
Condensation priniple

1

Miroslav Bal��k

Department of Computer Siene & Engineering

Faulty of Eletrial Engineering

Czeh Tehnial University

Karlovo n�am. 13

121 35 Praha 2

Czeh Republi

e-mail: balikm�fel.vut.z

Abstrat. The most important ontribution of this paper is the disovery and

desription of an e�etive implementation of a �nite automaton that aepts

all substrings of a given text. The ratio of the size of this automaton with

respet to the size of the input text is in standard implementations 10 or more,

see [AndNil95℄, in [Bal98℄ is desribed implementation with ratio less than 4.

This implementation does not inrease the time to searh for a pattern, whih

is proportional to the length of the pattern.

The major approah introdued in this paper uses transformation of a text

into a new alphabet that ontains more symbols than the original alphabet and

dereases text size. It operates over alphabets that ontain small number of

symbols. Suh an automaton is suitable for example for proessing of DNA

sequenes.

A new automaton and new searh algorithms are presented for suh a trans-

formed text (patterns are still input in the original alphabet). Spae require-

ments of suh ondensed automata are as low as the size of the input text.

This paper further introdues a new type of an automaton, a so-alled Identifier

DAWG, whih uses speial properties of the DAWG automata and further de-

reases spae requirements by introduing assoiations between states of an

automaton and positions in a text. It is designed better searhing algorithm

using this assoiation.

Key words: DAWG, SuÆx DAWG, SDAWG, automata implementation, Suf-

�x tree, �nite automata.

1 Introdution

Let T be a text over a �xed alphabet �. Then an automaton an be reated in a linear

time (see [Cro94℄) that aepts all substrings that our in text T . This automaton is

alled DAWG (Direted Ayli Word Graph) and its variant aepting only suÆxes

is alled SuÆx DAWG (SDAWG).

1

This work was supported by grant GACR No. 201/98/1155.

13

Progeedings of the Prague Stringology Club Workshop '2000

Although some searh automata have a linear size with respet to the length of

the text, this size is high enough to disable pratial implementation and usage. This

size depends on implementation details, on the struture of the text and on the type

of the automaton used. For SuÆx tree the size is rarely smaler than 10n bytes, where

n is the length of the text. Other types of automata are usually smaller, suÆx arrays

[GoBaSn91℄ (size 5n bytes), level ompressed tries [AndNil95℄ (size about 11n bytes),

suÆx atuses - a ross between suÆx tree and suÆx array [Kark95℄ (size 9n bytes),

and suÆx binary searh trees[Irv95℄ (size about 10n bytes). Paper [Bal98℄ desribes

the method of implementation, whih dereases the ratio to 4:1 .

This paper shows the new method, how to derease this ratio using speial trans-

formation of the text. This transformation alled ondensation desreases text size.

DAWG automaton onstruted over transformed text saves good properties of DAWG,

i.e. linear time and spae omlexity for onstrution with respet to the size of text

and linear time omlexity for mathing a pattern with respet to its length.

2 DAWG, SDAWG

DAWG(T) is a minimal automaton that aepts all substrings of a text T . An

automaton that aepts all suÆxes of a text T is denoted as SDAWG(T). An

algorithm of an inremental reation SDAWG automaton is desribed in [Cro94℄.

It holds that the number of states of the automaton SDAWG(T) is greater or

equal to the number of states of DAWG(T). If we move all states of the automaton

SDAWG(T) to the set of �nal states, we ould obtain a ouples of equivalent states.

For example, DAWG(aabab) has six states, while SDAWG(aabab) has seven states

and two of them are �nal, see �gure 1.

a a ab b

b

b

a a ab

b ab

b

21 3 50 4

21 3 50 4

6

Figure 1: DAWG(aabab) versus SDAWG(aabab).

Automaton DAWG(T) an be simulated by automaton SDAWG(T), the reverse

is not possible without an additional information.

3 Identi�er Trie, Identi�er DAWG

An identi�er trie is modi�ation of an automaton that aepts a set of patterns

Suff(T). A pointer to the text is added to some states. There are states where there

14

Condensation priniple

is only one sequene of transitions leading to some �nal state. Labelling of suh a

sequene is a suÆx of a text T and it an be represented by a pointer to the text,

whih marks the beginning of this suÆx. This pointer will replae all transitions to

the �rst state of suh a sequene.

An example of an identifier trie(aaga#) using new type of states is shown in

Figure 2. New type of states are drawn as squares. The number in this square denotes

starting position of orresponding suÆx in the text. For example states denoted as

3' and 3 point to the suÆx ga#.

c

a c

#

a

g

#

#

g
a210

2’

3

4

7
3’

4’

7’

7"

Figure 2: An identifier trie(aaga#) using new type of states.

Another approah does not reate a speial ategory for transitions, but it reates

a new type of states. Beause eah state of a suÆx trie orresponds to some suÆx of

a text T , we an link this suÆx and its orresponding state with the position of its

beginning in the text T , thus we reate a new type of states that represent a referene

to the text and that will at in plaes where we have used speial transitions in the

�rst ase.

An example of an identifier trie(aaga#) using new type of transitions is shown

in Figure 3. New type of transitions are without labeling and point to sguares repre-

senting positions in text. Eah of these numbers denotes the starting position of the

orresponding suÆx in the text. For example, positions denoted as 3' and 3 point to

the suÆx ga#.

c

a c
210

2’

3’

2’

2

3

6"

6

6’

Figure 3: An identifier trie(aaga#) using new type of transitionss.

15

Progeedings of the Prague Stringology Club Workshop '2000

We an minimize suh an automaton. We denote it as an identifier DAWG

denoted as IDAWG. An example of an IDAWG(aaga#) is shown in Figure 4.

g

c

a

g

c a

#

#

210 43 7

Figure 4: IDAWG for the text T = aaga#

The new type of an automaton presented in this setion requires a modi�ation of

a standard mathing algorithm. When it enounters a referene pointing to the text,

it must hek whether the rest of the pattern is the same as the suÆx of the text being

pointed to. The moment when it transfers to the text orresponds to a pre�x having

been mathed with some sistring. If string mathing terminates sooner, the string is a

pre�x of several sistrings, so it is a substring of a text T , the number of its ourenes

in the text is greater than one and it orresponds to the number of sistrings it is

a pre�x of. For a lear de�nition of sistrings it is neessary to onatenate the text

with the symbol # that denotes the end. A more detailed desription of the mathing

algorithm is shown in the following example.

Let T = aaga be a text. IDAWG(T#) is shown in Figure 4. We will show the

proess of mathing a input string (pattern) on two examples:

1. P

1

= aga. We start at the initial state q

0

denoted as 0. We math symbol and

we move to state 2. Then we math symbol a and we move to state 3 and the

ontinuation of mathing is in the text at position 3. Sine now we are mathing

the suÆx of the text ga with the suÆx of the pattern ga. As ga is the pre�x of

ga; pattern P

1

is the substring of a text T . Beause we have been mathing the

text and it has been done suessfully, the number of ourenes of P

1

is equal

to one. If the rest of the text (here ga) is the same as the suÆx of the text (here

it is not, suÆx is ga), the pattern P would be the suÆx of the text T . The

position of the pattern in the text orresponds to the position of the symbol in

the text that was mathed with the last symbol of the pattern dereased by the

length of the pattern - 1, i.e., Pos(P

1

; T) = Pos(aga; aaga) = f5� 4g = f1g

.

2. P

2

= a. We start in the initial state q

0

. We math symbols a and and we

move to state 2. As we have mathed the whole pattern and in the same time we

have not enountered a referene to the text, the number of ourenes of this

pattern is greater than one. This number orresponds to the number of sistrings

whose pre�x is formed by the pattern, i.e., to the number of paths leading from

the last visited state (here 2) to the text (here the transition a and the seond

path is a transition #). If there is a transition leading from the last visited state

(here 2) labeled by the symbol # (here it is), then the given pattern is a suÆx

16

Condensation priniple

of text T . The position of the pattern orresponds to the beginning of sistrings

that they are a pre�x of, in this ase Pos(P

2

; T) = Pos(a; aaga) = f0; 4g.

We see that the automaton IDAWG(T#) is suitable to �nd out whether a pattern P

is a substring of a text T as well as it is its suÆx. It is not neessary to reate another

type of automaton representing suÆxes of the text. It is suitable to determine the

number of repetitions of the pattern in the text together with the positions of all its

ourenes.

As it is not important if the information about the referene to the text will be

represented as a speial transition or as a new type of state, we will further onsider

the ase with states that have an additional information - a referene to the text.

IDAWG(T#) does not ontain �nal states, thus we ould delare that �nal states

orrespond to aepting some sistring.

The simplest way of onstruting an identi�er trie is deletion of redundant states

and transitions from a suÆx trie. This onstrution is following: Eah state whose

right language ontains just one word (there is only one labelling on the path to a �nal

state) an be exluded. All transitions from exluded states are redundant (these are

transitions between non-existing states), thus they an be exluded. Transitions to

exluded states from non-exluded states are replaed by referenes to the text (using

new type of transitions or states). If we apply this way of exlusion and replaement

of redundant states to a minimized suffix trie(T), i.e., SDAWG(T), we reate a

minimized type of an identi�er trie, IDAWG. This automaton has signi�antly better

properties than an identi�er tree, the number of its states is linearly proportional

to the length of the input text, in ontrast to a quadrati omplexity of the non-

minimized version.

4 Text transformation

Let T be a text of length n over some alphabet �. A transformed text with a

oeÆient of ondensation k, T

k

is onstruted so that we group the input text by k

symbols and we replae eah suh a group by one symbol of a new alphabet �

4

. An

example of suh a transformation for k = 4 is shown in Figure 5.

text in new alphabet

a c g t a c a c a c g t g t a c a c g t a c a c

acgt acac acgt gtac acgt acac

text in original alphabet Σ
Σ

4

Figure 5: Transformation of a text T = a g t a a a g t g t a a g t a a to

T

4

= agt aa agt gta agt aa.

This example shows a transformation of a text T of length 24, to a text T

4

and

whih uses a new alphabet. The original alphabet � = fa; ; g; tg ontains four

symbols, the new alphabet �

4

= faaaa; aaa; aaag; : : : ; ttttg ontains j�j

4

= 256

symbols. These relations an be generalized, it holds for a text T; alphabet � and a

degree of ondensation k:

� A text T of length n an be transformed to a text T

k

of length

n

k

.

� If the original alphabet is �, then the new alphabet is �

k

of size j�j

k

.

17

Progeedings of the Prague Stringology Club Workshop '2000

If we use the transformed alphabet, the degree to whih a text an be redued depends

on the fator of ondensation. In the example above a suitable usage of a ondensation

fator k = 4 for a text over an alphabet of DNA sequenes, the transformed text

uses 256 symbols, whih an be enoded by 8 bits, i.e., using a standard ASCII

ode. Problems onneted with ondensation of a text whose length is not a natural

multipliation of the ondensation fator are reeted in the neessary modi�ation

of a pattern mathing algorithm. These problems as well as the algorithm are dealt

with in setion 5.

To demonstrate the redution of memory requirements we show an example of a

SDAWG for the text in Figure 5.

9 10
c

2 4 5 6 7 8 19

13

14 16 17 18

20 21 22 23

11 12

15

0 1 3
a c g t

t

a c

a c

a c

a c a c g t

g
t

a

catgcaca a c
24 25 26 27 28 29 30 31 32 33 34

t

t

g

ga

c

g

g

g

g

a
a

Figure 6: SDAWG for text T = a g t a a a g t g t a a g t a a .

Figure 6 shows an example of a SDAWG(T) automaton. This automaton ontains

35 states and 43 transitions.

gt
1221 30 134 1110 14 15

5 6

gt

gt

ac gt
ac

7 8 9
gt

acac gt

acac

ac
ac

ac

gt

ac gt

ac

16 17

ac

gt ac gt ac

Figure 7: SDAWG for text T

2

= a gt a a a gt gt a a gt a a.

Figure 7 shows an SDAWG automaton for ondensed text

T

2

= agtaaagtgtaagtaa, with ondensation fator k = 2. This automaton

ontains 18 states and 24 transitions. Using a ondensation fator of k = 4 we will

get an automaton shown in Figure 8. This automaton, whih is onstruted for text

T

4

= agt aa agt gta agt aa, has 7 states and 9 transitions and aepts all

suÆxes of the text T

4

. These suÆxes are written in the new alphabet and orrespond

to the suÆxes of the original text that have four times the length of the suÆxes in

the new alphabet.

We an onstrut all automata mentioned in setion 2 for ondensed texts. The

method is very simple. It is enough to state that an elementary unit of an alphabet

is not one symbol, but a k-tuple of symbols. Then a standard onstrution algorithm

is used. The onstruted automaton aepts fators, or suÆxes of the transformed

text.

18

Condensation priniple

acgt acac acgt

acac
gtac

gtac

gtac acgt acac
21 30 4 5 6

Figure 8: SDAWG for text T

4

= agt aa agt gta agt aa.

5 String mathing algorithm

The string mathing algorithm is similar to the methods used in [KaUk96℄. Thus

we will use the same terminology to denote an ourene of a pattern in a text, i.e.,

the position in the original text where a k-tuple starts that forms a symbol of the

transformed alphabet. That is why we will use the same terminology for referening

ourenes of patterns in the original text where a k-tuple starts that is used for

ondensation - suÆx points.

If a pattern starts at a position in the original text that is the same as a position

of some suÆx point, the ourene of its ondensed representation in a ondensed

text is found diretly. If it starts at a position that does not math any suÆx point,

let us all a pattern pre�x that orresponds to a substring of a text and that starts

at the position of the pattern and ends at the nearest suÆx point as the head. The

following part of the pattern that ends at the last suÆx point of the ourene of the

pattern we will all the body and the last part of the pattern as the tail. An example

for a pattern P = aagtgtaa is shown in Figure 9.

... acgt acac acgt gtac acgt acac

suffix points

occurrence

hea
d

gap
body

ta
il

gap

Figure 9: An ourene of a pattern aagtgtaa in a text.

The �gure shows an ourene of a pattern P with head a, body agtgta and tail

a. The length of the body is a multiple of the ondensation oeÆient and starts at a

19

Progeedings of the Prague Stringology Club Workshop '2000

position of some suÆx point. The ondensation diretly maps the body to a substring

in a ondensed text. The length of the head and the tail of the pattern is less than the

value of the ondensation fator. Thus it is neessary to math all posible extensions

of the head (or tail) up to the magnitude of the ondensation oeÆient so that a

ondensation of this extensions is possible. The head must end at some suÆx point,

that is why it is extended with a pre�x, similarly the tail is extended with some suÆx.

Pattern mathing that uses a ondensed automaton is done on many levels. On

eah level we try to math a pattern shifted by one symbol with respet to the suÆx

points. On level zero we try to loate ourenes from some suÆx point, on level one

we try to �nd possible ourenes that start at some suessor of a suÆx point et.,

on the last level we inspet positions that are shifted by k-1 symbols with respet to

a preeding suÆx point. On eah level a pattern an be divided into a head, a body

and a tail. The length of the head on level zero is zero, on level 1 its length is k-1,

...., on level k-1 its length is equal to one. To exeute eah level we an use either of

these two methods:

� Metod 1 : Find a state that mathes the body of the pattern. For eah transition

that starts at this state �nd out whether the non-ondensed form of its labeling

has not a pre�x idential with the tail of the pattern. For eah suh a pattern

�nd positions in the text. For these positions it holds that they onnet the

body of the pattern to its tail, so we have to hek only whether it is preeded

by a symbol whose suÆx (after a deomposition) is the head of the pattern.

� Metod 2: For a non-zero length of the head generate all symbols of the new

alphabet whose head after the deondensation is the same as its suÆx. We will

onatenate eah suh a symbol with the body of the pattern. Next �nd suh

a state in the automaton that orresponds to the onatenation. Determine

whether every transition that starts from this state has not a pre�x that is the

same as the tail of the pattern.

We an use any of these methods for any level of mathing, the mathing an be

modi�ed aording to the expeted speed of the �nishing phase. For a long body

with a small (expeted) number of ourenes Method 1 is more suitable, for a short

body and a relatively long head it is better to use Method 2.

While Method 2 is more universal, Method 1 uses an assoiation between a state of

the automaton and the position(s) in the text. Thus it is meaningful only for automata

that keep this assoiation, a typial example is a suÆx tree and an identi�er trie.

To make the algorithm working eÆiently it is neessary to introdue a suitable

mapping of k symbols (k-tuples) of the original alphabet to the symbols of the new

alphabet. This mapping, ondensation, together with an inverse mapping, deonden-

sation must be hosen with respet to the number of symbols of the original alphabet.

For example eah symbol of the DNA alphabet an be enoded using two bits, then

eah k-tuples of a DNA sequene an be enoded by a sequene of bits where eah

pair is a ode of some (DNA) symbol.

The mathing algorithm an be modi�ed so that it takes into aount spei�

properties of a partiular mathing task, for example in the ase when we want to

disover whether a pattern is present in a text we an terminate the searh after the

�rst suessful math.

20

Condensation priniple

Find a pattern aagtgtaa (symbol ? denotes any symbol of fa; ; g; tg) Let us

suppose we hose Method 2.

Let us onsider the text and the pattern from Figure 9. Sine the task is pattern

mathing in a ondensed text with the ondensation oeÆient k = 4, the searh

will be exeuted on four levels. Level zero is to math ourenes that start at suÆx

points, i.e., we inspet one ondensed pattern. Level one inspets four patterns, the

original pattern is extended with all possible pre�xes of length 1, i.e., all symbols

of the original alphabet. Four extensions will be ondenseded and will be mathed

using automaton. It is neessary after mathing eah pattern to hek if any transition

that starts at the urrent state mathes the symbol that orresponds to the tail of

the pattern omplemented with any suÆx. Other levels are exeuted similarly. The

di�erent approah to mathing heads and tails is due to the number of transitions

from the urrent state. While transitions from the initial state are mathed during

mathing extensions of a head, these transitions exist for eah symbol of the input

alphabet that is used in the text. For DNA sequenes and the degree of ondensation

k = 4 the ondensed alphabet ontains 256 symbols. To math a tail we ompare

transitions starting at some non-initial state, there are usually less than three of them.

This is an average number, an exat number is proportional to the number of di�erent

symbols that follow some ourene of a mathed part of the pattern in the text.

The following table shows the number of mathed patterns on eah mathing level.

The total number of patterns is the sum of given patterns, i.e., 85 in this ase. While

the length of the original pattern was m, patterns that are input to the algorithm (in

ondensed form) have a length

m

k

.

level length of head patterns #of patterns

0 0 aa gtgt aa 1

1 1 ?aa gtg taa ??? 4

2 2 ??a agt gta a?? 16

3 3 ???a ag tgta a? 64

So far we have assumed that the length of the text is a natural multiple of the

ondensation fator k. In many ases this ondition is not true. These ases are dealt

with in a di�erent way. The simplest way is to plae this remainder at the beginning

of the text and to ondens the text without this remainder. Mathing all ourenes

in the text using the algorithm desribed above, exept the ourenes that start at

some position in the remainder of the text, i.e., that preede the �rst suÆx point.

These positions (k � 1 positions at most) an be heked later. Method 1 proesses

these positions more e�etively, beause the referene to the text where a head of a

pattern should be heked is negative, it points in front of the ondensed text. It

points to the plaes where there is the rest of the text that was not ondensed. It is

suÆient to math the head of the patern with this remainder to solve all possibilities.

Similarly we an leave the non-ondensed remainder at the end of the text.

The priniple of ondensation is proposed to derease the amount of memory

required to store data strutures that are used to simulate the automaton. The

searh time is proportional to the length of the pattern. If the automaton is too big

(for a long text) and the simulator works a lot with a slow memory during parsing,

then it is possible that a searh that is omplex on one hand, but that uses some

sophistiated data strutures in main memory on the other hand may lead to ahieve

21

Progeedings of the Prague Stringology Club Workshop '2000

a desired result in a shorter time, this is still an open question.

6 Experimental results

The main task solved in this report is the proposal and design of a new type of

an automaton over ondensed text. The implementation of the resulting automata

reated using a ondensed text with di�erent degree of ondensation is more eÆient

than the original automata. The size of the implementations is shown in Table 1.

Degree of ondensation Size SDAWG IDAWG

SDAWG

origSIZE

IDAWG

orig:SIZE

Original 230195 946973 898728 4.11 3.90

2 115097 484681 411332 2.10 1.79

3 76731 307393 241535 1.34 1.05

4 57548 250639 191168 1.09 0.83

Table 1: Condensed automata

We an see that using the degree of ondensation equal to 4 (i.e., four-tuples

of symbols are used to label transitions) leads to an implementation whose size is

omparable with the size of the original text.

7 Future work and open questions

Open questions:

� The implementation of ondensed automata dereases memory requirements

when ompared to other types of searh automata. The hange of searh algo-

rithms and the derease of proessing speed thus reated ould ounterat this

improvement.

� The aim of this work is to �nd an e�etive implementation of a searh au-

tomaton. Spae requirements to store the resulting data strutures are not so

important, but a very high proessing speed of these automata is. Large data

strutures and a bad implementation an result in exessive memory aesses,

whih dereases the qualities of the implementation. Thus the most important

question is to hoose the orret automaton and to implement it orretly so as

not to derease the resulting proessing speed.

Referenes

[Bal98℄ Bal

�

ik, M. Diploma Thesis, CTU Prague 1998.

[Cro94℄ Crohemore, M. and Rytter, W. Text algorithms, Oxford University

Press, New York 1994.

[GoBa91℄ Gonnet G.H., Baeza-Yates R., Handbook of Algorithms and Data Stru-

tures - In Pasal and C. Addison - Wesley, Wokingham, UK, 1991.

22

Condensation priniple

[KaUk96℄ Juha K�arkk�ainen and Esko Ukkonen: Sparse SuÆx Trees. Pro. Seond

Annual International Computing and Combinatoris Conferene (CO-

COON '96), Springer 1996.

[AndNil95℄ A. Anderson and S. Nilson, EÆient implementation of suÆx trees,

Software-Pratie and Expiriene, 25(1995), pp129-141

[GoBaSn91℄ G.H.Gonnet, R.A. Baeza-Yates, and T. Snider, Lexikographial indies

for text: Inverted �les vs. PAT trees, Tehnial report OED-91-01, Cen-

tre for the new OED, University of Waterloo, 1991.

[Irv95℄ R.W.Irving, SuÆx binary searh trees, Tehnial report TR-1995-7,

Computing siene Department, University of Glasgow, Apr.95

[Kark95℄ K�arkk�ainen, J. SuÆx atus: A ross between suÆx tree and suÆx array,

in Pro. 6th Symposium on ombinatorial Pattern Mathing, CPM95,

1995, pp191-204. U. Manber and G. Myers SuÆx arrays: a new method

for on-line string searhes Proeedings of the 1st ACM-SIAM Annual

Symposium on Disrete Algorithms, pp. 319-327, 1990.

23

