
The Closest Common Subsequen
e Problems

1

Gabriela Andrejkov�a

Department of Computer S
ien
e, Fa
ulty of S
ien
e, P. J.

�

Saf�arik University,

Jesenn�a 5, 041 54 Ko�si
e, Slovakia

e-mail: andrejk�kosi
e.upjs.sk

Abstra
t. EÆ
ient algorithms are presented that solve general 
ases of the

Common Subsequen
e Problems, in whi
h both input strings 
ontain symbols

with 
ompeten
e values or sets of symbols with 
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e values. These prob-

lems arise from a sear
hing of the sets of most similar strings.
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1 Introdu
tion

The motivation to the CCS Problems 
an be found in the typing of a text on the

keyboard. The following mistakes 
an be made in typing some string:

1. Typing a di�erent 
hara
ter, usually from the neighbour area of the given 
har-

a
ter.

2. Inserting a single 
hara
ter into the sour
e string.

3. Omiting (skipping) any single sour
e 
hara
ter.

In the most frequent mistakes, a 
hara
ter from the area on the keyboard adja
ent

to the required 
hara
ter was typed instead of the required 
hara
ter. For example,

the neighborhood of the 
hara
ter f is the set f = ff,d, g, r, t, 
, vg. The sequen
e of

sets A = f, r, e, s, 
, o belongs to the word fres
o. In this 
ase (typing mistakes)

let us assign 
ompeten
e value (
.v.) to ea
h element of the neighborhood in su
h

way that the 
hara
ter itself has 
.v. 1 and the 
.v.'s of "more erroneous" 
hara
ter

are smaller than those of the "better one". For example, for set f we have �(f) =

1; �(d) = 0:4; �(g) = 0:4; �(r) = 0:2; �(t) = 0:4; �(
) = 0:3; �(v) = 0:3. We 
onsider

that in the text, it is ne
essary to �nd the words whi
h are very 
lose to the word

fres
o. We 
onsider the sum of 
.v.'s of a given string as a measure of its similarity of

the string to the given word fres
o. The lengths of the found words 
an be di�erent

to the length of the given word fres
o. For example, if the word fres
o is found in the

text then the measure of the similarity to the given word fres
o is the length of the

word fres
o (6), if the word tres
 is found then the measure of the similarity is 4.4

be
ause the symbol t is very 
lose to the symbol f and symbol o is omitted.
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It is possible to 
onsider the des
ribed problem as the 
losest 
ommon subsequen
e

problem of the two similar strings and its repetition for text of strings.

The 
ommon subsequen
e problem of two strings is to determine one of the sub-

sequen
es that 
an be obtained by deleting zero or more symbols from ea
h of the

given strings. It is possible to demand some additional properties for the 
ommon

subsequen
e. Usually, it is the greatest length of the 
ommon subsequen
e, but we


an 
onsider some di�erent measures for the 
ommon subsequen
e.

The longest 
ommon subsequen
e problem (LCS Problem) of two strings is to de-

termine the 
ommon subsequen
e with the maximal length. For example, the string

AGI is a 
ommon subsequen
e and the string ALGI is the longest 
ommon subse-

quen
e of the strings ALGORITHM and ALLEGATION. Algorithms for this problem


an be used in 
hemi
al and geneti
 appli
ations and in many problems 
on
erning

data and text pro
essing [15℄, [12℄, [3℄. Further appli
ations in
lude the string-to-

string 
orre
tion problem [12℄ and determining the measure of di�eren
es between

text �les [3℄. The length of the longest 
ommon subsequen
e (LLCS Problem) 
an

determine the measure of di�eren
es (or similarities) of text �les. The simulation

method for the approximate strings and sequen
e mat
hing using the Levenstein

metri
 
an be found in J. Holub [9℄ and the algorithm for the sear
hing of the subse-

quen
es is in Z. Tron���
ek and B. Meli
har [16℄.

D. S. Hirs
hberg and L. L. Larmore [7℄ have dis
ussed a generalization of LCS

Problem, whi
h is 
alled Set LCS Problem (SLCS Problem) of two strings where

however the strings are not of the same type. The �rst string is a sequen
e of symbols

and the se
ond string is a sequen
e of subsets over an alphabet 
. The elements of

ea
h subset 
an be used as an arbitrary permutation of elements in the subset. The

longest 
ommon subsequen
e in this 
ase is a sequen
e of symbols with maximal

length. The SLCS Problem has an appli
ation to problems in 
omputer driven musi


[7℄. D. S. Hirs
hberg and L.L. Larmore have presented O(m � n)-time and O(m+ n)-

spa
e algorithm,m;n are the lengths of the strings. The Set-Set LCS Problem (SSLCS

Problem) is dis
ussed by D. S. Hirs
hberg and L. L. Larmore [8℄. In this 
ase both

strings are strings of subsets over an alphabet 
. In the paper [8℄ is presented the

O(m � n)-time algorithm for the general SSLCS Problem.

In this paper we present algorithms for general 
ases of the Common Subsequen
e

Problem, it means Closest Common Subsequen
e Problems:CCS Problem (for two

strings of symbols), CCRS Problem (for two strings of symbols with restri
ted using

of the symbols), SCCS Problem (for one string of symbols and se
ond string of symbol

sets) and SSCCS Problem (for two strings of symbol sets).

2 Basi
 De�nitions

In this se
tion, some basi
 de�nitions and results 
on
erning to CCS Problem, SCCS

and SSCCS Problem are presented.

Let 
 be a �nite alphabet, j
j = s; P (
) the set of all subsets of 
; jP (
)j = 2

s

.

Let A = a

1

a

2

: : : a

m

; a

i

2 
; 1 � i � m be a string over an alphabet 
, where

jAj = m is the length of the string A.

Let �

A

(a

i

) 2 (0; 1i; 1 � i � m; be some 
ompeten
e (membership) values of

elements in the string A.
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The pair (A; �

A

) is the string A with the 
ompeten
e fun
tion �

A

, 
f-string (A; �

A

)

for short. V al(A; �

A

) is a measure of (A; �

A

) de�ned by the (1).

V al(A; �

A

) = �

m

i=1

�

A

(a

i

) (1)

The string C 2 P (
); C = 


1

: : : 


p

is a subsequen
e of the string A = a

1

: : : a

m

, if

a monotonous in
reasing sequen
e of natural numbers i

1

< : : : < i

p

exists su
h that




j

= a

i

j

; 1 � j � p. The string C is a 
ommon subsequen
e of two strings A;B if C

is a subsequen
e of A and C is a subsequen
e of B. jCj is the length of the 
ommon

subsequen
e. The 
lassi
al problem to �nd the longest 
ommon subsequen
e is de�ned

and solved in Hirs
hberg [5℄.

The string (C; �

C

) is a subsequen
e with the 
ompeten
e fun
tion �

C

, 
f-subsequen
e

for short of the 
f-string (A; �

A

) if C is a subsequen
e of the string A and 0 < �

C

(


t

) �

�

A

(a

i

t

), for 1 � t � p. The 
f-subsequen
e (C; �

C

) is a 
losest 
f-subsequen
e if

V al(C; �

C

) = �

p

j=1

�

C

(


j

) = �

p

j=1

�

A

(a

i

j

).

The string (C; �

C

) is a 
ommon 
f-subsequen
e of two 
f-strings (A; �

A

) and

(B; �

B

) if (C; �

C

) is a 
f-subsequen
e of (A; �

A

) and (C; �

C

) is a 
f-subsequen
e of

(B; �

B

).

The string (C; �

C

) is a 
losest 
ommon 
f-subsequen
e of the 
f-strings (A; �

A

) and

(B; �

B

) if (C; �

C

) is a 
ommon 
f-subsequen
e with the maximal value V al(C; �

C

).

It means, if (D; �

D

) is a 
ommon 
f-subsequen
e of the strings (A; �

A

) and (B; �

B

)

then V al(D; �

D

) � V al(C; �

C

).

If (C; �

C

) is a 
losest 
ommon 
f-subsequen
e of the 
f-strings, (A; �

A

) and (B; �

B

)

then �

C

(


t

) = minf�

A

(a

k

t

); �

B

(b

l

t

)g, for 1 � t � p.

The CCS Problem: Let (A; �

A

) and (B; �

B

) be 
f-strings. To �nd a 
losest


ommon subsequen
e of the 
f-strings (A; �

A

) and (B; �

B

), CCS((A; �

A

); (B; �

B

))

for short.

The MCCS Problem is to �nd the measure of CCS 
f-string, MCCS for

short. It means, MCCS((A; �

A

); (B; �

B

)) = V al(CCS((A; �

A

); (B; �

B

))). �

m m m m m m m m m

m m m m m m m

a

b

a a

b

a 
 a

b

a

b




d b




b

A=

B=

Figure 1. The 
losest 
ommon subsequen
e of two 
f-strings A and B.
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Example 1. 
 = fa; b; 
g; A = abaaba
ab; m = 9; B = ab
db
b; n =

7, �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), �

B

= (0:6; 0:6; 0:3; 0:4; 0:9; 0:5; 0:6).

The string C = ab
b is a subsequen
e, C

0

= abb
b is the longest 
ommon subsequen
e

of the strings A and B, and (C"; �

C"

), C" = ab
b; �

C"

= (0:6; 0:9; 0:4; 0:5) is the


losest 
ommon subsequen
e of the 
f-strings (A; �

A

) and (B; �

B

); V al(C"; �

C"

) =

MCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown in the Figure 1.

Let (A; �

A

) be the string A with the 
ompeten
e fun
tion �

A

. A sequen
e of

indi
es, h

A

= h

A

0

h

A

1

h

A

2

: : : h

A

k

A

; 0 = h

A

0

< h

A

1

< h

A

2

< : : : < h

A

k

A

= m; 1 � k

A

� m is a

partition of the string (A; �

A

).

3



Pro
eedings of the Prague Stringology Club Workshop '99

The sequen
e h

A

divides the string (A; �

A

) in the following way:

A = ja

1

a

2

: : : a

h

A

1

ja

h

A

1

+1

: : : a

h

A

2

j : : : ja

h

A

k�1

+1

: : : a

h

A

k

A

j = subst

A

1

subst

A

2

: : : subst

A

k

A

,

where subst

A

i

= a

h

A

i�1

+1

: : : a

h

A

i

; 1 � i � k

A

. [(A; �

A

); h

A

℄ is 
alled the 
f-string with

the partition.

For example, 
 = fa; b; 
g, A = jabajaba
a
jbabj; m = 12, �

A

= (0:4; :2; :8; :4; :7; :3;

:3; :7; :5; :4; :8; :6), h

A

= 0; 3; 9; 12; subst

A

1

= aba; subst

A

2

= aba
a
; subst

A

3

= bab.

A string C = 


1




2

: : : 


p

; 1 � p � m is a restri
ted subsequen
e of the 
f-string with

the partition [(A; �

A

); h

A

℄, if and only if

1. there exists a sequen
e of indi
es 1 � i

1

< i

2

< : : : < i

p

� m su
h that

a

i

t

= 


t

; 1 � t � p, and

2. if h

A

r�1

< i

u

; i

v

� h

A

r

then 


u

6= 


v

, for all r, 1 � r � k

A

,

(ea
h element of an alphabet 
(subst

A

r

) 
an be used in C on
e at most).

The string (C; �

C

) is a 
ommon restri
ted 
f-subsequen
e of two 
f-strings with par-

tition [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ if (C; �

C

) is a restri
ted 
f-subsequen
e of

[(A; �

A

); h

A

℄ and (C; �

C

) is a restri
ted 
f-subsequen
e of [(B; �

B

); h

B

℄ at on
e.

The string (C; �

C

) is a 
losest 
ommon restri
ted 
f-subsequen
e of two 
f-strings

with partition [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ if (C; �

C

) is a 
ommon restri
ted 
f-

subsequen
e with maximal value de�ned by (1).

The CCRS Problem: Let [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ be the 
f-strings. To

�nd the 
losest 
ommon subsequen
e of the 
f-strings [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄,

CCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) for short.

The MCCRS Problem is to �nd the measure of CCRS 
f-string,MCCRS

for short. It means,MCCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) = V al(CCRS([(A; �

A

); h

A

℄;

[(B; �

B

); h

B

℄)). �

m m m m m m m m m m m m

m m m m m m m m m m m

a

b

a a

b

a 
 a 


b

a

b

b

a
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Figure 2. Closest 
ommon restri
ted subsequen
e of two strings A and B.
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Example 2. 
 = fa; b; 
g, A = jabajaba
a
jbabj; m = 12, �

A

= (0:4; 0:2; 0:8; 0:4;

0:7; 0:3; 0:3; 0:7; 0:5; 0:4; 0:8; 0:6), h

A

= 0; 3; 9; 12; B = jbab
j
a
j
b
bj; n = 11, �

B

=

(0:4; 0:3; 0:4; 0:5; 0:3; 0:5; 0:6; 0:3; 0:7; 0:6; 0:5). The string C = ba
b is a restri
ted sub-

sequen
e, C

0

= ba
ab is the 
losest restri
ted 
ommon subsequen
e with measure 2.3

as it 
an be seen in Figure 2. The string C" = bab
a
bb is the longest 
ommon sub-

sequen
e of the strings A = abaaba
a
bab and B = bab

a

b
b if the partition does

not matter.

A string of sets, set-string for short, B over an alphabet 
 is any �nite sequen
e of

sets from P (
). Formally, B = B

1

B

2

: : : B

n

; B

i

2 P (
); 1 � i � n, n is the number of
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sets in B. The length of the symbol string des
ribed by B is N = �

n

i=1

jB

i

j. The pair

(B; �

B

) is the set-string B with the 
ompeten
e fun
tions �

B

, set-
f-string for short.

A string of symbols C = 


1




2

: : : 


p

; 


i

2 
; 1 � i � p, is a subsequen
e of symbols

(subsequen
e, for short) of the set-string B if there is a nonin
reasing mapping F :

f1; 2; : : : ; pg ! f1; 2; : : : ; ng, su
h that

1. if F (i) = k then 


i

2 B

k

, for i = 1; 2; : : : ; p

2. if F (i) = k and F (j) = k and i 6= j then 


i

6= 


j

.

The 
ombination of a string and a set-string and the �nding of their 
losest 
ommon


f-subsequen
e leads to the solution of problems in above motivation.

Let (A; �

A

), be 
f-string over 
 and (B; �

B

) be a set-
f-string over P (
). The


f-string (C; �

C

) is a 
ommon 
f-subsequen
e of (A; �

A

) and (B; �

B

) if (C; �

C

) is a


f-subsequen
e of A and (C; �

C

) is a 
f-subsequen
e of the set-string B. A 
los-

est 
ommon 
f-subsequen
e of the 
f-string (A; �

A

) and the set-
f-string (B; �

B

),

SCCS((A; �

A

); (B; �

B

)) is a 
ommon 
f-subsequen
e (C; �

C

) with the maximal value

V al(C; �

C

). Note that (C; �

C

) is not unique in general way.

The SCCS Problem: The Set 
losest Common Subsequen
e problem of the 
f-

string (A; �

A

) and the set-
f-string (B; �

B

), SCCS((A; �

A

); (B; �

B

)) for short, 
onsists

of �nding a 
losest 
ommon 
f-subsequen
e (C; �

C

).

The MSCCS Problem 
onsists of �nding the measure of SCCS 
f-string,

MSCCS for short.

This means that MSCCS((A; �

A

); (B; �

B

)) = V al(SCCS((A; �

A

); (B; �

B

))), �

m m m m m m m m m

m m m m m m m

a

b

a a

b

a 
 a

b

a

b




b d b




A=

B=

Figure 3. The 
losest 
ommon subsequen
e of two strings A and B.
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Example 3. Let A = abaaba
ab; �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), B =

fa; b; 
gfb; dgfb; 
g, �

B

1

(a) = 0:6; �

B

1

(b) = 0:6; �

B

1

(
) = 0:3; �

B

2

(b) = 0:9; �

B

2

(d) =

0:4; �

B

3

(b) = 0:6; �

B

3

(
) = 0:5. Then MSCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown

in the Figure 3.

Let A = A

1

: : : A

m

;B = B

1

: : : B

n

; 1 � m � n, be two set-strings of sets over

an alphabet 
. The string of symbols C is a 
ommon subsequen
e of symbols of A

and B is C a subsequen
e of symbols of A and C is a subsequen
e of symbols of the

set-string B. The longest 
ommon subsequen
e problem of the set-strings A and B

(SSLCS(A;B) 
onsists of �nding a 
ommon subsequen
e of symbols C of the maximal

length. Note that C is not in general unique.

The SSCCS Problem: Let (A; �

A

); (B; �

B

) be two set-
f-string.

The Set-Set Closest Common Subsequen
e problem of the set-
f-strings (A; �

A

) and

(B; �

B

), (SSCCS((A; �

A

); (B; �

B

)) for short, 
onsists of �nding a 
losest 
ommon 
f-

subsequen
e (C; �

C

).
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The MSSCCS Problem 
onsists of �nding the measure of SSCCS set-
f-

string, MSSCCS for short.

It means, MSSCCS((A; �

A

); (B; �

B

)) = V al(SSCCS((A; �

A

); (B; �

B

))), �

m m m m m m m m

m m m m m m m m m m m

a

d


 a

b

e

b

a

d

e 
 a

d

e

b d




b d

A=

B=

Figure 4. The 
losest 
ommon subsequen
e of two set-strings A and B.
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Example 4. Let A = fa; dg; f
; a; dg; fe; b; ag; m = 3, �

A

1

= (0:7; 0:3); �

A

2

=

(0:6; 0:4; 0:5); �

A

3

= (0:6; 0:3; 0:8); B = fd; e; 
g; fa; d; eg; fb; d; 
g; fb; dg; n = 4: �

B

1

=

(0:4; 0:3; 0:5); �

B

2

= (0:7; 0:6; 0:8); �

B

3

= (0:9; 0:5; 0:7); �

B

4

= (0:5; 0:3). The 
ompe-

ten
e values are des
ribed a

ording to the named order in the set. For example,

�

A

1

(a) = 0:7; �

A

1

(d) = 0:3:

Then MSSCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown in the Figure 4.

3 Algorithm for MCCS Problem

From the de�nition of MSSC Problem it follows:

MCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the 
ommon


f � subsequen
e of (A; �

A

) and (B; �

B

)g (2)

The expression (2) 
an be written in the following way

= max

(C;�

C

)

f�

p

t=1

�

C

(


t

) : 


t

= a

k

t

= b

l

t

; 1 � t � p; 1 � k

1

< : : : < k

p

� m;

1 � l

1

< : : : < l

p

� ng and 0 < �

C

(


t

) = minf�

a

(a

k

t

); �

B

(b

l

t

)g: (3)

It means

MCCS((A; �

A

); (B; �

B

)) = maxf�

p

t=1

minf�

A

(a

k

t

); �

B

(b

l

t

)g : a

k

t

= b

l

t

;

1 � t � p; 1 � k

1

< : : : < k

p

� m; 1 � l

1

< : : : < l

p

� ng (4)

Let M

min

be a matrix de�ned as follows:

M

min

[i; j℄ =

�

minf�

A

(a

i

); �

B

(b

j

); g; if a

i

= b

j

0; otherwise.

(5)

The expression (4) is the basis for the following algorithm and it should be written

now in the following way:

MCCS((A; �

A

); (B; �

B

)) = maxf�

p

t=1

M

min

[k

t

; l

t

℄ :

k

1

< : : : < k

p

� m; 1 � l

1

< : : : < l

p

� ng (6)
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The expression (6) 
an be used in the re
ursive algorithm or nonre
ursive algorithm

using the method of dynami
 programming.

Designation.

� A[i::k℄ = a

i

a

i+1

: : : a

k

, for 1 � i � k � m,

� MM [m;n℄ = MCCS((A; �

A

); (B; �

B

)),

� MM [i; j℄ = MCCS((A[1::i℄; �

A

); (B[1::j℄; �

B

)).

Re
ursive version of the algorithm is 
onstru
ted a

ording to the following idea:

If an element 


t

is in the CCS((A; �

A

); (B; �

B

)) then the strings 
an be split into two

parts and

MCCS((A; �

A

); (B; �

B

)) = �(


t

) +MCCS((A[1::k

t�1

℄; �

A

); (B[1::l

t�1

℄; �

B

))

+MCCS((A[k

t+1

::m℄; �

A

); (B[l

t+1

::n℄; �

B

)) (7)

The re
ursive version of the algorithm has exponential time 
omplexity. Some 
om-

putations are repeated and it means in the algorithm, it is possible to use the dynami


programming method to 
ompute the partial values MM [i; j℄ on
e only and to use

them in the following 
omputations.

In the algorithm, two fun
tions are used: The fun
tion Minim 
omputes mini-

mum of two values, the fun
tion Maxim 
omputes maximum of three values. The

i�th line of the matrix MM is 
omputed from two lines (i � 1)�th and the already


omputed part of i�th 
olumn. It means that the spa
e 
omplexity of the algorithm


an be redu
ed to O(n), for m � n. The algorithm works in the O(m�n) time. It 
an

be written in the following simple form (without the 
onstru
tion of the matrixM

min

):

Algorithm MCCS:

for i:=0 to m do MM[i,0℄:=0;

for j:=1 to n do MM[0,j℄:=0;

for i:=1 to m do

for j:=1 to n do

begin

if a[i℄=b[j℄ then help:=MM[i-1,j-1℄ + Minim(miA[i℄,miB[j℄)

else help:=0;

MM[i,j℄:= Maxim(MM[i-1,j℄, help, MM[i, j-1℄);

end;

Example 5. The 
omputation ofMCCS((A; �

A

); (B; �

B

)) for the strings in Example

1 a

ording to the algorithm MCCS.

B= 0.6 0.6 0.3 0.4 0.9 0.5 0.6

a b 
 d b 
 b

A= -------------------------------------------

a 0.9 | 0.6 0.6 0.6 0.6 0.6 0.6 0.6

b 0.9 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

a 0.6 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5
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a 0.5 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

b 0.2 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7

a 0.8 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7


 0.4 | 0.6 1.2 1.5 1.5 1.5 1.9 1.9

a 0.6 | 0.6 1.2 1.5 1.5 1.5 1.9 1.9

b 0.5 | 0.6 1.2 1.5 1.5 2.0 2.0 2.4

4 Algorithm for MCCRS Problem

The basi
 idea to the solution 
an be found in [1℄. The algorithm for LRCS Prob-

lem have to be modi�ed in the 
omputation of the the measure of 
losest 
ommon

restri
ted subsequen
e. In the algorithm, the Boolean fun
tion Candidate gives the

value true if the pair (a

i

; �(a

i

)); (b

j

; �(b

j

)) is a potential 
andidate to in
rease the


losest 
ommon subsequen
e, false otherwise. The fun
tion Candidate is used in the

same form as in [1℄. The main part of the modi�
ation is designed in the program

text. It 
ould be proved (similar as for LRCS Algorithm in [1℄) that the modi�ed

algorithm 
omputes 
orre
tly the 
losest 
ommon restri
ted subsequen
e of two 
f-

strings and it works in O(m � n � p)-time and O(n+ r)-spa
e, where r = jfhi; ji : a

i

=

b

j

; 1 � i � m; 1 � j � ngj and p � minfm;ng is the number of elements in 
losest


ommon restri
ted subsequen
e.

The following dynami
 data stru
tures are used in the algorithm:

type vertex=re
ord

x, y: indi
es;

p: pointer;

end;

pointerv=^vertex;

genseq=re
ord

val: real;

pt:pointer;

end;

The main phase of the algorithm is the following:

{Omega is an alphabet of strings}

{Input: [(A, mvA), hA℄, [(B,mvB), hB℄ - two 
f-strings of symbols

with partitions over alphabet;

mvA, mvB - 
ompeten
e fun
tions of A and B}

{Output: pptr is the pointer to the 
losest 
ommon restri
ted

subsequen
e of A and B;}

{Variables: Arrays C, D[0..m℄ of the type genseq.}

{C[1..i℄, D[1..i℄ 
ontain pointers to the 
losest 
ommon

subsequen
es of A(1..i) and B(1..j);}

{hA[1..kA℄, hB[1..kB℄ - arrays of partitions of the strings A and B;}

{uA, uB - upper bounds of intervals in the partitions for 
urrent

positions i, j: uA\leq i, uB\leq j.}

{dA, dB - the numbers of intervals in the partitions,}

{pp - a pointer to the vertex.}
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Method:

begin

for j:=0 to n do

begin D[j℄.pt:=nil; D[j℄.val:=0; end;

C[0℄.pt:=nil; C[0℄.val:=0;

dA:=1; uA:=1;

for i:=1 to m do

begin if i>hA[dA℄ then begin in
(dA); uA:=hA[dA-1℄+1 end;

dB:=1; uB:=1;

for j:=1 to n do

begin if j>hB[dB℄ then begin in
(dB); uB:=hB[dB-1℄+1 end;

if a[i℄.el=b[j℄.el then

q:=Candidate(D[j-1℄.pt,a[i℄,uA,uB)

else q:=false;

if q then {***modified part***}

begin if a[i℄.mv<=b[j℄.mv then min:=a[i℄.mv

else min:=b[j℄.mv;

help:=D[j-1℄.val+min;

if (help>D[j℄.val) and (help>C[j-1℄.val) then

begin new(pp); pp^.p:=D[j-1℄.pt; pp^.x:=i; pp^.y:=j;

C[j℄.pt:=pp; C[j℄.val:=D[j-1℄.val+min;

end {***end of the modified part***}

end else

if D[j℄.val>=C[j-1℄.val then C[j℄:=D[j℄

else C[j℄:=C[j-1℄;

{Invariant1}

end; {Invariant2}

for j:=1 to n do D[j℄:=C[j℄;

end;

value := C[n℄.val; pptr:= C[n℄.pt;

{"value" 
ontains the value of the 
losest 
ommon restri
ted

subsequen
e and C[n℄.pt 
ontains pointer to the CCRS(A,B)}

end;

Example 6. The 
omputation ofMCCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) for the strings

in Example 2 a

ording to the algorithm MCCRS.

B |0.4 0.3 0.4 0.5 |0.3 0.5 0.6 |0.3 0.7 0.6 0.5|

A | b a b 
 | 
 a 
 | 
 b 
 b |

-------|--------------------------------------------------------

a 0.4 | 0.0 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4

b 0.2 | 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.4

_a_0.8_| 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6

a 0.4 | 0.2 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9

b 0.7 | 0.4 0.5 0.5 0.5 0.5 0.9 0.9 0.9 1.6 1.6 0.9

a 0.3 | 0.4 0.7 0.7 0.7 0.7 0.9 0.9 0.9 1.6 1.6 1.6


 0.3 | 0.4 0.7 0.7 1.0 0.7 0.9 1.2 0.9 1.6 1.9 1.9
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a 0.7 | 0.4 0.7 0.7 1.0 1.0 1.0 1.2 1.2 1.6 1.9 1.9

_
_0.5_| 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1

b 0.4 | 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1

a 0.8 | 0.4 0.7 0.7 1.2 1.2 1.7 1.7 1.7 1.7 2.1 2.1

_b_0.6_| 0.4 0.7 0.7 1.2 1.2 1.7 1.7 1.7 2.3 2.3 2.3

5 Algorithm for MSCCS Problem

The basi
 idea of the algorithm starts from the de�nition of the MSCCS Problem.

MSCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the 
ommon


f-subsequen
e of (A; �

A

) and (B; �

B

)g = (8)

max

p

f�

p

t=1

�

C

(


t

) : 


t

= a

k

t

= b

F (t)

i

and 0 < �

C

(


t

) = minf�

A

(a

k

t

); �

B

(b

F (t)

i

)g;

1 � t � p; 1 � k

1

< : : : < k

p

� m; 1 � i � n

F (t)

; 1 � F (1) � : : : � F (p) � ng (9)

The re
ursive version of the algorithm is 
onstru
ted a

ording to the following idea

(Figure 5.):

A

B

a

k

t

b

F (t)

i

1B

F (t)

�i

2B

F (t)

�i

Figure 5. The idea for the 
onstru
tion of algorithm

J

J

J

J

Designation.

� A = a

1

: : : a

m

; m � 1;B = B

1

: : : B

n

; n � 1; B

l

= fb

l

1

; b

l

2

; : : : ; b

l

n

l

g,

� MM [m;n℄ =MSCCS((A; �

A

); (B; �

B

)),

� MM [i; j℄ = MSCCS((A[1::i℄; �

A

); (B[1::j℄; �

B

)).

If an element 


t

is in the SGCD((A; �

A

); (B; �

B

)) then

MSCCS((A; �

A

); (B; �

B

)) = �(


t

) +

maxfMSCCS((A[1::k

t�1

℄; �

A

); (B[1::F (t� 1)℄1B

F (t)

�i

; �

B

)) +

MCCS((A[k

t+1

::m℄; �

A

); (B[F (t+ 1)::n℄2B

F (t)

�i

; �

B

))g (10)

where 1B

F (t)

�i

= (B

F (t)

� fb

F (t)

i

g)

1

and 2B

F (t)

�i

= (B

F (t)

� fb

F (t)

i

g)

2

are the disjoint

subsets 1B

F (t)

�i

and 2B

F (t)

�i

of the set (B

F (t)

� fb

F (t)

i

g) = 1B

F (t)

�i

[ 2B

F (t)

�i

and the

maximum is the maximal value over all disjoint partitions. The idea is shown in the

Figure 6. The time 
omplexity of the re
ursive version is exponential.

A 
attening of a sequen
e of sets is de�ned as a 
on
atenation, in order of the

sequen
e, of strings formed by some permutation of individual elements of the sets in
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the sequen
e. For example, the 
attening of the set-string A in example 3 is dada
abe

and so is adad
eba.

The very simple algorithm for MSCCS Problem 
an use Algorithm for MCCS

Problem for all pairs of the 
f-string A and the 
attening of the set-
f-string B. The

algorithm have to 
ompute and 
ompare results of �

n

j=1

jB

j

j pairs.

It is possible to represent the sets in the string B as the strings of symbols with all

permutations of elements (the method will be applied in the MSSCCS Algorithm).

Ea
h element of the string of symbols has the 
ompeten
e value the same as it has

in the set. Then it is possible to apply the algorithm for 
ommon subsequen
e with

a restri
ted use of elements [1℄.

The nonre
ursive algorithm is 
onstru
ted by the dynami
 programming method

and it has the following idea:

MM [i; j℄ = maxf MM [k � 1; j � 1℄ + V al(SCCS((A[k::i℄; �

A

); (B

j

; �

B

j

)));

MM [k; j � 1℄; k = 1; 2; : : : ; ig: (11)

The values of the matrixMM [�; �℄ 
an be 
omputed a

ording to 
olumns, the input

for j-th 
olumn is the matrix (j � 1)-th 
olumn. The set B

j


an mat
h better some

elements in the string A than the sets B

1

; : : : ; B

j�1

and it is ne
essary to 
ompute

these mat
hing values and to �nd the maximal value.

The following algorithm has a motivation in Hirs
hberg's and Larmore's method

[7℄ for SLCS Problem. We use the a data stru
ture U , whi
h is 
alled unique sta
k

(for 
ontrol of elements from the sets), but our unique sta
k works in a di�erent way.

It has the 
ondition that no member 
an o

ur twi
e or more in the sta
k. When

Push(U, x, k) is exe
uted for some element x, x is �rst 
ompared to the elements in

the sta
k. If x is in the sta
k in the position l then the 
ompeten
e values of the both

o

urren
es are 
ompared. If the 
ompeten
e value of the element x in the position

l is greater than the 
ompeten
e value of the new element x then the unique sta
k

is not modi�ed else the element in the position l is deleted and the new element x is

pushed on the top of the unique sta
k. In the sta
k are the elements of the string A

whi
h have best mat
hing to the some set in the string of sets B.

pro
edure Push(var U:Usta
k; x:Element; k:integer);

{Push the element x on the top of the unique sta
k U;

k is the index of x in the string A;

Competen
e values are less than Maxi1000;}

var Upom: Usta
k;

tophlp: integer;

kk: integer;

begin

kk:=top;

tophlp:=0;

Maxi:=Max1000;

while kk>=1 do

begin if (x.p<>U[kk℄.p) then

begin in
(tophlp); Uhlp[tophlp℄:=U[kk℄;

end else begin
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Maximum:=U[kk℄.mi;

if Maximum<x.mi then Maximum:= x.mi;

if Maximum>x.mi then

begin in
(tophlp);

Uhlp[tophlp℄:=U[kk℄;

Maxi:=Maximum;

end;

end;

de
(kk);

end;

top:=0;

for kk:=tophlp downto 1 do

begin in
(top); U[top℄:=Uhlp[kk℄; end;

if (Maxi<x.mi) or (Maxi=Max1000) then

begin in
(top); U[top℄:= x; best[x.p℄:=k;

end;

end; {Push}

The pro
edure Findpeaks sear
hes for the values peak[k℄; : : : ; peak[0℄ whi
h 
an

represent measures of the new 
andidates for SCCS. In Findpeak, as k de
reases,

U is the list of all elements in B

j

whi
h are found in the substring A[k+ 1::m℄ in the

order in whi
h they �rst o

ur and a

ording to their 
ompeten
e fun
tion. For any

x 2 U , first[x℄ is the index of that best o

urren
e.

pro
edure Findpeak(j: integer);

{ j - index of j-th set in the set-string B;

m - the length of the symbol string A;

top- global variable for the top of Unique sta
k.}

begin

top:=0;

for k:=m downto 0 do

begin measure:=Mi[k,j-1℄;

peak[k℄:=measure;

for x:=top downto 1 do

begin xx:=U[x℄.p;

Minimum:= Minim(U[x℄,B[j℄);

measure:=measure+Minimum;

peak[best[xx℄℄:= Maxim{measure,peak[best[xx℄℄};

end;

if k>0 then

if A[k℄.p in B[j℄.pp then Push(U,A[k℄,k);

end;

end;

The main algorithm has the following form:

Algorithm MSCCS:
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for i:=0 to m do MM[i,j℄:=0;

for j:=1 to n do

begin Findpeak(j);

MM[0,j℄:=0;

for i:=1 to m do

MM[i,j℄:= Maxim{peak[i℄,MM[i-1,j℄};

end;

Example 7. Let A = abaaba
ab; �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), B =

fa; b; 
gfbdgfb
g, �

B

1

(a) = 0:6; �

B

1

(b) = 0:6; �

B

1

(
) = 0:3; �

B

2

(b) = 0:9; �

B

2

(d) =

0:4; �

B

3

(b) = 0:6; �

B

3

(
) = 0:5 then MCCS(A;B) = 2:4 as it is 
omputed in the

following matrix.

B B1 B2 B3

a 0.6

b 0.6 b 0.9 b 0.6

A 
 0.3 d 0.4 
 0.5

---------------------

a 0.9 | 0.6 0.6 0.6

b 0.9 | 1.2 1.5 1.5

a 0.6 | 1.2 1.5 1.5

a 0.5 | 1.2 1.5 1.5

b 0.2 | 1.2 1.5 1.5

a 0.8 | 1.2 1.5 1.5


 0.4 | 1.5 1.5 1.9

a 0.6 | 1.5 1.5 1.9

b 0.5 | 1.5 2.0 2.4

The subsequen
e 
an be re
overed after the algorithm is �nished if an array of a

ba
kpointers to the best mat
hing elements is maintained. Corre
tness of the algo-

rithm follows from the following invariants:

(1) After the j-th iteration of main algorithm all values MM [i; j℄; 0 � i � m are


omputed. After the n-th iteration we have all values MM [i; n℄; 0 � i � m and

MM [m;n℄ = MCCS((A; �

A

); (B; �


alB

).

(2) Findpeak(j) 
omputes the best mat
hing of the j-th set B

j

, peak[j℄ �MM [i; j℄

and there exist some j

0

� j su
h that peak[j

0

℄ �MM [i; j℄.

Time 
omplexity. The main algorithm has the 
y
le for i and the 
all of pro
edure

Findpeak inside of the 
y
le for j. It means O(m � n � N)-time 
omplexity, where

N = �

n

j=1

; jB

j

j.

Spa
e 
omplexity. The presented algorithm requires O(m � n)-spa
e for the array

MM and O(m)-spa
e for the unique sta
k.

6 Algorithm for MSSCCS Problem

The basi
 idea of the algorithm is very similar to the previous algorithm for MSCCS.

It starts from the de�nition of MSSCCS Problem.

MSCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the 
ommon

13
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f � subsequen
e of (A; �

A

) and (B; �

B

)g (12)

If we have some 
attenings of both set-strings then it is possible to apply the

MCCS algorithm. It is ne
essary to 
ompute MCCS values of all pairs of all 
at-

tenings both set-strings but that is too time 
onsuming.

If we have the 
attening of one set-string and the se
ond is as set-string then it

is possible to use the MSCCS algorithms. But it is ne
essary to 
ompute MSCCS

value for all 
attenings of one string. This is also too time 
onsuming. Both algo-

rithms have exponential time 
omplexity.

It is possible to use the following algorithm of polynomial time 
omplexity. The

algorithm works in two steps:

1. to 
reate the string of symbols for ea
h of set-string; ea
h set 
an be en
oded

as the string of all permutations of its elements (the length of su
h string is

k

2

� 2 � k + 4, k is the number of elements in set [13℄);

2. to apply the MCCRS algorithm for the two 
onstru
ted strings (ea
h element

of the set 
an be used on
e at most);

The algorithm works in polynomial time: O(M

2

�N

2

�K), where M = �

m

i=1

jA

i

j; N =

�

n

j=1

jB

j

j, and K is the number of elements in 
losest 
ommon restri
ted subsequen
e.

7 Con
luding Remarks

Polynomial algorithms for the solutions of the MCCS Problem, MCCRS Problem and

MSCCS Problem with a 
ompeten
e fun
tions have been presented. The MSSCCS

Problem was formulated and the polynomial time algorithm for its solution was de-

veloped. However, we are 
onvin
ed of the existen
e of an algorithm with better time


omplexity.
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