0.6

0.5 0.2 0.8 0.4 0.6 0.5

0.6

0.6 0.3

0.9

0.4

0.6 0.5

�

�

�

�

�

�

H

H

H

H

H

H

Example 3. Let A = abaabaab; �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), B =

fa; b; gfb; dgfb; g, �

B

1

(a) = 0:6; �

B

1

(b) = 0:6; �

B

1

() = 0:3; �

B

2

(b) = 0:9; �

B

2

(d) =

0:4; �

B

3

(b) = 0:6; �

B

3

() = 0:5. Then MSCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown

in the Figure 3.

Let A = A

1

: : : A

m

;B = B

1

: : : B

n

; 1 � m � n, be two set-strings of sets over

an alphabet
. The string of symbols C is a ommon subsequene of symbols of A

and B is C a subsequene of symbols of A and C is a subsequene of symbols of the

set-string B. The longest ommon subsequene problem of the set-strings A and B

(SSLCS(A;B) onsists of �nding a ommon subsequene of symbols C of the maximal

length. Note that C is not in general unique.

The SSCCS Problem: Let (A; �

A

); (B; �

B

) be two set-f-string.

The Set-Set Closest Common Subsequene problem of the set-f-strings (A; �

A

) and

(B; �

B

), (SSCCS((A; �

A

); (B; �

B

)) for short, onsists of �nding a losest ommon f-

subsequene (C; �

C

).

5

Proeedings of the Prague Stringology Club Workshop '99

The MSSCCS Problem onsists of �nding the measure of SSCCS set-f-

string, MSSCCS for short.

It means, MSSCCS((A; �

A

); (B; �

B

)) = V al(SSCCS((A; �

A

); (B; �

B

))), �

m m m m m m m m

m m m m m m m m m m m

a

d

 a

b

e

b

a

d

e a

d

e

b d

b d

A=

B=

Figure 4. The losest ommon subsequene of two set-strings A and B.

f gf g

f g

f g

f gf gf g

0.4

0.7 0.3 0.6 0.4 0.5 0.6 0.3 0.8

0.3 0.5 0.7 0.6 0.8 0.9 0.5 0.7 0.5 0.3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Example 4. Let A = fa; dg; f; a; dg; fe; b; ag; m = 3, �

A

1

= (0:7; 0:3); �

A

2

=

(0:6; 0:4; 0:5); �

A

3

= (0:6; 0:3; 0:8); B = fd; e; g; fa; d; eg; fb; d; g; fb; dg; n = 4: �

B

1

=

(0:4; 0:3; 0:5); �

B

2

= (0:7; 0:6; 0:8); �

B

3

= (0:9; 0:5; 0:7); �

B

4

= (0:5; 0:3). The ompe-

tene values are desribed aording to the named order in the set. For example,

�

A

1

(a) = 0:7; �

A

1

(d) = 0:3:

Then MSSCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown in the Figure 4.

3 Algorithm for MCCS Problem

From the de�nition of MSSC Problem it follows:

MCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the ommon

f � subsequene of (A; �

A

) and (B; �

B

)g (2)

The expression (2) an be written in the following way

= max

(C;�

C

)

f�

p

t=1

�

C

(

t

) :

t

= a

k

t

= b

l

t

; 1 � t � p; 1 � k

1

< : : : < k

p

� m;

1 � l

1

< : : : < l

p

� ng and 0 < �

C

(

t

) = minf�

a

(a

k

t

); �

B

(b

l

t

)g: (3)

It means

MCCS((A; �

A

); (B; �

B

)) = maxf�

p

t=1

minf�

A

(a

k

t

); �

B

(b

l

t

)g : a

k

t

= b

l

t

;

1 � t � p; 1 � k

1

< : : : < k

p

� m; 1 � l

1

< : : : < l

p

� ng (4)

Let M

min

be a matrix de�ned as follows:

M

min

[i; j℄ =

�

minf�

A

(a

i

); �

B

(b

j

); g; if a

i

= b

j

0; otherwise.

(5)

The expression (4) is the basis for the following algorithm and it should be written

now in the following way:

MCCS((A; �

A

); (B; �

B

)) = maxf�

p

t=1

M

min

[k

t

; l

t

℄ :

k

1

< : : : < k

p

� m; 1 � l

1

< : : : < l

p

� ng (6)

6

The Closest Common Subsequene Problems

The expression (6) an be used in the reursive algorithm or nonreursive algorithm

using the method of dynami programming.

Designation.

� A[i::k℄ = a

i

a

i+1

: : : a

k

, for 1 � i � k � m,

� MM [m;n℄ = MCCS((A; �

A

); (B; �

B

)),

� MM [i; j℄ = MCCS((A[1::i℄; �

A

); (B[1::j℄; �

B

)).

Reursive version of the algorithm is onstruted aording to the following idea:

If an element

t

is in the CCS((A; �

A

); (B; �

B

)) then the strings an be split into two

parts and

MCCS((A; �

A

); (B; �

B

)) = �(

t

) +MCCS((A[1::k

t�1

℄; �

A

); (B[1::l

t�1

℄; �

B

))

+MCCS((A[k

t+1

::m℄; �

A

); (B[l

t+1

::n℄; �

B

)) (7)

The reursive version of the algorithm has exponential time omplexity. Some om-

putations are repeated and it means in the algorithm, it is possible to use the dynami

programming method to ompute the partial values MM [i; j℄ one only and to use

them in the following omputations.

In the algorithm, two funtions are used: The funtion Minim omputes mini-

mum of two values, the funtion Maxim omputes maximum of three values. The

i�th line of the matrix MM is omputed from two lines (i � 1)�th and the already

omputed part of i�th olumn. It means that the spae omplexity of the algorithm

an be redued to O(n), for m � n. The algorithm works in the O(m�n) time. It an

be written in the following simple form (without the onstrution of the matrixM

min

):

Algorithm MCCS:

for i:=0 to m do MM[i,0℄:=0;

for j:=1 to n do MM[0,j℄:=0;

for i:=1 to m do

for j:=1 to n do

begin

if a[i℄=b[j℄ then help:=MM[i-1,j-1℄ + Minim(miA[i℄,miB[j℄)

else help:=0;

MM[i,j℄:= Maxim(MM[i-1,j℄, help, MM[i, j-1℄);

end;

Example 5. The omputation ofMCCS((A; �

A

); (B; �

B

)) for the strings in Example

1 aording to the algorithm MCCS.

B= 0.6 0.6 0.3 0.4 0.9 0.5 0.6

a b d b b

A= ---

a 0.9 | 0.6 0.6 0.6 0.6 0.6 0.6 0.6

b 0.9 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

a 0.6 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

7

Proeedings of the Prague Stringology Club Workshop '99

a 0.5 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

b 0.2 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7

a 0.8 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7

 0.4 | 0.6 1.2 1.5 1.5 1.5 1.9 1.9

a 0.6 | 0.6 1.2 1.5 1.5 1.5 1.9 1.9

b 0.5 | 0.6 1.2 1.5 1.5 2.0 2.0 2.4

4 Algorithm for MCCRS Problem

The basi idea to the solution an be found in [1℄. The algorithm for LRCS Prob-

lem have to be modi�ed in the omputation of the the measure of losest ommon

restrited subsequene. In the algorithm, the Boolean funtion Candidate gives the

value true if the pair (a

i

; �(a

i

)); (b

j

; �(b

j

)) is a potential andidate to inrease the

losest ommon subsequene, false otherwise. The funtion Candidate is used in the

same form as in [1℄. The main part of the modi�ation is designed in the program

text. It ould be proved (similar as for LRCS Algorithm in [1℄) that the modi�ed

algorithm omputes orretly the losest ommon restrited subsequene of two f-

strings and it works in O(m � n � p)-time and O(n+ r)-spae, where r = jfhi; ji : a

i

=

b

j

; 1 � i � m; 1 � j � ngj and p � minfm;ng is the number of elements in losest

ommon restrited subsequene.

The following dynami data strutures are used in the algorithm:

type vertex=reord

x, y: indies;

p: pointer;

end;

pointerv=^vertex;

genseq=reord

val: real;

pt:pointer;

end;

The main phase of the algorithm is the following:

{Omega is an alphabet of strings}

{Input: [(A, mvA), hA℄, [(B,mvB), hB℄ - two f-strings of symbols

with partitions over alphabet;

mvA, mvB - ompetene funtions of A and B}

{Output: pptr is the pointer to the losest ommon restrited

subsequene of A and B;}

{Variables: Arrays C, D[0..m℄ of the type genseq.}

{C[1..i℄, D[1..i℄ ontain pointers to the losest ommon

subsequenes of A(1..i) and B(1..j);}

{hA[1..kA℄, hB[1..kB℄ - arrays of partitions of the strings A and B;}

{uA, uB - upper bounds of intervals in the partitions for urrent

positions i, j: uA\leq i, uB\leq j.}

{dA, dB - the numbers of intervals in the partitions,}

{pp - a pointer to the vertex.}

8

The Closest Common Subsequene Problems

Method:

begin

for j:=0 to n do

begin D[j℄.pt:=nil; D[j℄.val:=0; end;

C[0℄.pt:=nil; C[0℄.val:=0;

dA:=1; uA:=1;

for i:=1 to m do

begin if i>hA[dA℄ then begin in(dA); uA:=hA[dA-1℄+1 end;

dB:=1; uB:=1;

for j:=1 to n do

begin if j>hB[dB℄ then begin in(dB); uB:=hB[dB-1℄+1 end;

if a[i℄.el=b[j℄.el then

q:=Candidate(D[j-1℄.pt,a[i℄,uA,uB)

else q:=false;

if q then {***modified part***}

begin if a[i℄.mv<=b[j℄.mv then min:=a[i℄.mv

else min:=b[j℄.mv;

help:=D[j-1℄.val+min;

if (help>D[j℄.val) and (help>C[j-1℄.val) then

begin new(pp); pp^.p:=D[j-1℄.pt; pp^.x:=i; pp^.y:=j;

C[j℄.pt:=pp; C[j℄.val:=D[j-1℄.val+min;

end {***end of the modified part***}

end else

if D[j℄.val>=C[j-1℄.val then C[j℄:=D[j℄

else C[j℄:=C[j-1℄;

{Invariant1}

end; {Invariant2}

for j:=1 to n do D[j℄:=C[j℄;

end;

value := C[n℄.val; pptr:= C[n℄.pt;

{"value" ontains the value of the losest ommon restrited

subsequene and C[n℄.pt ontains pointer to the CCRS(A,B)}

end;

Example 6. The omputation ofMCCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) for the strings

in Example 2 aording to the algorithm MCCRS.

B |0.4 0.3 0.4 0.5 |0.3 0.5 0.6 |0.3 0.7 0.6 0.5|

A | b a b | a | b b |

-------|--

a 0.4 | 0.0 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4

b 0.2 | 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.4

_a_0.8_| 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6

a 0.4 | 0.2 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9

b 0.7 | 0.4 0.5 0.5 0.5 0.5 0.9 0.9 0.9 1.6 1.6 0.9

a 0.3 | 0.4 0.7 0.7 0.7 0.7 0.9 0.9 0.9 1.6 1.6 1.6

 0.3 | 0.4 0.7 0.7 1.0 0.7 0.9 1.2 0.9 1.6 1.9 1.9

9

Proeedings of the Prague Stringology Club Workshop '99

a 0.7 | 0.4 0.7 0.7 1.0 1.0 1.0 1.2 1.2 1.6 1.9 1.9

__0.5_| 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1

b 0.4 | 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1

a 0.8 | 0.4 0.7 0.7 1.2 1.2 1.7 1.7 1.7 1.7 2.1 2.1

_b_0.6_| 0.4 0.7 0.7 1.2 1.2 1.7 1.7 1.7 2.3 2.3 2.3

5 Algorithm for MSCCS Problem

The basi idea of the algorithm starts from the de�nition of the MSCCS Problem.

MSCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the ommon

f-subsequene of (A; �

A

) and (B; �

B

)g = (8)

max

p

f�

p

t=1

�

C

(

t

) :

t

= a

k

t

= b

F (t)

i

and 0 < �

C

(

t

) = minf�

A

(a

k

t

); �

B

(b

F (t)

i

)g;

1 � t � p; 1 � k

1

< : : : < k

p

� m; 1 � i � n

F (t)

; 1 � F (1) � : : : � F (p) � ng (9)

The reursive version of the algorithm is onstruted aording to the following idea

(Figure 5.):

A

B

a

k

t

b

F (t)

i

1B

F (t)

�i

2B

F (t)

�i

Figure 5. The idea for the onstrution of algorithm

J

J

J

J

Designation.

� A = a

1

: : : a

m

; m � 1;B = B

1

: : : B

n

; n � 1; B

l

= fb

l

1

; b

l

2

; : : : ; b

l

n

l

g,

� MM [m;n℄ =MSCCS((A; �

A

); (B; �

B

)),

� MM [i; j℄ = MSCCS((A[1::i℄; �

A

); (B[1::j℄; �

B

)).

If an element

t

is in the SGCD((A; �

A

); (B; �

B

)) then

MSCCS((A; �

A

); (B; �

B

)) = �(

t

) +

maxfMSCCS((A[1::k

t�1

℄; �

A

); (B[1::F (t� 1)℄1B

F (t)

�i

; �

B

)) +

MCCS((A[k

t+1

::m℄; �

A

); (B[F (t+ 1)::n℄2B

F (t)

�i

; �

B

))g (10)

where 1B

F (t)

�i

= (B

F (t)

� fb

F (t)

i

g)

1

and 2B

F (t)

�i

= (B

F (t)

� fb

F (t)

i

g)

2

are the disjoint

subsets 1B

F (t)

�i

and 2B

F (t)

�i

of the set (B

F (t)

� fb

F (t)

i

g) = 1B

F (t)

�i

[2B

F (t)

�i

and the

maximum is the maximal value over all disjoint partitions. The idea is shown in the

Figure 6. The time omplexity of the reursive version is exponential.

A attening of a sequene of sets is de�ned as a onatenation, in order of the

sequene, of strings formed by some permutation of individual elements of the sets in

10

The Closest Common Subsequene Problems

the sequene. For example, the attening of the set-string A in example 3 is dadaabe

and so is adadeba.

The very simple algorithm for MSCCS Problem an use Algorithm for MCCS

Problem for all pairs of the f-string A and the attening of the set-f-string B. The

algorithm have to ompute and ompare results of �

n

j=1

jB

j

j pairs.

It is possible to represent the sets in the string B as the strings of symbols with all

permutations of elements (the method will be applied in the MSSCCS Algorithm).

Eah element of the string of symbols has the ompetene value the same as it has

in the set. Then it is possible to apply the algorithm for ommon subsequene with

a restrited use of elements [1℄.

The nonreursive algorithm is onstruted by the dynami programming method

and it has the following idea:

MM [i; j℄ = maxf MM [k � 1; j � 1℄ + V al(SCCS((A[k::i℄; �

A

); (B

j

; �

B

j

)));

MM [k; j � 1℄; k = 1; 2; : : : ; ig: (11)

The values of the matrixMM [�; �℄ an be omputed aording to olumns, the input

for j-th olumn is the matrix (j � 1)-th olumn. The set B

j

an math better some

elements in the string A than the sets B

1

; : : : ; B

j�1

and it is neessary to ompute

these mathing values and to �nd the maximal value.

The following algorithm has a motivation in Hirshberg's and Larmore's method

[7℄ for SLCS Problem. We use the a data struture U , whih is alled unique stak

(for ontrol of elements from the sets), but our unique stak works in a di�erent way.

It has the ondition that no member an our twie or more in the stak. When

Push(U, x, k) is exeuted for some element x, x is �rst ompared to the elements in

the stak. If x is in the stak in the position l then the ompetene values of the both

ourrenes are ompared. If the ompetene value of the element x in the position

l is greater than the ompetene value of the new element x then the unique stak

is not modi�ed else the element in the position l is deleted and the new element x is

pushed on the top of the unique stak. In the stak are the elements of the string A

whih have best mathing to the some set in the string of sets B.

proedure Push(var U:Ustak; x:Element; k:integer);

{Push the element x on the top of the unique stak U;

k is the index of x in the string A;

Competene values are less than Maxi1000;}

var Upom: Ustak;

tophlp: integer;

kk: integer;

begin

kk:=top;

tophlp:=0;

Maxi:=Max1000;

while kk>=1 do

begin if (x.p<>U[kk℄.p) then

begin in(tophlp); Uhlp[tophlp℄:=U[kk℄;

end else begin

11

Proeedings of the Prague Stringology Club Workshop '99

Maximum:=U[kk℄.mi;

if Maximum<x.mi then Maximum:= x.mi;

if Maximum>x.mi then

begin in(tophlp);

Uhlp[tophlp℄:=U[kk℄;

Maxi:=Maximum;

end;

end;

de(kk);

end;

top:=0;

for kk:=tophlp downto 1 do

begin in(top); U[top℄:=Uhlp[kk℄; end;

if (Maxi<x.mi) or (Maxi=Max1000) then

begin in(top); U[top℄:= x; best[x.p℄:=k;

end;

end; {Push}

The proedure Findpeaks searhes for the values peak[k℄; : : : ; peak[0℄ whih an

represent measures of the new andidates for SCCS. In Findpeak, as k dereases,

U is the list of all elements in B

j

whih are found in the substring A[k+ 1::m℄ in the

order in whih they �rst our and aording to their ompetene funtion. For any

x 2 U , first[x℄ is the index of that best ourrene.

proedure Findpeak(j: integer);

{ j - index of j-th set in the set-string B;

m - the length of the symbol string A;

top- global variable for the top of Unique stak.}

begin

top:=0;

for k:=m downto 0 do

begin measure:=Mi[k,j-1℄;

peak[k℄:=measure;

for x:=top downto 1 do

begin xx:=U[x℄.p;

Minimum:= Minim(U[x℄,B[j℄);

measure:=measure+Minimum;

peak[best[xx℄℄:= Maxim{measure,peak[best[xx℄℄};

end;

if k>0 then

if A[k℄.p in B[j℄.pp then Push(U,A[k℄,k);

end;

end;

The main algorithm has the following form:

Algorithm MSCCS:

12

The Closest Common Subsequene Problems

for i:=0 to m do MM[i,j℄:=0;

for j:=1 to n do

begin Findpeak(j);

MM[0,j℄:=0;

for i:=1 to m do

MM[i,j℄:= Maxim{peak[i℄,MM[i-1,j℄};

end;

Example 7. Let A = abaabaab; �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), B =

fa; b; gfbdgfbg, �

B

1

(a) = 0:6; �

B

1

(b) = 0:6; �

B

1

() = 0:3; �

B

2

(b) = 0:9; �

B

2

(d) =

0:4; �

B

3

(b) = 0:6; �

B

3

() = 0:5 then MCCS(A;B) = 2:4 as it is omputed in the

following matrix.

B B1 B2 B3

a 0.6

b 0.6 b 0.9 b 0.6

A 0.3 d 0.4 0.5

a 0.9 | 0.6 0.6 0.6

b 0.9 | 1.2 1.5 1.5

a 0.6 | 1.2 1.5 1.5

a 0.5 | 1.2 1.5 1.5

b 0.2 | 1.2 1.5 1.5

a 0.8 | 1.2 1.5 1.5

 0.4 | 1.5 1.5 1.9

a 0.6 | 1.5 1.5 1.9

b 0.5 | 1.5 2.0 2.4

The subsequene an be reovered after the algorithm is �nished if an array of a

bakpointers to the best mathing elements is maintained. Corretness of the algo-

rithm follows from the following invariants:

(1) After the j-th iteration of main algorithm all values MM [i; j℄; 0 � i � m are

omputed. After the n-th iteration we have all values MM [i; n℄; 0 � i � m and

MM [m;n℄ = MCCS((A; �

A

); (B; �

alB

).

(2) Findpeak(j) omputes the best mathing of the j-th set B

j

, peak[j℄ �MM [i; j℄

and there exist some j

0

� j suh that peak[j

0

℄ �MM [i; j℄.

Time omplexity. The main algorithm has the yle for i and the all of proedure

Findpeak inside of the yle for j. It means O(m � n � N)-time omplexity, where

N = �

n

j=1

; jB

j

j.

Spae omplexity. The presented algorithm requires O(m � n)-spae for the array

MM and O(m)-spae for the unique stak.

6 Algorithm for MSSCCS Problem

The basi idea of the algorithm is very similar to the previous algorithm for MSCCS.

It starts from the de�nition of MSSCCS Problem.

MSCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the ommon

13

Proeedings of the Prague Stringology Club Workshop '99

f � subsequene of (A; �

A

) and (B; �

B

)g (12)

If we have some attenings of both set-strings then it is possible to apply the

MCCS algorithm. It is neessary to ompute MCCS values of all pairs of all at-

tenings both set-strings but that is too time onsuming.

If we have the attening of one set-string and the seond is as set-string then it

is possible to use the MSCCS algorithms. But it is neessary to ompute MSCCS

value for all attenings of one string. This is also too time onsuming. Both algo-

rithms have exponential time omplexity.

It is possible to use the following algorithm of polynomial time omplexity. The

algorithm works in two steps:

1. to reate the string of symbols for eah of set-string; eah set an be enoded

as the string of all permutations of its elements (the length of suh string is

k

2

� 2 � k + 4, k is the number of elements in set [13℄);

2. to apply the MCCRS algorithm for the two onstruted strings (eah element

of the set an be used one at most);

The algorithm works in polynomial time: O(M

2

�N

2

�K), where M = �

m

i=1

jA

i

j; N =

�

n

j=1

jB

j

j, and K is the number of elements in losest ommon restrited subsequene.

7 Conluding Remarks

Polynomial algorithms for the solutions of the MCCS Problem, MCCRS Problem and

MSCCS Problem with a ompetene funtions have been presented. The MSSCCS

Problem was formulated and the polynomial time algorithm for its solution was de-

veloped. However, we are onvined of the existene of an algorithm with better time

omplexity.

Referenes

[1℄ Andrejkov�a, G.: The longest restrited ommon subsequene problem. Proeedings

of the Prague Stringology Club Workshop'98, Prague, 1998, p. 14-25.

[2℄ Dewar, R. B., Merritt, S. M., Sharir, M.: Some modi�ed algorithms for Dijkstra's

longest ommon subsequene problem. Ata Informatia 18, 1982, p. 1{15.

[3℄ Hekel, P.: A tehnique for isolating di�erenes between �les. Comm. ACM 21, 4

(Apr. 1978), p. 264{268.

[4℄ Hirshberg, D. S.: A linear spae algorithms for omputing maximal ommon

subsequenes. Comm. ACM 18, 6 (June 1975), p. 341{343.

[5℄ Hirshberg, D. S.: Algorithms for longest ommon subsequene problem. Journal

ACM 24, 4 (Ot 1977), p. 664{675.

[6℄ Hirshberg, D. S.: The least weight subsequene problem. Symp. on FCT, Otober,

1985, p. 137{143.

14

The Closest Common Subsequene Problems

[7℄ Hirshberg, D. S., Larmore, L. L.: The Set LCS Problem. Algorithmia 2 (1987),

p. 91{95.

[8℄ Hirshberg, D. S., Larmore, L. L.: Set-Set LCS Problem. Algorithmia 4 (1989),

p. 503{510.

[9℄ Holub, J.: Dynami Programming for Redued NFAs for Approximate String and

Sequene Mathing. Proeedings of the Prague Stringology Club Workshop'98,

Prague, 1998, p. 73-82.

[10℄ Huang, S. S., Asuri, S. H.: Algorithms for the Set-LCS and Set-Set-LCS Prob-

lems. Teh. Report No. UH-CS-89-09, University of Houston, Marh, 1989.

[11℄ Hunt, J. W., Szymanski, T. G.: A fast algorithm for omputing longest ommon

subsequenes. Comm. ACM 20, 5 (May 1977), p. 350{351.

[12℄ Lowrane, R., Wagner, R. A.: An extension of the string-to-string orretion

problems. Journal ACM 22, 2 (Apr. 1975), p. 177{183.

[13℄ Mohanty, S. P.: Shortest string ontaining all permutations. Disrete Mathemat-

is 31, 1980, p. 91{95.

[14℄ Nakatsu, N., Kombayashi, Y., Yajima, S.: A longest ommon subsequene algo-

rithm suitable for similar text strings. Ata Informatia 18, 1982, p. 171{179.

[15℄ Needleman, S. B., Wunsh, Ch. D.: A general method appliable to the searh

for similarities in the amino aid sequene of two proteins. Journal Mol. Biol. 48,

1970, p. 443{453.

[16℄ Tron���ek, Z., Melihar, B.: Direted Ayli Subsequene Graph. Proeedings of

the Prague Stringology Club Workshop'98, Prague, 1998, p. 107-118.

15

A Fast String Mathing Algorithm and

Experimental Results

T. Berry and S. Ravindran

Department of Computer Siene

Liverpool John Moores University

Liverpool L3 3AF

United Kingdom

e-mail: fT.BERRY,S.RAVINDRANg�livjm.a.uk

Abstrat. In this paper we present experimental results for string mathing

algorithms whih have a ompetitive theoretial worst ase run time omplexity.

Of these algorithms a few are already famous for their speed in pratie, suh

as the Boyer-Moore and its derivatives. We hose to evaluate the algorithms by

ounting the number of omparisons made and by timing how long they took

to omplete a given searh. Using the experimental results we were able to

introdue a new string mathing algorithm and ompared it with the existing

algorithms by experimentation. These experimental results learly show that

the new algorithm is more eÆient than the existing algorithms for our ho-

sen data sets. Using the hosen data sets over 1,500,000 separate tests were

onduted to determine the most eÆient algorithm.

Key words: string mathing, pattern mathing, algorithms on words.

1 Introdution

Many promising data strutures and algorithms disovered by the theoretial ommu-

nity are never implemented or tested at all. Moreover, theoretial analysis (asymp-

toti worst-ase running time) will show only how algorithms are likely to perform in

pratie, but they are not suÆiently aurate to predit atual performane. In this

paper we show that by onsiderable experimentation and �ne-tuning of the algorithms

we an get the most out of a theoretial idea.

The string mathing problem [CR94℄ has attrated a lot of interest throughout the

history of omputer siene, and is ruial to the omputing industry. String mathing

is �nding an ourrene of a pattern string in a larger string of text. This problem

arises in many omputer pakages in the form of spell hekers, searh engines on the

internet, �nd utilities on various mahines, mathing of DNA strands and so on.

Setion 2 desribes string mathing algorithms whih are known to be fast. Se-

tion 3 gives experimental results for these algorithms. From the �ndings of the exper-

imental results disussed in Setion 3, we identify two fast algorithms to produe a

new algorithm. The new algorithm is desribed in Setion 4. In Setion 5 we ompare

the new algorithm with the existing algorithms.

16

A Fast String Mathing Algorithm and Experimental Results

2 The String Mathing Algorithms

String mathing algorithms work as follows. First the pattern of length m, P [1::m℄,

is aligned with the extreme left of the text of length n, T [1::n℄. Then the pattern

haraters are ompared with the text haraters. The algorithms an vary in the

order in whih the omparisons are made. After a mismath is found the pattern

is shifted to the right and the distane the pattern an be shifted is determined

by the algorithm that is being used. It is this shifting proedure and the speed at

whih a mismath is found whih is the main di�erene between the string mathing

algorithms.

In the Naive or Brute Fore (BF) algorithm, the pattern is aligned with the

extreme left of the text haraters and orresponding pairs of haraters are ompared

from left to right. This proess ontinues until either the pattern is exhausted or a

mismath is found. Then the pattern is shifted one plae to the right and the pattern

haraters are again ompared with the orresponding text haraters from left to

right until either the text is exhausted or a full math is obtained. This algorithm an

be very slow. Consider the worst ase when both pattern and text are all a's followed

by a b. The total number of omparisons in the worst ase is O(nm). However, this

worst ase example is not one that ours often in natural language text.

An improved version of the BF algorithm, the Not So Naive (NSN) algorithm

[HA93℄, hanges the order of the omparisons. Suppose the pattern is aligned with the

text haraters, �rst the seond pattern harater is ompared with the orresponding

text harater followed by omparisons of the rest of the pattern with orresponding

text haraters, and then the last haraters to be ompared are the �rst harater

of the pattern and the text harater it is aligned with. A shift of two is made if a

mismath is made with the seond harater of the pattern and the �rst two haraters

of the pattern are the same, or if the seond harater of the pattern mathes the

text but a mismath ours and the �rst two haraters are not equal.

The number of omparisons an be redued by moving the pattern to the right

by more than one position when a mismath is found. This is the idea behind the

Knuth-Morris-Pratt (KMP) algorithm [KMP77℄. The KMP algorithm starts and

ompares the haraters from left to right the same as the BF algorithm. When a

mismath ours the KMP algorithm moves the pattern to the right by maintaining

the longest overlap of a pre�x of the pattern with a suÆx of the part of the text

that has mathed the pattern so far. After a shift, the pattern harater ompared

against the mismathed text harater has to be di�erent from the harater that

mismathed. The KMP algorithm takes at most 2n harater omparisons. The

KMP algorithm does O(m+ n) operations in the worst ase.

The Colussi (COL) [CO91℄ algorithm is an improvement of the KMP algorithm.

The number of harater omparisons is 1.5n in the worst ase. The set of pattern

positions is divided into two disjoint subsets due to the ombinatorial properties

of their positions. First the omparisons are performed from left to right for the

haraters at positions in the �rst set. If there is no mismath, the haraters at

positions in the seond set are ompared from right to left. This strategy redues the

number of omparisons.

Galil and Gianarlo (GG) [GG92℄ improved the COL algorithm by reduing the

number of harater omparisons in the worst ase to

4

3

n. In these algorithms the

17

Proeedings of the Prague Stringology Club Workshop '99

preproessing takes O(m) time.

The Boyer-Moore (BM) algorithm [BM77℄ di�ers in one main feature from the

algorithms already disussed. Instead of the haraters being ompared from left to

right, in the BM algorithm the haraters are ompared from right to left starting with

the rightmost harater of the pattern. In a ase of mismath it uses two funtions, last

ourrene funtion and good suÆx funtion and shifts the pattern by the maximum

number of positions omputed by these funtions. The good suÆx funtion returns

the number of positions for moving the pattern to the right by the least amount, so

as to align the already mathed haraters with any other substring in the pattern

that are idential. The number of positions returned by the last ourene funtion

determines the rightmost ourrene of the mismathed text harater in the pattern.

If the text harater does not appear in the pattern then the last ourene funtion

returns m. The worst ase running time of the BM algorithm is O(mn).

The Turbo Boyer-Moore (TBM) algorithm [CC94℄ and the Apostolio-Gianarlo

(AG) algorithm [AG86℄ are ameliorations of the BM algorithm. When a partial math

is made between the pattern and the text these algorithms remember the haraters

that mathed and do not ompare them again with the text. The TBM algorithm

and the Apostolio-Gianarlo algorithm perform in the worst ase at most 2n and

1.5n harater omparisons respetively [CL97b℄.

The Horspool (HOR) algorithm [HO80℄ is a simpli�ation of the BM algorithm. It

does not use the good suÆx funtion, but uses a modi�ed version of the last ourrene

funtion. The modi�ed last ourrene funtion determines the right most ourrene

of the (k +m)th text harater, T [k +m℄ in the pattern, if a mismath ours when

a pattern is aligned with T [k::k + m℄. This algorithm hanges the order in whih

haraters of the pattern are ompared with the text. It ompares the rightmost

harater in the pattern �rst then ompares the leftmost harater, then all the other

haraters in asending order from the seond position to the m� 1th position.

The Raita (RAI) algorithm [RA92℄ again hanges the order in whih haraters of

the pattern are ompared with the text. The proess used to ompare the rightmost

harater of the pattern, then the leftmost harater, then the middle harater and

then the rest of the haraters from the seond to the (m � 1)th position. If at any

time during the proedure a mismath ours then it performs the shift as in the

HOR algorithm.

The Quiksearh (QS) algorithm [SU90℄ is similar to the HOR algorithm and the

RAI algorithm. It does not use the good suÆx funtion to ompute the shifts. It

uses a modi�ed version of the last ourrene funtion. Assume that a pattern is

aligned with the text haraters T [k::k+m℄. After a mismath the length of the shift

is at least one. So, the harater at the next position in the text after the alignment

(T [k+m+1℄) is neessarily involved in the next attempt. The last ourrene funtion

determines the right most ourrene of T [k+m+ 1℄ in the pattern. If T [k+m+ 1℄

is not in the pattern the pattern an be shifted by m+1 positions. The omparisons

between text and pattern haraters during eah attempt an be done in any order.

The Maximal Shift (MS) algorithm [SU90℄ is another variant of the QS algorithm.

The algorithm is designed in suh a way that the pattern haraters are ompared in

the order whih will give the maximum shift if a mismath ours.

The Smith (SMI) algorithm [SM91℄ uses HOR and Quik Searh last ourrene

funtions. When a mismath ours, it takes the maximum values between these

18

A Fast String Mathing Algorithm and Experimental Results

funtions.

The Zhu and Takaoka (ZT) algorithm [ZT87℄ is another variant of the BM algo-

rithm. The omparisons are done in the same way as BM (i.e. from right to left)

and it uses the good suÆx funtion. If a mismath ours at T [i℄, the last ourrene

funtion determines the right most ourrene of T [i � 1::i℄ in the pattern. If the

substring is in the pattern, the pattern and text are aligned at these two haraters

for the next attempt. The shift is m, if the two harater substring is not in the

pattern.

Searhing an be done in O(n) time using a minimal Deterministi Finite Automa-

ton (DFA) [SI93℄. This algorithm uses O(�m) spae and O(� + m) pre-proessing

time, where � is the size of the alphabet. The Simon (SIM) algorithm [SI93℄ redues

the pre-proessing time and the spae to O(m).

The pre-proessing is needed for the algorithm to alulate the relevant shifts upon

a mismath/math exept for the BF algorithm whih has no pre-proessing. The

pre-proessing ost of the algorithms does not e�et the eÆieny of the algorithms

as they are relatively very small and all are approximately the same.

3 Experimental Results of the Existing

Algorithms

Monitoring the number of omparisons performed by eah algorithm was hosen as a

way to ompare the algorithms. All the algorithms were oded in C and their C ode

are taken from [CL97a℄ and animations of the algorithms an be found at [CL98℄.

This olletion of string mathing algorithms were easy to implement as funtions

into our main ontrol program. The algorithms were oded as their authors had

devised them in their papers. The main ontrol program read in the text and pattern

and had one of the algorithms to be tested inserted into it for the searhing proess.

The main ontrol program was the same for eah algorithm and so did not a�et the

performane of the algorithms. Eah algorithm had an integer ounter inserted into

it, to ount the number of omparisons made between the pattern and the text. The

ounter was inremented by one eah time a omparison was made.

A random text of 200,000 words from the UNIX English ditionary was used for

the �rst set of experiments. The random text was onstruted so as to simulate an

atual English text. All the letters in the UNIX ditionary were made lower ase

to inrease the probability of a math. In English text roughly only every 1 in 10

words begin with a apital letter. We deided to number eah of the words in UNIX

ditionary from 1 to 25,000. Then we used a pseudo random number generator to pik

words from the UNIX ditionary and plae them in the random text. Separating eah

word by a spae harater. Puntuation was also removed as we were onerned with

�nding words and the puntuation would not e�et the results obtained. The reason

for using a large text (200,000 words) was to ensure that as many of the 25,000 words

in the UNIX English ditionary ourred somewhere in the random text generated.

For eah pattern in the ditionary, we searhed the text (of 200,000 words) for the

�rst ourrene of the pattern.

The text was searhed for eah word in the UNIX ditionary and the results are

given in Table 1. The �rst olumn in Table 1 is the length of the pattern. The seond

19

Proeedings of the Prague Stringology Club Workshop '99

olumn is the number of words of that length in the UNIX English ditionary. For

example, for a pattern length of 7, 4042 test ases were arried out and the average

number of harater omparisons made by the KMP algorithm was 197,000 (to the

nearest 1000). The average was alulated by taking the total number of omparisons

performed to �nd all 4042 ases and dividing this number by 4042. These olumns

are arranged in desending order of the average of the total number of omparisons

of the algorithms. An interesting observation is that for (almost) eah row the values

are in desending order exept for the last two olumns.

p. len num. BF KMP DFA SIM NSN COL GG BM AG HOR RAI TBM MS QS ZT SMI

2 133 7 7 7 7 6 6 6 3 3 3 3 3 2 2 3 2

3 765 38 38 37 37 37 37 37 13 13 13 13 13 11 10 13 10

4 2178 82 82 80 80 80 79 79 23 23 23 23 22 19 19 22 18

5 3146 151 150 145 145 145 145 145 34 34 34 34 34 30 30 32 28

6 3852 186 185 179 179 179 178 178 36 36 36 36 36 33 32 33 30

7 4042 198 197 191 191 191 190 190 34 34 34 34 34 32 31 30 28

8 3607 205 204 197 197 197 196 196 32 32 31 32 31 30 29 27 26

9 3088 212 211 204 204 204 203 203 30 30 30 30 30 29 28 25 24

10 1971 220 219 212 212 212 210 210 29 29 29 29 29 28 27 24 23

11 1120 209 207 201 201 200 198 198 26 26 26 26 25 25 24 21 21

12 593 218 217 210 210 209 207 207 25 25 25 25 25 24 24 21 20

13 279 224 222 215 215 213 212 212 24 24 24 24 24 23 23 19 19

14 116 228 227 220 220 219 217 217 23 23 23 23 23 23 23 19 19

15 44 151 150 144 144 143 142 142 15 15 15 15 14 14 14 11 12

16 17 227 225 217 217 215 214 214 20 21 21 21 20 20 20 18 16

17 7 233 231 222 222 221 218 218 20 20 20 20 19 19 20 15 16

18 4 236 234 225 225 223 221 221 19 20 20 20 19 19 20 14 16

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 1 132 131 122 122 121 119 119 10 10 10 10 10 10 10 7 8

21 2 311 309 295 295 290 288 288 24 24 25 25 23 23 24 15 18

22 1 491 486 455 455 451 445 445 33 33 33 33 33 31 34 22 27

total 24966 180 179 174 174 173 172 172 31 31 30 30 30 28 28 27 25

Table 1: Results of searhing a text of 200,000 words for eah word in the UNIX ditionary.

The algorithm with the largest number of omparisons is the BF algorithm. This

is beause the algorithm shifts the pattern by one plae to the right when a mismath

ours, no matter how muh of a partial/full math has been made. This algorithm

has a quadrati worst ase time omplexity. But the KMP algorithm whih has a lin-

ear worst ase time omplexity, does roughly the same number of omparisons as the

BF algorithm. The reason for this is that in a natural language a multiple ourrene

of a substring in a word is not ommon. For the same reason, the KMP variants,

COL and GG algorithms have only a small improvement over the KMP algorithm.

Other linear time algorithms, DFA and SIM, also have roughly the same number of

omparisons as the BF algorithm. We will see below that the other quadrati worst

ase time omplexity algorithms perform muh better than these linear worst ase

time algorithms. This is a good example showing that asymptoti worst-ase running

time analysis an be indiative of how algorithms are likely to perform in pratie,

but they are not suÆiently aurate to predit atual performane.

The BM algorithm uses the good suÆx funtion to alulate the shift whih de-

pends on a reourrene of a substring in a word. But, it also uses the last ourrene

funtion. It is this last ourrene funtion that redues the number of omparisons

signi�antly. In pratie, on an English text, the BM algorithm is three or more times

faster than the KMP algorithm [SG82℄. >From Table 1 one an see that the KMP

algorithm is takes six times more omparisons than the BM algorithm on average.

The other algorithms, TBM, AG, HOR, RAI, QS, MS, SMI and ZT, are variants of

the BM algorithm. The number of omparisons for these algorithms is roughly the

same number as in the BM algorithm.

The SMI algorithm and the ZT algorithm do the least number of omparisons for

pattern lengths less than or equal to twelve and greater than twelve respetively.

20

A Fast String Mathing Algorithm and Experimental Results

4 The New Algorithm - the BR algorithm

>From the �ndings of the experimental results disussed in setion 3, it is lear that

the SMI and ZT algorithms have the lowest number of omparisons among the others.

We ombined the alulations of a valid shift in SMI and ZT algorithms to produe

a more eÆient algorithm. If a mismath ours when the pattern P [1::m℄ is aligned

with the text T [k + 1::k +m℄, the shift is alulated by the rightmost ourrene of

the substring T [k+m+1::k+m+2℄ in the pattern. If the substring is in the pattern

then the pattern and text are aligned at this substring for the next attempt. This

an be done shifting the pattern as shown in the table below. Let � be a wildard

harater that is any harater in the ASCII set. Note that if T [k+m+1::k+m+2℄

is not in the pattern, the pattern is shifted by m+ 2 positions. The total number of

omparisons in the worst ase is O(nm).

T [k +m+ 1℄ T [k +m+ 2℄ Shift

� P [1℄ m+ 1

P [i℄ P [i+ 1℄ m� i+ 1, 1 � i � m� 1

P [m℄ � 1

Otherwise m+ 2

For example, the following shifts would be assoiated with the pattern, onion.

T [k +m+ 1℄ T [k +m+ 2℄ Shift

� o 6

o n 5

n i 4

i o 3

o n 2

n � 1

Otherwise 7

After a mismath the alulation of a shift in our BR algorithm takes O(1) time.

Note that for the substrings ni and n* have a value of 4 and 1 respetively. This

ambiguity an be solved by the higher shift value being overwritten with the lower

value. We will explain this later in this setion. For a given pattern P [1::m℄ the

preproessing is done as follows, and it takes O(�

2

) time.

There are 128 haraters in the ASCII set and (128)2 = 16384 distint pairs. We

de�ne an array Shift Array (SA) of length 16384 and initialise it to m + 2. Using a

hash funtion we insert the values for eah pair and the hash funtion we use is:

T [m+k+1℄� 127+T [m+k+2℄ where for P [m+k+1℄ and P [m+k+2℄ we use

their ASCII values. This gives eah pair of harater a distint value in SA and we

insert into the SA the shift for the pair. If the same pair ours more than one then

the lower shift value overwrites the higher value. So for example for the pair [i℄[o℄ we

would insert the value 3 at the [105� 127℄ + 111 = 13446th position in SA.

[wildard℄[o℄ = 6 all array positions that satisfy x[0℄mod127 = 111mod127 = 6

[o℄[n℄ = 5 position 111� 127 + 110 = 14207

[n℄[i℄ = 4 position 110� 127 + 105 = 14075

[i℄[o℄ = 3 position 105� 127 + 111 = 13446

[o℄[n℄ = 2 position 111� 127 + 110 = 14207

[n℄[wildard℄ = 1 position 110� 127 + 0::127 = 13970::14097

The order of performing the steps is important in ensuring the orret values

appear in the array. Note that the higher values have been over written by the lower

21

Proeedings of the Prague Stringology Club Workshop '99

values.

In the RAI algorithm the �rst and last haraters of the pattern are made variables.

This uts down the number of array look ups performed during a searh. We adapted

this idea to our algorithm and ompared the least frequent pattern harater with

its orresponding text harater. We then repeated the proess for the seond least

frequent harater and then the rest of the haraters in order from right to left.

The UNIX ditionary used in the tests was used to see how many times eah letter

ourred in the ditionary. The frequeny of eah letter is given in the following hart.

letter frequeny ranking letter frequeny ranking letter frequeny ranking

a 16395 25 j 432 3 s 10167 19

b 4110 10 k 1923 6 t 12789 22

 8209 17 l 10013 18 u 6476 16

d 5763 14 m 5822 15 v 1890 5

e 20083 26 n 12062 20 w 1950 7

f 2660 8 o 12696 21 x 616 4

g 4125 11 p 5514 13 y 3618 9

h 5179 12 q 377 1 z 429 2

i 13963 24 r 13409 23

Note that we hoose the haraters in the pattern that have the lowest ranking.

If the harater is not in the pattern then it has a ranking of 0 and is hosen as the

least frequent harater.

We now give an example of our BR algorithm in ation to �nd the pattern onion.

The SA array for the pattern onion were used to alulate the shift after a mismath.

P [2℄ is the least frequent and P [5℄ is the next least frequent harater.

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismath shift on SA([n℄[t℄) = 110 � 127 + 116 = SA[14086℄ = 1

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismath shift on SA([t℄[℄) = 116 � 127 + 32 = SA[14764℄ = 7.

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismath shift on SA([s℄[t℄) = 115 � 127 + 116 = SA[14721℄ = 7

w e w a n t t o t e s t w i t h o n i o n

6=

o n i o n

mismath shift on SA([℄[o℄) = 32 � 127 + 111 = SA[4175℄ = 6.

w e w a n t t o t e s t w i t h o n i o n

= = = = =

5 1 4 3 2

o n i o n

So the word onion is found in 9 omparisons in a text of length 26. On the above

full math the order in whih the omparisons are onduted is shown on the third

row.

22

A Fast String Mathing Algorithm and Experimental Results

5 Experimental Results and Comparisons with the

BR Algorithm

We selet the best nine algorithms from the results in Table 1 and the KMP algorithm,

and ompare with our BR algorithm. Experiments were arried out for di�erent

random texts as desribed in Setion 3. The texts were onstruted by randomly

hoosing words from the UNIX English ditionary. There were 2 di�erent texts of

10,000 words, a text of 50,000 words and a text of 100,000 words. The results are

desribed in Tables 3-6 (see appendix) respetively. Tables 3-6 (whih an be found

in the appendix at the bak of this paper) show the average number of omparisons

required for a searh for the given pattern length. They are based on taking the total

number of omparisons for the searh for all the patterns of a length and dividing the

number by the number of patterns of that size to give the average. So for example,

in Table 3 the BM algorithm takes 12,000 omparisons (to the nearest thousand) on

average if the pattern length is 7. From these tables one an observe that the relative

order of their performane is the same as in Table 1. The main observation is that

the BR algorithm performs better than the other algorithms for all pattern lengths

and for all texts used in the experiments.

p. len. num. KMP AG BM HOR RAI TBM MS QS ZT SMI

2 133 199.98 93.96 93.96 94.00 93.96 93.89 35.94 32.92 93.96 31.48

3 765 366.02 64.09 64.18 64.20 64.19 63.70 28.78 28.21 60.03 24.93

4 2178 449.02 50.97 51.11 50.86 50.90 50.77 28.25 25.77 43.19 19.73

5 3146 540.11 44.91 45.02 44.58 44.46 44.72 28.33 26.47 33.91 18.13

6 3852 626.30 42.58 42.42 41.83 41.68 41.91 30.02 27.32 27.71 16.42

7 4042 719.01 42.07 41.38 40.92 41.00 40.72 31.49 28.83 24.94 16.08

8 3607 807.61 40.76 40.58 40.28 40.35 39.95 32.27 30.10 21.67 15.49

9 3088 896.18 41.85 41.52 40.92 40.84 40.69 34.75 32.19 19.29 15.45

10 1971 982.63 42.38 42.19 41.69 41.79 41.16 36.62 34.37 17.75 15.64

11 1120 1067.87 44.91 44.14 43.67 43.79 42.97 38.57 37.18 17.06 16.32

12 593 1164.14 45.36 45.28 44.58 44.68 44.20 40.06 39.28 16.14 17.34

13 279 1245.53 48.85 47.88 47.22 47.32 46.36 42.26 41.61 12.65 17.54

14 116 1322.70 46.46 46.74 46.46 46.60 45.16 42.62 42.26 11.32 17.03

15 44 1426.02 50.78 51.20 51.51 51.59 49.23 44.73 45.29 8.72 19.00

16 17 1527.28 48.99 49.34 50.44 50.60 47.37 46.60 49.06 24.80 20.02

17 7 1598.50 45.09 45.29 44.51 44.58 43.42 40.22 45.01 6.72 16.95

18 4 1700.81 50.34 50.58 53.96 54.06 48.54 50.12 53.59 6.09 22.21

19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 1 1948.74 58.37 58.37 58.12 58.07 58.37 52.25 63.51 3.01 29.43

21 2 1947.96 58.13 57.38 63.98 63.99 56.32 57.59 57.50 2.22 21.84

22 1 2129.14 50.97 50.97 49.87 49.89 50.97 45.07 55.43 1.04 25.09

total 24992 737.56 43.54 43.29 42.83 42.82 42.65 32.00 29.72 26.09 16.66

Table 2: The average di�erene between eah of the existing algorithms and our BR algorithm as a perentage.

Table 2 summarises the results of Tables 3-6. The entries in Table 2 are in per-

entage form and desribe how many fewer omparisons our BR algorithm uses, when

ompared with the existing algorithms. The �gures are an average of the four di�er-

ent texts used. To alulate the di�erene as a perentage between our BR algorithm

and the existing algorithms we used the following formula. The average number of

omparisons was taken from the relevant ell in Tables 3-6 and divided by the value

for that pattern length for our BR algorithm. This value was then deduted by 1

and multiplied by 100 to give the perentage di�erene between the two algorithms.

An interesting observation of the existing algorithms when ompared with the BR

algorithm, is that for eah individual text the perentages were within 1% for eah

spei� algorithm. Eah value in Table 2 is alulated by taking the di�erene as a

perentage between eah algorithm and our BR algorithm for eah pattern length,

adding them together and dividing by 4. For example, for a pattern length of 4 the

BM algorithm takes on average 51.11% more omparisons than our BR algorithm.

The result of a full searh for the ditionary over all four texts is given in the last

23

Proeedings of the Prague Stringology Club Workshop '99

row of Table 2. From this we an see that the BM algorithm took on average 43.54%

more omparisons than our BR algorithm (see 5th olumn, last row) for a omplete

searh for all the words in the ditionary.

Further to ounting the number of omparisons we time the algorithms. The

saving in the number of omparisons may be paid for by extra overhead due to

aessing the preomputed shift table. We timed the searh of the medium text of

50,000 words for all ourrenes of the words in the UNIX ditionary. We used a 486-

DX66 with 8 megabytes of RAM and a 100 megabyte hard drive running SUSE 5.2.

In Table 7, the total number of omparisons for the searh are given along with the

time taken by eah algorithm for the searh, inluding any preproessing performed

by the algorithm. The number of omparisons are redued by a fator of 1000. i.e.

for BF 10911786 means 10911786000 omparisons.

medium1 book1 book2 papers

number time % dif BR num. omp. time se. % dif. BR time % dif. BR time % dif. BR

BF 10911786 1315m 13s 528.54

KMP 10433340 1341m 25s 541.06

DFA 10433340 892m 59s 326.75

SIM 10433340 1688m 18 706.83

NSN 10482487 777m 52s 271.74

BM 2002822 371m 51s 77.71 3602739 674m 79.73 663s 69.57 264s 58.08

AG 2005310 972m 10s 364.60

HOR 1985219 244m 41s 16.93 3580863 442m 17.87 446s 14.07 249s 49.10

RAI 1998657 238m 27s 13.95 3601251 431m 14.93 434s 11.00 173s 3.59

MS 1815486 318m 49s 52.36

QS 1785730 245m 58s 17.55 3189368 444m 18.40 452s 15.60 180s 7.78

ZT 1761716 420m 55s 101.15

TBM 1683516 1166m 4s 457.26

SMI 1621591 280m 41s 34.14 2930285 513m 36.80 514s 31.46 207s 23.95

BR 1489839 209m 15s n/a 2682916 375m n/a 391s n/a 167s n/a

Table 7: Timing for a omplete searh for the ditionary in the given texts.

>From this table we an see that the algorithms that take a high number of

omparisons are quite slow as well. The lower the number of omparisons the better

the time. Although putting the algorithms in order of how many omparisons they

take from highest to lowest starting at the BM we get the list: BM, RAI, AG, HOR,

MS, QS, ZT, TBM, SMI and the BR. If we do the same for the timings we get ZT,

BM, MS, SMI, QS, RAI and the BR. The reason for the di�erene in the lists is due

to overheads in traversing the data strutures whih are present in the algorithms

for the alulation of the orret shift value. Also the pre-proessing of some of the

algorithms are expensive. So we an not assume that beause an algorithm takes a

fewer number of omparisons that it will be more eÆient than another.

We an also save time by performing the omparisons as in the RAI algorithm.

This is done by making the least and seond least likely haraters variables instead

having to look them up in the pattern array. Although ounting the omparisons is

a good estimate of whih algorithm is the best to use we have to atual time the

algorithms to �nd the best algorithm for the task of string mathing.

We repeated the tests for the medium text for the book1 text for the 5 algorithms

with the best times and our BR algorithm. From Table 7 we an see that our BR

algorithm is still the quikest and the other algorithms are still over 14% more time

than our algorithm. So our �ndings for a random text hold for this real English

text. We then onsidered two other texts, book2 and the six papers onatenated

together from the Calgary orpus [CAL℄. We searhed for 500 random words from the

UNIX ditionary again for the best 5 algorithms and our BR algorithm. The results

doumented in Table 7 show that algorithm is the fastest algorithm for these tests.

The main reason for the speed of our BR algorithm is the improved maximum shift

24

A Fast String Mathing Algorithm and Experimental Results

of m+ 2 and the searhing on the least likely to our haraters.

Conlusions

The experimental results show that the BR algorithm is more eÆient than the exist-

ing algorithms in pratie for our hosen data sets. Over our 4 random texts and 3 real

texts where the BR algorithm is ompared to the existing algorithms, our algorithm

is omfortably more eÆient over eah text. With the addition of puntuation and

apital letters it does not a�et the BR algorithm. If the pattern to be searhed for

began with a apital letter then this would make the apital letter the least frequent

harater and so it would be searhed for �rst. We would expet the probability of

a mismath to rise and so the algorithm would speed up onsiderably. So in the real

world we would expet our savings to remain and make our BR algorithm ompetitive

with the existing algorithms. It is also possible to apply some of our �nding to what

makes a fast algorithm to the existing algorithms. This may make them faster but

we were onerned with the original algorithms that were devised by their authors.

Aknowledgments

We wish to thank Carl Bamford for omments and suggestions made to us during the

writing of this paper.

Referenes

[AG86℄ Apostolio A., Gianarlo R., "The Boyer-Moore-Galil string strategies re-

visited", SIAM Journal of Computing, 15(1), pages 98-105, 1986.

[BM77℄ Boyer R. S., Moore J. S., "A fast string searhing algorithm", Communi-

ations of the ACM, 23(5), pages 1075-1091, 1977.

[CAL℄ Calgary Corpus available at:

ftp://ftp.ps.ualgary.a/pub/projets/text.ompression.orpus/

[CL97a℄ Charras C., Leroq T., Exat string mathing available at:

HTTP://www.dir.univ-rouen.fr/ leroq/string.ps, 1997.

[CL98℄ Charras C., Leroq T., Exat string mathing animation in JAVA available

at: HTTP://www. dir.univ-rouen.fr/ harras/string/, 1998.

[CO91℄ Colussi L., "Corretness and eÆieny of the pattern mathing algo-

rithms", Information Computing, 95(2), pages 225-251, 1991.

[CC94℄ Crohemore M., Czumaj A., G�asienie L., Jarominek T., Leroq T.,

Plandowski W., Rytter W., "Speeding up two string mathing algorithms",

Algorithmia, 12(4), pages 247-267, 1994.

[CL97b℄ Crohemore M., Leroq T., "Tight bounds on the omplexity of the

Apostolio-Gianarlo algorithm", Information Proessing Letters, 63(4),

pages 195-203, 1997.

25

Proeedings of the Prague Stringology Club Workshop '99

[CR94℄ Crohemore M., Rytter W., "Text algorithms", Oxford University Press,

1994.

[GG92℄ Galil Z., Gianarlo R., "On the exat omplexity of string mathing: upper

bounds", SIAM Journal of Computing, 21(3), pages 407-437, 1992.

[HA93℄ Hanart C., "Analyse exate et en moyenne d'algorithmes de reherhe

d'un motif dans un texte". Th�ese de dotorat de l'Universit�e de Paris 7,

Frane, 1993.

[HO80℄ Horspool R. N., "Pratial fast searhing in strings". Software Pratie

and Experiene. 10(6), pages 501-506, 1980.

[KMP77℄ Knuth D. E., Morris Jr J. H., Pratt V. R., "Fast pattern mathing in

strings", SIAM Journal of Computing, 6(1), pages 323-350, 1977.

[RA92℄ Raita T., "Tuning the Boyer-Moore-Horspool string searhing algorithm",

Software Pratie and Experiene, 22(10), pages 879-884, 1992.

[SI93℄ Simon I., "String mathing algorithms and automata", First Amerian

Workshop on String Proessing, ed. Baeza-Yates and Ziviani, pages 151-

157. Universidade Federal de Minas Gerais, 1993.

[SM91℄ Smith P. D., "Experiments with a very fast substring searh algorithm",

Software Pratie and Experiene, 21(10), pages 1065-1074, 1991.

[SG82℄ de Smit G. V., "A Comparison of Three String Mathing Algorithms",

Software Pratie and Experiene, 12(1), pages 57-66, 1982.

[SU90℄ Sunday D. M., "A very fast substring searh algorithm", Communiations

of the ACM, 33(8), pages 132-142, 1990.

[ZT87℄ Zhu R. F., Takaoka T., "On improving the average ase of the Boyer-

Moore string mathing algorithm", Journal of Information Proessing,

10(3), pages 173-177, 1987.

26

A Fast String Mathing Algorithm and Experimental Results

Appendix

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 6 3 3 3 3 3 2 2 3 2 2

3 765 20 7 7 7 7 7 6 6 7 5 4

4 2178 41 11 11 11 11 11 10 10 11 9 7

5 3146 60 14 14 13 13 13 12 12 12 11 9

6 3852 67 13 13 13 13 13 12 12 12 11 9

7 4042 68 12 12 12 12 12 11 11 10 10 8

8 3607 69 11 11 11 11 11 10 10 9 9 7

9 3088 70 10 10 10 10 10 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 6

11 1120 70 9 9 9 9 9 8 8 7 7 6

12 593 70 8 8 8 8 8 8 8 6 7 5

13 279 72 8 8 8 8 8 8 8 6 6 5

14 116 69 7 7 7 7 7 7 7 5 6 5

15 44 72 7 7 7 7 7 7 7 5 6 5

16 17 70 6 6 6 6 6 6 6 5 5 4

17 7 75 7 7 7 7 6 6 6 5 5 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 89 7 7 7 7 7 7 7 4 5 4

21 2 88 7 7 7 7 7 6 7 4 5 4

22 1 89 6 6 6 6 6 6 6 4 5 4

total 24966 64 11 11 11 11 11 10 10 10 9 7

Table 3: Averages for random TEXT A of 10,000 words

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 6 3 3 3 3 3 2 2 3 2 2

3 765 21 7 7 7 7 7 6 6 7 6 4

4 2178 42 12 12 12 12 12 10 10 11 9 8

5 3146 59 13 13 13 13 13 12 12 12 11 9

6 3852 66 13 13 13 13 13 12 12 11 11 9

7 4042 68 12 12 12 12 12 11 11 10 10 8

8 3607 69 11 11 11 11 11 10 10 9 9 8

9 3088 70 10 10 10 10 10 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 7

11 1120 70 9 9 9 9 9 8 8 7 7 6

12 593 71 8 8 8 8 8 8 8 6 7 6

13 279 71 8 8 8 8 8 8 7 6 6 5

14 116 70 7 7 7 7 7 7 7 6 6 5

15 44 64 6 6 6 6 6 6 6 5 5 4

16 17 74 7 7 7 7 7 7 7 5 5 5

17 7 64 6 6 6 6 6 5 6 4 4 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 72 5 5 6 6 5 5 5 4 4 3

22 1 89 6 6 6 6 6 6 6 4 5 4

total 24966 63 11 11 11 11 11 10 10 10 9 8

Table 4: Averages for random TEXT B of 10,000 words

27

Proeedings of the Prague Stringology Club Workshop '99

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 9 6 6 6 6 6 4 4 6 4 3

3 765 37 13 13 13 13 13 10 10 13 10 8

4 2178 77 21 21 21 21 21 18 18 20 17 13

5 3146 133 30 30 30 30 30 27 26 28 25 20

6 3852 159 31 31 31 31 31 29 28 28 26 21

7 4042 170 29 29 29 29 29 27 27 26 24 20

8 3607 176 27 27 27 27 27 26 25 24 22 19

9 3088 181 26 26 26 26 26 25 24 22 21 18

10 1971 185 24 24 24 24 24 23 23 20 20 17

11 1120 184 23 23 23 23 23 22 22 18 18 15

12 593 186 21 21 21 21 21 21 20 17 17 14

13 279 183 20 20 20 20 20 19 19 15 16 13

14 116 194 20 20 20 20 20 19 19 15 16 13

15 44 164 16 16 16 16 16 16 16 12 13 10

16 17 217 20 20 20 20 20 20 20 17 16 13

17 7 172 15 15 15 15 14 14 15 11 12 10

18 4 147 12 12 13 13 12 12 13 9 10 8

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 221 17 17 18 18 17 17 17 11 13 10

22 1 397 27 27 27 27 27 26 28 18 22 17

total 24966 155 27 27 26 26 26 24 24 23 22 18

Table 5: Averages for random text of 50,000 words

p len num KMP AG BM HOR RAI TBM MS QS ZT SMI BR

2 133 13 7 7 7 7 7 5 5 7 5 3

3 765 37 13 13 13 13 13 10 10 13 10 8

4 2178 80 22 22 22 22 22 19 18 21 17 15

5 3146 149 34 34 34 34 34 30 29 31 28 23

6 3852 182 36 36 36 36 36 33 32 33 29 25

7 4042 193 33 33 33 33 33 31 30 29 27 24

8 3607 201 31 31 31 31 31 29 29 27 26 22

9 3088 198 28 28 28 28 28 27 26 24 23 20

10 1971 198 26 26 26 26 26 25 25 22 21 18

11 1120 199 25 25 25 24 24 24 23 20 20 17

12 593 217 25 25 25 25 25 24 24 20 20 17

13 279 207 23 23 23 23 22 22 22 18 18 15

14 116 180 20 19 19 19 19 18 18 14 15 13

15 44 218 22 22 22 22 21 21 21 17 17 14

16 17 162 15 15 15 15 15 15 15 12 12 10

17 7 220 20 20 20 20 19 19 19 14 15 13

18 4 208 17 17 17 17 17 17 18 12 14 11

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 157 12 12 12 12 12 12 13 8 10 8

21 2 89 7 7 7 7 7 7 7 11 5 4

22 1 315 21 21 21 21 21 20 22 14 18 14

total 24966 173 30 30 30 30 29 27 27 26 24 21

Table 6: Averages for random text of 100,000 words

28

On Proedures for Multiple-string Math with

Respet to Two Sets

1

Weiler A. Finamore, Rafael D. de Azevedo

& Marelo da Silva Pinho

Center for Teleommuniations Studies (CETUC)

Catholi University of Rio de Janeiro

Marqus de S. Viente, 225

22453-900, RIO DE JANEIRO, RJ

Brazil

e-mail: weiler�etu.pu-rio.br

Abstrat. String math proedures with respet to two sets are investigated.

The proedures traditionally used for data ompression are based on single-

string math with respet to a single set [LZ78, W84℄. Some reent work broad-

ened this view by presenting proedures for multiple-string math with respet

to a single set [FPC98, PFP99℄ with improved performane as ompared to

the single-math versions. In this work an algorithm based on double-math

with respet to two sets is stated. We do onjeture that multiple-string math

proedures with respet to two sets an ahieve even better performane. A pre-

liminary analysis orroborating this onjeture with some evidene is reported

in this work.

Key words: Multiple-string math, Lempel-Ziv algorithm, Data ompression.

1 Introdution

The proedure proposed by Lempel and Ziv in 1978 [LZ78℄ for lossless data ompres-

sion is a rather simple and elegant string-math based algorithm. Its low omplexity

and implementation simpliity has turned it into a very popular algorithm whih is

used for instane in the ompress program of UNIX operational system.

By seleting diferent ombinations of the basi parameters of this algorithm many

variations an be established. In the result published in [FPC98℄ a version that

searhes for double-string mathes instead of the usual single-math is stated |

an improved performane was obtained. Extension to multiple string-math was

proposed in [PFP99℄. Similar results were reported by Hartman and Rodeh in [HR85℄.

In this work the two most popular Lempel-Ziv variations, LZ78 and LZW [LZ78,

W84℄, has been ast in the framework of string-math with respet to two sets. We

also propose two new variations (designated lg-LZ and dt-LZ), whih are inspired

and disussed in this new framework. Although the ultimate goal of �nding new

1

This work was supported by grant CNPq-502235/91-8(NV) and AEB/PR-004/97.

29

Proeedings of the Prague Stringology Club Workshop '99

algorithms with improved is a motivation behind the algorithms proposed, the ime-

diate objetive is to expand the ways of looking at the string mathes algorithms and

hopefully to �nd better proedures.

This work is organized as follows: in Setion 3, we present the idea of string math

with respet to two sets and establish a motivation by disussing two well-known

algorithms in the framework of mathing with respet to two sets. A new algorithm

(lg-LZ) whih is a simple variation of the Lempel-Ziv algorithm is also proposed in this

setion. In Setion 4 a version of double-math/double-tree algorithm is introdued.

Results obtained by omputer simulation are presented in Setion 5. Our onlusion

is then summarized in Setion 5.

2 Notations

We establish the following notation for use in this work.

1. x

j

i

= x

i

x

i+1

: : : x

j

, j > i denotes a �nite sequene of symbols x

k

, i � k � j,

that take their values in a given set A = fa

0

; a

1

; �; a

jAj�1

g of ardinality jAj. If

j = i, this is the single symbol string x

i

and if i > j we will assume that x

j

i

is

the empty string.

2. j�j denotes the length, if � is a sequene, or the ardinality, if � is a set.

3. � denotes the null-length string, i.e. j�j = 0.

4. s

i

Æ s

j

denotes the onatenation of the strings s

i

and s

j

. (the result of the

onatenation will also be indiated by s

i

s

j

or s

i

,s

j

)

5. When s

1

; s

2

; � � � ; s

k

2 A

�

are strings of symbols of lengths js

1

j; js

2

j; � � � ; js

k

j re-

spetively, the notation s

k

1

represents the string of length js

1

j+ js

2

j+ � � �+ js

k

j

formed by the onatenation of strings s

1

Æ s

2

Æ � � � Æ s

k

.

6. The onatenation of the string ` 2 L = f`

0

; � � � ; `

jLj�1

g and the set M =

fm

0

; � � � ;m

jMj�1

g is the set

` ÆM =

jMj�1

[

i=0

f` Æm

i

g

7. Let L = f`

0

; � � � ; `

jLj�1

g andM = fm

0

; � � � ;m

jMj�1

g. We de�ne the onatena-

tion of these two sets by

L ÆM =

jLj�1

[

i=0

f`

i

ÆMg

8. dxe denotes the smallest integer greater than or equal to number x.

9. �[zjL℄, for jLj > 0, is the longest string `

i

2 L = f`

0

; � � � ; `

jLj�1

g whih is a

pre�x of z.

30

On Proedures for Multiple-string Math with Respet to Two Sets

10. X [sjL℄ is the unique integer index i that identify the member `

i

2 L suh that

`

i

= s.

11. z � y, when z = x

i

x

i+1

� � �x

j

and y = x

i

x

i+1

� � �x

k

is a pre�x of z, represents

the string x

k+1

� � �x

j

.

12. F [z℄ is the length 1 pre�x of z, if jzj > 0 else it is the empty string.

13. S[z℄ is the length jzj � 1 pre�x of z.

14. �

k

[J ℄, k � logJ (base 2 logarithm) is the trivial k-bit binary representation of

the integer J .

3 The Idea of String Math Algorithm with Re-

spet to Two Sets

To establish the framework and the rationale behind our disussion, the well-known

string-math proedure proposed by Ziv and Lempel [LZ78℄ for data ompression

will be presented, in the ontext of string math with respet to two sets. We will

undistinguishably refer to this as a double-tree string math ontext sine the sets we

will be dealing with are tree-strutured.

3.1 Lempel-Ziv Algorithm (LZ78)

Let us onsider that z

0

= x

N�1

0

is the sequene of N symbols generated by the

information soure whih is to be enoded (eah soure symbol x

i

belongs to the

soure alphabet A, of dyadi ardinallity for simpliity). Generally speaking the

Lempel-Ziv algorithm (LZ78) [LZ78℄ an be envisioned as divided in three tasks: The

�rst task, (parsing), whih yields the unique parsing

x

N�1

0

= (`

0

Æm

0

); (`

1

Æm

1

); � � � ; (`

t

Æm

t

)

of the soure sequene in t+ 1 phrases. The next task, (map to integers), assign eah

phrase s

i

= (`

i

Æm

i

) to a unique pair of integers (J

i

; K

i

) whih are then, in the task

that follows (integer ode), replaed (or enoded) by a binary representation aording

to some rule to enode integer numbers into binary.

Spei�ally, the algorithm LZ78 [LZ78℄ an be stated using the double-tree frame-

work by initially setting L

0

= f�; x

0

g, M

0

= A and s

0

= (`

0

Æm

0

) = (� Æ x

0

) = x

0

.

At a general step i, the sets L

i�1

and M

i�1

are known, the soure string has been

parsed in i phrases s

0

; � � � ; s

i�1

and there is a remaining unparsed string whih will

be denoted by z

i

. The algorithm is desribed next.

31

Proeedings of the Prague Stringology Club Workshop '99

Algorithm LZ78

i = 0

z

0

= x

N�1

0

L

0

= f�g, M

0

= A

s

0

= `

0

Æm

0

with `

0

= � and m

0

= x

0

.

1 � i � t

1. Update unparsed string:

z

i

= z

i�1

� (`

i�1

Æm

i�1

)

2. Find longest math s

i

with respet to D

i

= L

i�1

ÆM

i�1

:

s

i

= �[z

i

jD

i

℄ = `

i

Æm

i

,

with `

i

= �[z

i

jL

i�1

℄, and m

i

= �[(z

i

� `

i

)jM

i�1

℄.

3. (J

i

; K

i

) = (X [`

i

jL

i�1

℄, X [m

i

jM

i�1

℄)

4. Update L-tree:

L

i

= L

i�1

[f`

i

Æ F [m

i

℄g

M

i

= A

5. (B

i

; C

i

) = (�

dlog jL

i�1

je

[J

i

℄, �

dlog jM

i�1

je

[K

i

℄)

The eÆieny of a string math algorithm is losely related to the number t+1 of

phrases parsed o� from the soure string and to the rate of growth of the sets L and

M. In the present ase, LZ78, t+1 phrases are generated and the N soure symbols

will be represented by L binary symbols,

L =

t

X

i=0

(jB

i

j+ jC

i

j) = (t+ 1) log

2

jAj+

t

X

i=0

jB

i

j;

rendering a � = L=N ompression rate. If the soure symbols are drawn from an

stationary soure, the ompression rate provedly [LZ78℄ onverges to the entropy of

the soure. The interplay between these two parameters is quite envolved [S97℄ and is

not our main onern. It is worth mentioning that Integer Codes more eÆient than

the one used to produe the binary blok (B

i

; C

i

) ould be used. An improvement in

the above ode, for instane, an be introdued simply by notiing that the phrase s

i

whih is parsed o� at the i-th step, atually belongs to a set D

i

(alled ditionary or

odebook)

D

i

= L

i�1

ÆM

i�1

with some elements (or odewords) on it, whih are not able to be seleted as a math

to s

i

| the enumeration reserved for these are therefore a waste of bits. This is of

little onern to us at this point and the Integer Code as it is will be used with the

other algorithm versions disussed in the entire work.

The important point to be stressed in relation to the LZ78 is that no matter

the value of i, the assoiated tree M

i

is kept �xed, equal to A. Whether there are

proedures whih performs more eÆiently, by allowing M

i

, the seond ditionary

tree, to grow rather than be �xed, is a onjeture naturally raised. This issue is

examined on the next setion. A variation of the LZ78 whih onstruts the ditionary

D

i

in a sligthly di�erent manner and whih, for this reason, has a slightly better

performane will be presented. Example I ilustrates the workings of LZ78.

32

On Proedures for Multiple-string Math with Respet to Two Sets

Example I

Let the sample string to be ompressed be

Sample0 = x

33

0

= aaabadababaaadabaabadadababaaaba

The quaternary soure alphabet is A = fa,b,,dg. The sequene fL

i

: i = 0; 14g

of sets obtained with the LZ78 proedure, the orresponding phrases and binary

odewords obtained are next presented.

Step i = 0

z

0

= aaabadababaaadabaabadadababaaaba

L

0

= f�g, M

0

= A

`

0

= �, m

0

= a

s

0

= `

0

Æm

0

= a, W

0

= 00

Step i = 1

s

0

; z

1

= a,aabadababaaadabaabadadababaaaba

L

1

= fag

`

0

= a, m

0

=

s

1

= `

1

Æm

1

= a Æ , W

1

= 1 10

Keep going like this will take us to

s

13

0

z

14

=a,a,ab,ad,aba,b,aa,,ada,ba,a,bad,adab,abaa,aba

L

14

= f a, a, ab, ad, aba, b, aa, , ada, ba, a, bad, adab,

abaa g

s

14

= aba �; W

14

= 0101 �

3.2 A Less Greedy LZ78

We observe, in the plain LZ78 disussed on Setion 3.1, that the set L

i

is inreasead

by one element at eah step i, i.e., jL

i

j = jL

i�1

j + 1. The ditionary D

i

is built

by transforming the tree orresponding to L

i�1

into a omplete tree having only

terminal nodes and nodes with exatly jAj branhes stemming from them. This

greedy expansion of the set L

i�1

seems to be one reason for the degraded performane

of the LZ78 algorithm, as ompared to other variations, suh as LZW for instane.

The variation introdued in this setion (lg-LZ, in short), allows for a less-greedy

expansion in order to get the ditionary D

i

. The longest string math is not found

this time (lg-LZ), with respet to the ditionary D

i

= L

i�1

ÆM

i�1

but, instead, with

respet to the ditionary

D

i

= L

i�1

[fs

i

Æ Ag:

The ditionary D

i

is now built by expanding the L

i�1

tree by appending to the node

orresponding to the path just seleted as a longest math, the tree orresponding to

the alphabet A. The algorithm is stated next.

33

Proeedings of the Prague Stringology Club Workshop '99

Algorithm lg-LZ

i = 0

z

0

= x

N�1

0

L

0

= A, M

0

= A

s

0

= x

0

J

0

= X [s

0

jA℄, B

0

= �

dlog jAje

[J

0

℄

1 � i � t

1. Update unparsed string

z

i

= z

i�1

� s

i�1

2. Find longest math s

i

with respet to D

i

= L

i�1

[fs

i�1

ÆM

i�1

g

s

i

= �[z

i

jD

i

℄,

3. J

i

= X [s

i

jD

i

℄)

4. B

i

= �

dlog jD

i

je

[J

i

℄

5. Updating tree

`

new

= s

i�1

Æ F [s

i

℄

if j`

new

j = js

i

j and s

i

=2 L

i�1

then `

new

= s

i

L

i

= L

i�1

[f`

new

g

M

i

= A

Also here we have s

i

= `

i

Æm

i

with, possibly,m

i

= �. The performanes displayed

on Table 2, obtained by omputer simulation show instanes where the lg-LZ performs

better when ompared to its ounterpart LZW. The example presented next ilustrate

the workings of the lg-LZ.

Example II

Let x

33

0

= aaabadababaaadabaabadadababaaaba. A = fa; b; ; dg. The pars-

ing that the proedure lg-LZ yields is

a, a, a, b, a, d, ab, aba, aa, da, ba, , aba, da, dab, abaa, aba

The ompressed representation of x

33

0

is a binary string with 72 bits | ompression

rate of 0:257

3.3 Lempel-Ziv-Welh Algorithm

The Lempel-Ziv-Welh proedure, popularly alled LZW, is known to have a perfor-

mane on the average 10% better then the plain LZ78 version. One aspet that makes

the LZW di�erent from LZ78 is that it works with a rule that build the ditionary

D

i

by appending only one node to the orresponding tree L

i�1

.

The following would be the desription of the LZW algorithm.

34

On Proedures for Multiple-string Math with Respet to Two Sets

Algorithm LZW

i = 0

z

0

= x

N�1

0

L

0

= A,

M

0

= f�g and

s

0

= x

0

. `

0

= x

0

1 � i � t

1. z

i

= z

i�1

� s

i�1

2. Find longest math with respet to D

i

= L

i�1

[`

i�1

ÆM

i�1

`

i

= �[z

i

jL

i�1

℄,

s

i

= �[z

i

jD

i

℄,

3. J

i

= X [s

i

jD

i

℄

4. L

i

= D

i

M

i

= fF [z

i

� s

i

℄g

5. B

i

=�

dlog jD

i

je

[J

i

℄

Example III

Consider again Sample0 = x

33

0

= aaabadababaaadabaabadadababaaaba with

A = fa; b; ; dg. This sequene is parsed into 20 phrases as follows

a, a, , a, b, a, d, ab, aba, a, ad, aba, a, ba, da, da,

ba, ba, aa, ba

and its ompressed representation is a binary string with 81 bits | a ompression

rate of 0:289

4 Desription of Double-tree Algorithms

In the previous setion two known agorithms (LZ78 and LZW) and a simple variation

of the former (lg-LZ) were stated within the framework of a double-tree string math.

Eah one of the algorithms produe a sequene of trees fL

i

g

i=0;t

and orresponding

sequene of ditionaries fD

i

g

i=0;t

with a string math done with respet to eah

ditionary. The basi di�erene among the three algorithms relies in the manner

in whih the tree L

i�1

is onatenated with the orresponding M

i�1

, to build the

ditionary D

i

. Table 1 summarizes this aspet.

LZ78: jD

i

j = jL

i�1

ÆM

i�1

j

� jL

i�1

jjM

i�1

j

lg-LZ: jD

i

j = jL

i�1

[f`

i

Æ Agj

= jL

i�1

j+ jAj

LZW: jD

i

j = jL

i�1

[`

i�1

ÆM

i�1

j

= jL

i�1

j+ 1

Table 1: Length of the ditionaries

35

Proeedings of the Prague Stringology Club Workshop '99

A point whih is ommon to the three algorithms so far disussed is that they all

onatenate the set L

i�1

with a depth one tree in order to build their ditionaries.

It is quite natural at this point to ask whether there are proedures whih performs

more eÆiently when the seond ditionary tree is allowed to have depth greater

than one. A double-tree string math algorithm, with a seond tree having a more

general struture is stated in this setion. Allowing a more general struture for the

seond tree M

i�1

, enlarge the number of algorithm variations that an be stated.

The searh for string mathes are now searhes for double-mathes | this imply that

more general ways to searh are possible and that the longest-math is not neessarily

a onatenation of a string `

i

(whih is the longest math with respet to the tree

L

i�1

) with the string m

i

(whih is the longest math with respet to the tree M

i�1

).

Now, in order to optimize the number t + 1 of parses, the best strategy is to searh

for a onatenation (`

i

Æm

i

) whih among all double-mathes, have the largest size

j`

i

j+jm

i

j. We have implemented one version of a double-math/double-tree proedure

and analysed their performane by omputer simulations. The algorithm, whih will

be, abreviatedly, referred to as dt-LZ, is presented next.

Algorithm dt-LZ

i = 0 (Initialization step)

� z

0

= x

N�1

0

� L

0

=M

0

= A

� m

0

= �[z

0

jM

0

℄,

� K

0

= X [m

0

jM

0

℄;

� C

0

= �

dlog jM

0

je

[K

0

℄

� z

1

= z

0

�m

0

;

� M

0

=M

0

[fm

0

Æ F [z

1

℄g

1 � i � t (Generi step)

1. Segmentation:

(a) `

i

= �[z

i

jL

i�1

℄,

z

temp

= z

i

� `

i

,

m

i

= �[z

temp

jM

i�1

℄,

� = j`

i

j+ jm

i

j,

u = `

i

.

(b) i. u = S[u℄

z

temp

= z

i

� u

v = �[z

temp

jM

i�1

℄.

ii. If (juj+ jvj � �): (`

i

;m

i

) = (u;v), � = j`

i

j+ jm

i

j.

iii. If juj > 0 return to step (i).

() z

i

= (z

i

� `

i

)�m

i

2. Update Ditionaries:

L

i

= L

i�1

[f`

i

Æ F [m

i

℄g

M

i

=M

i�1

[fm

i

Æ F [z

i

℄g

3. Map to Integer

(J

i

; K

i

) = (X [`

i

jL

i�1

℄, X [m

i

jM

i�1

℄)

36

On Proedures for Multiple-string Math with Respet to Two Sets

4. Integer Code:

(B

i

; C

i

) = (�

dlog jL

i�1

je

[J

i

℄, �

dlog jM

i�1

je

[K

i

℄)

Example IV

Let x

33

0

= aaabadababaaadabaabadadababaaaba. A = fa; b; ; dg. The pars-

ing for the proedure dt-LZ yields is

(-,a), (a,), (a,b), (a,d), (a,ba), (b,aa), (,a), (d,a), (ba,a),

(ba,da), (da,bab), (a,aa),(b,a).

where we show the double-mathes displayed in parenthesis.

5 Some Computer Simulation Results

The algorithms disussed have been implemented as omputer programs whih were

used to ompress some sample sequenes. Although the performane of all these

algorithms are optimum in the sense that their ompression rate asymptotially on-

verges to the entropy of the information soure or to the Lempel-Ziv omplexity of

the individual sequene, they perform quite di�erently when �nite sequenes and the

rate of onvergene to the asymptoti optimum are onsidered. Table 2 displays some

of the simulation results exhibiting the performane of the algorithms. We have not

Sequene LZW lg-LZ dt-LZ

(size) (size) (size) (size)

Sample0 .289 .257 .311

(280) (81) (72) (87)

Sample1 .089 .099 .097

(576) (51) (57) (56)

Sample2 .077 .086 .103

(544) (42) (47) (56)

Sample3 .357 .371 .335

(672) (240) (249) (225)

Sample4 .258 .113 .320

(256) (66) (29) (82)

Table 2: Compression rate of algorithms LZW, lg-LZ and dt-LZ (all sequene sizes,

in parenthesis, are in bits)

presented results for the LZ78 algorithm. As the other versions this algorithm is

asymptotially optimum but has an inferior perfomane as ompared to the LZW.

As it an be notied from the results presented in Table 2 the behavior of the algo-

rithms are sequene dependent. For some sequenes the LZW an ahieve a better

result than the lg-LZ | this gain is basially due to the penalty paid by the lg-LZ

for expanding the �rst tree with A nodes to build the ditionary, instead of the one

node expansion done by the LZW. This gain in performane tend to disappear as

the sequene length grows larger. Examining the line on Table 2 orresponding to

Sample4 one an see that the performane of lg-LZ an onverge onsiderably fast

37

Proeedings of the Prague Stringology Club Workshop '99

to the optimum, as ompared to LZW, for ertain types of sequenes. These are

sequenes onstruted to bene�t the performane of lg-LZ (no suh onstrution an

be done, we onjeture, to bene�t LZW).

Conlusion

We have proposed algorithms whih are based on the idea of string mathes with

respet to two sets or, equivalently, string math with respet to two trees. Many

implementations variations of these algorithms are possible | a double-string math

with respet to two trees version (alled dt-LZ) was implemented.

In our preliminary investigation we exam the behavior of these algorithms and

analyse its performane by omputer simulation. Also we stated the well known

LZ78 algorithm [LZ78℄ in the framework of string math with respet to two trees, as

well as the LZW [W84℄. A simple modi�ation of the LZ78 was also proposed (this

was alled lg-LZ).

It is our expetation that higher ompression an be ahieved with double-string

math with respet to two trees proedures. This is based on the argument that

the use of two trees allows the onstrution of onatenated trees with more general

strutures, leaving more room for optimizing the searh. It is also based on results we

have obtained with multiple-string mathes algorithms [PFP99℄ | whih ahieve a

better ompression than single-mathes ones. These multiple-string math algorithms

are based on the double-tree idea yet the two trees involved in the proess are kept

equal.

The results presented in this work do not single out a de�nite better double-

math/double-tree algorithm | if one an be found | but bring to our attention

that there are many variations. Our investigations will be further pursued by exam-

ining other double-math/double-tree implementations. An extension of the multiple-

math desribed in [PFP99℄ will also be sought.

Referenes

[LZ78℄ Ziv, J., Lempel, A., \Compression of individual sequenes via variable-rate

oding," IEEE Trans. Inform. Theory, vol. IT-24, pp.530-536, Sep. 1978.

[W84℄ Welh, T. A., \A tehnique for high-performane data ompression," Com-

puter, vol. 17, pp.8-19, Jun. 1984.

[FPC98℄ Finamore, W. A., Pinho, M. S., Craizer, M., \A multi-string math al-

gorithm for lossless data ompression," Abstrats of Invited Letures and

Short Communiations, 7

th

International Colloquium on Numerial Anal-

ysis and Computer Sienes with Appliations, p.39, Plovdiv, Bulgaria,

Aug. 1998.

[PFP99℄ Pinho, M. S., Finamore, W. A., Pearlman, W. A., \Fast multi-math

Lempel-Ziv," Pro. of IEEE Data Compression Conferene, Snowbird, UT,

April 1999.

38

On Proedures for Multiple-string Math with Respet to Two Sets

[HR85℄ Hartman, A., Rodeh, M., \Optimal Parsing of Strings," Combinatorial

Algorithms on Words, Springer-Verlag, A. Apostolio & Z. Galil, editors,

pp. 155-167, 1985.

[S97℄ Savari, S. A., \Redundany of Lempel-Ziv inremental parsing rule," IEEE

Trans. Inform. Theory, vol. IT-43, pp.9-21, Jan. 1997.

39

A New Pratial Linear Spae Algorithm for the

Longest Common Subsequene Problem

�

H. Goeman, M. Clausen

Institut f�ur Informatik V

Universit�at Bonn

R�omerstra�e 164

D{53117 Bonn

Germany

e-mail: fgoeman,lauseng�s.uni-bonn.de

Abstrat. This paper deals with a new pratial method for solving the longest

ommon subsequene (LCS) problem. Given two strings of lengths m and n,

n � m, on an alphabet of size s, we �rst present an algorithm whih determines

the length p of an LCS in O(ns + minfmp; p(n � p)g) time and O(ns) spae.

This result has been ahieved before [Ri94, Ri95℄, but our algorithm is signi�-

antly faster than previous methods. We also provide a seond algorithm whih

generates an LCS in O(ns+minfmp;m logm+ p(n� p)g) time while preserv-

ing the linear spae bound, thus solving the problem posed in [Ri94, Ri95℄.

Experimental results on�rm the eÆieny of our method.

Key words: Design and analysis of algorithms, edit distane, longest ommon

subsequene.

1 Introdution

Let x = x

1

: : : x

m

and y = y

1

: : : y

n

, n � m, be two strings over an alphabet � =

f�

1

; : : : ; �

s

g of size s. A subsequene of x is a sequene of symbols obtained by deleting

zero or more haraters from x. The Longest Common Subsequene (LCS) Problem

is to �nd a ommon subsequene of x and y whih is of greatest possible length.

It will be onvenient to desribe the problem in another way. An ordered pair

(k; `), 1 � k � m, 1 � ` � n, is alled a math if x

k

= y

`

. The set M of all mathes

an be identi�ed with a mathing matrix of size m�n in whih eah math is marked

with a dot. For example, if x = ababba and y = babbaa, then M is as shown

in Fig. 1 (a). De�ne a partial order � on N � N by establishing (k; `) � (k

0

; `

0

)

i� both k < k

0

and ` < `

0

. A hain C � M is a set of points whih are pairwise

omparable, i.e., for any two distint p

1

; p

2

2 C, either p

1

� p

2

or p

1

� p

2

, where

p

1

� p

2

means p

2

� p

1

. Then the LCS problem an be viewed as �nding a hain of

maximal ardinality in M . One suh hain is indiated as a path in Fig. 1 (b).

Finding an LCS is losely related with the omputation of string edit distanes

[LW75, MP80, Wag75, WC76℄ and shortest ommon supersequenes [GMS80℄. It was

�

Researh supported by Deutshe Forshungsgemeinshaft, Grant CL 64/3-1

40

A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

(a)

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a

(b)

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a

Figure 1: (a) mathing matrix, (b) path representing an LCS.

�rst used by moleular biologists to study similar amino aids [Day65, Day69, NW70,

SC73℄. Other appliations are in data ompression [AHU76, GMS80, Mai78℄ and

pattern reognition [FB73, LF78℄.

The LCS problem an be solved in O(mn) time by a dynami programming ap-

proah [SK83, WF74℄, while the asymptotially fastest general solution uses the \four

russians" trik and takes O(nm= logn) time [MP80℄. A lot of other algorithms have

also been developed whih are sensitive to other problem parameters, e.g., the length

p of an LCS. They usually perform muh better than the latter algorithms, although

they all have a worst ase time omplexity at least of
(mn). For example, Hunt and

Szymanski [HS77℄ have presented an O((r+n) logn) algorithm, where r := jM j. Thus

their approh is fast when r is small, e.g., r = O(n), but its worst{ase time omplex-

ity is O(n

2

logn). Later, this has been improved to O(mn) [Apo86℄. There are also

several routines whih run in O(n(n+1�p)) or O(n(m+1�p)) time, and thus are ef-

�ient when an LCS is expeted to be long [Mye86, NKY82, Ukk85, WMM90℄. Other

algorithms have running times O(n(p + 1)) or O(m(p + 1)) and should be used for

short LCS [Apo87, AG87, Hir77, HD84℄. However, it might be very diÆult to a pri-

ori selet a good strategy beause in general the length p annot be easily estimated.

Also, when having a small alphabet, we an expet p to be of intermediate size, e.g.,

for s = 4, the average length of an LCS is bounded between 0:54 �m � p � 0:71 �m

[CS75, DP94, Dek79, PD94, SK83℄. Then none of the above methods performs well.

Therefore reent researh has been onentrated on more exible algorithms whih

are eÆient for short, intermediate, and long LCS, suh as the method proposed by

Chin/Poon [CP94℄. Another approah from Rik [Ri94, Ri95℄ with running time

O(ns+minfmp; p(n� p)g) has been widely aepted as the fastest algorithm for the

general LCS problem.

In this paper, we shall develop a new algorithm whih is based on a kind of

dualization of Rik's method. A detailed desription of the theoretial bakground

will be given in Set. 2 and 3. Our idea does not improve the O(ns+minfmp; p(n�

p)g) time bound, but two important advantages are obtained. First, the number of

mathes proessed while omputing the length of an LCS is signi�antly dereased,

resulting in a faster exeution speed. The orresponding algorithm will be presented

in Set. 4. Seond, when generating an LCS, we an ahieve linear spae through a

divide{and{onquer sheme similar to that of other (but slower) algorithms [ABG92,

41

Proeedings of the Prague Stringology Club Workshop '99

Hir75, KR87℄. This will be explained in Set. 5. The methods mentioned before all

need at least
(nm= logn) spae in their worst ases (see [PD94℄ for a survey), and

most of them, inluding Rik's approah, annot be ombined with the divide{and{

onquer tehnique. The open problem of a linear spae implementation of Rik's

algorithm [Ri95℄ is hereby solved. Experimental results presented in Set. 6 on�rm

the eÆieny of our method.

2 A New Approah to the LCS Problem

As already mentioned in the introdution, the LCS problem is equivalent to �nding a

hain of maximum ardinality in M . Dilworth's fundamental theorem [Dil50℄ states

that this ardinality equals the minimum number of disjoint antihains into whih

M an be deomposed (an antihain of M onsists of mathes whih are pairwise

inomparable). In our example, this number (alled the Sperner number ofM) equals

�ve. A suitable deomposition is shown in Fig. 2 (f). To �nd suh a minimum

deomposition, we �rst split [1 : m℄� [1 : n℄ into subsets denoted by T

i

, L

i

, B

i

, and

R

i

, where

T

i

:= fig � [i : n+ 1� i℄

L

i

:= [i+ 1 : m + 1� i℄� fig

B

i

:= fm+ 1� ig � [i + 1 : n+ 1� i℄

R

i

:= [i+ 1 : m� i℄� fn+ 1� ig

and 1 � i � dm=2e (see Fig. 2 (a) for an illustration). Additionally, let

T

�i

:=

[

j�i

T

j

; L

�i

:=

[

j�i

L

j

; B

�i

:=

[

j�i

B

j

; R

�i

:=

[

j�i

R

j

:

Now for i = 1; 2; : : : ; dm=2e, we onstrut four sets of antihains A

T;i

, A

L;i

, A

B;i

, and

A

R;i

whih deompose (a suitable subset of) T

�i

, L

�i

, B

�i

, and R

�i

, respetively. The

deompositions are generated by updating the previous sets, using the mathes found

in T

i

, L

i

, B

i

, and R

i

(details are given below). We use A

u

A

T;i

to denote an antihain in

A

T;i

, where u is an index between 1 and the size e

T;i

:= jA

T;i

j of A

T;i

. Therefore e

T;i

is also alled the end index of A

T;i

. For A

L;i

, A

B;i

, and A

R;i

, we introdue analogous

notations. Furthermore, there are two start indies s

TL;i

and s

BR;i

. The �rst one is

used to split both A

T;i

and A

L;i

into two parts. One part ontains all antihains with

indies less than s

TL;i

, and the other part onsists of the rest. Only the latter part

will be used for the updating proess, whereas the former one will be opied to A

T;i+1

resp. A

L;i+1

without hange. s

BR;i

similarly splits A

B;i

and A

R;i

.

Fig. 2 (b), (), (d), and (e) give a preview of the onstrution in the sample

mathing matrix after step i = 1, 2, 3, and 4, respetively. The entered grey box

represents the remaining part of M whih has not been proessed so far. By our

onstrution, with eah step, it shrinks by two rows and olumns.

We need the following terminology for the desription of the onstrution proess.

For two antihains C;D �M the set

IP(C;D) := fp

1

2 C j 8 p

2

2 D : :(p

1

� p

2

_ p

1

� p

2

)g

42

A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

(e)

c b
1 2 3 4 5 6 9

b b a c a c

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a A
B,4
1

A
B,4

2

A
L,4
2

A
L,4
1

A
T,4
2

A
B,4

3

A
T,4
3

A

8

1

a

R,4
2

A
T,1

7

2L 3L

4L
B4

R2

R3

T4

T3

T1

T2

B3

B2

B1

1L R1

T,4

A

1

(a)

(c)

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a

a
b

b

b

a1

2

3

5

6

7

8

c

c

a

A
T,2

A
R,2
2

A
T,2
2

A
L,2
1

A
L,2
2

A
B,2
2

A
B,2
1

1

A
R,2
1

4

(b)

(d)

(f)

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

c b
1 2 3 4 5 6 7 8 9

b a b a c a c

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a

a
b

b

b

a1

2

3

4

5

6

7

8

c

c

a

A
L,1
1

A
T,1
1

A
R,1

1

A
B,1
1

A
T,3
1

A
T,3
2 A

T,3
3

A
L,3
1

A
L,3
2

A
B,3

2

A
B,3

A
R,3
2

1

A
R,3

1

Figure 2: (a) splitting of M , (b){(e) onstrution of antihains, (f) �nal deompo-

sition.

is alled the inomparable part of C relative to D. Clearly, IP(C;D) [D is the

greatest antihain above D ontained in C [D. We say C is inomparable to D if

IP(C;D) = C, and a single math p

1

2M is inomparable toD if IP(fp

1

g; D) = fp

1

g.

We are now prepared to disuss the generation of the antihains in more detail.

Initially, there are no antihains, i.e., we have A

T;0

= A

L;0

= A

B;0

= A

R;0

= ; by

initializing eah start and end index to 1 and 0, respetively. Then, for eah step

i = 1; : : : ; dm=2e, we start with T

i

to determine A

T;i

from A

T;i�1

. Let s := s

TL;i�1

and e := e

T;i�1

. The �rst s � 1 antihains remain unhanged and are simply opied

from A

T;i�1

to A

T;i

. Now de�ne A

s

A

T;i

as A

s

A

T;i�1

[IP(T

i

\M;A

s

A

T;i�1

). For example, when

proessing T

2

in Fig. 2 (b), IP(T

2

\M;A

1

A

T;1

) = f(2; 2)g, and thus the math (2; 2)

43

Proeedings of the Prague Stringology Club Workshop '99

ombined with A

1

A

T;1

makes up A

1

A

T;2

as shown in Fig. 2 (). Next, for u = s+ 1; : : : ; e,

the antihain A

u

A

T;i�1

is handled in the same way to set up A

u

A

T;i

, but only those mathes

in T

i

not belonging to A

s

A

T;i

; : : : ; A

T;i

A

u�1

are onsidered. Finally, we establish s

TL;i

:= s

and, if there are no mathes left, e

T;i

:= e. Otherwise, we set e

T;i

to e+1 and ollet all

remaining mathes in a new antihain A

T;i

A

e+1

. Also, if A

R;i�1

6= ;, we hek whether its

last antihain A

~e

A

R;i�1

, ~e := e

R;i�1

, is inomparable to A

T;i

A

e+1

. In this ase we say A

~e

A

R;i�1

is inativated by A

T;i

A

e+1

, and we remove A

~e

A

R;i�1

from A

R;i

by setting e

R;i

:= e

R;i�1

.

Continuing our example with T

2

in Fig. 2 (b), we see there are two mathes (2; 4)

and (2; 5) left after proessing A

1

A

T;2

. Therefore a new antihain A

2

A

T;2

is reated, but

A

1

A

R;1

remains unhanged beause, for example, (2; 4) � (4; 9). The �nal set A

T;2

is

shown in Fig. 2 () (the modi�ations to the other antihains are desribed below).

Now let us onsider the work involved with T

3

. The math (3; 3) annot be put into

A

1

A

T;3

, but into A

2

A

T;3

, and the other math (3; 6) makes up the new antihain A

3

A

T;3

. This

time (3; 6) inativates (3; 8), and thus A

2

A

R;2

is removed. The result is illustrated in

Fig. 2 (d) (all mathes loated in deleted antihains are indiated by grey dots).

S := T

i

\M ; (� Determine A

T;i

�)

For u := s

TL;i�1

To e

T;i�1

Do f

A

u

A

T;i

:= A

u

A

T;i�1

[IP(S;A

u

A

T;i�1

);

S := S n IP(S;A

u

A

T;i�1

);

5 g;

If S 6= ; Then f

e

T;i

:= e

T;i�1

+ 1; e := e

T;i

; A

e

A

T;i

:= S;

e

R;i

:= e

R;i�1

; ~e := e

R;i

;

If s

BR;i�1

� e

R;i�1

Then f

10 If IP(A

~e

A

R;i�1

; A

e

A

T;i

) = A

~e

A

R;i�1

Then f

D

TR

:= D

TR

[A

~e

A

R;i�1

;

e

R;i

:= ~e� 1;

g;

g;

15 g Else f e

T;i

:= e

T;i�1

; e

R;i

:= e

R;i�1

g;

For u := 1 To s

TL;i�1

� 1 Do A

u

A

T;i

:= A

u

A

T;i�1

;

S := L

i

\M ; (� Determine A

L;i

�)

For u := s

TL;i�1

To e

L;i�1

Do f

A

u

A

L;i

:= A

u

A

L;i�1

[IP(S;A

u

A

L;i�1

);

20 S := S n IP(S;A

u

A

L;i�1

);

g;

If S 6= ; Then f

e

L;i

:= e

L;i�1

+ 1; e := e

L;i

; A

e

A

L;i

:= S;

e

B;i

:= e

B;i�1

; ~e := e

B;i

;

25 If s

BR;i�1

� e

B;i�1

Then f

If IP(A

~e

A

B;i�1

; A

e

A

L;i

) = A

~e

A

B;i�1

Then f

D

BL

:= D

BL

[A

~e

A

B;i�1

;

e

B;i

:= ~e� 1;

g;

30 g;

g Else f e

L;i

:= e

L;i�1

; e

B;i

:= e

B;i�1

g;

For u := 1 To s

TL;i�1

� 1 Do A

u

A

L;i

:= A

u

A

L;i�1

;

33 s

TL;i

:= s

TL;i�1

;

S := B

i

\M ; (� Determine A

B;i

�)

For u := s

BR;i�1

To e

B;i

Do f

A

u

A

B;i

:= A

u

A

B;i�1

[IP(S;A

u

A

B;i�1

);

S := S n IP(S;A

u

A

B;i�1

);

g;

If S 6= ; Then f

e

B;i

:= e

B;i

+ 1; e := e

B;i

; A

e

A

B;i

:= S;

If s

TL;i

� e

L;i

Then f

~e := e

L;i

;

If IP(A

~e

A

L;i

; A

e

A

B;i

) = A

~e

A

L;i

Then f

D

BL

:= D

BL

[A

~e

A

L;i

;

e

L;i

:= ~e� 1;

g;

g;

g;

For u := 1 To s

BR;i�1

� 1 Do A

u

A

B;i

:= A

u

A

B;i�1

;

S := R

i

\M ; (� Determine A

R;i

�)

For u := s

BR;i�1

To e

R;i

Do f

A

u

A

R;i

:= A

u

A

R;i�1

[IP(S;A

u

A

R;i�1

);

S := S n IP(S;A

u

A

R;i�1

);

g;

If S 6= ; Then f

e

R;i

:= e

R;i

+ 1; e := e

R;i

; A

e

A

R;i

:= S;

If s

TL;i

� e

T;i

Then f

~e := e

T;i

;

If IP(A

~e

A

T;i

; A

e

A

R;i

) = A

~e

A

T;i

Then f

D

TR

:= D

TR

[A

~e

A

T;i

;

e

T;i

:= ~e� 1;

g;

g;

g;

For u := 1 To s

BR;i�1

� 1 Do A

u

A

R;i

:= A

u

A

R;i�1

;

s

BR;i

:= s

BR;i�1

;

(a) (b)

Figure 3: The algorithms for generating A

T;i

& A

L;i

(a), and A

B;i

& A

R;i

(b).

Having determined A

T;i

, we ontinue with the neessary alulations for A

L;i

whih

are very similar. The �rst s� 1 antihains are opied and then, for u = s; : : : ; e

L;i�1

,

A

u

A

L;i

is de�ned as the union of A

u

A

L;i�1

and the inomparable part of L

i

relative to

A

u

A

L;i�1

, where only those mathes are onsidered whih have not already been used.

Remaining mathes form a new antihain and, if they are inomparable to the last

44

A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

antihain in A

B;i�1

, we derease e

B;i

by one. The orresponding algorithm in Fig. 3 (a)

also introdues two additional sets D

TR

and D

BL

whih ontain all deleted mathes.

Details will be given in the next setion.

Before proessing A

B;i�1

and A

R;i�1

in an analogous way, we �rst hek whether

the �rst antihain in A

T;i

or A

L;i

is TL{omplete, i.e., whether one of them ontains a

math (k; `) suh that 1 � k; ` � i. For example, in the on�guration shown in Fig. 2

(), A

1

A

T;2

is TL{omplete due to the math (2; 2). As soon as A

s

A

T;i

is deteted to be

TL{omplete, s

TL;i

is inreased by one, thus the �rst antihains in both orresponding

sets whih are heked for additional mathes remain unhanged from now on. If there

is no suh antihain in A

L;i

(i.e. s > e

L;i

), but s

BR;i�1

� e

B;i

, then we additionally

test whether A

s

A

T;i

is inomparable to the last antihain in A

B;i�1

and, should this

situation arise, delete this antihain from A

B;i

by dereasing e

B;i

.

Now assume A

s

A

L;i

is TL{omplete. Then, as shown in Fig. 4 (a), we also inrease

s

TL;i

, and similarly, if s > e

T;i

and s

BR;i�1

� e

R;i

, we derease e

R;i

if A

s

A

L;i

inativates

the last antihain in A

R;i

.

(� Chek A

T;i

for TL{ompleteness �)

If s

TL;i

� e

T;i

Then f

s := s

TL;i

;

If 9 (k; `) 2 A

s

A

T;i

: k; ` � i Then f

5 If s > e

L;i

Then f

If s

BR;i�1

� e

B;i

Then f

~e := e

B;i

;

If IP(A

~e

A

B;i�1

; A

s

A

T;i

) = A

~e

A

B;i�1

Then f

D

BL;i

:= D

BL;i

[A

~e

A

B;i�1

;

10 e

B;i

:= ~e� 1;

g;

g;

e

L;i

:= s; A

s

A

L;i

:= ;;

g;

15 s

TL;i

:= s+ 1;

g;

g;

(� Chek A

L;i

for TL{ompleteness �)

If s

TL;i

� e

L;i

Then f

20 s := s

TL;i

;

If 9 (k; `) 2 A

s

A

L;i

: 1 � k; ` � i Then f

If s > e

T;i

Then f

If s

BR;i�1

� e

R;i

Then f

~e := e

R;i

;

25 If IP(A

~e

A

R;i�1

; A

s

A

L;i

) = A

~e

A

R;i�1

Then f

D

TR;i

:= D

TR;i

[A

~e

A

R;i�1

;

e

R;i

:= ~e� 1;

g;

g;

30 e

T;i

:= s; A

s

A

T;i

:= ;;

g;

s

TL;i

:= s+ 1;

g;

34 g;

(� Chek A

B;i

for BR{ompleteness �)

If s

BR;i

� e

B;i

Then f

s := s

BR;i

;

If 9 (k; `) 2 A

s

A

B;i

: k > m� i ^ ` > n� i Then f

If s > e

R;i

Then f

If s

TL;i

� e

T;i

Then f

~e := e

T;i

;

If IP(A

~e

A

T;i

; A

e

A

R;i

) = A

~e

A

T;i

Then f

D

TR;i

:= D

TR;i

[A

~e

A

T;i

;

e

T;i

:= ~e� 1;

g;

g;

e

R;i

:= s; A

s

A

R;i

:= ;;

g;

s

BR;i

:= s+ 1;

g;

g;

(� Chek A

R;i

for BR{ompleteness �)

If s

BR;i

� e

R;i

Then f

s := s

BR;i

;

If 9 (k; `) 2 A

s

A

R;i

: k > m� i ^ ` > n� i Then f

If s > e

B;i

Then f

If s

TL;i

� e

L;i

Then f

~e := e

L;i

;

If IP(A

~e

A

L;i

; A

e

A

B;i

) = A

~e

A

L;i

Then f

D

BL;i

:= D

BL;i

[A

~e

A

L;i

;

e

L;i

:= ~e� 1;

g;

g;

e

B;i

:= s; A

s

A

B;i

:= ;;

g;

s

BR;i

:= s+ 1;

g;

g;

(a) (b)

Figure 4: The algorithms for handling omplete antihains in A

T;i

& A

L;i

(a), and in

A

B;i

& A

R;i

(b).

The remaining work in step i onerns with the analogous onstrution of A

B;i

and

A

R;i

. (The analogue of TL{ompleteness is alled BR{ompleteness. An antihain is

BR{omplete if it ontains a math (k; `) with m � i < k � m and n � i < ` � n.)

Details are available from the algorithms shown in Fig. 3 (b) and Fig. 4 (b).

45

Proeedings of the Prague Stringology Club Workshop '99

The main program shown in Fig. 5 is straightforward. Our next task is to elaborate

the onnetion between the generated antihains and a minimal deomposition of M .

This is done in the next setion.

i := 1; (� Initialization �)

s

T;0

:= 1; s

L;0

:= 1; s

B;0

:= 1; s

R;0

:= 1;

e

T;0

:= 0; e

L;0

:= 0; e

B;0

:= 0; e

R;0

:= 0;

For i := 0 To dm=2e Do D

TL;i

:= ;;

5 For i := 0 To bm=2 Do D

BR;i

:= ;;

While i � bm=2 Do f (� Main loop �)

Determine A

T;i

and A

L;i

; (� see Fig. 3 (a) �)

Look for TL-omplete antihains in A

T;i

and A

L;i

; (� see Fig. 4 (a) �)

Determine A

B;i

and A

R;i

; (� see Fig. 3 (b) �)

10 Look for BR-omplete antihains in A

B;i

and A

R;i

; (� see Fig. 4 (b) �)

i := i+ 1;

g;

If Odd(m) Then f

Determine A

T;dm=2e

and A

L;dm=2e

; (� see Fig. 3 (a) �)

15 Look for TL-omplete antihains in A

T;dm=2e

and A

L;dm=2e

; (� see Fig. 4 (a) �)

g;

Figure 5: The main program for deomposing M

3 Analysis of the Constrution

In this setion, we study how to ombine the antihains into larger ones suh that

a minimal deomposition of M is obtained. We further establish some results whih

later help us to onstrut an LCS in linear spae.

Let us assume m is odd, and let i = dm=2e. For tehnial reasons, we then put

A

u

A

B;i

:= A

u

A

B;i�1

and A

u

A

R;i

:= A

u

A

R;i�1

for all 1 � u � e

B;i�1

and 1 � u � e

R;i�1

. We also

set s

BR;i

:= s

BR;i�1

, e

B;i

:= e

B;i�1

, and e

R;i

:= e

R;i�1

. Furthermore, for 0 � i � dm=2e,

we de�ne A

u

A

T;i

:= ;, A

u

A

L;i

:= ;, A

u

A

B;i

:= ;, and A

u

A

R;i

:= ; for u > e

T;i

, u > e

L;i

, u > e

B;i

,

and u > e

R;i

, respetively.

Lemma 3.1 Let 1 � i � dm=2e. Then the following holds:

a) 8 s

TL;i�1

� u < v � e

T;i

8 p

1

2 A

v

A

T;i

9 p

2

2 A

u

A

T;i

: p

1

� p

2

:

b) 8 s

TL;i�1

� u < v � e

L;i

8 p

1

2 A

v

A

L;i

9 p

2

2 A

u

A

L;i

: p

1

� p

2

:

) 8 s

BR;i�1

� u < v � e

B;i

8 p

1

2 A

v

A

B;i

9 p

2

2 A

u

A

B;i

: p

1

� p

2

:

d) 8 s

BR;i�1

� u < v � e

R;i

8 p

1

2 A

v

A

R;i

9 p

2

2 A

u

A

R;i

: p

1

� p

2

:

Proof. We only show the �rst laim, the other proofs are similar. Let p

1

= (k; `). Sine

A

v

A

T;i

� T

�dm=2e

, p

1

has been added to A

v

A

T;k

while proessing T

k

in step k, and k � i.

Clearly, from the way S is handled in lines 1{5 of Fig. 3 (a), p

1

=2 IP(T

k

\M;A

j

A

T;k�1

),

for s

TL;k�1

� j < v. Hene, sine s

TL;k�1

� s

TL;i�1

� u < v, there is some p

2

2 A

u

A

T;k�1

suh that p

1

� p

2

or p

1

� p

2

. But the seond ase would imply p

2

2 T

k

0

for some

k

0

> k whih is impossible during the �rst k steps of our onstrution. Finally observe

that the algorithm never removes mathes while updating an antihain, thus p

2

is still

present in A

u

A

T;i

. 2

46

A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

Lemma 3.2 The following holds:

a) 8 1 � i � dm=2e 8 v : v < s

TL;i

() A

v

A

T;i

or A

v

A

L;i

is TL{omplete :

b) 8 1 � i � dm=2e 8 v : v < s

BR;i

() A

v

A

B;i

or A

v

A

R;i

is BR{omplete :

Proof. We only prove the �rst laim, the other one is similar.

If. By ontradition, let i be the �rst step suh that A

v

A

T;i

or A

v

A

L;i

is TL{omplete,

but v � s

TL;i

. Clearly v 6= s

TL;i�1

, otherwise the TL{ompleteness would have been

deteted by the algorithm shown in Fig. 4 (a), and thus, ontraditing the property of

v, we would have v < s

TL;i

= s

TL;i�1

+1. Hene v > s

TL;i�1

. By the TL{ompleteness,

there is some math (k; `) 2 A

v

A

T;i

[A

v

A

L;i

suh that 1 � k; ` � i. Furthermore, by Lemma

3.1, there exists some math (k

0

; `

0

) 2 A

T;i

A

v�1

[A

L;i

A

v�1

suh that (k

0

; `

0

)� (k; l). But then

1 � k

0

; `

0

< i, and therefore either A

T;i

A

v�1

or A

L;i

A

v�1

would be TL-omplete after step i�1,

a ontradition to the hoie of i.

Only if. Obvious from the management of the start indies. 2

Lemma 3.3 For all i; u de�ne A

u

A

TL;i

:= A

u

A

T;i

[A

u

A

L;i

and A

u

A

BR;i

:= A

u

A

B;i

[A

u

A

R;i

. Then

a) 8 0 � i � dm=2e 8 1 � u � minfe

T;i

; e

L;i

g : A

u

A

TL;i

is an antihain .

b) 8 0 � i � dm=2e 8 1 � u � minfe

B;i

; e

R;i

g : A

u

A

BR;i

is an antihain .

Proof. We prove the �rst laim by indution on i. The base i = 0 it trivial beause

A

T;0

= A

L;0

= ;. For the indution step i� 1! i, we onsider three di�erent ases.

Case a: 1 � u < s

TL;i�1

. Then A

u

A

T;i

= A

u

A

T;i�1

and A

u

A

L;i

= A

u

A

L;i�1

(see lines 15 and 30

in Fig. 3 (a), respetively). Thus, by the indution hypothesis, A

u

A

TL;i

is an antihain.

Case b: s

TL;i�1

� u � minfe

T;i�1

; e

L;i�1

g. By de�nition the set T := IP(S;A

u

A

T;i�1

)

added toA

u

A

T;i

in line 3 (Fig. 3 (a)) is inomparable to A

u

A

T;i�1

, but it is also inomparable

to A

u

A

L;i

as we now demonstrate. Let (k; `) 2 IP(S;A

u

A

T;i�1

) and (k

0

; `

0

) 2 A

u

A

L;i

. Observe

k = i and ` � i. Also note that k

0

> `

0

and `

0

� i beause A

u

A

L;i

� L

�i

. Thus

(k; `) � (k

0

; `

0

) would ontradit ` � i � `

0

. Furthermore, (k

0

; `

0

) � (k; `) would

imply `

0

< k

0

< k = i, i.e., A

u

A

L;i�1

would be TL-omplete, a ontradition to Lemma

3.2 and the hoie of u. Similar arguments an be used for the set L := IP(S;A

u

A

L;i�1

)

added to A

u

A

L;i

in line 19. Finally note that T � T

i

and L � L

i

are also inomparable.

Case : minfe

T;i�1

; e

L;i�1

g < u � minfe

T;i

; e

L;i

g. Clearly, this ase is only possible

if u = e

T;i

= e

T;i�1

+ 1 or u = e

L;i

= e

L;i�1

+ 1. If both onditions hold, then

A

u

A

T;i

� T

i

\M (lines 1 and 7) and A

u

A

L;i

� L

i

\M (lines 17 and 23), thus their union

obviously makes up an antihain. Otherwise, only one new antihain is generated

whereas the other one is updated, and we an argument as in the seond ase to show

that both antihains are inomparable.

The proof of the seond laim is similar. 2

Lemma 3.4 Let 1 � i � dm=2e. Then the following holds:

a) 8 j � maxfe

T;i

; e

L;i

g 8 p

j

2 A

j

A

TL;i

9 p

1

2 A

1

A

TL;i

; : : : ; p

j�1

2 A

j�1

A

TL;i

:

p

1

� : : :� p

j

:

47

Proeedings of the Prague Stringology Club Workshop '99

b) 8 j � maxfe

B;i

; e

R;i

g 8 p

j

2 A

j

A

BR;i

9 p

1

2 A

1

A

BR;i

; : : : ; p

j�1

2 A

j�1

A

BR;i

:

p

1

� : : :� p

j

:

Proof. We prove the �rst laim by hoosing p

v

for v = j � 1; : : : ; 1.

Consider step j

0

� i when p

v+1

was added to A

v+1

A

TL;j

0

� A

v+1

A

TL;i

. Then Lemma 3.1

implies the existene of p

v

if v � s

TL;j

0

�1

. Otherwise, by Lemma 3.2, A

v

A

T;j

0

�1

or A

v

A

L;j

0

�1

has been deteted to be TL{omplete before step j

0

, i.e., A

v

A

TL;j

0

�1

ontains a math

(k

0

; `

0

) suh that k

0

; `

0

< j

0

. But p

v+1

is of the form (k; `) with k; ` � j

0

, thus we an

hoose p

v

:= (k

0

; `

0

).

Similar arguments an be used for the seond laim. 2

Lemma 3.5 For 0 � i � dm=2e, there are two hains

C

TR;i

; C

BL;i

� T

�i

[L

�i

[B

�i

[R

�i

of length e

T;i

+ e

R;i

and e

B;i

+ e

L;i

, respetively.

Proof. We prove the existene of the �rst hain C

TR;i

by indution on i. The base

i = 0 is trivial. For the indution step (i� 1)! i, we have to analyse the situations

whih ause e

T;i

+ e

R;i

to be greater than e

T;i�1

+ e

R;i�1

. One suh situation is given

in lines 7{14 of Fig. 3 (a) if the ondition in line 10 is not satis�ed beause then

e := e

T;i

= e

T;i�1

+ 1 and ~e := e

R;i

= e

R;i�1

. But sine IP(A

~e

A

R;i�1

; A

e

A

T;i

) 6= A

~e

A

R;i�1

there exist two omparable mathes

T

2 A

e

A

T;i

and

R

2 A

~e

A

R;i�1

. More preisely, sine

T

2 T

i

and

R

2 R

�i�1

, we must have (k; `)� (k

0

; `

0

). Thus, by Lemma 3.4, we an

onstrut a hain

p

1

� : : :� p

e�1

�

T

�

R

� p

0

~e�1

� : : :� p

0

1

of length e + ~e.

Similar arguments an be used for the remaining situations and for the other

hain. 2

Our next task is to reveal the struture in D

TR

and D

BL

. We shall show that

for eah deleted math there always is some antihain whih is inomparable to this

math. In order to prove this property, we keep trak of eah deleted math by assign-

ing it to some antihain during the onstrution proess. More preisely, whenever

an antihain A is removed due to the existene of some other antihain B whih ina-

tivates it, all mathes in A are assigned to B, e.g., onsidering the situation in Fig. 2

(d), the math (3; 8) is assigned to A

3

A

T;3

. Furthermore, all previously deleted mathes

assigned to A now also belong to B. The assigned mathes are inherited when an

antihain is updated, e.g., in Fig. 2 (e), (3; 8) also belongs to A

3

A

T;4

. These rules guar-

antee that after step i, eah deleted math is assigned to exatly one antihain in

A

T;i

[A

L;i

[A

B;i

[A

R;i

. We write D(A) to denote the set of mathes assigned to an

antihain A.

Lemma 3.6 Let 1 � i � dm=2e, and assume (k; `) 2 D(A) for some antihain A in

A

T;i

, A

L;i

, A

B;i

, or A

R;i

. Then

a) (k; `) 2 D

TR

=) 8 (k

0

; `

0

) 2 A : k � k

0

^ ` � `

0

.

48

A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

b) (k; `) 2 D

BL

=) 8 (k

0

; `

0

) 2 A : k � k

0

^ ` � `

0

.

Proof. For the �rst laim, let us assume (k; `) was assigned to A while exeuting line

11 in Fig. 3 (a) during step j � i (the following arguments an analogously be applied

to the other instrutions whih modify D

TR

). Thus A = A

e

A

T;i

, where e = e

T;j

. Now

we onsider two ases onerning the status of (k; `) before step j.

Case a: (k; `) 2 A

~e

A

R;j�1

� R

�j�1

, ~e = e

R;j�1

. Then ` > n � j + 1. From lines 1,

6, 7, and 10 we see that (k; `) is inomparable to any math (k

00

; `

00

) in A

e

A

T;j

. But

A

e

A

T;j

� T

j

, thus k

00

= j and `

00

� n� j +1. Hene, the inomparability implies k � j.

Now observe that A

e

A

T;j

is the �rst onstruted part of A

e

A

T;i

, later extensions are taken

from T

j+1

; : : : ; T

i

. Thus every math (k

0

; `

0

) 2 A

e

A

T;i

ful�lls k

0

� j and `

0

� n� j + 1,

and the laim follows.

Case b: (k; `) is assigned to A

~e

A

R;j�1

. We an indutively assume

8 (k

00

; `

00

) 2 A

~e

A

R;j�1

: k � k

00

^ ` � `

00

Deleted mathes are never assigned to empty antihains. Thus there is at least one

math (k

00

; `

00

) 2 A

~e

A

R;j�1

, and we an prove as in the �rst ase that k

00

� k

0

and `

00

� `

0

.

Hene we have k � k

0

and ` � `

0

.

The proof of the seond laim follows similar arguments and is therefore omitted. 2

Lemma 3.7 Let 1 � i � dm=2e. Then the following holds:

a) 8 1 � u � e

T;i

: D

BL

\D(A

u

A

T;i

) 6= ; =) A

u

A

L;i

= ; ^ A

u

A

T;i

is TL{omplete .

b) 8 1 � u � e

L;i

: D

TR

\D(A

u

A

L;i

) 6= ; =) A

u

A

T;i

= ; ^ A

u

A

L;i

is TL{omplete .

) 8 1 � u � e

B;i

: D

TR

\D(A

u

A

B;i

) 6= ; =) A

u

A

R;i

= ; ^ A

u

A

B;i

is BR{omplete .

d) 8 1 � u � e

R;i

: D

BL

\D(A

u

A

R;i

) 6= ; =) A

u

A

B;i

= ; ^ A

u

A

R;i

is BR{omplete .

Proof. We again only show the �rst laim. From lines 10 and 11 in Fig. 3 (a),

we see that all mathes assigned there to A

u

A

T;i

are either plaed into D

TR

, or they

have been assigned before to some non{omplete antihain in A

R;i�1

. But onerning

the latter ase, we see from lines 26 and 27 in Fig. 3 (b) that any suh math has

been put into D

TR

as well, or again belongs to some non{omplete antihain in A

T;j

,

j < i. Repeating this argument, we onlude that all mathes assigned to A

T;i

are

ontained in D

TR

. The only exeption is given by lines 8 and 9 in Fig. 4 (a), where

deleted mathes are assigned to A

u

A

T;i

, but added to D

BL

. But then, from lines 3, 4,

and 13, the laim follows. 2

Lemma 3.8 All mathes assigned to an antihain A are pairwise inomparable, thus

by Lemma 3.6, they extend the antihain to a larger one.

Proof. Whenever a math is deleted, the algorithm always removes a omplete an-

tihain. By indution, this antihain B together with its assigned mathes forms a

larger antihain C. If there already is a set of mathes D assigned to A (whih is

only possible when A is deteted to be omplete), then, following the arguments given

49

Proeedings of the Prague Stringology Club Workshop '99

in the proof of Lemma 3.7, C � D

BL

and D � D

TR

or vie versa, and Lemma 3.6

immediately implies that B and D are pairwise inomparable. 2

We are now prepared to onstrut a minimal deomposition of M . We start by

deomposing M n (D

TR

[D

BL

), the deleted mathes are later onsidered in Thm. 3.9

below. The onstrution is as follows. Using Lemma 3.3, we ombine the �rst

e

TL

:= minfe

T;dm=2e

; e

L;dm=2e

g antihains in A

T;dm=2e

and A

L;dm=2e

to larger ones. We

also onnet the �rst e

BR

:= minfe

B;dm=2e

; e

R;dm=2e

g antihains in A

B;dm=2e

to the orre-

sponding ones in A

R;dm=2e

. For example, in Fig. 2 (e), we have e

T;dm=2e

= e

B;dm=2e

= 3

and e

L;dm=2e

= e

R;dm=2e

= 2, thus this generates four ombined antihains. Conerning

the remaining antihains we onsider four di�erent ases.

Case a: e

T;dm=2e

� e

L;dm=2e

and e

B;dm=2e

� e

R;dm=2e

. Then we leave the remaining

antihains as they are and have p := e

L;dm=2e

+ e

B;dm=2e

antihains in total. But by

Lemma 3.5, there also exists a hain of this length. Thus, by Dilworth's theorem, the

deomposition is minimal.

Case b: e

T;dm=2e

> e

L;dm=2e

and e

B;dm=2e

� e

R;dm=2e

. Similar to the �rst ase we have

p := e

T;dm=2e

+ e

R;dm=2e

antihains, and also a hain of this length.

Case : e

T;dm=2e

� e

L;dm=2e

and e

B;dm=2e

< e

R;dm=2e

. From the management of the

start and end indies, we have e

T;dm=2e

� s

TL;dm=2e

� 1. Thus, by Lemma 3.2, A

u

A

L;dm=2e

is not TL{omplete for u > e

T;dm=2e

. This implies k > dm=2e and ` � dm=2e for

any math (k; `) 2 A

u

A

L;dm=2e

� L

�dm=2e

. For all v > e

B;dm=2e

and (k

0

; `

0

) 2 A

v

A

R;dm=2e

we similarly have k

0

� dm=2e and `

0

> n � bm=2 � dm=2e. Thus A

u

A

L;dm=2e

and

A

v

A

R;dm=2e

are inomparable. Now assume e

L;dm=2e

� e

R;dm=2e

. Then we an onnet

all remaining antihains in A

R;dm=2e

to orresponding ones in A

L;dm=2e

and obtain

p := e

L;dm=2e

+ e

B;dm=2e

antihains in total, thus again a minimal deomposition. If

e

L;dm=2e

< e

R;dm=2e

, then similarly p := e

T;dm=2e

+ e

R;dm=2e

is the optimal length of a

hain in M n (D

TR

[D

BL

).

Case d : e

T;dm=2e

> e

L;dm=2e

and e

B;dm=2e

> e

R;dm=2e

. Finding a minimal deomposition

is slightly more ompliated in this ase. Consider the following algorithm. Starting

with u := e

T;dm=2e

and v := e

R;dm=2e

+ 1, we hek whether A

u

A

T;dm=2e

and A

v

A

B;dm=2e

are

inomparable. If they are not, then we bakup u and v in ~u and ~v, respetively, and

inrease v by one. Otherwise the antihains are onneted, u is set to u� 1, and v is

set to v+1. We repeat this until all remaining antihains in either A

T;dm=2e

or A

B;dm=2e

have been used, i.e., u = e

L;dm=2e

or v > e

B;dm=2e

. Then the total number of antihains

is p := u + e

B;dm=2e

. Thus, if u = e

L;dm=2e

, we have p = e

L;dm=2e

+ e

B;dm=2e

, and the

deomposition is optimal. Now assume u > e

L;dm=2e

. If ~u and ~v are unused, then all

remaining antihains in A

B;dm=2e

have been onneted to orresponding antihains in

A

T;dm=2e

, and we have p = e

T;dm=2e

+e

R;dm=2e

. Hene, in this ase the deomposition is

also a minimal one. Finally assume that ~u and ~v have been used for saving u and v at

least one. Then for j = ~v + 1; : : : ; e

B;dm=2e

, A

j

A

B;dm=2e

has been onneted to A

~u+~v�j

A

T;dm=2e

,

and we have u = ~u� (e

B;dm=2e

� ~v). Thus p = ~u� (e

B;dm=2e

� ~v) + e

B;dm=2e

= ~u+ ~v.

But from the properties of ~u and ~v, it an be shown (similar to the proof of Lemma

3.5) that there is a hain of length ~u + ~v whih ontains two mathes p

1

2 A

~u

A

T;dm=2e

and p

2

2 A

~v

A

B;dm=2e

. Hene, the onstruted deomposition is optimal.

Let us onsider our example. Case d applies to the situation in Fig. 2 (e), and A

3

A

T;4

is ompared with A

3

A

B;4

. Sine these antihains are inomparable, they are onneted,

and we obtain a deomposition onsisting of 5 antihains in total.

50

A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

Theorem 3.9 The length of an LCS in M equals p as de�ned in the four ases above.

Proof. Consider a ombined antihain A of the deomposition. Assume an antihain

A

u

A

T;dm=2e

2 A

T;dm=2e

is one omponent of it (otherwise, we an handle the following

onstrution in a similar way).

Case a: A

u

A

T;dm=2e

is the only omponent of A. Then we extend A with the set B of

deleted mathes assigned to A

u

A

T;dm=2e

. Lemma 3.8 guarantees that the result is still

an antihain.

Case b: A

u

A

T;dm=2e

has been ombined with A

u

A

L;dm=2e

. By Lemma 3.7, B � D

TR

. Let

(k; `) 2 A

u

A

L;dm=2e

and (k

0

; `

0

) 2 A

u

A

T;dm=2e

. From (k; `) 2 L

dm=2e

, (k

0

; `

0

) 2 T

dm=2e

, and

the inomparability of (k; `) and (k

0

; `

0

), we have k � k

0

^ ` � `

0

. Now onsider a

math (k

00

; `

00

) 2 B. By Lemma 3.6, we have k � k

0

� k

00

and ` � `

0

� `

00

. Hene,

A

u

A

L;dm=2e

is inomparable to B. We an use a similar way to show that the set C of

deleted mathes assigned to A

u

A

L;dm=2e

is a subset of D

BL

and inomparable to A

u

A

T;dm=2e

.

Finally, B and C are learly inomparable as well. Thus A

u

A

T;dm=2e

[A

u

A

L;dm=2e

[B [C

is still an antihain.

Case : A

u

A

T;dm=2e

has been ombined with some other antihain D 2 A

B;i

. Then,

similar to the proof of the seond ase, we an show that the union of A and the two

orresponding sets of assigned mathes still make up an antihain.

By handling eah ombined antihain in this way, we an onstrut a deomposi-

tion of M without generating any additional antihains. The proof is omplete. 2

Fig. 2 (f) illustrates the orresponding deomposition for our example.

4 Implementation

We now desribe an eÆient implementation for the given algorithm and analyse its

time and spae omplexity.

All new antihains reated in step i are extensions from antihains generated

during step i�1. Furthermore, the only antihains used for deomposingM are from

the last step. Thus for the implementation it is suÆient to update the antihains of

interest. The same is true for the start and end indies, and we thus sometimes drop

the index i from now on. The neessary information for eah atual antihain an be

kept in one single number as follows. Let 1 � i � dm=2e and 1 � u � e

T;i

. We de�ne

ThreshT [u℄ as the leftmost olumn used by some math in A

u

A

T;i

, i.e.,

ThreshT [u℄ := minf` j 9 k : (k; `) 2 A

u

A

T;i

g :

For example, in Fig. 2 (b), ThreshT [1℄ = 3, and in Fig. 2 (d), Top-Thresh[1℄ = 2,

ThreshT [2℄ = 3, and ThreshT [3℄ = 6. To update this array in eah step, we use an

auxiliary array LeftPos on �� [1 : n+ 1℄ given by

LeftPos [; `℄ := min(fn+ 1g [fj j ` � j � n ^ y

`

= g) ;

i.e., LeftPos[a

i

; `℄ equals the olumn number of the leftmost ourene of a math in

row i loated right to olumn `, and equals n + 1 if there is no suh math. In our

example (y = babbaa), we obtain the following values:

51

Proeedings of the Prague Stringology Club Workshop '99

a 3 3 3 6 6 6 8 8 10 10

b 2 2 4 4 5 10 10 10 10 10

 1 7 7 7 7 7 7 9 9 10

Now it is not diÆult to see that the following routine orretly updates ThreshT

when proessing T

i

, representing lines 1{7 in Fig. 3 (a). (Similar proedures are used

in [AG87, Ri94, Ri95℄ to determine ontours whih orrespond to the antihains

used here.)

k := LeftPos[a

i

; i℄;

For u := s

TL

To e

T

Do f

j := ThreshT [u℄;

If k � j And k � n� i+ 1 Then f

ThreshT [u℄ := k; k := LeftPos [a

i

; j + 1℄;

g;

g;

If k � n� i+ 1 Then f e

T

:= e

T

+ 1; ThreshT [e

T

℄ := k g;

For A

L;i

, A

B;i

, and A

R;i

we introdue additional arrays ThreshL, ThreshB , and

ThreshR whih similarly store the topmost rows, rightmost olumns, and bottommost

rows used by the orresponding antihains. To handle them analogously to ThreshT ,

we also need three more auxiliary arrays given by

TopPos[; k℄ := min(fm + 1g [fj j k � j � m ^ x

j

= g) ; (1 � k � m + 1) ;

RightPos[; `℄ := max(f0g [fj j 1 � j � ` ^ y

`

= g) ; (0 � ` � n) ;

BottomPos[; k℄ := max(f0g [fj j 1 � j � k ^ x

j

= g) ; (0 � k � m) :

Note that in Fig. 3 and Fig. 4, eah test for the inomparability of two antihains

an be replaed by a rather simple onditional statement. For example, onsidering

line 10 in Fig. 3 (a), we know that all mathes in T

i

are loated to the left of any

math in R

�i�1

. Thus, with e := e

T;i

and ~e := e

R;i

, A

e

A

T

and A

~e

A

R

are inomparable if

and only if A

~e

A

R

is also ompletely ontained in the �rst i rows, i.e., ThreshR[~e℄ � i.

The algorithm presented in Fig. 6 shows how the other situations are handled. It also

makes use of some speial implementation details whih annot be disussed here,

e.g., the onstrution starts with the bottommost row instead of the topmost one

when m is even. In Fig. 6 some lines are marked with a dot (�) on their left sides.

These lines are used for the onstrution of an LCS and should be ignored for the

moment.

The omplexity of the algorithm may be dedued as follows. The four auxiliary

arrays an be easily preproessed in O(ns) time and spae, where s = j�j. Clearly,

during one of the dm=2e iterations of the main loop, none of the four inner While{

loops takes more than O(p) time, and when determining p, at most dm=2e pairs of

antihains have to be ompared. Thus the algorithm takes at most O(ns+mp) time.

Furthermore, observe that the j{th antihain in A

T

(whih is added to A

T

during

some step i � j) must ontain a math (k; `) with ` � n� (p� j), otherwise it would

be impossible to onstrut a hain of length p. But then this antihain is deteted

to be TL{omplete after step n� (p� j), therefore it is only onsidered for at most

n� (p� j)� i � n� p times in the orresponding While{loop (lines 59{65). Similar

arguments an be given for antihains in A

L

, A

B

, and A

R

. Hene, we have shown the

following theorem.

52

A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

Determine TopPos and LeftPos;

Determine BottomPos and RightPos;

For u := 0 To dm=2e Do f

ThreshT [u℄ := 0; ThreshL[u℄ := 0;

5 g;

For u := 0 To bm=2 Do f

ThreshB [u℄ := n+ 1; ThreshR[u℄ := m+ 1;

g;

t := 1; ` := 1; b := m; r := n;

10 s

TL

:= 1; e

T

:= 0; e

L

:= 0;

s

BR

:= 1; e

B

:= 0; e

R

:= 0;

If Odd(m) Then Goto Line 57;

While t � b Do f (� Main loop �)

k := RightPos [x

b

; r℄; (� Update A

B

�)

15 u := s

BR

;

While u � e

B

Do f

j := ThreshB [u℄;

If k � j Then f

ThreshB [u℄ := k; k := RightPos [x

b

; j � 1℄;

20 g;

u := u+ 1;

g;

If k � ` Then f

e

B

:= u; ThreshB [e

B

℄ := k;

25 If ThreshL[e

L

℄ � b Then e

L

:= e

L

� 1

� Else Update

B

,

L

, `

BL

;

g;

k := BottomPos [y

r

; b� 1℄; (� Update A

R

�)

u := s

BR

;

30 While u � e

R

Do f

j := ThreshR[u℄;

If k � j Then f

ThreshR[u℄ := k; k := BottomPos [y

r

; j � 1℄;

g;

35 u := u+ 1;

g;

If k � t Then f

e

R

:= u; ThreshR[e

R

℄ := k;

If ThreshT [e

T

℄ � r Then e

T

:= e

T

� 1

� Else Update

T

,

R

, `

TR

;

g;

(� Chek for BR{omplete antihains �)

If ThreshB [s

BR

℄ = r Then f

If s

BR

> e

R

Then f

45 If ThreshT [e

T

℄ � r Then e

T

:= e

T

� 1

� Else Update

T

,

R

, `

TR

;

g;

s

BR

:= s

BR

+ 1;

g Else If ThreshR[s

BR

℄ = b Then f

50 If s

BR

> e

B

Then f

If ThreshL[e

L

℄ � b Then e

L

:= e

L

� 1

� Else Update

B

,

L

, `

BL

;

g;

s

BR

:= s

BR

+ 1;

55 g;

t := t+ 1; ` := `+ 1;

k := LeftPos [x

t

; `℄; (� Update A

T

�)

u := s

TL

;

While u � e

T

Do f

60 j := ThreshT [u℄;

If k � j Then f

ThreshT [u℄ := k; k := LeftPos[x

t

; j + 1℄;

g;

u := u+ 1;

65 g;

If k � r Then f

e

T

:= u; ThreshT [e

T

℄ := k;

If ThreshR[e

R

℄ � t Then e

R

:= e

R

� 1

� Else Update

T

,

R

, `

TR

;

70 g;

k := TopPos [y

l

; t℄; (� Update A

L

�)

u := s

TL

;

While u � e

L

Do f

j := ThreshL[u℄;

75 If k � j Then f

ThreshL[u℄ := k; k := TopPos[y

l

; j + 1℄;

g;

u := u+ 1;

g;

80 If k � b Then f

e

L

:= u; ThreshL[e

L

℄ := k;

If ThreshB [e

B

℄ � ` Then e

B

:= e

B

� 1

� Else Update

B

,

L

, `

BL

;

g;

85 (� Chek for TL{omplete antihains �)

If ThreshT [s

TL

℄ = ` Then f

If s

TL

> e

L

Then f

If ThreshB [e

B

℄ � ` Then e

B

:= e

B

� 1

� Else Update

B

,

L

, `

BL

;

90 g;

s

TL

:= s

TL

+ 1;

g Else If ThreshL[s

TL

℄ = t Then f

If s

TL

> e

T

Then f

If ThreshR[e

R

℄ � t Then e

R

:= e

R

� 1

� Else Update

T

,

R

, `

TR

;

g;

s

TL

:= s

TL

+ 1;

g;

b := b� 1; r := r � 1;

100 g;

(� Determine length p of an LCS �)

If e

T

> e

L

And e

B

> e

R

Then f

If s

TL

� e

L

Then s

TL

:= e

L

+ 1;

If s

BR

� e

R

Then s

BR

:= e

R

+ 1;

105 u := e

T

; v := s

BR

;

While u � s

TL

And v � e

B

Do f

If ThreshT [u℄ � ThreshB [v℄

Then u := u� 1

� Else f ~u := u; ~v := v g;

110 v := v + 1;

g;

p := u+ e

B

;

113 g Else p := maxfe

L

+ e

B

; e

T

+ e

R

g;

Figure 6: The O(ns+minfmp; p(n� p)g) algorithm for determining the length p of

an LCS.

Theorem 4.1 The length p of an LCS an be omputed in O(ns+minfmp; p(n�p)g)

time and O(ns) spae.

This result has been ahieved before by Rik [Ri94, Ri95℄, and in fat, the algo-

rithm presented here is some kind of dualization of Rik's method, but our algorithm

53

Proeedings of the Prague Stringology Club Workshop '99

is signi�antly faster as we shall show in Set. 6.

5 Constrution of an LCS in Linear Spae

This setion deals with the generation of an LCS. The idea is to apply the divide{

and{onquer sheme [ABG92, Hir75, KR87℄ whih �rst identi�es at least one point

of an LCS suh that this LCS is splitted into two parts of roughly the same size.

Then the remainder is omputed by reursive alls. The method presented here

usually determines two LCS{neighbouring mathes

TL

and

BR

whih are loated

in T

�dm=2e

[L

�dm=2e

and B

�dm=2e

[R

�dm=2e

, respetively. This is aomplished as

follows.

In eah step i of the onstrution desribed in Set. 2, we subsequently update

the following variables:

� p

TL

is the math whih aused A

s

A

T;i

or A

s

A

L;i

to beome TL{omplete, s = s

TL;i

�1.

For example, in Fig. 2 (), p

TL

= (2; 2), and in Fig. 2 (d) and (e), p

TL

= (3; 3).

� p

BR

has a orresponding meaning for the last BR{omplete antihain in A

B;i

and A

R;i

, e.g., in Fig. 2 (d), p

BR

= (6; 7).

�

T

and

R

are the two mathes introdued in the proof of Lemma 3.5. They

both lie in C

TR;i

and are neighbours in this hain. Furthermore,

T

and

R

are always loated in the �rst i topmost rows and i rightmost olumns of M ,

respetively.

�

B

and

L

have analogous properties for C

BL;i

.

� `

TR

and `

BL

is the position of

T

in C

TR;i

and of

L

in C

BL;i

, respetively. Also,

`

TR

+1 and `

BL

+1 is the position of

R

in C

TR;i

and of

B

in C

BL;i

, respetively.

p

TL

and p

BR

an be easily updated. For example, onsider lines 85{98 in Fig. 6 where

new TL{omplete antihains are handled. Let p

TL

= (u; v). If the ondition in line

86 is satis�ed, then we know p

TL

has to be set to the bottommost math loated in

the �rst t rows and olumn `. Therefore two additional statements an be inserted

between lines 86 and 87 suh that u is set to BottomPos[y

`

; t℄ and v is set to `. Similar

statements apply for the situation in lines 92{98, and this ompletes the desription

of the management for p

TL

. p

BR

an be handled in a similar way.

T

,

R

, and `

TR

must be updated whenever the length of C

TR;i

inreases. These

situations are indiated in lines 40, 46, 69, and 95 in Fig. 6, and here we only sketh

how to manage them. By arguments analogous to the ones given in the proof of

Lemma 3.4, we have to distinguish two ases when updating

T

. If s

TL;i

> e

T;i

, then

T

is set to p

TL

, otherwise

T

an be determined by some additional statements whih

are similar to the ones used for updating p

TL

. In either ase, we set `

TR

to e

T;i

beause

e

T;i

is the position of

T

in C

TR;i

, as seen in the proof of Lemma 3.5. The management

of

B

,

L

, and `

BL

is similar.

Now let us review the onstrution of the �nal deomposition given in the end of

Set. 3. If p is set to e

T;dm=2e

+ e

R;dm=2e

, then we an use

T

and

R

as the appropriate

mathes for

TL

and

BR

. Similarly, if p = e

B;dm=2e

+ e

L;dm=2e

, we establish

TL

=

L

and

BR

=

B

. Finally, if a longest hain is determined by the algorithm desribed in

54

A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

ase d of the onstrution (orresponding to lines 103{112 in Fig. 6), and p is not set

to one of the above values, then we an use the bakup values ~u and ~v to determine

TL

:= (BottomPos[y

û

; b℄; y

û

) and

BR

:= (TopPos[y

v̂

; t℄; y

v̂

), where û := ThreshT [~u℄

and v̂ := ThreshB [~v℄.

Before reursively alling the algorithm for the remaining parts of the LCS, we

see it is neessary for our routine to not only work on the omplete matrix of size

[1 : m℄� [1 : n℄, but also on any subarea [k

1

: k

2

℄� [`

1

: `

2

℄. The neessary hanges are

quite straightforward, and we do not provide any details here. Moreover, it might be

impossible to loate both

TL

and

BR

(e.g., when jM j = 1), but then one reursive

all an simply be skipped.

Theorem 5.1 An LCS an be onstruted in O(ns+minfmp;m logm+ p(n� p)g)

time and O(ns) spae.

Proof. Clearly, for the top{level all, the additional overhead needed to keep trak

of the new variables is bounded by O(m). Thus, not taking into aount the time

onsumed by preproessing or any reursive alls, we an assume the number of ele-

mentary operations to be bounded by d(m+minfmp; p(n�p)g), for some appropriate

onstant d. We �rst examine the bound d(m+mp). Let

TL

= (k; `) and

BR

= (k

0

; `

0

)

(if only one math has been determined, the analysis is similar). Consider the two

�rst{level reursive alls onerning the areas M

1

:= [1 : k � 1℄ � [1 : ` � 1℄ and

M

2

:= [k

0

+1 : m℄� [`

0

+1 : n℄. Let p

1

and p

2

denote the length of an LCS in M

1

and

M

2

, respetively, i.e., p

1

+ p

2

= p � 2. Reall that

TL

is loated in the �rst dm=2e

rows and olumns, i.e., the length of one side of M

1

is bounded by dm=2e � 1. The

same is true for M

2

, and thus the number of operations taken for both �rst{level alls

is bounded by

d(dm=2e � 1)(p

1

+ 1) + d(dm=2e � 1)(p

2

+ 1) � dp

m

2

Repeating this argument, we obtain a dmp=2

i

bound for the at most 2

i

ith{level

reursive alls. Sine reursion ends at level dlog(m=2)e, this sums up to at most

2 � dmp for the omplete algorithm.

For the other bound d(m + p(n � p)), let g := (

p

5 � 1)=2 � 0:618 and onsider

the following two ases.

Case a: p � gm. Then

2 � dmp �

2

1� g

d(1� g)mp =

2

1� g

d(m� gm)p �

2

1� g

d(m� p)p �

2

1� g

d(n� p)p

Case b: p > gm. Let h := maxfk � 1; `� 1g and h

0

:= maxfm� k

0

; n� `

0

g. Clearly

h+ h

0

� n� 2. Also note that p

1

; p

2

� dm=2e� 1 beause an LCS annot exeed the

length of any side of M

1

and M

2

. But then the two �rst{level reursive alls use at

most

d(dm=2e � 1 + p

1

(h� p

1

)) + d(dm=2e � 1 + p

2

(h

0

� p

2

))

� d(m+ p

1

(h� p

1

) + p

2

(h

0

� p

2

)) � d(m+ (dm=2e � 1)(h� p

1

+ h

0

� p

2

))

� d(m+ (dm=2e � 1)(n� p)) � d(m+

1

2g

p(n� p))

55

Proeedings of the Prague Stringology Club Workshop '99

operations. Similarly, all ith{level reursive alls together use at most

d(m + p(n� p)=(2g)

i

)

operations. This sums up to

d(m logm+

1

1� 1=(2g)

p(n� p)) = d(m logm +

2

1� g

p(n� p)) :

Both ases imply that the algorithm takes at mostO(ns+minfmp;m logm+p(n�p)g)

time, and the worst ase overhead fator an be expeted to be 2=(1 � g) < 5:25.

Furthermore, when omparing the divide{and{onquer routine with the algorithm

whih determines the length p of an LCS, we only need O(logm) additional stak

spae, and thus the O(ns) spae bound is still valid. 2

6 Experimental Results

We ompared our routine with the algorithm proposed by Rik [Ri94, Ri95℄ whih

learly outperforms any other method when onstruting longest ommon subse-

quenes of intermediate lengths. Rik's algorithm is also a exible one, being very

eÆient for short and long LCS as well. It uses a strategy similar to the one pre-

sented here, but only onstruts antihains (or ontours) from the top and left side

of M . While this substantially simpli�es the implementation and also the prepro-

essing phase (i.e., we only have to ompute LeftPos and TopPos), there are two

severe drawbaks. First, in order to reover an LCS after determining its length, the

so{alled dominant mathes must be saved during the onstrution of the ontours,

and this might take
(mn) spae. Seond, the number of heks of Thresh{values is

signi�antly inreased when deomposing M from only two sides. For an alphabet of

size 8, Table 1 shows some sample results when determining p for di�erent settings

of m, n, and p.

Table 1: Frequeny of heks of Thresh{values

m n p Rik [Ri95℄ New method

500 500 100 16864 14983

500 500 200 28962 23078

500 500 300 33276 23394

500 500 400 20384 13276

m n p Rik [Ri95℄ New method

1500 1500 300 145129 126796

1500 1500 600 265107 216845

1500 1500 900 280026 207000

1500 1500 1200 172846 121516

The orresponding running times are presented in Table 2. Both algorithms were

programmed in a straightforward way, using no speial optimizations, and were tested

on an Intel Pentium II at 300 MHz. It an be seen that our algorithm only takes

about 70% of the time needed by Rik's method when omputing the length of an

LCS whih is of intermediate length. For very short or very long LCS our method

slightly su�ers from the additional overhead during the preproessing phase, but is

still very eÆient.

Finally, we heked the running times and the onsumed spae when generating

an LCS. Table 3 shows that in spite of the linear spae restrition, our algorithm

56

A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

Table 2: Running times in miroseonds for determining the length p of an LCS.

m n p Rik [Ri95℄ New method

500 500 100 3352 3626

500 500 200 5659 4725

500 500 300 6978 4890

500 500 400 5000 3516

m n p Rik [Ri95℄ New method

1500 1500 300 24451 21868

1500 1500 600 46099 34835

1500 1500 900 54176 33791

1500 1500 1200 38791 22308

sometimes runs more than twie as fast as Rik's method. This is due to the signi�ant

overhead in Rik's routine whih is aused by the additional statements responsible

for saving the ontours in memory. Furthermore, the worst ase fator 5.25 alulated

in the proof of Thm. 5.1 is muh too pessimisti in pratial situations. Instead, a

omparison with Table 2 shows that it roughly equals 2.

Table 3: Running times in miroseonds for onstruting an LCS of length p.

m n p Rik [Ri95℄ New method

500 500 100 6319 6044

500 500 200 14341 9066

500 500 300 19505 9890

500 500 400 15769 7802

m n p Rik [Ri95℄ New method

750 750 250 23132 16374

750 750 400 39835 20495

750 750 550 38516 16758

750 750 700 16319 9945

Table 4: Alloated spae in bytes for onstruting an LCS of length p.

m n p Rik [Ri95℄ New method

500 500 100 64284 34072

500 500 200 143820 34072

500 500 300 199464 34072

500 500 400 176328 34072

m n p Rik [Ri95℄ New method

750 750 250 219244 51072

750 750 400 390172 51072

750 750 550 396136 51072

750 750 700 193780 51072

Conlusions

We have investigated a new algorithm for the Longest Common Subsequene Problem.

In spite of the quite ompliated tehnial details neessary for the onstrution and

analysis, the �nal routines proved to be extremely pratial. More preisely, we have

shown three results. First, we have presented a new fast method for determining the

length of an LCS. Seond, we have developed a linear spae algorithm for onstruting

an LCS in O(ns+minfmp;m logm+ p(n� p)g) time, thus solving a previously open

problem. And third, we have shown by some experimental results that this algorithm

is by far the fastest one when dealing with usual appliations.

Aknowledgement. We would like to thank Dr. F. Kurth for helpful omments.

Referenes

[AHU76℄ Aho, A.V., Hirshberg, D.S., Ullman, J.D.: Bounds on the omplexity of

the longest ommon subsequene problem. J. ACM 23(1), 1976, 1{12.

57

Proeedings of the Prague Stringology Club Workshop '99

[Apo86℄ Apostolio, A.: Improving the worst{ase performane of the Hunt{

Szymanski strategy for the longest ommon subsequene of two strings.

Inform. Proess. Lett. 23, 1986, 63{69.

[Apo87℄ Apostolio, A.: Remarks on the Hsu{Du new algorithm for the longest

ommon subsequene problem. Inform. Proess. Lett. 25, 1987, 235{236.

[AG87℄ Apostolio, A., Guerra, C.: The longest ommon subsequene problem

revisited. Algorithmia 2, 1987, 315{336.

[ABG92℄ Apostolio, A., Browne, S., Guerra, C.: Fast linear{spae omputations

of longest ommon subsequenes. Theoret. Comput. Si. 92, 1992, 3{17.

[CP94℄ Chin, F.Y.L., Poon, C.K.: A fast algorithm for omputing longest om-

mon subsequenes of small alphabet size. J. Inform. Proess. 13(4), 1990,

463{469.

[CS75℄ Chv�atal, V., Sanko�, D.: Longest ommon subsequenes of two random

strings. J. Appl. Prob. 12, 1975, 306{315.

[DP94℄ Dan���k, V., Paterson, M.: Upper bounds for the expeted length of a

longest ommon subsequene of two binary sequenes. Proeedings, 11th

Annual Symp. on Theoretial Aspets of Computer Siene, LNCS 775,

1994, 669{678.

[Day65℄ Dayho�, M.O.: Computer aids to protein sequene determination. J. The-

oret. Biol. 8, 1965, 97{112.

[Day69℄ Dayho�, M.O.: Computer analysis of protein evolution. Si. Amer.

221(1), 1969, 86{95.

[Dek79℄ Deken, J.G.: Some limit results for longest ommon subsequenes. Disr.

Math. 26, 1979, 17{31.

[Dil50℄ Dilworth, R.P.: A deomposition theorem for partially ordered sets. An-

nals Math. 51, 1950, 161{166.

[FB73℄ Fu, K.S., Bhargava, B.K.: Tree systems for syntati pattern reognition.

IEEE Trans. Comput. C{22(12), 1973, 1087{1099.

[GMS80℄ Gallant, J., Maier, D., Storer, J.A.: On �nding minimal length super-

strings. J. Comput. System Si. 20, 1980, 50{58.

[Hir75℄ Hirshberg, D.S.: A linear spae algorithm for omputing maximal om-

mon subsequenes. Comm. ACM 18(6), 1975, 341{343.

[Hir77℄ Hirshberg, D.S.: Algorithms for the longest ommon subsequene prob-

lem. J. ACM 24(4), 1977, 664{675.

[HD84℄ Hsu, W.J., Du, M.W.: New algorithms for the LCS problem. J. Comput.

System Si. 29, 1984, 133{152.

58

A New Pratial Linear Spae Algorithm for the Longest Common Subsequene Problem

[HS77℄ Hunt, J.W., Szymanski, T.G.: A fast algorithm for omputing longest

ommon subsequenes. Comm. ACM 20(5), 1977, 350{353.

[KR87℄ Kumar, S.K., Rangan, C.P.: A linear spae algorithm for the LCS prob-

lem. Ata Inform. 24, 1987, 353{363.

[LW75℄ Lowrane, R., Wagner, R.A.: An extension of the string{to{string or-

retion problem. J. ACM 22(2), 1975, 177{183.

[LF78℄ Lu, S.Y., Fu, K.S.: A sentene{to{sentene lustering proedure for pat-

tern analysis. IEEE Trans. Syst. Man. Cybernet. SMC{8(5), 1978, 381{

389.

[Mai78℄ Maier, D.: The omplexity of some problem on subsequenes and super-

sequenes. J. ACM 25(2), 1978, 322{336.

[MP80℄ Masek, W.J., Paterson, M.S.: A faster algorithm for omputing string

edit distanes. J. Comput. System Si. 20(1) 1980, 18{31.

[Mye86℄ Myers, E.W.: An O(ND) di�erene algorithm and its variations. Algo-

rithmia 1 1986, 251{266.

[NKY82℄ Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest ommon subsequene

algorithm suitable for similar text strings. Ata Inform. 18, 1982, 171{

179.

[NW70℄ Needleman, S.B., Wunsh, C.S.: A general method appliable to the

searh for similarities in the amino aid sequene of two proteins. J. Mole-

ular Biol. 48, 1970, 443{453.

[PD94℄ Paterson, M., Dan���k, V.: Longest ommon subsequenes. Proeedings,

19th Intern. Symp. on Mathematial Foundations of Computer Siene,

LNCS 841, 1994, 127{142.

[Ri94℄ Rik, C.: New algorithms for the longest ommon subsequene problem.

Researh report no. 85123{CS, Department of Computer Siene, Uni-

versity of Bonn, Germany, 1994.

[Ri95℄ Rik, C.: A new exible algorithm for the longest ommon subse-

quene problem. Proeedings, 6th Annual Symp. on Combinatorial Pat-

tern Mathing, LNCS 937, 1995, 340{351.

[SC73℄ Sanko�, D., Cedergren, R.J.: A test for nuleotide sequene homology.

J. Moleular Biol. 77, 1973, 159{164.

[SK83℄ Sanko�, D., Kruskal, J.B.: Time Warps, String Edits, and Maro-

moleules: The Theory And Pratie of Sequene Comparison. Addison{

Wesley, Reading, MA, 1983.

[Ukk85℄ Ukkonen, E.: Algorithms for approximate string mathing. Inform. and

Control 64, 1985, 100{118.

59

Proeedings of the Prague Stringology Club Workshop '99

[Wag75℄ Wagner, R.A.: On the omplexity of the extended string{to{string orre-

tion problem. Proeedings, 7th Ann. ACM Sympos. on Theory of Com-

put. 1975, 218{223.

[WF74℄ Wagner, R.A., Fisher, M.J.: The string{to{string orretion problem.

J. ACM 21(1), 1974, 168{173.

[WC76℄ Wong, C.K., Chandra, A.K.: Bounds for the string editing problem.

J. ACM 28(1), 1976, 13{18.

[WMM90℄ Wu, S., Manber, U., Myers, G., Miller, W.: An O(NP) sequene om-

parison algorithm. Inform. Proess. Lett. 35, 1990, 317{323.

60

Centroid Trees with Appliation to String

Proessing

Fei Shi and Dong-Guk Shin

Dept. Math and Computer Siene

Su�olk University

Boston, MA 02114-428, USA

shi�as.su�olk.edu

and

Dept. Computer Siene and Engineering

The University of Connetiut

Storrs, CT 06269-3155, USA

shin�eng2.uonn.edu

e-mail: fgoeman,lauseng�s.uni-bonn.de

Abstrat. A entroid of a tree T is a node v whih minimizes over all nodes the

largest onneted omponent of T indued by removing v from T . A entroid

tree U of another tree T is de�ned on the same set of nodes of T : the root v

of U is a entroid of T and the subtrees of v (in U) are the entroid trees of

the onneted omponents of T � v. We desribe some interesting properties of

the entroid and of the entroid tree. Our linear algorithm to �nd a entroid

of a tree improves on the previously known algorithms either in terms of spae

requirement or in terms of time requirement. From the algorithm for �nding a

entroid it is easy to obtain an O(n log n) time algorithm to onstrut a entroid

tree of a given tree with n nodes. However, we do not know whether this is

the best that one an ahieve. By exploiting the properties of the entroid

tree, we devise an eÆient algorithm for the longest ommon substring problem

(LCS). Given two strings S (the text) of length n and P (the pattern) of length

m, the LCS problem is to �nd the longest substring that appears in both the

text and the pattern. Our algorithm requires O(n logn) time and O(n) spae

to preproess the text. After preproessing of the text, the algorithm takes

O(m log n) time using O(m) extra spae to �nd the solution. The algorithm

may be used in the DNA appliations in whih the text is very large and �xed

and is to be searhed with many di�erent patterns (n� m).

Key words: balaned trees, entroid of trees, string pattern mathing, the

longest ommon substring problem

1 Introdution

Let T be an arbitrary tree and let V denote the set of nodes in T . Let v 2 V and

let T

1

; T

2

; � � � ; T

d

be the onneted omponents of T indued by removing v from T

(denoted by T � v). Let jT j denote the number of nodes in T . De�ne

N(v) = max

1�i�d

fjT

i

jg:

61

Proeedings of the Prague Stringology Club Workshop '99

A entroid of the tree T [Har69℄ is a node v

whih minimizes N(v) over all nodes v,

i.e.,v

satis�es

N(v

) = min

v2V

fN(v)g:

It an be shown that every tree has either one entroid or two. This fat has been

extensively applied (see, for examples, [Gol71℄, [KH79℄, [FJ80℄, [MTZC81℄, [Sla82℄).

Goldman [Gol71℄ and Megiddo et al. [MTZC81℄ proposed linear algorithms for �nding

the entroid of a tree. All algorithms known to us that make use of a entroid �nding

algorithm all either Goldman's algorithm or Megiddo's algorithm as a subroutine.

Goldman's algorithm requires a opy of the original tree T as an auxiliary tree on

whih it works. Therefore, O(n) extra spae is needed. While Megiddo's algorithm

does not need any extra spae, it has to visit eah node at least one. In this paper,

we present an algorithm, whih might be viewed as a ombination of Goldman's

algorithm and Megiddo's algorithm. Our algorithm improves on the mentioned two

algorithms either in terms of spae or in terms of time. Spei�ally, our algorithm

does not need an extra opy of the original tree; at the same time, it does not need

more time than Goldman's algorithm. Our algorithm visits eah node of the tree at

most one; at the same time, it does not need more spae than Megiddo's algorithm.

Of ourse, one annot improve the omplexity order of the two mentioned algorithms

sine both are asymptotially optimal in terms of spae and time.

The notion of the entroid of a tree inspired the notion of the entroid tree.

A entroid tree U of another tree T has the same set of nodes as T . U 's root v

is a entroid of T and v's hildren (in U) are the entroid trees of the onneted

omponents of T � v. A nie property of the entroid tree is that its height is logn.

It is easy to obtain an O(n logn) time algorithm to onstrut a entroid tree from the

algorithm for �nding a entroid of a tree. However, it is unknown whether this is the

best time omplexity that one an ahieve.

By exploiting the properties of the entroid tree, we are able to give an eÆient

algorithm for the longest ommon substring (LCS) problem. Given two strings S (the

text) of length n and P (the pattern) of length m, the LCS problem is to �nd the

longest substring that appears in both the text and the pattern. An eÆient solution

to the problem an be useful for homology searhing in nuleotide/protein sequene

databases [Wat89℄, in the editing distane problem, in the multiple pattern searhing

problem, et. Our algorithm requires O(n logn) time and O(n) spae to preproess

the text. After the preproessing, a query an be answered in O(m logn) time. The

algorithm is probabilisti and there is a small hane of error. That is, it may laim

that a substring of the pattern is idential to a substring of the text while they are not

really idential. This is alled a \false math". However, the probability of a false

math an be made arbitrarily (inverse-polynomially) small within the above time

bounds. Our algorithm has obvious advantages over the previously known algorithms

and is partiularly useful for the DNA appliations in whih the text is very large

and �xed (n � m) and in whih one wishes to searh the text with many di�erent

patterns (For example, the DNA sequene of a human being may have up to 3� 10

9

nuleotides and a typial pattern sequene may have a few hundreds to thousands

nuleotides).

The rest of the paper is organized as follows. In Setion 2 we present our algorithm

for �nding a entroid of a tree. We address the problem of onstruting a entroid

tree in Setion 3. In Setion 4 we devise an algorithm for the LCS problem applying

62

Centroid Trees with Appliation to String Proessing

the results presented in Setions 2 and 3. We then onlude the paper by disussing

some open problems in Setion 5.

2 Finding entroid

Lemma 2.1 ([Har69℄) Every tree has either one entroid or two. In the later ase,

the two entroids are onneted by an edge.

If i and j are two neighboring nodes of the tree T , then by removing the edge (i; j)

two onneted omponents C(i; j) and C(j; i) are indued: C(i; j) is the omponent

whih ontains node i and C(j; i) is the omponent whih ontains node j (Note that

C is de�ned on ordered pairs of neighboring nodes). Let u be a node of T and let

x

1

; � � � ; x

d

be all neighbors of u. Then C(x

1

; u); � � � ; C(x

d

; u) are all the onneted

omponents of T � u. In the following we sometimes simply use C(i; j) to refer to

jC(i; j)j (i.e., the number of nodes in C(i; j)) when no ambiguity would likely our.

The following lemma is ruial for our algorithm to �nd a entroid of a tree

orretly.

Lemma 2.2 A node v is a entroid of the tree T if and only if

N(v) � n=2:

Proof We �rst prove the neessary ondition of the lemma. Let v be a entroid of

the tree T . Suppose N(v) > n=2. Let x

1

; � � � ; x

d

be all neighboring nodes of v. Then

by the de�nition of a entroid, there must exist a neighboring node, say x

i

0

, of v suh

that C(x

i

0

; v) > n=2. Let y

1

; � � � ; y

k�1

; y

k

= v be all neighboring nodes of x

i

0

. Then,

N(x

i

0

) = maxfC(y

1

; x

i

0

); C(y

2

; x

i

0

); � � � ; C(y

k�1

; x

i

0

); C(v; x

i

0

)g (13)

We then have

N(x

i

0

) = C(v; x

i

0

) if C(v; x

i

0

) � C(y

j

; x

i

0

)(j = 1; : : : ; k � 1)

N(x

i

0

) < C(x

i

0

; v) otherwise :

(14)

Sine C(x

i

0

; v) > n=2, C(v; x

i

0

) < n=2. It then follows that

N(x

i

0

) < C(x

i

0

; v) = N(v):

So by the de�nition of a entroid of a tree, v annot be a entroid of the tree T . This

ontradits the assumption that v is a entroid of the tree T and therefore establishes

the neessary ondition of the lemma.

We now turn to prove the suÆient ondition of the lemma. Suppose v is a node

of the tree T satisfying N(v) � n=2. Let u be a entroid of T . If u = v, the suÆient

ondition is proved. We thus onsider the ase in whih u 6= v. Let x

1

; � � � ; x

d

be

all neighboring nodes of u. v must be in one of the onneted omponents of T � u,

say C(x

i

0

; u). Let y

1

; � � � ; y

k

= v be all neighboring nodes of v. Let y

j

0

6= v be

the neighboring node of v on the path from x

i

0

to v. From N(v) � n=2, we know

that C(y

j

0

; v) � n=2, and then C(v; y

j

0

) � n=2. Beause C(v; y

j

0

) is a subtree of

the omponent C(x

i

0

; u), we know that C(x

i

0

; u) � n=2. Thus, N(u) � n=2. Thus,

63

Proeedings of the Prague Stringology Club Workshop '99

N(u) � N(v). Therefore, sine u is a entroid of T , v must also be a entroid of T

and N(u) = N(v). This ompletes the proof of the suÆient ondition of the lemma.

2

Lemma 2.2 says a node v is a entroid of T if no onneted omponent indued by

removing v from T ontains more than n=2 nodes.

We now desribe the algorithm. Without loss of generality, we let the tree T be

rooted at an arbitrary node r. We denote by K(i) the number of nodes in the subtree

rooted at i. Then it is easy to see the following:

1. K(i) = 1 if i is a leaf, and

2. K(i) =

P

: hild of i

K() + 1 if i is not a leaf.

The algorithm omputes K(i)s by proeeding from the leaves of the tree towards the

root. One may start from any leaf. But by rule, one is only allowed to use rules (1)

and (2) to ompute K(i)s (This is alled the bottom-up manner).

The algorithm

Compute the K(i)s in the above de�ned bottom-up manner until a node v is reahed

suh that K(v) � n=2. Node v is a entroid of T . If K(v) = n=2, v's father is another

entroid of T .

The ost

We assume that the representation of the tree allows us to aess eah leaf of the tree

in onstant time and any node an be reahed from any of it's hildren in onstant

time. We note that it is easy to build a linked representation of the tree that will

have these desired properties in linear time and spae. Then in the worst ase, the

algorithm needs to visit eah node of the tree just one. The worst ase ours only

when the sole entroid of the tree is also the root of the tree.

We ould use, for instane, the most ommon left-hild, right-brother representa-

tion of a tree. In this representation, eah node x of the tree ontains three pointers:

1. parent[x℄ points to the parent of node x, 2. left-hild[x℄ points to the leftmost

hild of x, and 3. right-brother[x℄ points to the brother of x immediately to the right.

Under this representation, the algorithm will enter eah node x at most twie: 1.

either from its father or from its left-brother, and 2. (when x is a nonterminal node)

from one of its hildren. So if the left-hild, right-brother representation of a tree is

used, the algorithm needs at most 2n� f node visits where f denotes the number of

leaves of the tree. Note that this implementation of the algorithm does not make use

of the assumption that at any point one an aess the leaves of the tree in onstant

time. This is why this implementation may visit some nodes of the tree more than

one (but at most twie). If we augment the left-hild, right-brother representation

of a tree with an array of pointers eah pointing to a leaf node of the tree, the above

algorithms only needs to visit eah node of the tree at most one.

Megiddo's algorithm needs �rst to traverse the tree to ompute some funtion

whose de�nition is similar to that of K(i) for eah node i, then looks for the entroid

64

Centroid Trees with Appliation to String Proessing

along a \right" path of the tree. That is, it need at least 2n � f steps if the left-

hild, right-brother representation of the tree is used. While the idea of Goldman's

algorithm is similar to that of ours, Goldman's algorithm requires an extra opy of

the tree to work on. It deletes in some way the nodes of the extra tree until there is

only one node left; this remaining node is then a entroid of the tree (see [KH79℄ for

another version of Goldman's algorithm).

The orretness of the algorithm

If v is the �rst node we enountered in the ourse of omputing the k(i)'s in the

bottom-up manner suh that k(v) � n=2, then N(v) � n=2. The orretness of the

algorithm then follows from Lemma 2.2.

3 Centroid trees

De�nition 3.1 (entroid tree) A entroid tree U of another tree T is de�ned on

the same set of nodes of T : the root v of U is a entroid of T , and the subtrees of v

(in U) are the entroid trees of the onneted omponents of T � v and v (in U) is

onneted to the roots of these (sub-)entroid trees.

We sometimes use U(T) to denote a entroid tree of another tree T . Note that

U(T) 6= T in general but U(U(T)) = U(T). So di�erent trees may have the same

entroid tree. Lemma 3.2 shows a nie property of the entroid tree, whih motivated

our work of searhing for eÆient methods for onstruting entroid trees.

Lemma 3.2 For any tree T with n nodes, the height of its entroid tree U is O(logn).

Proof Eah node exept the leaves in U has at least two hildren; by Lemma 2.2 the

number of nodes in any branh at any node v in U is no more than half the number

of nodes in the subtree rooted at v in T . So the height of U annot exeed the height

of a omplete binary tree with the same number of nodes, whih is blog

2

n. 2

A straightforward approah to the onstrution of a entroid tree is to repeatedly

all the entroid �nding algorithm disussed in the previous setion. This approah

requires O(n logn) time. There are many ways to speed up this approah. However,

it is not lear whether it is possible to asymptotially improve the time omplexity

of this naive approah. Let's all this simple approah Algorithm Naive.

The following simple observations may help us to gain more insight into the en-

troid tree onstrution problem.

Lemma 3.3 Let u be any node of the tree T . If the sizes of all onneted omponents

of T�u are less than or equal to n=2, then u is a entroid of T . Otherwise, the entroid

of T must be in the maximal omponent of T � u.

Proof The orretness follows from Lemma 2.2. 2

65

Proeedings of the Prague Stringology Club Workshop '99

Lemma 3.4 If a entroid v of the tree T is in a subtree S of T , then v must lie on

the path s; � � � ; u or lie on the path s; � � � ; u; u

0

where s denotes the root of S, u is a

entroid of S and u

0

is a hild of u (with respet to the root s). In the latter ase,

both u and u

0

are the entroids of T .

Proof Let v be a entroid of T . Suppose that v is not on the path s; � � � ; u. Then

there are two ases to onsider.

In the �rst ase, v's father f (v 6= f) is on a path f

0

; � � � ; f; v suh that f

0

is on

the path s; � � � ; u (it is possible that f = f

0

). Sine v is a entroid of T , jC(f; v)j �

n=2. Thus C(v; f) (the subtree rooted at v) ontains at least n=2 nodes. Then the

onneted omponent of S that onsists of C(v; f) and the path s; � � � ; f ontains at

least n=2 + 1 nodes. Therefore, by Lemma 2.2, u annot be a entroid of the subtree

S, whih leads to a ontradition.

In the seond ase, v is a desendant of u

0

and v 6= u

0

where u

0

is a hild of u (it is

possible that u'=u). Sine v is a entroid of T , C(v; u

0

) (the subtree rooted at v) has

at least n=2 nodes. We need to onsider two subases: a. C(v; u

0

) has exatly n=2

nodes. Then by Lemma 2.2, u

0

is another entroid of T . It is easy to see that u = u

0

.

Otherwise, the subtree rooted at u

0

ontains at least n=2+1 nodes and therefore, u is

not a entroid of the subtree S, whih is a ontradition. b. C(v; u

0

) has more than

n=2 nodes. This means a branh of u that ontains u

0

has more than n=2 + 1 nodes.

Thus, u annot be a entroid of the subtree S, whih is also a ontradition.

This ompletes the proof of Lemma 3.4. 2

Lemma 3.5 Let s

1

and s

2

be any two neighboring nodes of the tree T with jC(s

1

; s

2

)j

= n

1

, jC(s

2

; s

1

)j = n

2

and n

2

> n

1

. Let u be a entroid of C(s

2

; s

1

) and let n

3

denote

the number of nodes of the subtree rooted at u of T . If the K(i)s of all nodes i of

T are known, we need at most min(n=2 � n

1

; n=2 � n

3

) steps eah of whih takes

onstant time to �nd a entroid of the entire tree T .

Proof Let v be a entroid of the tree T . By Lemma 3.4, v must lie on the path

s

2

; � � � ; u. We an hek the nodes on the path one by one until we �nally reah a

entroid of T . The onneted omponent of T � v that ontains s

2

has at most n=2

nodes; so if we proeed from s

2

towards u we need at most n=2� n

1

steps before we

reah a entroid of T . The onneted omponent of T �v that ontains u has at most

n=2 nodes; so if we proeed from u towards s

2

we need at most n=2 � n

3

steps. In

either of these two diretions, eah step takes onstant time beause the K(i)s of all

nodes i of T are known. 2

We have modi�ed Algorithm Naive by making use of Lemmas 3.3, 3.4 and 3.5.

The resulting algorithm is alled Algorithm Heuristi. We have applied Algorithm

Heuristi to several random trees. The preliminary experimental results showed that

Algorithm Heuristi onstruted a entroid tree for a given random tree in time

proportional to the number of nodes in the tree on the average. However, at we are

unable to prove this behavior of Algorithm Heuristi rigorously.

66

Centroid Trees with Appliation to String Proessing

4 Appliation to string proessing

In this setion we make use of the properties of the entroid tree to solve the longest

ommon substring (LCS) problem. The problem is, given a string S (the text) of n

haraters and a string P (the pattern) of m haraters over some �nite alphabet �,

to �nd the longest substring whih ours in both of the two strings. An eÆient

solution to the problem an be useful for homology searhing in nuleotide/protein

sequene databases [Wat89℄, in the editing distane problem, in the multiple pattern

searhing problem [Per93℄, et. We are partiularly interested in the ase of the

problem in whih the text is given in advane and is �xed, and many queries with

di�erent patterns will be made later.

Three algorithms for the LCS problem are previously known (named algorithms

P1, P2, and P3 respetively) [Per93℄. It is also possible to solve the problem by

onstruting a suÆx tree for the onatenation of the two strings and then marking

eah node of the suÆx tree that has leaves from both of the two strings in its subtree.

Let's name this algorithm Cat. In the following we will propose a new algorithm

for the problem. Table 1 shows the time and spae bounds of the previously known

algorithms ompared with this new algorithm (named Algorithm New).

Table 1: Comparison of the LCS algorithms

Algorithm Preproessing Searhing time

spae time worst ase average

P1 m j�j m j�j+m

2

n

P2 j�j j�j+m mn n logn

P3 m + j�j 2m+ j�j mn (1 +

m

j�j

)n

Cat m+ n

New n n logn m logn

A weakness of Algorithm P1 is that it requires large amounts of spae and pre-

proessing time for large alphabets and/or patterns. Algorithm P2 requires that the

size of the pattern be no more than the size of a word of the mahine on whih the

algorithm is exeuted. When the size of the underlying alphabet is quite small, e.g.,

j�j = 4 in the ase of DNA appliations, the average-ase performane of Algorithm

P3 deteriorates to its worst-ase performane. While Algorithm Cat runs in O(n+m)

time, it is not proper for appliations in whih the text is very large and �xed and

one wishes to searh the text with many di�erent shorter patterns (n � m). This

is beause although the text is �xed and stati for many queries, for eah new query

(new pattern) Algorithm Cat has to rebuild a suÆx tree for the text and the pattern

whih takes as muh as O(n +m) time. For example, a DNA sequene of a human

being may have up to 3 � 10

9

nuleotides and a typial pattern sequene may have

a few hundreds to thousands nuleotides. In suh ases, m + n � m logn, the time

needed by our new algorithm to answer a query.

The new algorithm �nds the longest pre�x of eah of the suÆxes of the pattern P

in the text S. Note that P has m suÆxes and therefore there are at most m longest

pre�xes (of the suÆxes) that appear in T . The algorithm then simply hoose the

67

Proeedings of the Prague Stringology Club Workshop '99

longest one from these pre�xes found as an answer to the LCS problem. It requires

O(n logn) time and O(n) spae to preproess the text. After the preproessing, a

query an be answered in O(m logn) time. An advantage of this approah is that in

ases where the text is large (e.g., n > m logn) and stati for many queries, we only

have to preproess the text one; after the text has been preproessed, a query an

be answered quikly. It is a probabilisti algorithm and there is a small hane of

error. That is, the algorithm may laim that a substring of the pattern is equal to a

substring of the text while they are not equal at all (This is alled a \false math").

However, as will be seen later, the probability of a false math an be made arbitrarily

(inverse-polynomially) small.

The general struture of the algorithm is as follows:

� Preproessing stage

{ onstrut a suÆx tree T for the text S

{ onstrut a entroid tree U for the suÆx tree T

� Searhing stage

{ searh the entroid tree U for loations of the longest pre�x of eah of the

suÆxes of the pattern P in the text T

Now, we desribe the algorithm in detail. Sine algorithms for building suÆx trees

in linear time and spae are known in the literature [Wei73, MC76, Ukk95℄ and we

have already presented an algorithm for building the entroid tree (in Setion 3), we

will onentrate on the searhing stage of the algorithm.

Let the text be S = S[1℄ � � �S[n℄ and let the pattern be P = P [1℄ � � �P [m℄. We

use a suÆx tree to represent the text. Assuming that the suÆx tree T of the text S

and a entroid tree U of T are already available, our searh algorithm searhes the

trees for the ourrenes of the pattern in the text.

Let w be the end node of the path that the pattern P determines in T . If P is

not a substring of S, then we de�ne the end node w to be the node that orresponds

to the longest pre�x of P that is a substring of S. Our goal is to �nd w.

We maintain the following variables:

� v, the urrent node in U ; v is a entroid of some onneted omponent C of T .

� u, the topmost node of C (in T); the substring orresponding to u is the longest

substring of S found so far that is a pre�x of P .

� i, an index to P suh that P [1℄; � � � ; P [i℄ determines the path from the root to

u.

� j, the length of the substring determined by the path from u to v.

� k, a pointer to S that orresponds to the end position of the substring deter-

mined by the path from the root to v.

Furthermore, let x be any node of T . We denote by x:length the length of the

substring determined by the path from the root to node x and denote by x:end an

68

Centroid Trees with Appliation to String Proessing

index to S that orresponds to the end position of this substring in S. Note that by

assumption, x:length and x:end are already stored in eah node x on onstrution of

the suÆx tree.

Given u and v omputing j and k is easy:

j := v:length� u:length;

k := v:end:

(15)

Initially, u := the root of T ; v := the root of U ; i := 0; and j and k are omputed

by (15).

In order to �nd w eÆiently we need to �nd a way to deide quikly whih of

the onneted omponents indued by removing v from T ontains w. There are

two possibilities: w is in the omponent that is \above" v or w is in one of the

omponents that are \below" v. We notie that w is a desendant of v if and only

if S[k � j + 1℄ � � �S[k℄ = P [i + 1℄ � � �P [i + j℄. If w is in the omponent \above" v,

we assign the entroid of that omponent to v and u is unhanged; if we know whih

of the omponents \below" v ontains w, we assign the root of that omponent to

u and assign the entroid of that omponent to v. The above ideas are preisely

presented in proedure searh in Figure 1. proedure searh �nds and stores w

in its variable v and stores the index to P referring to the end position of the longest

pre�x of P that is equal to a substring of S in its variable i when exeuted with u

being initialized to be the root of T , v being initialized to be the root of U and i

being initialized to be 0.

The question that is ruial to implement proedure searh eÆiently is: Given

a substring S[k℄ � � �S[k + j℄ of S and a substring P [i℄ � � �P [i + j℄ of P , how an we

answer quikly whether they are equal or not? There is a probabilisti method [Nao91,

KR87℄ whih, after preproessing the strings S and P in linear time and spae, an

test whether a substring of S is equal to a substring of P in onstant time. There is a

probability of error (a false math) in any test. But the probability of a false math

an be made arbitrarily (inverse polynomially) small.

The method needs a prime q whih is hosen at random from a set of primes

smaller than M (to be stated soon). It is this prime q that may lead to a false math.

By Theorem 3 of [KR87℄ the probability of a false math is less than �(n)/�(M)

where �(n) denotes the number of primes smaller than n. By Lemma 2 of [KR87℄

u

lnu

� �(u) � 1:25506

u

lnu

. Thus, for example, if we hoose M to be n

3

logn, the

probability of a false math is (asymptotially) 1/n

2

logn.

We now look at the omplexity of proedure searh. Note that at eah step v

is assigned to one of its hildren (in U). By Lemma 3.2 the height of U is O(logn).

So proedure searh requires O(logn) steps. From the above disussion, eah step

takes onstant time. So proedure searh needs O(logn) time to �nd the longest

pre�x of P that appears in S.

To solve the whole LCS problem, for every suÆx P

i

= P [i℄ � � �P [m℄ (i = 1; � � � ; m)

we �nd the longest pre�x of P

i

that appears in S with proedure searh. From

among all these (loally) longest pre�xes found, we hoose the (globally) longest one

as an answer to the LCS problem. All this takes O(m logn) time.

To summarize, our algorithm for the LCS problem onsists of:

� Preproessing the text

69

Proeedings of the Prague Stringology Club Workshop '99

proedure searh(node: u, v; integer: i);

integer: j, k;

begin

j := v:length� u:length;

k := v:end;

if S[k � j + 1℄ : : : S[k℄ = P [i+ 1℄ : : : P [i+ j℄ then /* j may be 0 */

if i+ j = m then i := m; stop

/* P is equal to the substring of S orresponding to node v */

else

if there exists a hild of v in T orresponding to the symbol

P [i+ j + 1℄ then

if the substring S[k + 1℄ : : : S[k + l℄ of S orresponding to the edge

(v;) is equal to a substring of P starting at P [i+ j + 1℄ then

u := ;

v := v's hild in U orresponding to the subtree rooted at in T ;

i := i+ j + l;

searh(u; v; i)

else

/* Let L denote the maximal x in [1; l℄ suh that

S[k + 1℄ : : : S[k + x℄ = P [i+ j + 1℄ : : : P [i+ j + x℄ */

�nd L with binary searh supported with the substring equality

testing tehnique;

i := i+ j + L; stop

/* P [1℄:::P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring is the onatenation of the

substring orresponding to node v and S[k + 1℄ : : : S[k + L℄ */

end

else

i := i + j; stop

/* P [1℄ : : : P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring orresponds to node v */

end

end

else

if there exists a hild of u in T orresponding to P [i+ 1℄ then

v := v's hild in U orresponding to the omponent \above" v;

searh(u; v; i)

else

v := u; stop

/* P [1℄ : : : P [i℄ is the longest pre�x of P that is equal to a

substring of S; this substring orresponds to node v */

end

end

Figure 1: Searh for end node of path determined by pattern.

70

Centroid Trees with Appliation to String Proessing

{ onstrut a suÆx tree T for the text S in O(n) time and spae.

{ onstrut a entroid tree U for the suÆx tree T in O(n logn) time and

using O(n) spae.

{ proess the text S in order to be able to hek quikly the substring equal-

ity. This takes O(n) time and spae.

� Searhing for the pattern

{ proess the pattern P in order to be able to hek quikly the substring

equality. This takes O(m) time and spae.

{ searh the entroid tree U for loations of the longest pre�xes of all the

suÆxes of the pattern P in the text S in O(m logn) time and O(1) spae.

That is, the preproessing takes O(n logn) time and O(n) spae and the searhing

takes O(m logn) time and O(m) extra spae.

To make this algorithm error free, we an add a step that heks whether a laimed

math is true or false. If the laimed longest math is false, we disard it and hek the

seond longest math, and so on, until we reah a true math. Sine the probability

of a false math an be made arbitrarily (inverse-polynomially) small without asymp-

totially inreasing the time and spae requirements of the algorithm, the hane of

using this heking step an be made arbitrarily inverse-polynomially small as well.

5 Open questions

It is of onsiderable interest to either establish that there exists a non-linear lower

bound on the run time of all algorithms whih onstrut a entroid tree for any given

tree, or to exhibit an algorithm whose run time is O(n).

It is also interesting, at least from a pratial point of view, to �nd entroid tree

onstrution algorithms that run in linear time on the average and require linear spae

even if their worst-ase behavior ould be muh worse. Are there any deterministi

algorithms to do the searh (as disussed in Setion 4) using the same order of time

as the probabilisti one does?

Referenes

[FJ80℄ G.N. Frederihson and D.B. Johnson, Generating and searhing sets indued

by networks, Pro. of the 7th International Colloquium on Automata, Languages

and Programming, LNCS 85, July 1980.

[Gol71℄ A.J. Goldman, Optimal enter loation in simple networks, Trans. Si.,

3(1971).

[Har69℄ F. Harary, Graph Theory, Addison-Wesley, Mass., 1969.

[KH79℄ O. Kariv and S.L. Hakim, An algorithmi approah to network loation prob-

lems. I: The p-enters, SIAM J. appl. Math., Vol 37, No.3, De. 1979.

71

Proeedings of the Prague Stringology Club Workshop '99

[Knu73℄ D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searh-

ing. Addison-Wesley, Reading, Mass, 1973, Ch. 6.3, pp. 490-493.

[KR87℄ R. Karp and M. Rabin, EÆient Randomized Pattern Mathing Algorithms.

IBM J. Res. Develop., Vol. 31, No. 2, Marh 1987.

[MC76℄ E.M. MCreight, A Spae-eonomial SuÆx Tree Constrution Algorithm.

Journal of the ACM 23 (1976), 262-272.

[MTZC81℄ N. Megiddo, A. Tamir, E. Zemel and R. Chandrasekaran, An O(n log

2

n)

algorithm for the kth longest path in a tree with appliations to loation problems,

SIAM J. Comput., Vol.10, No.2, May 1981.

[Nao91℄ M. Naor, String mathing with preproessing of text and pattern, Pro.

of the 18th International Colloquium on Automata, Languages and Programming,

Madrid, July 1991, pp.739-750.

[Per93℄ C.H. Perleberg, Three Longest Substring Algorithms, Pro. First South

Amerian Workshop on Strong Proessing, Belo Horizonte, Brazil, 1993, eds. R.

Baeza-Yates and N. Ziviani.

[Sla82℄ P.J. Slater, Loating Central Paths in a graph,Trans. Si., Vol.16, No.1, Feb.

1982.

[Ukk95℄ E. Ukkonen, On-line onstrution of suÆx-trees. Algorithmia (1995) 14:

249-260, Springer-Verlag, New York.

[Wat89℄ M.S. Waterman (ed.),Mathematial Methods for DNA Sequenes, CRC Press

1989, Boa Raton, Florida.

[Wei73℄ P. Weiner, Linear pattern mathing algorithm, Pro. 14th IEEE Symp. on

Swithing and Automata Theory, 1973, pp. 1-11.

72

