
The Closest Common Subsequen
e Problems

1

Gabriela Andrejkov�a

Department of Computer S
ien
e, Fa
ulty of S
ien
e, P. J.

�

Saf�arik University,

Jesenn�a 5, 041 54 Ko�si
e, Slovakia

e-mail: andrejk�kosi
e.upjs.sk

Abstra
t. EÆ
ient algorithms are presented that solve general
ases of the

Common Subsequen
e Problems, in whi
h both input strings
ontain symbols

with
ompeten
e values or sets of symbols with
ompeten
e values. These prob-

lems arise from a sear
hing of the sets of most similar strings.

Key words: Subsequen
e,
ommon subsequen
e, measure of the string, dy-

nami
 programming, design and analysis of algorithms.

1 Introdu
tion

The motivation to the CCS Problems
an be found in the typing of a text on the

keyboard. The following mistakes
an be made in typing some string:

1. Typing a di�erent
hara
ter, usually from the neighbour area of the given
har-

a
ter.

2. Inserting a single
hara
ter into the sour
e string.

3. Omiting (skipping) any single sour
e
hara
ter.

In the most frequent mistakes, a
hara
ter from the area on the keyboard adja
ent

to the required
hara
ter was typed instead of the required
hara
ter. For example,

the neighborhood of the
hara
ter f is the set f = ff,d, g, r, t,
, vg. The sequen
e of

sets A = f, r, e, s,
, o belongs to the word fres
o. In this
ase (typing mistakes)

let us assign
ompeten
e value (
.v.) to ea
h element of the neighborhood in su
h

way that the
hara
ter itself has
.v. 1 and the
.v.'s of "more erroneous"
hara
ter

are smaller than those of the "better one". For example, for set f we have �(f) =

1; �(d) = 0:4; �(g) = 0:4; �(r) = 0:2; �(t) = 0:4; �(
) = 0:3; �(v) = 0:3. We
onsider

that in the text, it is ne
essary to �nd the words whi
h are very
lose to the word

fres
o. We
onsider the sum of
.v.'s of a given string as a measure of its similarity of

the string to the given word fres
o. The lengths of the found words
an be di�erent

to the length of the given word fres
o. For example, if the word fres
o is found in the

text then the measure of the similarity to the given word fres
o is the length of the

word fres
o (6), if the word tres
 is found then the measure of the similarity is 4.4

be
ause the symbol t is very
lose to the symbol f and symbol o is omitted.

1

This resear
h was partially supported by Slovak Grant Agen
y for S
ien
e VEGA, proje
t No.

1/4375/97

1

Pro
eedings of the Prague Stringology Club Workshop '99

It is possible to
onsider the des
ribed problem as the
losest
ommon subsequen
e

problem of the two similar strings and its repetition for text of strings.

The
ommon subsequen
e problem of two strings is to determine one of the sub-

sequen
es that
an be obtained by deleting zero or more symbols from ea
h of the

given strings. It is possible to demand some additional properties for the
ommon

subsequen
e. Usually, it is the greatest length of the
ommon subsequen
e, but we

an
onsider some di�erent measures for the
ommon subsequen
e.

The longest
ommon subsequen
e problem (LCS Problem) of two strings is to de-

termine the
ommon subsequen
e with the maximal length. For example, the string

AGI is a
ommon subsequen
e and the string ALGI is the longest
ommon subse-

quen
e of the strings ALGORITHM and ALLEGATION. Algorithms for this problem

an be used in
hemi
al and geneti
 appli
ations and in many problems
on
erning

data and text pro
essing [15℄, [12℄, [3℄. Further appli
ations in
lude the string-to-

string
orre
tion problem [12℄ and determining the measure of di�eren
es between

text �les [3℄. The length of the longest
ommon subsequen
e (LLCS Problem)
an

determine the measure of di�eren
es (or similarities) of text �les. The simulation

method for the approximate strings and sequen
e mat
hing using the Levenstein

metri

an be found in J. Holub [9℄ and the algorithm for the sear
hing of the subse-

quen
es is in Z. Tron���
ek and B. Meli
har [16℄.

D. S. Hirs
hberg and L. L. Larmore [7℄ have dis
ussed a generalization of LCS

Problem, whi
h is
alled Set LCS Problem (SLCS Problem) of two strings where

however the strings are not of the same type. The �rst string is a sequen
e of symbols

and the se
ond string is a sequen
e of subsets over an alphabet
. The elements of

ea
h subset
an be used as an arbitrary permutation of elements in the subset. The

longest
ommon subsequen
e in this
ase is a sequen
e of symbols with maximal

length. The SLCS Problem has an appli
ation to problems in
omputer driven musi

[7℄. D. S. Hirs
hberg and L.L. Larmore have presented O(m � n)-time and O(m+ n)-

spa
e algorithm,m;n are the lengths of the strings. The Set-Set LCS Problem (SSLCS

Problem) is dis
ussed by D. S. Hirs
hberg and L. L. Larmore [8℄. In this
ase both

strings are strings of subsets over an alphabet
. In the paper [8℄ is presented the

O(m � n)-time algorithm for the general SSLCS Problem.

In this paper we present algorithms for general
ases of the Common Subsequen
e

Problem, it means Closest Common Subsequen
e Problems:CCS Problem (for two

strings of symbols), CCRS Problem (for two strings of symbols with restri
ted using

of the symbols), SCCS Problem (for one string of symbols and se
ond string of symbol

sets) and SSCCS Problem (for two strings of symbol sets).

2 Basi
 De�nitions

In this se
tion, some basi
 de�nitions and results
on
erning to CCS Problem, SCCS

and SSCCS Problem are presented.

Let
 be a �nite alphabet, j
j = s; P (
) the set of all subsets of
; jP (
)j = 2

s

.

Let A = a

1

a

2

: : : a

m

; a

i

2
; 1 � i � m be a string over an alphabet
, where

jAj = m is the length of the string A.

Let �

A

(a

i

) 2 (0; 1i; 1 � i � m; be some
ompeten
e (membership) values of

elements in the string A.

2

The Closest Common Subsequen
e Problems

The pair (A; �

A

) is the string A with the
ompeten
e fun
tion �

A

,
f-string (A; �

A

)

for short. V al(A; �

A

) is a measure of (A; �

A

) de�ned by the (1).

V al(A; �

A

) = �

m

i=1

�

A

(a

i

) (1)

The string C 2 P (
); C =

1

: : :

p

is a subsequen
e of the string A = a

1

: : : a

m

, if

a monotonous in
reasing sequen
e of natural numbers i

1

< : : : < i

p

exists su
h that

j

= a

i

j

; 1 � j � p. The string C is a
ommon subsequen
e of two strings A;B if C

is a subsequen
e of A and C is a subsequen
e of B. jCj is the length of the
ommon

subsequen
e. The
lassi
al problem to �nd the longest
ommon subsequen
e is de�ned

and solved in Hirs
hberg [5℄.

The string (C; �

C

) is a subsequen
e with the
ompeten
e fun
tion �

C

,
f-subsequen
e

for short of the
f-string (A; �

A

) if C is a subsequen
e of the string A and 0 < �

C

(

t

) �

�

A

(a

i

t

), for 1 � t � p. The
f-subsequen
e (C; �

C

) is a
losest
f-subsequen
e if

V al(C; �

C

) = �

p

j=1

�

C

(

j

) = �

p

j=1

�

A

(a

i

j

).

The string (C; �

C

) is a
ommon
f-subsequen
e of two
f-strings (A; �

A

) and

(B; �

B

) if (C; �

C

) is a
f-subsequen
e of (A; �

A

) and (C; �

C

) is a
f-subsequen
e of

(B; �

B

).

The string (C; �

C

) is a
losest
ommon
f-subsequen
e of the
f-strings (A; �

A

) and

(B; �

B

) if (C; �

C

) is a
ommon
f-subsequen
e with the maximal value V al(C; �

C

).

It means, if (D; �

D

) is a
ommon
f-subsequen
e of the strings (A; �

A

) and (B; �

B

)

then V al(D; �

D

) � V al(C; �

C

).

If (C; �

C

) is a
losest
ommon
f-subsequen
e of the
f-strings, (A; �

A

) and (B; �

B

)

then �

C

(

t

) = minf�

A

(a

k

t

); �

B

(b

l

t

)g, for 1 � t � p.

The CCS Problem: Let (A; �

A

) and (B; �

B

) be
f-strings. To �nd a
losest

ommon subsequen
e of the
f-strings (A; �

A

) and (B; �

B

), CCS((A; �

A

); (B; �

B

))

for short.

The MCCS Problem is to �nd the measure of CCS
f-string, MCCS for

short. It means, MCCS((A; �

A

); (B; �

B

)) = V al(CCS((A; �

A

); (B; �

B

))). �

m m m m m m m m m

m m m m m m m

a

b

a a

b

a
 a

b

a

b

d b

b

A=

B=

Figure 1. The
losest
ommon subsequen
e of two
f-strings A and B.

0.9 0.9 0.6 0.5 0.2 0.8 0.4 0.6 0.5

0.6 0.6 0.3 0.4 0.9 0.5 0.6

"

"

"

"

�

�

P

P

P

P

P

P

Example 1.
 = fa; b;
g; A = abaaba
ab; m = 9; B = ab
db
b; n =

7, �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), �

B

= (0:6; 0:6; 0:3; 0:4; 0:9; 0:5; 0:6).

The string C = ab
b is a subsequen
e, C

0

= abb
b is the longest
ommon subsequen
e

of the strings A and B, and (C"; �

C"

), C" = ab
b; �

C"

= (0:6; 0:9; 0:4; 0:5) is the

losest
ommon subsequen
e of the
f-strings (A; �

A

) and (B; �

B

); V al(C"; �

C"

) =

MCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown in the Figure 1.

Let (A; �

A

) be the string A with the
ompeten
e fun
tion �

A

. A sequen
e of

indi
es, h

A

= h

A

0

h

A

1

h

A

2

: : : h

A

k

A

; 0 = h

A

0

< h

A

1

< h

A

2

< : : : < h

A

k

A

= m; 1 � k

A

� m is a

partition of the string (A; �

A

).

3

Pro
eedings of the Prague Stringology Club Workshop '99

The sequen
e h

A

divides the string (A; �

A

) in the following way:

A = ja

1

a

2

: : : a

h

A

1

ja

h

A

1

+1

: : : a

h

A

2

j : : : ja

h

A

k�1

+1

: : : a

h

A

k

A

j = subst

A

1

subst

A

2

: : : subst

A

k

A

,

where subst

A

i

= a

h

A

i�1

+1

: : : a

h

A

i

; 1 � i � k

A

. [(A; �

A

); h

A

℄ is
alled the
f-string with

the partition.

For example,
 = fa; b;
g, A = jabajaba
a
jbabj; m = 12, �

A

= (0:4; :2; :8; :4; :7; :3;

:3; :7; :5; :4; :8; :6), h

A

= 0; 3; 9; 12; subst

A

1

= aba; subst

A

2

= aba
a
; subst

A

3

= bab.

A string C =

1

2

: : :

p

; 1 � p � m is a restri
ted subsequen
e of the
f-string with

the partition [(A; �

A

); h

A

℄, if and only if

1. there exists a sequen
e of indi
es 1 � i

1

< i

2

< : : : < i

p

� m su
h that

a

i

t

=

t

; 1 � t � p, and

2. if h

A

r�1

< i

u

; i

v

� h

A

r

then

u

6=

v

, for all r, 1 � r � k

A

,

(ea
h element of an alphabet
(subst

A

r

)
an be used in C on
e at most).

The string (C; �

C

) is a
ommon restri
ted
f-subsequen
e of two
f-strings with par-

tition [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ if (C; �

C

) is a restri
ted
f-subsequen
e of

[(A; �

A

); h

A

℄ and (C; �

C

) is a restri
ted
f-subsequen
e of [(B; �

B

); h

B

℄ at on
e.

The string (C; �

C

) is a
losest
ommon restri
ted
f-subsequen
e of two
f-strings

with partition [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ if (C; �

C

) is a
ommon restri
ted
f-

subsequen
e with maximal value de�ned by (1).

The CCRS Problem: Let [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄ be the
f-strings. To

�nd the
losest
ommon subsequen
e of the
f-strings [(A; �

A

); h

A

℄ and [(B; �

B

); h

B

℄,

CCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) for short.

The MCCRS Problem is to �nd the measure of CCRS
f-string,MCCRS

for short. It means,MCCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) = V al(CCRS([(A; �

A

); h

A

℄;

[(B; �

B

); h

B

℄)). �

m m m m m m m m m m m m

m m m m m m m m m m m

a

b

a a

b

a
 a

b

a

b

b

a

b

 a

b

b

A=

B=

Figure 2. Closest
ommon restri
ted subsequen
e of two strings A and B.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.4 0.2 0.8

0.4 0.7 0.3 0.3 0.7 0.5 0.4 0.8 0.6

0.4

0.3

0.4 0.5

0.3

0.5 0.6 0.3

0.7 0.6 0.5

Example 2.
 = fa; b;
g, A = jabajaba
a
jbabj; m = 12, �

A

= (0:4; 0:2; 0:8; 0:4;

0:7; 0:3; 0:3; 0:7; 0:5; 0:4; 0:8; 0:6), h

A

= 0; 3; 9; 12; B = jbab
j
a
j
b
bj; n = 11, �

B

=

(0:4; 0:3; 0:4; 0:5; 0:3; 0:5; 0:6; 0:3; 0:7; 0:6; 0:5). The string C = ba
b is a restri
ted sub-

sequen
e, C

0

= ba
ab is the
losest restri
ted
ommon subsequen
e with measure 2.3

as it
an be seen in Figure 2. The string C" = bab
a
bb is the longest
ommon sub-

sequen
e of the strings A = abaaba
a
bab and B = bab

a

b
b if the partition does

not matter.

A string of sets, set-string for short, B over an alphabet
 is any �nite sequen
e of

sets from P (
). Formally, B = B

1

B

2

: : : B

n

; B

i

2 P (
); 1 � i � n, n is the number of

4

The Closest Common Subsequen
e Problems

sets in B. The length of the symbol string des
ribed by B is N = �

n

i=1

jB

i

j. The pair

(B; �

B

) is the set-string B with the
ompeten
e fun
tions �

B

, set-
f-string for short.

A string of symbols C =

1

2

: : :

p

;

i

2
; 1 � i � p, is a subsequen
e of symbols

(subsequen
e, for short) of the set-string B if there is a nonin
reasing mapping F :

f1; 2; : : : ; pg ! f1; 2; : : : ; ng, su
h that

1. if F (i) = k then

i

2 B

k

, for i = 1; 2; : : : ; p

2. if F (i) = k and F (j) = k and i 6= j then

i

6=

j

.

The
ombination of a string and a set-string and the �nding of their
losest
ommon

f-subsequen
e leads to the solution of problems in above motivation.

Let (A; �

A

), be
f-string over
 and (B; �

B

) be a set-
f-string over P (
). The

f-string (C; �

C

) is a
ommon
f-subsequen
e of (A; �

A

) and (B; �

B

) if (C; �

C

) is a

f-subsequen
e of A and (C; �

C

) is a
f-subsequen
e of the set-string B. A
los-

est
ommon
f-subsequen
e of the
f-string (A; �

A

) and the set-
f-string (B; �

B

),

SCCS((A; �

A

); (B; �

B

)) is a
ommon
f-subsequen
e (C; �

C

) with the maximal value

V al(C; �

C

). Note that (C; �

C

) is not unique in general way.

The SCCS Problem: The Set
losest Common Subsequen
e problem of the
f-

string (A; �

A

) and the set-
f-string (B; �

B

), SCCS((A; �

A

); (B; �

B

)) for short,
onsists

of �nding a
losest
ommon
f-subsequen
e (C; �

C

).

The MSCCS Problem
onsists of �nding the measure of SCCS
f-string,

MSCCS for short.

This means that MSCCS((A; �

A

); (B; �

B

)) = V al(SCCS((A; �

A

); (B; �

B

))), �

m m m m m m m m m

m m m m m m m

a

b

a a

b

a
 a

b

a

b

b d b

A=

B=

Figure 3. The
losest
ommon subsequen
e of two strings A and B.

f gf gf g

0.9 0.9

0.6

0.5 0.2 0.8 0.4 0.6 0.5

0.6

0.6 0.3

0.9

0.4

0.6 0.5

�

�

�

�

�

�

H

H

H

H

H

H

Example 3. Let A = abaaba
ab; �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), B =

fa; b;
gfb; dgfb;
g, �

B

1

(a) = 0:6; �

B

1

(b) = 0:6; �

B

1

(
) = 0:3; �

B

2

(b) = 0:9; �

B

2

(d) =

0:4; �

B

3

(b) = 0:6; �

B

3

(
) = 0:5. Then MSCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown

in the Figure 3.

Let A = A

1

: : : A

m

;B = B

1

: : : B

n

; 1 � m � n, be two set-strings of sets over

an alphabet
. The string of symbols C is a
ommon subsequen
e of symbols of A

and B is C a subsequen
e of symbols of A and C is a subsequen
e of symbols of the

set-string B. The longest
ommon subsequen
e problem of the set-strings A and B

(SSLCS(A;B)
onsists of �nding a
ommon subsequen
e of symbols C of the maximal

length. Note that C is not in general unique.

The SSCCS Problem: Let (A; �

A

); (B; �

B

) be two set-
f-string.

The Set-Set Closest Common Subsequen
e problem of the set-
f-strings (A; �

A

) and

(B; �

B

), (SSCCS((A; �

A

); (B; �

B

)) for short,
onsists of �nding a
losest
ommon
f-

subsequen
e (C; �

C

).

5

Pro
eedings of the Prague Stringology Club Workshop '99

The MSSCCS Problem
onsists of �nding the measure of SSCCS set-
f-

string, MSSCCS for short.

It means, MSSCCS((A; �

A

); (B; �

B

)) = V al(SSCCS((A; �

A

); (B; �

B

))), �

m m m m m m m m

m m m m m m m m m m m

a

d

 a

b

e

b

a

d

e
 a

d

e

b d

b d

A=

B=

Figure 4. The
losest
ommon subsequen
e of two set-strings A and B.

f gf g

f g

f g

f gf gf g

0.4

0.7 0.3 0.6 0.4 0.5 0.6 0.3 0.8

0.3 0.5 0.7 0.6 0.8 0.9 0.5 0.7 0.5 0.3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Example 4. Let A = fa; dg; f
; a; dg; fe; b; ag; m = 3, �

A

1

= (0:7; 0:3); �

A

2

=

(0:6; 0:4; 0:5); �

A

3

= (0:6; 0:3; 0:8); B = fd; e;
g; fa; d; eg; fb; d;
g; fb; dg; n = 4: �

B

1

=

(0:4; 0:3; 0:5); �

B

2

= (0:7; 0:6; 0:8); �

B

3

= (0:9; 0:5; 0:7); �

B

4

= (0:5; 0:3). The
ompe-

ten
e values are des
ribed a

ording to the named order in the set. For example,

�

A

1

(a) = 0:7; �

A

1

(d) = 0:3:

Then MSSCCS((A; �

A

); (B; �

B

)) = 2:4 as it is shown in the Figure 4.

3 Algorithm for MCCS Problem

From the de�nition of MSSC Problem it follows:

MCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the
ommon

f � subsequen
e of (A; �

A

) and (B; �

B

)g (2)

The expression (2)
an be written in the following way

= max

(C;�

C

)

f�

p

t=1

�

C

(

t

) :

t

= a

k

t

= b

l

t

; 1 � t � p; 1 � k

1

< : : : < k

p

� m;

1 � l

1

< : : : < l

p

� ng and 0 < �

C

(

t

) = minf�

a

(a

k

t

); �

B

(b

l

t

)g: (3)

It means

MCCS((A; �

A

); (B; �

B

)) = maxf�

p

t=1

minf�

A

(a

k

t

); �

B

(b

l

t

)g : a

k

t

= b

l

t

;

1 � t � p; 1 � k

1

< : : : < k

p

� m; 1 � l

1

< : : : < l

p

� ng (4)

Let M

min

be a matrix de�ned as follows:

M

min

[i; j℄ =

�

minf�

A

(a

i

); �

B

(b

j

); g; if a

i

= b

j

0; otherwise.

(5)

The expression (4) is the basis for the following algorithm and it should be written

now in the following way:

MCCS((A; �

A

); (B; �

B

)) = maxf�

p

t=1

M

min

[k

t

; l

t

℄ :

k

1

< : : : < k

p

� m; 1 � l

1

< : : : < l

p

� ng (6)

6

The Closest Common Subsequen
e Problems

The expression (6)
an be used in the re
ursive algorithm or nonre
ursive algorithm

using the method of dynami
 programming.

Designation.

� A[i::k℄ = a

i

a

i+1

: : : a

k

, for 1 � i � k � m,

� MM [m;n℄ = MCCS((A; �

A

); (B; �

B

)),

� MM [i; j℄ = MCCS((A[1::i℄; �

A

); (B[1::j℄; �

B

)).

Re
ursive version of the algorithm is
onstru
ted a

ording to the following idea:

If an element

t

is in the CCS((A; �

A

); (B; �

B

)) then the strings
an be split into two

parts and

MCCS((A; �

A

); (B; �

B

)) = �(

t

) +MCCS((A[1::k

t�1

℄; �

A

); (B[1::l

t�1

℄; �

B

))

+MCCS((A[k

t+1

::m℄; �

A

); (B[l

t+1

::n℄; �

B

)) (7)

The re
ursive version of the algorithm has exponential time
omplexity. Some
om-

putations are repeated and it means in the algorithm, it is possible to use the dynami

programming method to
ompute the partial values MM [i; j℄ on
e only and to use

them in the following
omputations.

In the algorithm, two fun
tions are used: The fun
tion Minim
omputes mini-

mum of two values, the fun
tion Maxim
omputes maximum of three values. The

i�th line of the matrix MM is
omputed from two lines (i � 1)�th and the already

omputed part of i�th
olumn. It means that the spa
e
omplexity of the algorithm

an be redu
ed to O(n), for m � n. The algorithm works in the O(m�n) time. It
an

be written in the following simple form (without the
onstru
tion of the matrixM

min

):

Algorithm MCCS:

for i:=0 to m do MM[i,0℄:=0;

for j:=1 to n do MM[0,j℄:=0;

for i:=1 to m do

for j:=1 to n do

begin

if a[i℄=b[j℄ then help:=MM[i-1,j-1℄ + Minim(miA[i℄,miB[j℄)

else help:=0;

MM[i,j℄:= Maxim(MM[i-1,j℄, help, MM[i, j-1℄);

end;

Example 5. The
omputation ofMCCS((A; �

A

); (B; �

B

)) for the strings in Example

1 a

ording to the algorithm MCCS.

B= 0.6 0.6 0.3 0.4 0.9 0.5 0.6

a b
 d b
 b

A= ---

a 0.9 | 0.6 0.6 0.6 0.6 0.6 0.6 0.6

b 0.9 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

a 0.6 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

7

Pro
eedings of the Prague Stringology Club Workshop '99

a 0.5 | 0.6 1.2 1.2 1.2 1.5 1.5 1.5

b 0.2 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7

a 0.8 | 0.6 1.2 1.2 1.2 1.5 1.5 1.7

 0.4 | 0.6 1.2 1.5 1.5 1.5 1.9 1.9

a 0.6 | 0.6 1.2 1.5 1.5 1.5 1.9 1.9

b 0.5 | 0.6 1.2 1.5 1.5 2.0 2.0 2.4

4 Algorithm for MCCRS Problem

The basi
 idea to the solution
an be found in [1℄. The algorithm for LRCS Prob-

lem have to be modi�ed in the
omputation of the the measure of
losest
ommon

restri
ted subsequen
e. In the algorithm, the Boolean fun
tion Candidate gives the

value true if the pair (a

i

; �(a

i

)); (b

j

; �(b

j

)) is a potential
andidate to in
rease the

losest
ommon subsequen
e, false otherwise. The fun
tion Candidate is used in the

same form as in [1℄. The main part of the modi�
ation is designed in the program

text. It
ould be proved (similar as for LRCS Algorithm in [1℄) that the modi�ed

algorithm
omputes
orre
tly the
losest
ommon restri
ted subsequen
e of two
f-

strings and it works in O(m � n � p)-time and O(n+ r)-spa
e, where r = jfhi; ji : a

i

=

b

j

; 1 � i � m; 1 � j � ngj and p � minfm;ng is the number of elements in
losest

ommon restri
ted subsequen
e.

The following dynami
 data stru
tures are used in the algorithm:

type vertex=re
ord

x, y: indi
es;

p: pointer;

end;

pointerv=^vertex;

genseq=re
ord

val: real;

pt:pointer;

end;

The main phase of the algorithm is the following:

{Omega is an alphabet of strings}

{Input: [(A, mvA), hA℄, [(B,mvB), hB℄ - two
f-strings of symbols

with partitions over alphabet;

mvA, mvB -
ompeten
e fun
tions of A and B}

{Output: pptr is the pointer to the
losest
ommon restri
ted

subsequen
e of A and B;}

{Variables: Arrays C, D[0..m℄ of the type genseq.}

{C[1..i℄, D[1..i℄
ontain pointers to the
losest
ommon

subsequen
es of A(1..i) and B(1..j);}

{hA[1..kA℄, hB[1..kB℄ - arrays of partitions of the strings A and B;}

{uA, uB - upper bounds of intervals in the partitions for
urrent

positions i, j: uA\leq i, uB\leq j.}

{dA, dB - the numbers of intervals in the partitions,}

{pp - a pointer to the vertex.}

8

The Closest Common Subsequen
e Problems

Method:

begin

for j:=0 to n do

begin D[j℄.pt:=nil; D[j℄.val:=0; end;

C[0℄.pt:=nil; C[0℄.val:=0;

dA:=1; uA:=1;

for i:=1 to m do

begin if i>hA[dA℄ then begin in
(dA); uA:=hA[dA-1℄+1 end;

dB:=1; uB:=1;

for j:=1 to n do

begin if j>hB[dB℄ then begin in
(dB); uB:=hB[dB-1℄+1 end;

if a[i℄.el=b[j℄.el then

q:=Candidate(D[j-1℄.pt,a[i℄,uA,uB)

else q:=false;

if q then {***modified part***}

begin if a[i℄.mv<=b[j℄.mv then min:=a[i℄.mv

else min:=b[j℄.mv;

help:=D[j-1℄.val+min;

if (help>D[j℄.val) and (help>C[j-1℄.val) then

begin new(pp); pp^.p:=D[j-1℄.pt; pp^.x:=i; pp^.y:=j;

C[j℄.pt:=pp; C[j℄.val:=D[j-1℄.val+min;

end {***end of the modified part***}

end else

if D[j℄.val>=C[j-1℄.val then C[j℄:=D[j℄

else C[j℄:=C[j-1℄;

{Invariant1}

end; {Invariant2}

for j:=1 to n do D[j℄:=C[j℄;

end;

value := C[n℄.val; pptr:= C[n℄.pt;

{"value"
ontains the value of the
losest
ommon restri
ted

subsequen
e and C[n℄.pt
ontains pointer to the CCRS(A,B)}

end;

Example 6. The
omputation ofMCCRS([(A; �

A

); h

A

℄; [(B; �

B

); h

B

℄) for the strings

in Example 2 a

ording to the algorithm MCCRS.

B |0.4 0.3 0.4 0.5 |0.3 0.5 0.6 |0.3 0.7 0.6 0.5|

A | b a b
 |
 a
 |
 b
 b |

-------|--

a 0.4 | 0.0 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4

b 0.2 | 0.2 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.4

_a_0.8_| 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6

a 0.4 | 0.2 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9

b 0.7 | 0.4 0.5 0.5 0.5 0.5 0.9 0.9 0.9 1.6 1.6 0.9

a 0.3 | 0.4 0.7 0.7 0.7 0.7 0.9 0.9 0.9 1.6 1.6 1.6

 0.3 | 0.4 0.7 0.7 1.0 0.7 0.9 1.2 0.9 1.6 1.9 1.9

9

Pro
eedings of the Prague Stringology Club Workshop '99

a 0.7 | 0.4 0.7 0.7 1.0 1.0 1.0 1.2 1.2 1.6 1.9 1.9

_
0.5| 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1

b 0.4 | 0.4 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.6 2.1 2.1

a 0.8 | 0.4 0.7 0.7 1.2 1.2 1.7 1.7 1.7 1.7 2.1 2.1

_b_0.6_| 0.4 0.7 0.7 1.2 1.2 1.7 1.7 1.7 2.3 2.3 2.3

5 Algorithm for MSCCS Problem

The basi
 idea of the algorithm starts from the de�nition of the MSCCS Problem.

MSCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the
ommon

f-subsequen
e of (A; �

A

) and (B; �

B

)g = (8)

max

p

f�

p

t=1

�

C

(

t

) :

t

= a

k

t

= b

F (t)

i

and 0 < �

C

(

t

) = minf�

A

(a

k

t

); �

B

(b

F (t)

i

)g;

1 � t � p; 1 � k

1

< : : : < k

p

� m; 1 � i � n

F (t)

; 1 � F (1) � : : : � F (p) � ng (9)

The re
ursive version of the algorithm is
onstru
ted a

ording to the following idea

(Figure 5.):

A

B

a

k

t

b

F (t)

i

1B

F (t)

�i

2B

F (t)

�i

Figure 5. The idea for the
onstru
tion of algorithm

J

J

J

J

Designation.

� A = a

1

: : : a

m

; m � 1;B = B

1

: : : B

n

; n � 1; B

l

= fb

l

1

; b

l

2

; : : : ; b

l

n

l

g,

� MM [m;n℄ =MSCCS((A; �

A

); (B; �

B

)),

� MM [i; j℄ = MSCCS((A[1::i℄; �

A

); (B[1::j℄; �

B

)).

If an element

t

is in the SGCD((A; �

A

); (B; �

B

)) then

MSCCS((A; �

A

); (B; �

B

)) = �(

t

) +

maxfMSCCS((A[1::k

t�1

℄; �

A

); (B[1::F (t� 1)℄1B

F (t)

�i

; �

B

)) +

MCCS((A[k

t+1

::m℄; �

A

); (B[F (t+ 1)::n℄2B

F (t)

�i

; �

B

))g (10)

where 1B

F (t)

�i

= (B

F (t)

� fb

F (t)

i

g)

1

and 2B

F (t)

�i

= (B

F (t)

� fb

F (t)

i

g)

2

are the disjoint

subsets 1B

F (t)

�i

and 2B

F (t)

�i

of the set (B

F (t)

� fb

F (t)

i

g) = 1B

F (t)

�i

[2B

F (t)

�i

and the

maximum is the maximal value over all disjoint partitions. The idea is shown in the

Figure 6. The time
omplexity of the re
ursive version is exponential.

A
attening of a sequen
e of sets is de�ned as a
on
atenation, in order of the

sequen
e, of strings formed by some permutation of individual elements of the sets in

10

The Closest Common Subsequen
e Problems

the sequen
e. For example, the
attening of the set-string A in example 3 is dada
abe

and so is adad
eba.

The very simple algorithm for MSCCS Problem
an use Algorithm for MCCS

Problem for all pairs of the
f-string A and the
attening of the set-
f-string B. The

algorithm have to
ompute and
ompare results of �

n

j=1

jB

j

j pairs.

It is possible to represent the sets in the string B as the strings of symbols with all

permutations of elements (the method will be applied in the MSSCCS Algorithm).

Ea
h element of the string of symbols has the
ompeten
e value the same as it has

in the set. Then it is possible to apply the algorithm for
ommon subsequen
e with

a restri
ted use of elements [1℄.

The nonre
ursive algorithm is
onstru
ted by the dynami
 programming method

and it has the following idea:

MM [i; j℄ = maxf MM [k � 1; j � 1℄ + V al(SCCS((A[k::i℄; �

A

); (B

j

; �

B

j

)));

MM [k; j � 1℄; k = 1; 2; : : : ; ig: (11)

The values of the matrixMM [�; �℄
an be
omputed a

ording to
olumns, the input

for j-th
olumn is the matrix (j � 1)-th
olumn. The set B

j

an mat
h better some

elements in the string A than the sets B

1

; : : : ; B

j�1

and it is ne
essary to
ompute

these mat
hing values and to �nd the maximal value.

The following algorithm has a motivation in Hirs
hberg's and Larmore's method

[7℄ for SLCS Problem. We use the a data stru
ture U , whi
h is
alled unique sta
k

(for
ontrol of elements from the sets), but our unique sta
k works in a di�erent way.

It has the
ondition that no member
an o

ur twi
e or more in the sta
k. When

Push(U, x, k) is exe
uted for some element x, x is �rst
ompared to the elements in

the sta
k. If x is in the sta
k in the position l then the
ompeten
e values of the both

o

urren
es are
ompared. If the
ompeten
e value of the element x in the position

l is greater than the
ompeten
e value of the new element x then the unique sta
k

is not modi�ed else the element in the position l is deleted and the new element x is

pushed on the top of the unique sta
k. In the sta
k are the elements of the string A

whi
h have best mat
hing to the some set in the string of sets B.

pro
edure Push(var U:Usta
k; x:Element; k:integer);

{Push the element x on the top of the unique sta
k U;

k is the index of x in the string A;

Competen
e values are less than Maxi1000;}

var Upom: Usta
k;

tophlp: integer;

kk: integer;

begin

kk:=top;

tophlp:=0;

Maxi:=Max1000;

while kk>=1 do

begin if (x.p<>U[kk℄.p) then

begin in
(tophlp); Uhlp[tophlp℄:=U[kk℄;

end else begin

11

Pro
eedings of the Prague Stringology Club Workshop '99

Maximum:=U[kk℄.mi;

if Maximum<x.mi then Maximum:= x.mi;

if Maximum>x.mi then

begin in
(tophlp);

Uhlp[tophlp℄:=U[kk℄;

Maxi:=Maximum;

end;

end;

de
(kk);

end;

top:=0;

for kk:=tophlp downto 1 do

begin in
(top); U[top℄:=Uhlp[kk℄; end;

if (Maxi<x.mi) or (Maxi=Max1000) then

begin in
(top); U[top℄:= x; best[x.p℄:=k;

end;

end; {Push}

The pro
edure Findpeaks sear
hes for the values peak[k℄; : : : ; peak[0℄ whi
h
an

represent measures of the new
andidates for SCCS. In Findpeak, as k de
reases,

U is the list of all elements in B

j

whi
h are found in the substring A[k+ 1::m℄ in the

order in whi
h they �rst o

ur and a

ording to their
ompeten
e fun
tion. For any

x 2 U , first[x℄ is the index of that best o

urren
e.

pro
edure Findpeak(j: integer);

{ j - index of j-th set in the set-string B;

m - the length of the symbol string A;

top- global variable for the top of Unique sta
k.}

begin

top:=0;

for k:=m downto 0 do

begin measure:=Mi[k,j-1℄;

peak[k℄:=measure;

for x:=top downto 1 do

begin xx:=U[x℄.p;

Minimum:= Minim(U[x℄,B[j℄);

measure:=measure+Minimum;

peak[best[xx℄℄:= Maxim{measure,peak[best[xx℄℄};

end;

if k>0 then

if A[k℄.p in B[j℄.pp then Push(U,A[k℄,k);

end;

end;

The main algorithm has the following form:

Algorithm MSCCS:

12

The Closest Common Subsequen
e Problems

for i:=0 to m do MM[i,j℄:=0;

for j:=1 to n do

begin Findpeak(j);

MM[0,j℄:=0;

for i:=1 to m do

MM[i,j℄:= Maxim{peak[i℄,MM[i-1,j℄};

end;

Example 7. Let A = abaaba
ab; �

A

= (0:9; 0:9; 0:6; 0:5; 0:2; 0:8; 0:4; 0:6; 0:5), B =

fa; b;
gfbdgfb
g, �

B

1

(a) = 0:6; �

B

1

(b) = 0:6; �

B

1

(
) = 0:3; �

B

2

(b) = 0:9; �

B

2

(d) =

0:4; �

B

3

(b) = 0:6; �

B

3

(
) = 0:5 then MCCS(A;B) = 2:4 as it is
omputed in the

following matrix.

B B1 B2 B3

a 0.6

b 0.6 b 0.9 b 0.6

A
 0.3 d 0.4
 0.5

a 0.9 | 0.6 0.6 0.6

b 0.9 | 1.2 1.5 1.5

a 0.6 | 1.2 1.5 1.5

a 0.5 | 1.2 1.5 1.5

b 0.2 | 1.2 1.5 1.5

a 0.8 | 1.2 1.5 1.5

 0.4 | 1.5 1.5 1.9

a 0.6 | 1.5 1.5 1.9

b 0.5 | 1.5 2.0 2.4

The subsequen
e
an be re
overed after the algorithm is �nished if an array of a

ba
kpointers to the best mat
hing elements is maintained. Corre
tness of the algo-

rithm follows from the following invariants:

(1) After the j-th iteration of main algorithm all values MM [i; j℄; 0 � i � m are

omputed. After the n-th iteration we have all values MM [i; n℄; 0 � i � m and

MM [m;n℄ = MCCS((A; �

A

); (B; �

alB

).

(2) Findpeak(j)
omputes the best mat
hing of the j-th set B

j

, peak[j℄ �MM [i; j℄

and there exist some j

0

� j su
h that peak[j

0

℄ �MM [i; j℄.

Time
omplexity. The main algorithm has the
y
le for i and the
all of pro
edure

Findpeak inside of the
y
le for j. It means O(m � n � N)-time
omplexity, where

N = �

n

j=1

; jB

j

j.

Spa
e
omplexity. The presented algorithm requires O(m � n)-spa
e for the array

MM and O(m)-spa
e for the unique sta
k.

6 Algorithm for MSSCCS Problem

The basi
 idea of the algorithm is very similar to the previous algorithm for MSCCS.

It starts from the de�nition of MSSCCS Problem.

MSCCS((A; �

A

); (B; �

B

)) = max

(C;�

C

)

fV al(C; �

C

) : (C; �

C

) is the
ommon

13

Pro
eedings of the Prague Stringology Club Workshop '99

f � subsequen
e of (A; �

A

) and (B; �

B

)g (12)

If we have some
attenings of both set-strings then it is possible to apply the

MCCS algorithm. It is ne
essary to
ompute MCCS values of all pairs of all
at-

tenings both set-strings but that is too time
onsuming.

If we have the
attening of one set-string and the se
ond is as set-string then it

is possible to use the MSCCS algorithms. But it is ne
essary to
ompute MSCCS

value for all
attenings of one string. This is also too time
onsuming. Both algo-

rithms have exponential time
omplexity.

It is possible to use the following algorithm of polynomial time
omplexity. The

algorithm works in two steps:

1. to
reate the string of symbols for ea
h of set-string; ea
h set
an be en
oded

as the string of all permutations of its elements (the length of su
h string is

k

2

� 2 � k + 4, k is the number of elements in set [13℄);

2. to apply the MCCRS algorithm for the two
onstru
ted strings (ea
h element

of the set
an be used on
e at most);

The algorithm works in polynomial time: O(M

2

�N

2

�K), where M = �

m

i=1

jA

i

j; N =

�

n

j=1

jB

j

j, and K is the number of elements in
losest
ommon restri
ted subsequen
e.

7 Con
luding Remarks

Polynomial algorithms for the solutions of the MCCS Problem, MCCRS Problem and

MSCCS Problem with a
ompeten
e fun
tions have been presented. The MSSCCS

Problem was formulated and the polynomial time algorithm for its solution was de-

veloped. However, we are
onvin
ed of the existen
e of an algorithm with better time

omplexity.

Referen
es

[1℄ Andrejkov�a, G.: The longest restri
ted
ommon subsequen
e problem. Pro
eedings

of the Prague Stringology Club Workshop'98, Prague, 1998, p. 14-25.

[2℄ Dewar, R. B., Merritt, S. M., Sharir, M.: Some modi�ed algorithms for Dijkstra's

longest
ommon subsequen
e problem. A
ta Informati
a 18, 1982, p. 1{15.

[3℄ He
kel, P.: A te
hnique for isolating di�eren
es between �les. Comm. ACM 21, 4

(Apr. 1978), p. 264{268.

[4℄ Hirs
hberg, D. S.: A linear spa
e algorithms for
omputing maximal
ommon

subsequen
es. Comm. ACM 18, 6 (June 1975), p. 341{343.

[5℄ Hirs
hberg, D. S.: Algorithms for longest
ommon subsequen
e problem. Journal

ACM 24, 4 (O
t 1977), p. 664{675.

[6℄ Hirs
hberg, D. S.: The least weight subsequen
e problem. Symp. on FCT, O
tober,

1985, p. 137{143.

14

The Closest Common Subsequen
e Problems

[7℄ Hirs
hberg, D. S., Larmore, L. L.: The Set LCS Problem. Algorithmi
a 2 (1987),

p. 91{95.

[8℄ Hirs
hberg, D. S., Larmore, L. L.: Set-Set LCS Problem. Algorithmi
a 4 (1989),

p. 503{510.

[9℄ Holub, J.: Dynami
 Programming for Redu
ed NFAs for Approximate String and

Sequen
e Mat
hing. Pro
eedings of the Prague Stringology Club Workshop'98,

Prague, 1998, p. 73-82.

[10℄ Huang, S. S., Asuri, S. H.: Algorithms for the Set-LCS and Set-Set-LCS Prob-

lems. Te
h. Report No. UH-CS-89-09, University of Houston, Mar
h, 1989.

[11℄ Hunt, J. W., Szymanski, T. G.: A fast algorithm for
omputing longest
ommon

subsequen
es. Comm. ACM 20, 5 (May 1977), p. 350{351.

[12℄ Lowran
e, R., Wagner, R. A.: An extension of the string-to-string
orre
tion

problems. Journal ACM 22, 2 (Apr. 1975), p. 177{183.

[13℄ Mohanty, S. P.: Shortest string
ontaining all permutations. Dis
rete Mathemat-

i
s 31, 1980, p. 91{95.

[14℄ Nakatsu, N., Kombayashi, Y., Yajima, S.: A longest
ommon subsequen
e algo-

rithm suitable for similar text strings. A
ta Informati
a 18, 1982, p. 171{179.

[15℄ Needleman, S. B., Wuns
h, Ch. D.: A general method appli
able to the sear
h

for similarities in the amino a
id sequen
e of two proteins. Journal Mol. Biol. 48,

1970, p. 443{453.

[16℄ Tron���
ek, Z., Meli
har, B.: Dire
ted A
y
li
 Subsequen
e Graph. Pro
eedings of

the Prague Stringology Club Workshop'98, Prague, 1998, p. 107-118.

15

