The Closest Common Subsequence Problems!

Gabriela Andrejkova

Department of Computer Science, Faculty of Science, P. J. Safarik University,
Jesenna 5, 041 54 Kosice, Slovakia

e-mail: andrejk@kosice.upjs.sk

Abstract. Efficient algorithms are presented that solve general cases of the
Common Subsequence Problems, in which both input strings contain symbols
with competence values or sets of symbols with competence values. These prob-
lems arise from a searching of the sets of most similar strings.

Key words: Subsequence, common subsequence, measure of the string, dy-
namic programming, design and analysis of algorithms.

1 Introduction

The motivation to the CCS Problems can be found in the typing of a text on the
keyboard. The following mistakes can be made in typing some string:

1. Typing a different character, usually from the neighbour area of the given char-
acter.

2. Inserting a single character into the source string.
3. Omiting (skipping) any single source character.

In the most frequent mistakes, a character from the area on the keyboard adjacent
to the required character was typed instead of the required character. For example,
the neighborhood of the character fis the set f = {f,d, g, r, t, ¢, v}. The sequence of
sets A = f, r, e, s, ¢, 0 belongs to the word fresco. In this case (typing mistakes)
let us assign competence value (c.v.) to each element of the neighborhood in such
way that the character itself has c.v. 1 and the c.v.’s of "more erroneous” character
are smaller than those of the "better one”. For example, for set f we have pu(f) =
1, u(d) = 0.4, 1(g) = 0.4, u(r) = 0.2, u(t) = 0.4, u(c) = 0.3, u(v) = 0.3. We consider
that in the text, it is necessary to find the words which are very close to the word
fresco. We consider the sum of c.v.’s of a given string as a measure of its similarity of
the string to the given word fresco. The lengths of the found words can be different
to the length of the given word fresco. For example, if the word fresco is found in the
text then the measure of the similarity to the given word fresco is the length of the
word fresco (6), if the word tresc is found then the measure of the similarity is 4.4
because the symbol ¢ is very close to the symbol f and symbol o is omitted.

! This research was partially supported by Slovak Grant Agency for Science VEGA, project No.
1/4375/97

Proceedings of the Prague Stringology Club Workshop 99

It is possible to consider the described problem as the closest common subsequence
problem of the two similar strings and its repetition for text of strings.

The common subsequence problem of two strings is to determine one of the sub-
sequences that can be obtained by deleting zero or more symbols from each of the
given strings. It is possible to demand some additional properties for the common
subsequence. Usually, it is the greatest length of the common subsequence, but we
can consider some different measures for the common subsequence.

The longest common subsequence problem (LCS Problem) of two strings is to de-
termine the common subsequence with the maximal length. For example, the string
AGI is a common subsequence and the string ALGI is the longest common subse-
quence of the strings ALGORITHM and ALLEGATION. Algorithms for this problem
can be used in chemical and genetic applications and in many problems concerning
data and text processing [15], [12], [3]. Further applications include the string-to-
string correction problem [12] and determining the measure of differences between
text files [3]. The length of the longest common subsequence (LLCS Problem) can
determine the measure of differences (or similarities) of text files. The simulation
method for the approximate strings and sequence matching using the Levenstein
metric can be found in J. Holub [9] and the algorithm for the searching of the subse-
quences is in Z. Troni¢ek and B. Melichar [16].

D. S. Hirschberg and L. L. Larmore [7] have discussed a generalization of LCS
Problem, which is called Set LCS Problem (SLCS Problem) of two strings where
however the strings are not of the same type. The first string is a sequence of symbols
and the second string is a sequence of subsets over an alphabet). The elements of
each subset can be used as an arbitrary permutation of elements in the subset. The
longest common subsequence in this case is a sequence of symbols with maximal
length. The SLCS Problem has an application to problems in computer driven music
[7]. D. S. Hirschberg and L.L. Larmore have presented O(m - n)-time and O(m + n)-
space algorithm, m, n are the lengths of the strings. The Set-Set LCS Problem (SSLCS
Problem) is discussed by D. S. Hirschberg and L. L. Larmore [8]. In this case both
strings are strings of subsets over an alphabet 2. In the paper [8] is presented the
O(m - n)-time algorithm for the general SSLCS Problem.

In this paper we present algorithms for general cases of the Common Subsequence
Problem, it means Closest Common Subsequence Problems: CCS Problem (for two
strings of symbols), CCRS Problem (for two strings of symbols with restricted using
of the symbols), SCCS Problem (for one string of symbols and second string of symbol
sets) and SSCCS Problem (for two strings of symbol sets).

2 Basic Definitions

In this section, some basic definitions and results concerning to CCS Problem, SCCS
and SSCCS Problem are presented.

Let be a finite alphabet, || = s, P(2) the set of all subsets of Q, |P(Q2)| = 2°.

Let A = a1as...am,0; € 2,1 < i < m be a string over an alphabet (), where
|A| = m is the length of the string A.

Let pa(a;) € (0,1),1 < ¢ < m, be some competence (membership) values of
elements in the string A.

The Closest Common Subsequence Problems

The pair (A, p4) is the string A with the competence function 4, cf-string (A, p1)
for short. Val(A,) is a measure of (A,) defined by the (1).

Val(A, pa) = X2 pa(as) (1)
The string C' € P(Q2),C = ¢;...¢, is a subsequence of the string A = ay ...ay,, if
a monotonous increasing sequence of natural numbers 7; < ... <4, exists such that

cj = aj;, 1 < j < p. The string C'is a common subsequence of two strings A, B if C
is a subsequence of A and C'is a subsequence of B. |C] is the length of the common
subsequence. The classical problem to find the longest common subsequence is defined
and solved in Hirschberg [5].

The string (C, uc) is a subsequence with the competence function uc, cf-subsequence
for short of the cf-string (A, u4) if C' is a subsequence of the string A and 0 < pc(c;) <
pal(a;,), for 1T < t < p. The cf-subsequence (C,uc) is a closest cf-subsequence if
Val(C, po) = Zj_ype(ej) = X5_ palaiy).

The string (C, uc) is a common cf-subsequence of two cf-strings (A, p4) and
(B, up) if (C, pue) is a cf-subsequence of (A, pa) and (C, uc) is a cf-subsequence of
(Ba MB) :

The string (C, uc) is a closest common cf-subsequence of the cf-strings (A, 1) and
(B, up) if (C, pe) is a common cf-subsequence with the maximal value Val(C, ue).
It means, if (D, up) is a common cf-subsequence of the strings (A, p4) and (B, up)
then Val(D, up) < Val(C, uc).

If (C, pc) is a closest common cf-subsequence of the cf-strings, (A, u4) and (B, up)
then pc(e) = min{pa(ar,), ps(by)}, for 1 <t <p.

The CCS Problem: Let (A, pu4) and (B, ug) be cf-strings. To find a closest
common subsequence of the cf-strings (A, u4) and (B, ug), CCS((A, pa), (B, ug))
for short.

The MCCS Problem is to find the measure of CCS cf-string, MCC'S for
short. It means, MCCS((A, pa), (B, pup)) = Val(CCS((A, pa), (B, up))). ©

09 09 06 0.5 0.2 0.8 04 0.6 0.5
A @|> o ®© 9
B @ @\@

0.6 0.6 0.3 0.4 0.9 0.5 0.6

Figure 1. The closest common subsequence of two cf-strings A and B.

Example 1. Q={a,b,c}, A=abaabacab, m =9, B = abcdbch, n =
7, pa = (0.9,0.9,0.6,0.5,0.2,0.8,0.4,0.6,0.5), up = (0.6,0.6,0.3,0.4,0.9,0.5,0.6).
The string C' = abcb is a subsequence, C’ = abbeb is the longest common subsequence
of the strings A and B, and (C”, puc»), C” = abeb, ue» = (0.6,0.9,0.4,0.5) is the
closest common subsequence of the cf-strings (A, p4) and (B, ug), Val(C”, uc») =
MCCS((A, pa), (B, pup)) = 2.4 as it is shown in the Figure 1.

Let (A, pa) be the string A with the competence function py. A sequence of
indices, h* = hithi'hs' .. b, 0 =h{l <hi! <hi <...<hli=m1<k*<misa
partition of the string (A, pa).

Proceedings of the Prague Stringology Club Workshop 99

The sequence h* divides the string (A, uu4) in the following way:

A = laaz...apalapay - capa].Japa oo .ah£A| = subst{ substs ... subst,,
where subst! = Apa 4q---Qpa, 1 <0< kA [(A, pa), b is called the cf-string with
the partition.

For example, Q = {a, b, c}, A = |abalabacac|bab|,m = 12, uy = (0.4,.2,.8,.4,.7, .3,
3,.7,.5,.4,.8,.6), h" = 0,3,9,12; substy' = aba, substy = abacac, substs = bab.

A string C = cica...¢p, 1 <p < mis a restricted subsequence of the cf-string with
the partition [(4, j14), h*], if and only if

1. there exists a sequence of indices 1 < 7; < iy < ... < 4, < m such that
ait:Cta]-StSp) and

2. if hf,‘fl <y by < hf.‘ then ¢, # ¢,, forall r, 1 < r < k4,
(each element of an alphabet (subst2) can be used in C' once at most).

The string (C, pue) is a common restricted cf-subsequence of two cf-strings with par-
tition [(A, pa), h*] and [(B, pug), hB] if (C, uc) is a restricted cf-subsequence of
[(A, 14), h*] and (C, uc) is a restricted cf-subsequence of [(B, ug), hB] at once.

The string (C, uc) is a closest common restricted cf-subsequence of two cf-strings
with partition [(A, pa), h*] and [(B, up), h®] if (C,uc) is a common restricted cf-
subsequence with maximal value defined by (1).

The CCRS Problem: Let [(A, u4), h"] and [(B, up), h?] be the cf-strings. To
find the closest common subsequence of the cf-strings [(A, 4), k] and [(B, ug), h?],
CCRS([(A, pa), b, [(B, ug), hP]) for short.

The MCCRS Problem is to find the measure of CCRS cf-string, MCCRS
for short. Tt means, MCCORS([(A, pa), k], (B, ug), h?]) = Val(CCRS([(A, pa), h1],
(B, pp), hP])). o

0.4 02 0.8 04 0.7 03 03 07 05 04 0.8 0.6

e o|oo o]

_——

B=® @ ® © @@@|@@@@

04 03 04 05" 0305 06 "'03 0706 05

Figure 2. Closest common restricted subsequence of two strings A and B.

Example 2. Q= {a,b,c}, A= |aba|abacac|bab|l,m =12, us = (0.4,0.2,0.8,0.4,
0.7,0.3,0.3,0.7,0.5,0.4,0.8,0.6), h* = 0,3,9,12; B = |babc|cac|cbeb|,n = 11, pg =
(0.4,0.3,0.4,0.5,0.3,0.5,0.6,0.3,0.7,0.6,0.5). The string C' = bacb is a restricted sub-
sequence, C' = bacab is the closest restricted common subsequence with measure 2.3
as it can be seen in Figure 2. The string C” = babcacbb is the longest common sub-
sequence of the strings A = abaabacacbab and B = babccaccbeb if the partition does
not matter.

A string of sets, set-string for short, B over an alphabet 2 is any finite sequence of
sets from P (). Formally, B= B'B%...B", B' € P(Q),1 < i < n, n is the number of

The Closest Common Subsequence Problems

sets in B. The length of the symbol string described by B is N = £ | |B¢|. The pair
(B, ug) is the set-string B with the competence functions g, set-cf-string for short.

A string of symbols C' = cicz...cp,c; € Q,1 < i < p, is a subsequence of symbols
(subsequence, for short) of the set-string B if there is a nonincreasing mapping F :
{1,2,...,p} = {1,2,...,n}, such that

1. if F(i) =k then ¢; € By, fori=1,2,...,p
2. if F(i) =k and F(j) =k and i # j then ¢; # ;.

The combination of a string and a set-string and the finding of their closest common
cf-subsequence leads to the solution of problems in above motivation.

Let (A, pa), be cf-string over Q and (B, ug) be a set-cf-string over P(Q2). The
cf-string (C, uc) is a common cf-subsequence of (A, pua) and (B, ug) if (C,pc) is a
cf-subsequence of A and (C,puc) is a cf-subsequence of the set-string B. A clos-
est common cf-subsequence of the cf-string (A, p4) and the set-ct-string (B, ug),
SCCS((A, pra), (B, ug)) is a common cf-subsequence (C, p1¢) with the maximal value
Val(C, pc). Note that (C, puc) is not unique in general way.

The SCCS Problem: The Set closest Common Subsequence problem of the cf-
string (A, u4) and the set-cf-string (B, ug), SCCS((A, pa), (B, us)) for short, consists
of finding a closest common cf-subsequence (C,).

The MSCCS Problem consists of finding the measure of SCC'S cf-string,
MSCCS for short.
This means that MSCCS((A, pa), (B, ug)) = Val(SCCS((A, ua), (B, ug))), ©

0.9 09 0.6 0.5 0.2 0.8 0.4 0.6 0.5

-{@ ©® oH ® o o e}
06 0.6 0.3 0.9 04 0.6 0.5
Figure 3. The closest common subsequence of two strings A and B.

A—

Example 3. Let A = abaabacab,pa = (0.9,0.9,0.6,0.5,0.2,0.8,0.4,0.6,0.5), B =
{a,b,c}{b,d}{b,c}, pupi(a) = 0.6, upi1(b) = 0.6, up1(c) = 0.3, up2(b) = 0.9, up=(d) =
0.4, ups(b) = 0.6, pupz(c) = 0.5. Then MSCCS((A, pa), (B, us)) = 2.4 as it is shown
in the Figure 3.

Let A = A'...A™ B = B'...B" 1 < m < n, be two set-strings of sets over
an alphabet 2. The string of symbols C' is a common subsequence of symbols of A
and B is C' a subsequence of symbols of A and C' is a subsequence of symbols of the
set-string B. The longest common subsequence problem of the set-strings A and B
(SSLCS(A, B) consists of finding a common subsequence of symbols C' of the maximal
length. Note that (' is not in general unique.

The SSCCS Problem: Let (A, p4), (B, us) be two set-cf-string.

The Set-Set Closest Common Subsequence problem of the set-cf-strings (A, p4) and
(B, 1u5), (SSCCS((A, pa), (B, us)) for short, consists of finding a closest common cf-
subsequence (C, puc).

Proceedings of the Prague Stringology Club Workshop 99

The MSSCCS Problem consists of finding the measure of SSCCS set-cf-
string, MSSCC'S for short.
It means, MSSCCS((A, pa), (B,) = Val(SSCCS((A, pa), (B, us))), ¢

}

OH® ©F

0.5 0.3

H~

® O 6 @
B{@/ /}{@@/Q@r @

0.7 0.3 .6 04 0.5, 0.6 0.3 0.8
A 9 0.5
Figure 4. The closest common subsequence of two set-strings A and B.

A{® DHO ® BRO ©

]
o

3 0.5 0.7 0.6 0.8 0

Example 4. Let A = {a,d},{c,a,d},{e,b,a},m = 3, uyp = (0.7,0.3), iz =
(0.6,0.4,0.5), a2 = (0.6,0.3,0.8), B={d,e,c},{a,d, e}, {b,d,c},{b,d},n=4. up =
(0.4,0.3,0.5), upz = (0.7,0.6,0.8), ups = (0.9,0.5,0.7), ups = (0.5,0.3). The compe-
tence values are described according to the named order in the set. For example,
pai(a) =0.7, par(d) = 0.3.

Then MSSCCS((A, pa), (B, ug)) = 2.4 as it is shown in the Figure 4.

3 Algorithm for MCCS Problem

From the definition of MSSC Problem it follows:

MCCS((A, pa), (B, pup)) = mazcu){Val(C, ue) : (C, pue)is the common
cf — subsequence of (A, pa)and (B, ug)} (2)

The expression (2) can be written in the following way

= maxcuc){Si—ipclc) e =ap, =b,, 1 <t <p, 1 <k <...<k,<m,
1<l <...<l, <n}and0 < pc(e) = min{pa(ag,), ps(by,)}- (3)

It means

MCCS((A, pa), (B, pp)) = maz{S_ymin{palar,), psby,)}t : ak, = by,
1<t<p, 1<k <...<k,<m1<l<...<l,<n} (4)

Let M,,;, be a matrix defined as follows:

s 41 — mzn{/'LA(aZ)al'LB(b])a }7 if a; = b]
Maninli,] = { 0, otherwise. (5)

The expression (4) is the basis for the following algorithm and it should be written
now in the following way:

MCCS((A, pa), (B, pp)) = maz{Si_, Mpin ki, 1]
ky<...<ky,<m,1<l<...<l,<n} (6)

The Closest Common Subsequence Problems

The expression (6) can be used in the recursive algorithm or nonrecursive algorithm
using the method of dynamic programming.

Designation.
o Ali..k] = ajaiyy...ax, for 1 <i <k <m,
o MM[m,n] = MCCS((A, ppa), (B, us)),
o MM]i,j] = MOCS((A[L..i), j1a), (B[L..j], us)).

Recursive version of the algorithm is constructed according to the following idea:
If an element ¢; is in the CCS((A, a), (B, up)) then the strings can be split into two
parts and

MCCS((A, pa), (B, pg)) = pler) +MCCOS((A[L.kia], pa), (B[1..li—1], pug))
+MCCS((Alkiy1--m], pa), (Blliyr--n], pg)) (7)

The recursive version of the algorithm has exponential time complexity. Some com-
putations are repeated and it means in the algorithm, it is possible to use the dynamic
programming method to compute the partial values M MTi, j|] once only and to use
them in the following computations.

In the algorithm, two functions are used: The function Minim computes mini-
mum of two values, the function Mazim computes maximum of three values. The
i—th line of the matrix MM is computed from two lines (i — 1)—th and the already
computed part of i—th column. It means that the space complexity of the algorithm
can be reduced to O(n), for m < n. The algorithm works in the O(m=n) time. It can
be written in the following simple form (without the construction of the matrix M,,;,):

Algorithm MCCS:

for i:=0 to m do MM[i,0]:=0;
for j:=1 to n do MM[O,j]:=0;

for i:=1 to m do
for j:=1 to n do

begin
if al[i]l=b[j] then help:=MM[i-1,j-1] + Minim(miA[i],miB[j])
else help:=0;
MM[i,j]:= Maxim(MM[i-1,j], help, MM[i, j-11);
end;

Example 5. The computation of MCCS((A, pa), (B, ug)) for the strings in Example
1 according to the algorithm MCCS.

Proceedings of the Prague Stringology Club Workshop 99

a0.51] 0.6 1.2 1.2 1.2 1.5 1.5 1.5
b 0.2 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7
a0.8] 0.6 1.2 1.2 1.2 1.5 1.5 1.7
c0.4] 0.6 1.2 1.5 1.5 1.5 1.9 1.9
a0.61 0.6 1.2 1.5 1.5 1.5 1.9 1.9
b 0.5 | 0.6 1.2 1.5 1.5 2.0 2.0 2.4

4 Algorithm for MCCRS Problem

The basic idea to the solution can be found in [1]. The algorithm for LRCS Prob-
lem have to be modified in the computation of the the measure of closest common
restricted subsequence. In the algorithm, the Boolean function Candidate gives the
value true if the pair (a;, pu(a;)), (b;, (b;)) is a potential candidate to increase the
closest common subsequence, false otherwise. The function Candidate is used in the
same form as in [1]. The main part of the modification is designed in the program
text. It could be proved (similar as for LRCS Algorithm in [1]) that the modified
algorithm computes correctly the closest common restricted subsequence of two cf-
strings and it works in O(m - n - p)-time and O(n + r)-space, where r = |{(i,j) : a; =
bj,1 <i<m,1<j<n} and p < min{m,n} is the number of elements in closest
common restricted subsequence.
The following dynamic data structures are used in the algorithm:

type vertex=record
X, y: indices;
p: pointer;
end;
pointerv="vertex;
genseq=record
val: real;
pt:pointer;
end;

The main phase of the algorithm is the following:

{Omega is an alphabet of strings}
{Input: [(A, mvA), hA]l, [(B,mvB), hB] - two cf-strings of symbols
with partitions over alphabet;
mvA, mvB - competence functions of A and B}
{Output: pptr is the pointer to the closest common restricted
subsequence of A and B;}
{Variables: Arrays C, D[0..m] of the type genseq.}
{C[1..i], D[1..i] contain pointers to the closest common
subsequences of A(1..i) and B(1..j);}
{hA[1..kA], hB[1..kB] - arrays of partitions of the strings A and B;}
{uA, uB - upper bounds of intervals in the partitions for current
positions i, j: uA\leq i, uB\leq j.}
{dA, dB - the numbers of intervals in the partitioms,}
{pp - a pointer to the vertex.}

The Closest Common Subsequence Problems

Method:
begin
for j:=0 to n do
begin D[j].pt:=nil; D[j].val:=0; end;
C[0].pt:=nil; C[0].val:=0;
dA:=1; uA:=1;
for i:=1 to m do
begin if i>hA[dA] then begin inc(dA); uA:=hA[dA-1]+1 end;
dB:=1; uB:=1;
for j:=1 to n do
begin if j>hB[dB] then begin inc(dB); uB:=hB[dB-1]+1 end;
if a[i].el=b[j].el then
q:=Candidate(D[j-1] .pt,ali],ud,uB)
else q:=false;
if q then {***modified part*xx*}
begin if alil .mv<=b[j].mv then min:=ali].mv
else min:=b[j] .mv;
help:=D[j-1].val+min;
if (help>D[j].val) and (help>C[j-1].val) then
begin new(pp); pp~.p:=D[j-1].pt; pp~.x:=i; pp~.y:=j;
CLj].pt:=pp; C[jl.val:=D[j-1].val+min;
end {**xend of the modified part*xx*}
end else
if D[j].val>=C[j-1].val then C[j]:=D[j]
else C[jl:=C[j-11;
{Invarianti}
end; {Invariant2}
for j:=1 to n do D[jl:=C[j];
end;
value := C[n].val; pptr:= C[n].pt;
{"value" contains the value of the closest common restricted
subsequence and C[n].pt contains pointer to the CCRS(A,B)}
end;

Example 6. The computation of MCCRS([(A, pa), h4],[(B, ug), hP]) for the strings
in Example 2 according to the algorithm MCCRS.

B 0.4 0.3 0.4 0.5 10.3 0.5 0.6 10.3 0.7 0.6 0.5]

A | b a b c | c a c | c b c b |
_______ | S
a 0.4 | 0.0 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4
b 0.2 | 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.4
_a_0.8_| 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6
a 0.4 | 0.2 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9
b 0.7 | 0.4 0.5 0.5 0.5 0.5 0.9 0.9 0.9 1.6 1.6 0.9
a 0.3 | 0.4 0.7 0.7 0.7 0.7 0.9 0.9 0.9 1.6 1.6 1.6
c 0.3 | 0.4 0.7 0.7 1.0 0.7 0.9 1.2 0.9 1.6 1.9 1.9

Proceedings of the Prague Stringology Club Workshop 99

a 0.7 | 0.4 0.7 0.7 1.0 1.0 1.0 1.2 1.2 1.6 1.9 1.9
_c_0.5_]| 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1
b 0.4 | 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1
a 0.8 | 0.4 0.7 o7 1.2 1.2 1.7 1.7 1.7 1.7 2.1 2.1
b_0.6_]| 0.4 0.7 o7 1.2 1.2 1.7 1.7 1.7 2.3 2.3 2.3

5 Algorithm for MSCCS Problem

The basic idea of the algorithm starts from the definition of the M. SCC'S Problem.

MSCCS((A, pa), (B, pp)) = mazc) {Val(C, ue) : (C, pe) is the common
cf-subsequence of (A, pa) and (B, ug)} = (8)

maz, {S_ pe(cr) - o = ar, = b P and 0 < pe(er) = min{paar,), ps(b ")},

1<t<p 1<k <...<k,<m1<i<npy,1<F1)<...<F()<n} (9

The recursive version of the algorithm is constructed according to the following idea
(Figure 5.):

A A,

B 1BFW pF®) opF®

1) —1

Figure 5. The idea for the construction of algorithm

Designation.
e A=ay...ap,,m>1,B=B'...B", n>1,B' = {i, bé,...,nl}
e MM[m,n| = MSCCS((A, pa), (B, us)),
o MMTJi,jl = MSCCS((A[1..¢], pa), (B[1..4], us))-

If an element ¢, is in the SGCD((A, pa), (B, pg)) then

MSCCS((A, pa), (B, pus)) = pler) +
maz{ MSCCS((A[1..ky_1], pa), (B[L.F(t — D)]1BTD 1p)) +
MCCS((Alky1.m), pa), (BIF(t + 1).n]2B"9 up)} (10)

where 1Bi-(t) = (BF®) — {I)F(lt)})1 and QBF = (- {b }) are the disjoint
subsets IBZ-(t) and 2Bi() of the set (BF® {b }) = 1B~ (t) U2B~ () and the
maximum is the maximal value over all disjoint partitions. The 1dea is shown in the
Figure 6. The time complexity of the recursive version is exponential.

A flattening of a sequence of sets is defined as a concatenation, in order of the
sequence, of strings formed by some permutation of individual elements of the sets in

The Closest Common Subsequence Problems

the sequence. For example, the flattening of the set-string A in example 3 is dadacabe
and so is adadceba.

The very simple algorithm for MSCCS Problem can use Algorithm for MCCS
Problem for all pairs of the cf-string A and the flattening of the set-cf-string B. The
algorithm have to compute and compare results of H?:1|Bj| pairs.

It is possible to represent the sets in the string B as the strings of symbols with all
permutations of elements (the method will be applied in the MSSCCS Algorithm).
Each element of the string of symbols has the competence value the same as it has
in the set. Then it is possible to apply the algorithm for common subsequence with
a restricted use of elements [1].

The nonrecursive algorithm is constructed by the dynamic programming method
and it has the following idea:

MM][i,j] = maz{ MM][k—1,j — 1] + Val(SCOS((A[k..i], 1), (B, i),
MMk, j—1],k=1,2,...,i}. (11)

The values of the matrix M M[x,] can be computed according to columns, the input
for j-th column is the matrix (5 — 1)-th column. The set B’ can match better some
elements in the string A than the sets B',..., B! and it is necessary to compute
these matching values and to find the maximal value.

The following algorithm has a motivation in Hirschberg’s and Larmore’s method
[7] for SLCS Problem. We use the a data structure U, which is called unique stack
(for control of elements from the sets), but our unique stack works in a different way.
It has the condition that no member can occur twice or more in the stack. When
Push(U, z, k) is executed for some element z, x is first compared to the elements in
the stack. If z is in the stack in the position [then the competence values of the both
occurrences are compared. If the competence value of the element z in the position
[is greater than the competence value of the new element x then the unique stack
is not modified else the element in the position [is deleted and the new element x is
pushed on the top of the unique stack. In the stack are the elements of the string A
which have best matching to the some set in the string of sets B.

procedure Push(var U:Ustack; x:Element; k:integer);
{Push the element x on the top of the unique stack U;
k is the index of x in the string A;
Competence values are less than Maxil000;}
var Upom: Ustack;
tophlp: integer;

kk: integer;
begin
kk:=top;
tophlp:=0;

Maxi:=Max1000;

while kk>=1 do

begin if (x.p<>U[kk].p) then
begin inc(tophlp); Uhlp[tophlp]:=U[kk];
end else begin

Proceedings of the Prague Stringology Club Workshop 99

Maximum:=U[kk] .mi;
if Maximum<x.mi then Maximum:= x.mi;
if Maximum>x.mi then
begin inc(tophlp);
Uhlp[tophlp] :=U[kk];
Maxi:=Maximum;
end;
end;
dec (kk) ;
end;
top:=0;
for kk:=tophlp downto 1 do
begin inc(top); Ultop]:=Uhlp[kk]; end;
if (Maxi<x.mi) or (Maxi=Max1000) then
begin inc(top); Ultopl:= x; best[x.pl:=k;

end;
end; {Push}
The procedure Findpeaks searches for the values peakl[k], ..., peak[0] which can

represent measures of the new candidates for SCCS. In Findpeak, as k decreases,
U is the list of all elements in B; which are found in the substring A[k + 1..m] in the
order in which they first occur and according to their competence function. For any
x € U, first[z] is the index of that best occurrence.

procedure Findpeak(j: integer);

{ j - index of j-th set in the set-string B;
m - the length of the symbol string A;
top- global variable for the top of Unique stack.}

begin
top:=0;
for k:=m downto O do
begin measure:=Mil[k, j-1];
peak [k] :=measure;
for x:=top downto 1 do
begin xx:=U[x].p;
Minimum:= Minim(U[x],B[j]);
measure:=measure+Minimum;
peak[best[xx]]:= Maxim{measure,peak[best[xx]]};
end;
if k>0 then
if A[k].p in B[j].pp then Push(U,A[k],k);
end;
end;

The main algorithm has the following form:

Algorithm MSCCS:

The Closest Common Subsequence Problems

for i:=0 to m do MM[i,j]:=0;
for j:=1 to n do
begin Findpeak(j);
MM[O, j1:=0;
for i:=1 to m do
MM[i,j]:= Maxim{peak[i],MM[i-1,j]1};
end;

Example 7. Let A = abaabacab, i = (0.9,0.9,0.6,0.5,0.2,0.8,0.4,0.6,0.5),

B =
{a,b, c}{bd}{bc}, ppi(a) = 0.6, up1(b) = 0.6, upi(c) = 0.3, up2(b) = 0.9, up2(d) =
0.4, ugs(b) = 0.6, ups(c) = 0.5 then MCCS(A,B) = 2.4 as it is computed in the
following matrix.

B B1 B2 B3

a 0.6
b0.6 b0.9 bo0.6
A c 0.3 4d0.4 ¢ 0.5
a 0.9 | 0.6 0.6 0.6
b 0.9 | 1.2 1.5 1.5
a 0.6 | 1.2 1.5 1.5
a 0.5 | 1.2 1.5 1.5
b 0.2 | 1.2 1.5 1.5
a 0.8 | 1.2 1.5 1.5
c 0.4 | 1.5 1.5 1.9
a 0.6 | 1.5 1.5 1.9
b 0.5 | 1.5 2.0 2.4

The subsequence can be recovered after the algorithm is finished if an array of a
backpointers to the best matching elements is maintained. Correctness of the algo-
rithm follows from the following invariants:

(1) After the j-th iteration of main algorithm all values M M[i, j],0 < i < m are
computed. After the n-th iteration we have all values M M[i,n],0 < i < m and
MM[ma n] = MCCS((Aa HJA); (Ba McalB)-

(2) Findpeak(j) computes the best matching of the j-th set B’ peak[j] < M M][i, j]
and there exist some jo < j such that peak[jo] > MM]i, j].

Time complexity. The main algorithm has the cycle for ¢ and the call of procedure
Findpeak inside of the cycle for j. It means O(m - n - N)-time complexity, where
N =%, |B|.

Space complezity. The presented algorithm requires O(m - n)-space for the array

MM and O(m)-space for the unique stack.

6 Algorithm for MSSCCS Problem

The basic idea of the algorithm is very similar to the previous algorithm for MSCCS.
It starts from the definition of M SSCCS Problem.

MSCCS((A, pa), (B, up)) = mazcu{Val(C, pe) : (C, pe) is the common

Proceedings of the Prague Stringology Club Workshop 99

cf — subsequenceof (A, pa) and (B, pg) } (12)

If we have some flattenings of both set-strings then it is possible to apply the
MCCS algorithm. It is necessary to compute MCC'S values of all pairs of all flat-
tenings both set-strings but that is too time consuming.

If we have the flattening of one set-string and the second is as set-string then it
is possible to use the M SCCS algorithms. But it is necessary to compute M SCC'S
value for all flattenings of one string. This is also too time consuming. Both algo-
rithms have exponential time complexity.

It is possible to use the following algorithm of polynomial time complexity. The
algorithm works in two steps:

1. to create the string of symbols for each of set-string; each set can be encoded
as the string of all permutations of its elements (the length of such string is
k* — 2 -k + 4, k is the number of elements in set [13]);

2. to apply the MCCRS algorithm for the two constructed strings (each element
of the set can be used once at most);

The algorithm works in polynomial time: O(M?- N?- K), where M = ¥, |AY|, N =
I/ |B7|, and K is the number of elements in closest common restricted subsequence.

7 Concluding Remarks

Polynomial algorithms for the solutions of the MCCS Problem, MCCRS Problem and
MSCCS Problem with a competence functions have been presented. The MSSCCS
Problem was formulated and the polynomial time algorithm for its solution was de-
veloped. However, we are convinced of the existence of an algorithm with better time
complexity.

References

[1] Andrejkova, G.: The longest restricted common subsequence problem. Proceedings
of the Prague Stringology Club Workshop’98, Prague, 1998, p. 14-25.

[2] Dewar, R. B., Merritt, S. M., Sharir, M.: Some modified algorithms for Dijkstra’s
longest common subsequence problem. Acta Informatica 18, 1982, p. 1-15.

[3] Heckel, P.: A technique for isolating differences between files. Comm. ACM 21, 4
(Apr. 1978), p. 264-268.

[4] Hirschberg, D. S.: A linear space algorithms for computing mazimal common
subsequences. Comm. ACM 18, 6 (June 1975), p. 341-343.

[5] Hirschberg, D. S.: Algorithms for longest common subsequence problem. Journal
ACM 24, 4 (Oct 1977), p. 664-675.

[6] Hirschberg, D.S.: The least weight subsequence problem. Symp. on FCT, October,
1985, p. 137-143.

The Closest Common Subsequence Problems

[7] Hirschberg, D. S., Larmore, L. L.: The Set LCS Problem. Algorithmica 2 (1987),
p. 91-95.

[8] Hirschberg, D. S., Larmore, L. L.: Set-Set LCS Problem. Algorithmica 4 (1989),
p. 503-510.

[9] Holub, J.: Dynamic Programming for Reduced NFAs for Approximate String and
Sequence Matching. Proceedings of the Prague Stringology Club Workshop’98,
Prague, 1998, p. 73-82.

[10] Huang, S. S., Asuri, S. H.: Algorithms for the Set-LCS and Set-Set-LCS Prob-
lems. Tech. Report No. UH-CS-89-09, University of Houston, March, 1989.

[11] Hunt, J. W., Szymanski, T. G.: A fast algorithm for computing longest common
subsequences. Comm. ACM 20, 5 (May 1977), p. 350-351.

[12] Lowrance, R., Wagner, R. A.: An extension of the string-to-string correction
problems. Journal ACM 22, 2 (Apr. 1975), p. 177-183.

[13] Mohanty, S. P.: Shortest string containing all permutations. Discrete Mathemat-
ics 31, 1980, p. 91-95.

[14] Nakatsu, N., Kombayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar text strings. Acta Informatica 18, 1982, p. 171-179.

[15] Needleman, S. B., Wunsch, Ch. D.: A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal Mol. Biol. 48,
1970, p. 443-453.

[16] Tronicek, Z., Melichar, B.: Directed Acyclic Subsequence Graph. Proceedings of
the Prague Stringology Club Workshop’98, Prague, 1998, p. 107-118.

