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Abstra
t. A 
onne
tion is made between 
ertain multiple sequen
e alignment

problems and fa
ility lo
ation problems, and the existen
e of a PTAS (polyno-

mial time approximation s
heme) for these problems is shown. Moreover, it is

shown that multiple sequen
e alignment with SP-s
ore and �xed gap penalties

is MAX SNP-hard.
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1 Introdu
tion

Re
ent advan
es in the availability of biologi
al data (i.e. DNA, RNA or protein)

has led to tremendous improvements in Mole
ular Biology. This huge amount of

data has also given a tremendous boost to a new �eld of Computer S
ien
e 
alled

Bioinformati
s. Pattern mat
hing is a basi
 tool in Mole
ular Biology, as sequen
e

similarity usually implies homology and fun
tional similarity of the proteins or genes

en
oded by su
h sequen
es. Another 
ru
ial appli
ation of sequen
e 
omparison are

sear
hes of biologi
al databases. All known biologi
al sequen
es are stored in huge

databases (e.g. EMBL, Swiss-Prot), and all re
ent papers in Mole
ular Biology that

report the dis
overy of a new sequen
e in
lude a detailed 
omparison of the novel

sequen
es with those stored in the publi
ly available databases.

These fa
ts reveal the importan
e of developing eÆ
ient algorithms for aligning a set

of sequen
es. It is standard pra
ti
e to represent biologi
al sequen
es as sequen
es

over a �xed alphabet (4 symbols for DNA and RNA sequen
es, 20 symbols for pro-

teins). An alignment of a set S of sequen
es is basi
ally a matrix where the rows


orrespond to the sequen
es in the set, possibly with some spa
es inserted, and the


ost of an alignment is the sum of the 
osts of all 
olumns. The goal is to 
ompute

the alignment of S of minimum 
ost (or, in an equivalent formulation preferred by

�
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many biologists, maximum s
ore). This general de�nition allows di�erent spe
i�
a-

tions of the problem, a

ording to the de�nition of 
ost of a 
olumn in the alignment

we 
hoose. In pra
ti
e at least two de�nitions make sense, the �rst (
alled Tree Align-

ment) requires a tree whose node set is exa
tly S and where the 
ost of a 
olumn

is the sum of the 
osts of the pairs of symbols of the two sequen
es that are adja-


ent in the tree. A parti
ular 
ase of this problem is 
alled Star Alignment, whi
h is

the restri
tion to trees with exa
tly one internal node. The other de�nition (
alled

SP-Alignment) will be the one studied in this paper and de�nes the 
ost of a 
olumn

as the sum of all pairs of symbols in the 
olumn. Equivalently, the SP-s
ore 
an be

de�ned as the sum over the pairwise alignment s
ores of all indu
ed alignments of

pairs of the sequen
es. The pairwise alignment s
ores are de�ned as follows. Let � be

a �xed alphabet and let � =2 � denote the spa
e symbol, then a s
oring s
heme is a

symmetri
 s
oring fun
tion d

M

: (�[�)� (�[�) 7! N together with spe
i�
ations

on how to handle gaps. A s
oring fun
tion d

M


an be 
onveniently represented by a

s
oring matrix M . The 
ost of a pair of symbols s

1

; s

2

under the s
oring matrix M

is d

M

(s

1

; s

2

). A gap is a string of the form �

i

. Most s
oring s
hemes used in pra
ti
e

are aÆne, i.e., they spe
ify a �xed gap opening penalty g (possibly 0) that is added

to the s
ore 
al
ulated a

ording to d

M

for ea
h newly 
reated gap in the alignment.

In this 
ontext, the numbers d

M

(s;�) for s 2 � are 
alled gap extension penalties.

Note that if all gap extension penalties are zero, then we have a s
oring s
heme with

�xed gap penalties. If d

M

(s;�) > 0 for all s 2 �, then we will say that the s
oring

s
heme spe
i�es stri
tly positive gap extension penalties.

Both Tree Alignment and SP-Alignment problems have been proved to be NP-hard

by Wang and Jiang [WJ94℄. Hen
e reasear
h has fo
used on heuristi
 algorithms

or approximation algorithms for su
h problems and on �nding restri
tions that are

eÆ
iently solvable. A restri
tion whi
h has a natural interpretation is the one where

the s
oring fun
tion is a metri
. For this restri
tion some approximation algorithms

with guaranteed 2�o(1) error ratio have been des
ribed [G93, P92, BLP97℄. Moreover,

optimal alignments in a
tual biologi
al sequen
es tend to have relatively few gaps

[W93, F93, BCG93, PA92℄, but unfortunately even in su
h restri
ted 
ases the SP-

Alignment problem is still NP-hard [BD00, J99℄. In [J99℄, several su
h modi�
ations

of the SP-Alignment problem were studied. In the Gap-0 Alignment problem, spa
es

may be inserted at the beginning and at the end of sequen
es, but not between


hara
ters from �, and the Gap-0-1 Alignment problem is the restri
tion of Gap-0

Alignment where at most one spa
e 
an be inserted in ea
h sequen
e. It turns out

that SP-Alignment, Gap-0 Alignment and Gap-0-1 Alignment problems are all NP-

hard for pra
ti
ally every aÆne s
oring s
heme with stri
tly positive gap extension

penalties used by mole
ular biologists [J99℄. This leaves open the 
ase of other ways

of 
al
ulating the gap penalties that are sometimes used in Mole
ular Biology. In

parti
ular, this leaves open the interesting 
ase of �xed gap penalties, where all gaps

are penalized equally, no matter where they o

ur and how long they are.

Moreover, it had been shown in [J99℄ that for some s
oring matrix M the three

problems mentioned above are MAX SNP-hard. The s
oring matrix M used in the

the latter result does not penalize all 
hara
ter mismat
hes, and thus is not metri
.

In [JKL99℄, Jiang et al. ask whether a parti
ular restri
tion of the SP-Alignment

problem (the 
ase of metri
 s
oring matrix) has a polynomial time approximation

s
heme (PTAS), that is, there exists a polynomial time approximation algorithm for
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any �xed 
onstant guaranteed error ratio. In [LMW99℄ a related question has been

answered positively by showing that the Star-
-Alignment Problem (where the number

of gaps in the pairwise alignment between any given sequen
e and the median sequen
e

is bounded by a 
onstant 
) with Hamming distan
e admits a PTAS. In our paper

we show that a di�erent restri
tion of the problem admits a PTAS. More pre
isely,

we show that a PTAS exists if the total number of spa
es that 
an be inserted into

ea
h sequen
e is bounded and the ratio of the 
osts between ea
h pairwise alignment

is in a �xed interval. Our results trivially hold also for Gap-0-1 Alignment.

Moreover, we will show that at least for some s
oring s
heme with �xed gap penalty,

the Gap-0 Alignment and the SP-Alignment problems are MAX SNP-hard. Sin
e the

optimal alignment in the example that yields the latter result 
ontains only one spa
e

in ea
h sequen
e, the requirement of bounded 
ost ratio 
annot be dropped from the


onstru
tion of the PTAS we des
ribe in the paper.

2 Preliminaries

Let � be a �nite alphabet, let � =2 � be the spa
e symbol, let d

M

: (� [�) � (� [

�) ! N be a fun
tion 
alled s
oring fun
tion, and let g be a nonnegative integer


onstant 
alled gap opening penalty. The symbol �(M) will denote the maximum

value d

M

(a

1

; a

2

) between two di�erent symbols a

1

; a

2

2 � [ f�g. Given a sequen
e

a over � [ f�g, the symbol a[i℄ will denote the i-th 
hara
ter of a and jaj will

denote the length n of a sequen
e a = a[1℄; : : : ; a[n℄. Then given two sequen
es

s

1

= s

1

[1℄; : : : ; s

1

[m℄, s

2

= s

2

[1℄; : : : ; s

2

[m℄ of m symbols over (� [ �), the 
ost

of aligning s

1

and s

2

is d

M

(s

1

; s

2

) = g(G

1

+ G

2

) +

P

m

i=1

d

M

(s

1

[i℄; s

2

[i℄), where G

j

is the number of gaps (
onse
utive runs of spa
e symbols) in s

j

. Given a k-tuple

< t

1

; : : : ; t

k

> of sequen
es over the alphabet � [ f�g, a multiple alignment is a k-

tuple < at

1

; : : : ; at

k

> of equal-length sequen
es (where at

i

stands for aligned t

i

) over

the alphabet � [ f�g su
h that ea
h at

i


an be obtained from t

i

by inserting some

spa
e symbols into the sequen
es without altering the order of symbols of t

i

. Given

two equal-length sequen
es at

1

; at

2

, their pairwise alignment is the pair of sequen
es

bt

1

; bt

2

that is obtained from at

1

; at

2

by removing all 
olumns 
ontaining only �s. If

L is a nonnegative integer, by d

opt

M;L

(t

1

; t

2

) we will denote the minimum 
ost among

all pairwise alignments of < t

1

; t

2

> that insert at most L spa
es into ea
h of the

sequen
es t

1

, t

2

. The SP-Alignment problem for a given s
oring s
heme (d

M

; g) is to

�nd the multiple alignment < at

1

; : : : ; at

k

> that minimizes SP (< at

1

; : : : at

k

>) =

P

1�i<j�k

d(bt

i

; bt

j

) among all possible multiple alignments of < t

1

; : : : ; t

k

>.

Here we will study a restri
tion of SP-Alignment that 
aptures to some extent the pat-

tern of spa
e insertions observed in real biomole
ular sequen
es and is di�erent from

the restri
tions studied in [J99℄. A spa
e-L alignment A of a k-tuple < t

1

; : : : ; t

k

> of

sequen
es is an alignment < at

1

; : : : ; at

k

> of < t

1

; : : : ; t

k

> su
h that jat

i

j � jt

i

j+L

for ea
h sequen
e t

i

. Note that spa
e-L-alignments exist only if the length of the

shortest of these sequen
es is at least n � L, where n is the length of the longest

among the sequen
es t

1

; : : : ; t

k

. Please also note that there are no restri
tions about

where the spa
e symbols 
an be inserted. The Spa
e-L Multiple Alignment problem

asks to �nd, for a k-tuple of sequen
es < t

1

; : : : ; t

k

> and a s
oring s
heme (d

M

; g),

a spa
e-L multiple alignment that minimizes the SP-s
ore with respe
t to (d

M

; g).
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Given an instan
e I =<< t

1

; : : : ; t

k

>; (d

M

; g) > of the Spa
e-L Multiple Alignment

problem we de�ne the variability of I, denoted by v(I), as

v(I) = maxf

n�(M) + Lg

d

opt

M;L

(t

i

; t

j

)

: 1 � i < j � kg;

Please note that the value v(I) of the instan
e I 
an be 
omputed in polynomial time.

The Spa
e-L Multiple Alignment(�) problem is the restri
tion of the Spa
e-L Multiple

Alignment problem to instan
es I with v(I) � �.

A few 
omments are in order. The most 
ommon multiple alignment problem in

Mole
ular Biology is the alignment of homologous protein sequen
es from di�erent

spe
ies. For a pair < t

i

; t

j

> of su
h sequen
es, < a(i; j)t

i

; a(i; j)t

j

> will be small

only if the sequen
es are very similar, whi
h usually happens only if the two spe
ies

of origin have a relatively re
ent (in the times
ale of evolution) 
ommon an
estor,

and will be 
lose to the average distan
e of random sequen
es if the spe
ies diverged

a long time ago, or if the optimal alignment requires more than L spa
es. For s
oring

matri
es used in pra
ti
e, the average distan
e of random sequen
es is usually a

number of about the same order of magnitude as n�(M). The algorithms used in

pra
ti
e for multiple sequen
e alignment tend to perform well if all sequen
es are


losely related to ea
h other, while our �rst theorem 
overs one of the 
ases that are

diÆ
ult in pra
ti
e and quite 
ommon, namely the 
ase where none of the sequen
es

are 
losely related to ea
h other.

3 The PTAS

The main results of this se
tion is the following:

Theorem 1 Let � be a 
onstant. Then the Spa
e-L Multiple Alignment(�) problem

has a polynomial time approximation s
heme.

Note that in the above theorem, the s
oring s
heme (d

M

; g) is 
onsidered part of the

input, thus the theorem works for all aÆne s
oring s
hemes, no matter whether the

s
oring fun
tion is a metri
 and the gap penalties are �xed or variable. This does

not 
ontradi
t the results about MAX SNP-hardness from [J99℄ though, sin
e the

variability of the instan
es used to obtain the latter results was not bounded.

Theorem 1 will be proved by reformulating it as a kind of fa
ility lo
ation problem.

To see the 
onne
tion, suppose a 
ommuni
ation network is to be set up in a 
ountry

that 
onsists of k regions. In ea
h region, there should be one swit
hboard of the

network, and ea
h swit
hboard is to be 
onne
ted by expensive, high quality 
able

to every other swit
hboard. If in ea
h region there are several possible lo
ations

for the swit
hboard that are equally good for the operation of the network within

this region, then the lo
ations of swit
hboards should be 
hosen in su
h a way as

to minimize overall 
ost of 
able between them. The question of 
hoosing optimal

lo
ations for the swit
hboards 
an then be formalized as follows. The Swit
hboard

Lo
ation problem has as instan
e some disjoint sets R

1

; : : : ; R

k


alled regions, as well
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as a distan
e fun
tion d between all pairs of points x

i

; x

j

in R

1

[� � �[R

k

. The distan
e

fun
tion gives stri
tly positive values whenever the two points are distin
t. A feasible

solution is a k-tuple < x

1

: : : ; x

k

> of points su
h that x

i

2 R

i

for 1 � i � k. The

problem asks for a feasible solution that minimizes

P

1�i<j�k

d(x

i

; x

j

).

While fa
ility lo
ation problems with obje
tive fun
tions similar to those of Swit
h-

board Lo
ation have been studied for regions of the real line (see e.g. [AH97℄, [T94℄),

we are not aware of any published results 
on
erning the general formulation of Swit
h-

board Lo
ation given above.

We will dis
uss later how instan
es of Spa
e-L Alignment(�) 
an be mapped to suitable

instan
es of Swit
hboard Lo
ation in order to have a (1+ �) approximation algorithm.

But �rst we have to introdu
e a restri
tion of Swit
hboard Lo
ation similar to the

one introdu
ed for Spa
e-L Alignment. Let I = fR

1

; : : : ; R

k

; dg be an instan
e of the

Swit
hboard Lo
ation problem. We de�ne the spread s(I) of I as

s(I) =

maxfd(x

i

; x

j

) : 1 � i < j � k; x

i

2 R

i

; x

j

2 R

j

g

minfd(x

i

; x

j

) : 1 � i < j � k; x

i

2 R

i

; x

j

2 R

j

g

:

It is immediate from the de�nition that s(i) � 1. For any pair of 
onstants P; �, the

Swit
hboard Lo
ation

P

(�) problem is the Swit
hboard Lo
ation problem restri
ted to

instan
es of spread at most � and where ea
h region 
ontains at most P points.

Theorem 2 Let P; � be two 
onstants. Then the Swit
hboard Lo
ation

P

(�) problem

admits a PTAS.

Proof. The PTAS for Swit
hboard Lo
ation is based on the smooth polynomial pro-

gramming te
hnique of Arora et. al [AKK99℄. We will brie
y re
all the relevant

material from those papers. A 
-smooth polynomial integer program (or PIP) is a

problem of the form

minimize p

0

(x

1

; : : : ; x

n

)

subje
t to l

j

� p

i

(x

1

; : : : ; x

n

) � u

j

x

i

2 f0; 1g for i = f1; : : : ; ng

(6)

where ea
h p

j

is an n-variate polynomial of maximum degree d, and ea
h 
oeÆ
ient

of ea
h degree ` monomial (term) has an absolute value of at most 
 � n

d�`

.

The fundamental result that we will use, Theorem 1.10 of [AKK99℄, asserts that, for

ea
h Æ > 0, there exists an approximation algorithm running in time O(n

1

Æ

2

) that


omputes a 0/1 assignment < y

1

; : : : ; y

n

> to the variables x

i

of a 
-smooth PIP

su
h that, for n-variate degree-d polynomials, the value of p

0

(y

1

; : : : ; y

n

) is within an

additive error is at most Æn

d

of minimum for 0/1 solutions that satisfy all 
onstraints

p

1

; : : : ; p

m

, and su
h that < y

1

; : : : ; y

n

> satis�es ea
h linear 
onstraint within an

additive error of O(Æ

p

n logn).

Now let � be a �xed 
onstant, and suppose we have an instan
e I of the Swit
hboard

Lo
ation

P

(�) problem, where fR

i

: 1 � i � kg are the regions of I, and R

i

= fx

i;j

:

1 � j � Pg. (Sin
e one 
an always add dummy points to the regions, we do not

lose generality by assuming the regions to be exa
tly of 
ardinality P .) Let D be the
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value minfd(x

i;j

; x

h;`

) : 1 � i < h � k; 1 � j; ` � Pg. Now we 
an formulate the

Swit
hboard Lo
ation problem as a PIP:

minimize

P

1�h<i�k; 1�j;`�k

d(x

i;j

;x

h;`

)

D

y

i;j

y

h;`

subje
t to

P

j

ky

i;j

= k i = 1; : : : ; k

y

i;j

2 f0; 1g i = 1; : : : ; k; j = 1; : : : ; P

(7)

Please note that the total number of variables is at most kP . Sin
e s(I) � �, all


oeÆ
ients of the obje
tive fun
tions are between 1 and �. Thus the PIP is �-smooth.

Now suppose we want to �nd a solution to the Swit
hboard Lo
ation problem that is

within a fa
tor of (1 + �) of minimum. Setting Æ =

�

2P

2

, and running the algorithm

of [AKK99℄ on the PIP de�ned above, we �nd a 0/1 solution that satis�es all 
on-

straints within an additive error of O(Æ

p

kP log kP ). Sin
e for 0/1 solutions the left

hand sides of our side 
onstraints are multiples of k; for suÆ
iently large k we 
an

assume that these side 
onstraints are satis�ed exa
tly. But then for ea
h region R

i

,

exa
tly one of the numbers y

i;j

is equal to 1. Thus the 
orresponding x

i;j

's form a

feasible solution of instan
e I of the Swit
hboard Lo
ation problem, and the sum of the

distan
es is within an additive error of D�

�

k

2

�

. By the 
hoi
e of D, the minimum value

for the sum of all distan
es in any feasible solution of instan
e I of the Swit
hboard

Lo
ation problem 
annot be less than D

�

k

2

�

, and thus we have found, in polynomial

time, an approximation within a fa
tor of (1 + �). 2

Now let us show how Theorem 2 implies Theorem 1. Suppose we are given an instan
e

I =<< t

1

; : : : ; t

k

>; (d

M

; g) > of the Spa
e-L Alignment(�) problem, and let � > 0.

We want to �nd a spa
e-L multiple alignment of these sequen
es that s
ores within

(1 + �) of optimum. Let N = d

4L�

�

e and note that N is a 
onstant. Let n be the

length of the longest among the sequen
es t

1

; : : : ; t

k

, and let K = d2N +

gN

�(M)

e.

First assume that n � K. In this 
ase we let R

i

be the set of all sequen
es x

i;j

that are

obtainable by inserting L spa
es into t

i

(at the beginning, end, or between symbols).

This set 
ontains at most

�

K+L

L

�

elements. Note that

�

K+L

L

�

is a 
onstant that does

not depend on the number of sequen
es k. Thus the family fR

i

: 1 � i � kg together

with the distan
es d(x

i;j

; x

i

0

;j

0

) de�ned by the s
oring s
heme is an instan
e of the

Swit
hboard Lo
ation problem where the 
ardinality of all regions is bounded by the


onstant

�

K+L

L

�

. Feasible solutions of the Swit
hboard Lo
ation problem are exa
tly

all spa
e-L alignments of our sequen
es, and the obje
tive fun
tion of the Swit
hboard

Lo
ation problem is exa
tly the SP-s
ore of the alignment. Sin
e the variability of

the Spa
e-L Alignment problem is bounded by �, the spread of the 
orresponding

Swit
hboard Lo
ation problem that we just 
onstru
ted is also bounded by �. Thus

the PTAS for Swit
hboard Lo
ation

(

K+L

L

)

(�) �nds a solution within (1+�) of optimum.

Now assume that n > K. In this 
ase we partition ea
h sequen
e t

i

into 
onse
utive


hunks < s

i;h

: 1 � h � N >, where the length of ea
h 
hunk di�ers from

n

N

by no

more than 1. With ea
h fun
tion f : f1; : : : ; N+1g ! N su
h that

P

1�i�N+1

f(i) � L

we asso
iate a sequen
e t

i;f

by inserting f(h) spa
e symbols to the left of ea
h 
hunk

s

i;h

. In other words,

t

i;f

= �

f(1)

s

i;1

�

f(2)

s

i;2

: : :�

f(N)

s

i;N

�

f(N+1)
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Now we let R

i

be the set of all t

i;f

for fun
tions f : f1; : : : ; N + 1g ! N that

satisfy

P

1�i�N+1

f(i) � L. We run the approximation algorithm for Swit
hboard

Lo
ation

N+1

(�) that �nds a solution within (1 +

�

3

) on the instan
e given by the

k + 1-tuple < R

1

; : : : ; R

k

; (d

M

; g) >.

The algorithm returns a spa
e-L multiple alignment < t

1;f

1

; : : : ; t

k;f

k

> of the se-

quen
es < t

1

; : : : ; t

k

>. It remains to show that the alignment < t

1;f

1

; : : : ; t

k;f

k

>

s
ores within (1 + �) of optimum. Let < at

1

; : : : ; at

k

> denote a spa
e-L multiple

alignment with optimal SP-s
ore. For ea
h i, let g

i

: f1; : : : ; N + 1g ! N be the

fun
tion su
h that for ea
h 1 � i � k and 1 � h � N , g

i

is equal to the number of

spa
es in at

i

inserted immediately to the left of the 
hunk s

i;h

or between 
hara
ters

of s

i;h

. Instead of t

i;g

i

we will write bt

i

. Sin
e bt

i

2 R

i

for ea
h i, we have

SP (< t

1;f

1

; : : : ; t

k;f

k

>) � (1 +

�

3

)SP (< bt

1

; : : : ; bt

k

>):

Sin
e 1 + � > (1 + �=2)(1 + �=3) whenever � < 1, it now suÆ
es to show that

SP (< bt

1

; : : : ; bt

k

>) � (1 +

�

2

)SP (< at

1

; : : : ; at

k

>):

Let us split the sequen
es at

i

, bt

i

into N + 1 
hunks at

i;h

, bt

i;h

for 1 � h � N + 1

where bt

i;h

= �

g

i

(h)

s

i;h

, s

i;N+1

is the empty string, and jbt

i;h

j = jat

i;h

j, so that at

i

=

at

i;1

at

i;2

� � �at

i;N+1

and bt

i

= bt

i;1

bt

i;2

� � � bt

i;N+1

. From the de�nition of g

i

, whenever

g

i

(h) = g

j

(h) = 0, the pairwise alignment< at

i;h

; at

j;h

> is the same as < bt

i;h

; bt

j;h

>.

Sin
e at most L spa
es are inserted into ea
h sequen
e t

i

, and sin
e the maximum

penalty on ea
h 
hunk (ex
luding the newly inserted spa
es) is equal to the length

of the 
hunk (i.e. at most

n

N

+ 1) multiplied by �(M), and there are globally only L

extra spa
es, we get the inequality

d

M

(bt

i

; bt

j

) � d

M

(at

i

; at

j

) + �(M)L(2 +

n

N

) + Lg:

Sin
e n > 2N +

gN

�(M)

and thus �(M)

Ln

N

� 2L�(M) + Lg, we get

d

M

(bt

i

; bt

j

) � d

M

(at

i

; at

j

) + �(M)n

2L

N

:

By the 
hoi
e of N , the latter yields

d

M

(bt

i

; bt

j

) � d

M

(at

i

; at

j

) +

�(M)n�

2�

:

Sin
e the variability of our instan
e was assumed to be at most �, the inequality

d

M

(at

i

; at

j

) �

�(M)n

�

holds, and we get

d

M

(bt

i

; bt

j

) � d

M

(at

i

; at

j

)(1 +

�

2

);

as required.
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4 MAX SNP-hardness

The following theorem shows that the assumption of bounded variability 
annot be

simply dropped in Theorem 1.

Theorem 3 There exists a s
oring s
heme (d

M

; g) with �xed gap penalties su
h that:

(a) For the s
oring s
heme (d

M

; g) and for every L > 0 the Spa
e-LMultiple Alignment

problem is MAX SNP-hard.

(b) For the s
oring s
heme (d

M

; g) the Gap-0 Alignment problem is MAX SNP-hard.

(
) For the s
oring s
heme (d

M

; g), the SP-Alignment problem is MAX SNP-hard.

Here is the s
oring s
heme mentioned in the above theorem. The alphabet will be

� = fA;C; Tg, the gap opening penalty will be g = 2, and the s
oring matrix M will

be:

� A C T

� 0 0 0 0

A 0 0 0 1

C 0 0 0 0

T 0 1 0 0

Proof. We will prove Theorem 3 by redu
ing the Max Cut problem on 
ubi
 graphs

(denoted by 3-Max Cut) to the respe
tive multiple alignment problems. Re
all that

an instan
e of size k of the 3-Max Cut problem is a simple graph G =< V;E > su
h

that jV j = k and ea
h vertex of G has degree exa
tly 3. The problem is to �nd a

partition of the set of verti
es V into disjoint sets V

0

and V

1

su
h that the number

of edges that 
onne
t a vertex in V

0

with a vertex in V

1

, i.e., the size of the 
ut

determined by < V

0

; V

1

>, is as large as possible. It is well known that the 3-Max Cut

problem is MAX SNP-hard [AK97℄. For our purposes, it is most important to note

that the latter implies that there exists a real � > 0 su
h that no polynomial-time

approximation algorithm 
an �nd a 
ut su
h that the number of edges that are NOT


ut is within an additive 
onstant of �k of minimum.

Given a 
ubi
 graph G =< V;E > with k verti
es, we de�ne a 2k-tuple

�

t

G

=<

t

1

; : : : ; t

2k

> of sequen
es as follows: Enumerate V = fv

1

; : : : ; v

k

g, E = fe

0

; : : : ; e

`�1

g.

Ea
h sequen
e t

i

will have length 2(k

4

+ d�ke`), where � is a 
onstant that will be

de�ned below. Intuitively speaking, for 1 � i � k, the sequen
e t

i

will en
ode

the vertex v

i

. Edge e

m

= fv

i

; v

h

g will be en
oded by 
hara
ters t

h

[j℄; t

i

[j℄, where

j = 2(d�kem+1); : : : ; 2d�ke(m+1). More pre
isely, we de�ne t

i

[j℄, the j-th 
hara
-

ter in t

i

, as follows. For 1 � m � `, e

m

= fv

h

; v

i

g, h < i, d�kem < j < d�ke(m + 1)

we put: t

h

[2j℄ = A, t

i

[2j℄ = T , and t

p

[2j℄ = C for p =2 fi; hg.

The sequen
e t

k+i

will a
t as a \mirror image" of t

i

. The purpose of mirror images is

to neutralize the e�e
ts of unbalan
ed 
uts on the s
ores of aligments. For 1 � i � k

and d�ke`+ ik

3

< j < d�ke`+ (i + 1)k

3

we put: t

i

[2j℄ = A, t

k+i

[2j℄ = T , t

p

[2j℄ = C

for p =2 fi; k + ig.

For all p; j, we let t

p

[2j � 1℄ = C. Let us illustrate this 
onstru
tion with a pi
ture.

We exhibit a situation where e

m

= fv

h

; v

i

g.
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t[2(d�kem + 1)℄ t[2d�ke` + 2(h� 1)k

3

℄ t[2d�ke` + 2(i� 1)k

3

℄

# # #

t

h

: ... A C A C A ... A C A C A C ... C C C C C ...

t

i

: ... T C T C T ... C C C C C C ... A C A C A ...

t

k+h

: ... C C C C C ... T C T C T C ... C C C C C ...

t

k+i

: ... C C C C C ... C C C C C C ... T C T C T ...

Let us de�ne a \ben
hmark alignment" of the above sequen
es. We will de�ne this

alignment by partitioning the sequen
es into two sets L and R and inserting one

spa
e to the left of ea
h sequen
e in L and one spa
e to the right of ea
h sequen
e

in R. Let < V

1

; V

2

> be a 
ut of G. We will show how to asso
iate a ben
hmark

alignment to su
h 
ut. For ea
h 1 � i � k we let t

i

2 L i� t

k+i

2 R. Moreover for

ea
h 1 � i � k we let t

i

2 L i� v

i

2 V

1

.

Note that the s
ore for the ben
hmark alignment is 4k

2

+�kU , where U is the number

of edges that are not in the 
ut < V

1

; V

2

>. Moreover, the ben
hmark alignment is a

gap-0-1 alignment, and hen
e both a gap-0 alignment and a spa
e-1 alignment.

We will show that there exists a �xed Æ > 0 su
h that if an alignment a of the above

sequen
es is found that s
ores within a fa
tor of (1 + Æ) of the ben
hmark alignment,

then it will be possible to re
onstru
t, in polynomial time, from this alignment a

partition of the vertex set that indu
es a 
ut whose size is within a additive 
onstant

of �k of maximum. Suppose we have any alignment a that s
ores within 1 + Æ of our

ben
hmark alignment, where Æ is suÆ
iently small and will be determined later. Let

us say that a sequen
e pair < t

p

; t

q

> is stati
 in a if there is no spa
e in the indu
ed

pairwise alignment < bt

p

; bt

q

>. Being stati
 in a is easily seen to be an equivalen
e

relation. Let T

1

and T

2

denote the two largest equivalen
e 
lasses of the \stati
"

relation, and let T

3

denote the set of sequen
es that are neither in T

1

nor in T

2

. Note

that none of the sequen
e pairs < t

i

; t

k+i

> 
an be stati
 in a, otherwise the 
ost of

the alignment of < t

i

; t

k+i

> is too large. Thus the size of T

1

and T

2

is at most k. Let

jT

1

j = k � k

1

, jT

2

j = k � k

2

. Then jT

3

j = k

1

+ k

2

. Sin
e ea
h pair of sequen
es from

di�erent equivalen
e 
lasses adds at least 4 to the SP-s
ore of a, we have

SP (< at

1

; : : : ; at

2k

>) � 4((k� k

1

)(k� k

2

) + (k� k

1

)(k

1

+ k

2

)+ (k� k

2

)(k

1

+ k

2

)) =

4(k

2

+ k

1

k

2

+ k(k

1

+ k

2

)� (k

1

+ k

2

)

2

) = 4(k

2

+ k

1

k

2

+ (k � jT

3

j)jT

3

j):

Thus the numbers k

1

and k

2

must be su
h that k

1

k

2

+(k�jT

3

j)jT

3

j < Æk

2

+Æ�kU , where

U is the number of edges that are not 
ut by the partition used in the ben
hmark

alignment. Note that U � 3k. We will 
hoose Æ <

��

100

. It follows that as long as � is

suÆ
iently small, we 
an assume that jT

3

j < k

�

6

. Now let �, Æ be as above, and let

V

i

be the set of all verti
es su
h that t

i

2 T

i

for i 2 f1; 2g. Consider the partition

< V

1

; V nV

1

>. Let W be the number of edges of G that are not 
ut by < V

1

; V nV

1

>.

Note that this number di�ers from the number Z of edges fv

i

; v

j

g su
h that < t

i

; t

j

>

is stati
 by at most 3jT

3

j, sin
e every edge in the di�eren
e must have an endpoint

in T

3

and the degree of the graph is 3. If the SP-s
ore of the alignment is within a

fa
tor of (1 + Æ) of that of the ben
hmark alignment, then we have:

4k

2

+ �kW � 4k

2

+ �k(Z + k

�

2

) � (1 + Æ)(4k

2

+ �kU) + �

�

2

k

2

:
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By the 
hoi
e of Æ and sin
e U � 3k, we get

�kW � �kU < 4Æk

2

+ Æ�kU + �

�

2

k

2

:

Assuming, as we may, that � � 1, and noting that U � 3k, our 
hoi
e of Æ gives:

W � U < 4

�

100

k + 3

�

100

�k +

�

2

k < �k:

2

The following results on hardness of Swit
hboard Lo
ation problems are not 
overed

by Theorem 3.

Theorem 4 For every 
onstant � > 1, the Swit
hboard Lo
ation

2

(�) problem is NP-

hard.

Proof. Let � > 1. Sin
e the number of instan
es of Swit
hboard Lo
ation

2

(�) in-


reases with �, we may without loss of generality assume that � � 2. We prove

the theorem by redu
ing the Max-Cut problem to Swit
hboard Lo
ation

2

(�). Given

a graph G =< V;E > with verti
es V = fv

1

; : : : ; v

k

g, 
onstru
t a metri
 spa
e

X = fx

1

; : : : ; x

k

; y

1

; : : : ; y

k

g as follows: For i 6= j, we let d(x

i

; x

j

) = d(y

i

; y

j

) = 1. If

fv

i

; v

j

g 2 E, then d(x

i

; y

j

) = �; if fv

i

; v

j

g =2 E, then d(x

i

; y

j

) = 1. (Note that for our


hoi
e of �, the distan
e fun
tion is a
tually a metri
.) For 1 � i � k, the region R

i

is

de�ned as fx

i

; y

i

g. This gives us an instan
e I of the Swit
hboard Lo
ation

2

(�) prob-

lem. Every solution �x of I indu
es a partition < V

x

; V

y

>, where V

x

= fv

i

: x

i

2 �xg

and V

y

= fv

i

: y

i

2 �xg. If 


�x

denotes the size of the 
ut indu
ed by the partition

< V

x

; V

y

>, then the measure of �x is equal to

�

k

2

�

+(��1)(jEj� 


�x

), and the theorem

follows from NP-hardness of the Max-Cut problem (see [GJ79℄). 2

Theorem 5 The Swit
hboard Lo
ation

2

problem is MAX SNP-hard.

In view of our observation that Gap-0-1 Alignment is a spe
ial 
ase of Swit
hboard

Lo
ation, Theorem 5 is a 
orollary of Theorem 3(
) of [J99℄.
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