
Computing Approximate Repetitions in Musial

Sequenes

C. S. Iliopoulos

1 �

, T. Leroq

2 y

, L. Mouhard

3 y

, Y. J. Pinzon

1 z

1

Dept. Computer Siene, King's College London, London WC2R 2LS, England,

and Shool of Computing, Curtin University of Tehnology, GPO Box 1987 U, WA.

Australia

fsi,pinzong�ds.kl.a.uk,

2

LIFAR - ABISS, Universit�e de Rouen, 76821 Mont Saint Aignan Cedex, Frane.

leroq�dir.univ-rouen.fr

3

ESA 6037: Dept. of Vegetal Physiology - ABISS, Universit�e de Rouen, 76821

Mont Saint Aignan Cedex, Frane and Shool of Computing, Curtin University of

Tehnology, GPO Box 1987 U, WA., Australia

lm�dir.univ-rouen.fr

e-mail:

Abstrat. Here we present new algorithms for omputing all Æ-approximate

and (Æ;)-approximate repetitions in musial sequenes. We also present al-

gorithms for omputing the longest Æ-approximate repeats, (Æ;)-approximate

repeats and minimum-tolerane powers (a \repeat" is a repetition variant).

Key words: String algorithms, approximate string mathing, dynami pro-

gramming, omputer-assisted musi analysis.

1 Introdution

The approximate repetition problem has been extensively studied over the last few

years. Suh problem an be found in omputational biology, information retrieval,

musial analysis and ompression. This paper fouses in one type of repetition that

arise espeially in musial information retrieval, i.e. Æ-approximate repetitions. A

musial sore an be viewed as a string: at a very rudimentary level, the alphabet

ould simply be the set of notes in the hromati or diatoni notation, or the set of

intervals that appear between notes (e.g. pith may be represented as MIDI numbers

and pith intervals as number of semitones). Approximate repetitions in one or more

musial works play a ruial role in disovering similarities between di�erent musial

entities and may be used for establishing \harateristi signatures" (see [3℄).

�

Partially supported by the Royal Soiety Grant CCSLAAR.

y

Partially supported by the C.N.R.S. Program \G�enomes".

z

Partially supported by the University of London Central Researh Fund (CRF).

49

Proeedings of the Prague Stringology Club Workshop '2000

Furthermore, eÆient algorithms for omputing the approximate repetitions are also

diretly appliable to moleular biology (see [4, 5, 7℄) and in partiular in DNA

sequening by hybridization ([8℄), reonstrution of DNA sequenes from known DNA

fragments (see [10, 11℄), in human organ and bone marrow transplantation as well as

the determination of evolutionary trees among distint speies ([10℄).

The approximate mathing problem has been used for a variety of musial appliations

(see overviews in MGettrik [6℄; Crawford et al [3℄; Rolland et al [9℄; Cambouropoulos

et al [1℄). It is known that exat mathing annot be used to �nd ourrenes of

a partiular melody. Approximate mathing should be used in order to allow the

presene of errors. The number of errors allow will be referred to as Æ.

The paper is organised as follows. In the next setion we present some basi def-

initions for strings and bakground notions for approximate mathing. In Setion

3 we present algorithms for omputing Æ-approximate repetitions and in Setion 4

for omputing (Æ;)-approximate repetitions. In Setion 5 we present algorithms for

omputing another variant of the above repetitions: longest Æ-approximate repeats,

(Æ;)-approximate repeats and minimum-tolerane powers. Finally in Setion 6 we

present our onlusions and open problems.

2 Bakground and basi string de�nitions

A string is a sequene of zero or more symbols from an alphabet �; the string with

zero symbols is denoted by �. The set of all strings over the alphabet � is denoted

by �

�

. A string x of length n is represented by x

1

: : : x

n

, where x

i

2 � for 1 � i � n.

A string w is a substring of x if x = uwv for u; v 2 �

�

; we equivalently say that the

string w ours at position juj+ 1 of the string x. The position juj+ 1 is said to be

the starting position of w in x and the position jwj+ juj the end position of w in x.

A string w is a pre�x of x if x = wu for u 2 �

�

. Similarly, w is a suÆx of x if x = uw

for u 2 �

�

.

The string xy is a onatenation of two strings x and y. The onatenations of k

opies of x is denoted by x

k

. For two strings x = x

1

: : : x

n

and y = y

1

: : : y

m

suh that

x

n�i+1

: : : x

n

= y

1

: : : y

i

for some i � 1, the string x

1

: : : x

n

y

i+1

: : : y

m

is a superposition

of x and y. We say that x and y overlap.

Let x be a string of length n. The integer p is said to be a period of x, if x

i

= x

i+p

for all 1 � i � n� p. The period of a string x is the smallest period of x. A string y

is a border of x if y is a pre�x and a suÆx of x.

Let � be an alphabet of integers and Æ an integer. Two symbols a; b of � are said to

be Æ-approximate, denoted a

Æ

= b if and only if

ja� bj � Æ

We say that two strings x; y are Æ-approximate, denoted x

Æ

= y if and only if

jxj = jyj; and x

i

Æ

= y

i

; 8i 2 f1; : : : ; jxjg (2:1)

50

Computing Approximate Repetitions in Musial Sequenes

For a given integer we say that two strings x; y are -approximate, denoted x

= y

if and only if

jxj = jyj; and

jxj

X

1

jx

i

� y

i

j < (2:2)

Furthermore, we say that two strings x; y are f; Æg-approximate, denoted x

;Æ

= y, if

and only if x and y satisfy onditions (2.1) and (2.2).

3 Computing Æ-Approximate Repetitions

The problem of omputing all Æ-approximate repetitions is formally de�ned as follows:

given a string t=t

1

: : : t

n

and integers Æ and m, ompute all positions j of t, that there

exists a string

^

t of length m suh that

t[j::j +m� 1℄

Æ

=

^

t

t[j +m::j + 2m� 1℄

Æ

=

^

t

.

.

.

t[j + (`� 1)m::j + `m� 1℄

Æ

=

^

t

where

^

t and ` are said to be the root and the power of the repetition respetively.

When we look for a repetition we will run into two possibilities: the root does or

does not our neessarily in the text. In this setion we study the �rst ase, that is,

^

t = t[j::j +m� 1℄ (exat mathing) for some j 2 f1; : : : ; n�m� 1g. We state as an

open problem the seond ase when the root does not our neessarily in the text.

Let D[0::n; 0::n℄ be the Æ-matrix suh that

D(i; j)

m

X

k=1

Æ(t

i�m+k

; t

j�m+k

) 8(i; j) 2 [0::n℄� [0::n℄

where Æ(t

i

; t

j

) is 0 if and only if t

i

Æ

= t

j

and 1 otherwise.

Example. Table 1 shows the Æ-matrix for t = ABBACABDAA, Æ=1 and m=3.

Row 7 shows that D(7; 4) = D(7; 7) = D(7; 10) = 0, whih means that there is a

Æ-repetition of power 3 (Æ-ube) starting at position 2 (BBA:CAB:DAA) with root

(CAB) starting at position 5.

Note that our algorithm will be seeking those ells with D(i; j) = 0 sine u

i

Æ

= u

j

and

therefore andidates for belonging to a repetition. The basi steps of the algorithm

are as follows:

1. Computation of the Æ-matrix D[0::n; 0::n℄

D(i; j)

8

<

:

0 ; if i; j = 0

D(i� 1; j � 1) + Æ(t

i

; t

j

) ; if 0 < i; j < m

D(i� 1; j � 1) + Æ(t

i

; t

j

)� Æ(t

i�m

; t

j�m

); otherwise

51

Proeedings of the Prague Stringology Club Workshop '2000

1

1

2

2

3

3

4

4

5

5

ro
o

t

d-repetition of power 3 (cube)

6

6

7

7

8

8

9

9

10

10

A B B A C A B D A A

A

B

B

A

C

A

B

D

A

A

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

1

0

1

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

0

0

1

1

1

1

0

0

1

0

2

0

0

2

2

0

1

0

0

2

0

2

1

0

2

0

0

1

0

0

2

0

2

1

0

1

1

1

1

0

1

2

0

2

2

0

1

1

1

2

0

1

2

0

2

0

0

1

1

2

2

0

2

2

0

Table 1: The Æ-matrix D for t = ABBACABDAA, Æ=1 and m=3.

2. Computation of the index matrix I[0::n; 0::n℄ de�ned as follows:

I(i; j) mod(jj �mod(i;m)j; m) 8(i; j) 2 [1::n℄� [1::n℄

3. We say that there is a Æ-approximate repetition of power ` starting at position

j with root

^

t starting at position i if and only if D(i+m�1; j+km�1) = 0 for

k 2 f1; : : : ; `g. In other words, we are looking for runs of zeros (in eah row)

with the same index value.

Table 2 shows all the Æ-approximate repetitions after onsidering all rows.

s r Root Repetition Power

1 1 ABB ABB:ACA 2

1 2 BBA ABB:ACA 2

2 2 BBA BBA:CAB 2

3 3 BAC BAC:ABD 2

3 6 ABD BAC:ABD 2

4 7 BDA ACA:BDA 2

5 8 DAA CAB:DAA 2

1 4 ACA ABB:ACA:BDA 3

2 5 CAB BBA:CAB:DAA 3

Table 2: Æ-repetitions for t=ABBACABDAA, Æ=1 and m=3. Note that s denotes

the starting position of the repetition and r denotes the starting position of the root.

52

Computing Approximate Repetitions in Musial Sequenes

3.1 Pseudo-ode

Fig. 1 show the pseudo-ode for omputing all Æ-approximate repetitions. The algo-

rithm was optimized to use O(n) spae instead of O(n

2

). This is possible beause the

omputation of eah row only depends on the previous one. The array a is of length

n and it stores the urrent row of D. Also, r[i℄:start holds the starting position of

the repetition for those ells with index i in the urrent row (array a). In a similar

way, r[i℄:power holds the power and r[i℄:root holds the starting position of the root.

Æ-Repetitions(t, Æ, m) B n = jtj

1

for i 0 until n do

2

for j n� 1 until 0 step -1 do

3

k mod (jj � mod (i;m)j; m)

4

if jt

i

� t

j

j > Æ then a[j℄ a[j � 1℄ + 1

5

if i�m � 0 and jt

i�m

� t

j�m

j > Æ then a[j℄ a[j℄�m

6

if j � n�m then

7

r[k℄:root i�m + 2

8

r[k℄:power 0

9

if a[j℄ = 0 then

10

r[k℄:power r[k℄:power + 1

11

r[k℄:start j �m+ 2

12

if j < 2m� 1 and r[k℄:power > 1 then

13

write \Repetition power", r[k℄:power, \at", r[k℄:start,

\with root at", r[k℄:root

14

else

15

if r[k℄:power > 1 then

16

write \Repetition power", r[k℄:power, \at", r[k℄:start,

\with root at", r[k℄:root

17

r[k℄:power 0

Figure 1: The Æ-Repetitions algorithm.

3.2 Running time

The time omplexity of the algorithm is easily seen to be O(n

2

) and the spae om-

plexity is O(n).

4 Computing (Æ;)-Approximate Repetitions

The problem of omputing all (Æ;)-approximate repetitions is formally de�ned as

follows: given a string t=t

1

: : : t

n

and integers Æ, and m, ompute all positions j of

t, that there exists a string

^

t suh that

53

Proeedings of the Prague Stringology Club Workshop '2000

t[j::j +m� 1℄

Æ;

=

^

t

t[j +m::j + 2m� 1℄

Æ;

=

^

t

.

.

.

t[j + (`� 1)m::j + `m� 1℄

Æ;

=

^

t

If we know where the Æ-approximate repetitions are, then next we need to disard

somehow those repetitions that are not (Æ;)-approximate repetitions. We an extend

the Æ-approximate repetition algorithm to the (Æ;)-approximate repetition problem

by adding some information about . This information will be stored in the -matrix

G[0::n; 0::n℄ so that

G(i; j)

m

X

k=1

jt

i�m+k

� t

j�m+k

j 8(i; j) 2 [0::n℄� [0::n℄

We say that u

i

Æ;

= u

j

when D(i; j) = 0 and G(i; j) � .

The additional steps of the algorithm are as follows:

1. Computation of the -matrix G[0::n; 0::n℄

G(i; j)

8

<

:

0 ; if i; j = 0

G(i� 1; j � 1) + jt

i

� t

j

j ; if 0 < i; j < m

G(i� 1; j � 1) + jt

i

� t

j

j � jt

i�m

� t

j�m

j; otherwise

2. We say that there is a (Æ;)-approximate repetition of power ` starting at po-

sition j with root

^

t starting at position i i� D(i +m � 1; j + km � 1)=0 and

G(i+m� 1; j + km� 1) � for k 2 f1; : : : ; `g.

Example. Table 3 shows the -matrix G for t = ABBACABDAA, Æ=1, =2 and

m=3. We know there is a Æ-ube starting at position 2 (BBA:CAB:DAA) with root

starting at position 5 (CAB). This Æ-ube an be a (Æ;)-ube only if G(7; 4) � 2,

G(7; 7) � 2 and G(7; 10) � 2. However G(7; 4) = 3 and we onlude that this Æ-ube

is not a (Æ;)-ube. But if we look at row 6, we see that there is a (Æ;)-approximate

repetition of power 3 ((Æ;)-ube) starting at position 1 (ABB:ACA:BDA) with root

(ACA) starting at position 4.

Table 4 shows all the (Æ;)-approximate repetitions after onsidering all rows in G.

4.1 Pseudo-ode

Fig. 2 shows the pseudo-ode for omputing all (Æ;)-approximate repetitions. The

algorithm was also optimized to use O(n) spae instead of O(n

2

). This is possible

beause the omputation of eah row only depends on the previous one.

The array a is of length n and it stores the urrent rows of D and g (a:delta for D

and a:gamma for G in Fig. 2). Moreover as in Æ-approximate repetitions , r[i℄:start

holds the starting position of the repetition for those ells with index i in the urrent

row (array a), r[i℄:power holds the power and r[i℄:root the holds the starting position

of the root.

54

Computing Approximate Repetitions in Musial Sequenes

1

1

2

2

3

3

4

4

5

5

ro
o

t

(d,g)-repetition of power 3 (cube)

6

6

7

7

8

8

9

9

10

10

A B B A C A B D A A

A

B

B

A

C

A

B

D

A

A

0

1

1

0

2

0

1

3

0

0

1

0

1

2

1

3

0

3

4

1

1

1

0

2

3

2

3

2

4

5

0

2

2

0

3

2

3

4

2

3

2

1

3

3

0

5

2

3

5

4

0

3

2

2

5

0

5

4

2

5

1

0

3

3

2

5

0

5

5

2

3

3

2

4

3

4

5

0

6

7

0

4

4

2

5

2

5

6

0

5

0

1

5

3

4

5

2

7

5

0

Table 3: The -matrix G for t = ABBACABDAA, Æ=1, =2 and m=3.

s r Root Repetition Power

1 1 ABB ABB:ACA 2

1 2 BBA ABB:ACA 2

4 7 BDA ACA:BDA 2

5 8 DAA CAB:DAA 2

1 4 ACA ABB:ACA:BDA 3

Table 4: (Æ;)-approximate repetitions for t=ABBACABDAA, Æ=1, =2 and m=3.

Note that s denotes the starting position of the repetition and r denotes the starting

position of the root.

4.2 Running time

The time omplexity of the algorithm is easily seen to be O(n

2

) and the spae om-

plexity is O(n).

5 Computing the Longest Æ-Approximate and (Æ;)-

Approximate Repeat

The problem of omputing the longest Æ-approximate repeats (LDAR) is de�ned as

follows: given a text t of length n, and integers m and Æ, �nd whether there exist a

sequene of substrings u

1

; u

2

; : : : ; u

`

of t that satisfy the following onditions:

1. u

i

Æ

= u

i+1

for all i 2 f1; : : : ; `� 1g

55

Proeedings of the Prague Stringology Club Workshop '2000

(Æ;)-Repetitions(t, Æ, , m) B n = jtj

1

for i 0 until n do

2

for j n� 1 until 0 step -1 do

3

k mod (jj � mod (i;m)j; m)

4

a[j℄:delta a[j � 1℄:delta + Æ(t

i

; t

j

)

5

a[j℄:gamma a[j � 1℄:gamma+ jt

i

� t

j

j

6

if i�m � 0 then

7

a[j℄:delta a[j℄:delta� Æ(t

i�m

; t

j�m

)

8

a[j℄:gamma a[j℄:gamma� jt

i�m

; t

j�m

j

9

if j � n�m then

10

r[k℄:root i�m+ 2

11

r[k℄:power 0

12

if a[j℄:delta = 0 and a[j℄:gamma � then

13

r[k℄:power r[k℄:power + 1

14

r[k℄:start j �m + 2

15

if j < 2m� 1 and r[k℄:power > 1 then

16

write \Repetition power", r[k℄:power, \at", r[k℄:start,

\with root at", r[k℄:root

17

else

18

if r[k℄:power > 1 then

19

write \Repetition power", r[k℄:power, \at", r[k℄:start,

\with root at", r[k℄:root

20

r[k℄:power 0

Figure 2: The (Æ;)-Repetitions algorithm.

2. t = ru

1

u

2

: : : u

`

s, for some strings r; s.

3. Maximizes `

Note that in ase of Æ-approximate repetitions every repetition is Æ-approximate to

the root. But in the ase of repeats, eah repeat is guaranteed to be Æ-approximate

only to its neighbour.

The method for �nding the LDAR is based on the onstrution of the matrix D

presented in the previous setion. We an onstrut m lists L

q

, q = 1; 2; :::; m suh

that

L

q

[i℄ := D((i� 1)m + q; im+ q) i = 1; 2; :::

It is not diÆult to see that the longest repeats orresponds to the longest subsequene

of 0's in one of the L

q

's.

Example. Let t = DCCADCADCBEDCAA, m=3 and Æ = 2. Table 5 shows the

Æ-matrix needed to ompute to lists L

1

:= f1; 0; 0; 2g, L

2

:= f0; 0; 0g and L

3

:=

f0; 0; 1g. The longest subsequene of 0's ours in L

2

and orresponds to the repeat

(CCA:DCA:DCB:EDC).

56

Computing Approximate Repetitions in Musial Sequenes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D C C A D C A D C B E D C A A

1 D 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1

2 C 0 0 1 1 0 1 1 0 0 2 0 0 1 2

3 C 0 1 1 1 1 1 1 0 1 2 0 1 2

4 A 0 2 2 0 2 2 0 1 2 3 0 1

5 D 0 2 2 0 2 2 0 1 2 4 1

6 C 0 2 2 0 1 3 0 1 3 5

7 A 0 2 2 0 2 4 1 1 3

8 D 0 2 2 0 2 4 2 2

9 C 0 1 3 0 2 5 3

10 B 0 2 4 0 2 5

11 E 0 2 5 1 3

12 D 0 2 6 2

13 C 0 3 7

14 A 0 3

15 A 0

Table 5: The Æ-matrix D for t = DCCADCADCBEDCAA, Æ=2 and m=3.

The problem of omputing the longest (Æ;)-approximate repeats (LDGAR) is de�ned

as follows: given a text t of length n, and integers m. Æ and , �nd whether there

exist a sequene of substrings u

1

; u

2

; : : : ; u

`

of t that satisfy the following onditions:

1. u

i

Æ;

= u

i+1

for all i 2 f1; : : : ; `� 1g

2. t = ru

1

u

2

: : : u

`

s, for some strings r; s.

3. Maximizes `

The method for �nding the LDGAR is based on the onstrution of the matrix G

presented in the previous setion. We an onstrut m lists F

q

, q = 1; 2; :::; m suh

that

F

q

[i℄ :=

�

0; if G((i� 1)m + q; im+ q) �

1; otherwise

i = 1; 2; :::

The longest repeats is the longest subsequene of 0's in L

q

+ F

q

.

Example. Table 5 shows the -matrix for the above example. Let =2 so that

F

1

:= f1; 0; 1; 1g, F

2

:= f0; 0; 1g and F

3

:= f0; 0; 1g. Now, onsidering both lists

(L and F) we see that the longest repeat is in either L

2

=F

2

or L

3

=F

3

and they are

(CCA:DCA:DCB) and (CAD:CAD:CBE) respetively.

The problem of the minimum-tolerane power (MTP) is as follows: given a text t of

length n, and integers m; p and Æ, �nd whether there exist the sequene of substrings

u

1

; u

2

; : : : ; u

p

of t that satisfy the onditions:

57

Proeedings of the Prague Stringology Club Workshop '2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D C C A D C A D C B E D C A A

1 D 0 1 1 3 0 1 3 0 1 2 1 0 1 3 3

2 C 0 1 3 4 0 3 4 0 2 4 2 0 3 5

3 C 0 3 4 4 2 4 4 1 4 5 2 2 5

4 A 0 5 5 1 5 5 2 5 6 5 1 2

5 D 0 6 6 0 6 5 2 5 6 6 3

6 C 0 6 6 0 5 6 3 4 6 7

7 A 0 6 6 1 6 7 4 0 3

8 D 0 6 5 2 5 6 6 3

9 C 0 5 6 3 4 6 7

10 B 0 5 6 3 1 4

11 E 0 5 6 6 5

12 D 0 5 7 8

13 C 0 4 7

14 A 0 3

15 A 0

Table 6: The -matrix G for t = DCCADCADCBEDCAA, Æ=2 and m=3.

1. u

i

Æ;

= u

i+1

for all i 2 f1; : : : ; `� 1g

2. t = ru

1

u

2

: : : u

`

s, for some strings r; s.

3. Minimizes

p�1

X

i=1

(u

i

; u

i+1

)

The omputation of the MTP is based on the list F .

5.1 Running time

The time omplexity of the algorithms for omputing the LDAR, LDGAR and MTP

is easily seen to be dominated by the omplexity of the omputation of the matries

D and G. Hene, the overall omplexity for the both problems will be O(n

2

).

6 Conlusion and Open problems

Here we have presented new essentially quadrati algorithms for omputing Æ-approximate

and (Æ;)-approximate repetitions, the longest Æ-approximate and (Æ;)-approximate

repeat and the longest minimum-tolerane repeats.

An interesting open problem is to ompute Æ-approximate and (Æ;)-approximate

repetitions where the root does not belongs to the text.

58

Computing Approximate Repetitions in Musial Sequenes

Referenes

[1℄ E. Cambouropoulos, T. Crawford and C.S. Iliopoulos, (1999) Pattern Proess-

ing in Melodi Sequenes: Challenges, Caveats and Prospets. In Proeedings of

the AISB'99 Convention (Arti�ial Intelligene and Simulation of Behaviour),

Edinburgh, U.K., pp. 42{47 (1999).

[2℄ E. Cambouropoulos, M. Crohemore, C. S. Iliopoulos, L. Mouhard, and Y. J.

Pinzon. Algorithms for omputing approximate repetitions in musial se-

quenes. In R. Raman and J. Simpson, editors, Proeedings of the 10th Aus-

tralasian Workshop On Combinatorial Algorithms, pages 129{144, Perth, WA,

Australia, 1999.

[3℄ T. Crawford, C. S. Iliopoulos and R. Raman, String Mathing Tehniques for

Musial Similarity and Melodi Reognition, Computing in Musiology, Vol 11

(1998) 73{100.

[4℄ V. Fishetti, G. Landau, J. Shmidt and P. Sellers, Identifying periodi o-

urenes of a template with appliations to protein struture, Pro. 3rd Combi-

natorial Pattern Mathing , Leture Notes in Computer Siene, vol. 644, 1992,

pp. 111{120.

[5℄ S. Karlin, M. Morris, G. Ghandour, and M. Y. Leung, EÆients algorithms for

moleular sequenes analysis, Pro. Natl. Aad. Si., USA (1988) 85:841{845

[6℄ P. MGettrik, MIDIMath: Musial Pattern Mathing in Real Time. MS

Dissertation, York University, U.K. (1997).

[7℄ A. Milosavljevi and J. Jurka, Disovering simple DNA sequenes by the algo-

rithmi signi�ane method, Comput. Appl. Biosi. (1993) 9:407{411

[8℄ P. A. Pevzner and W. Feldman, Gray Code Masks for DNA Sequening by

Hybridization, Genomis, 23, 233{235 (1993).

[9℄ P.Y. Rolland and J.G. Ganasia, Musial Pattern Extration and Similarity

Assessment. In Readings in Musi and Arti�ial Intelligene. E. Miranda. (ed.).

Harwood Aademi Publishers (forthoming) (1999).

[10℄ J. P. Shmidt, All shortest paths in weighted grid graphs and its appliation to

�nding all approximate repeats in strings, in Pro. of the Fifth Symposium on

Combinatorial Pattern Mathing CPM'94, Leture Notes in Computer Siene

(1994).

[11℄ S. S. Skiena and G. Sundaram, Reonstruting strings from substrings, J.

Computational Biol. 2 (1995) 333{353.

59

