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Abstract. A connection is made between certain multiple sequence alignment
problems and facility location problems, and the existence of a PTAS (polyno-
mial time approximation scheme) for these problems is shown. Moreover, it is
shown that multiple sequence alignment with SP-score and fixed gap penalties
is MAX SNP-hard.
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1 Introduction

Recent advances in the availability of biological data (i.e. DNA, RNA or protein)
has led to tremendous improvements in Molecular Biology. This huge amount of
data has also given a tremendous boost to a new field of Computer Science called
Bioinformatics. Pattern matching is a basic tool in Molecular Biology, as sequence
similarity usually implies homology and functional similarity of the proteins or genes
encoded by such sequences. Another crucial application of sequence comparison are
searches of biological databases. All known biological sequences are stored in huge
databases (e.g. EMBL, Swiss-Prot), and all recent papers in Molecular Biology that
report the discovery of a new sequence include a detailed comparison of the novel
sequences with those stored in the publicly available databases.

These facts reveal the importance of developing efficient algorithms for aligning a set
of sequences. It is standard practice to represent biological sequences as sequences
over a fixed alphabet (4 symbols for DNA and RNA sequences, 20 symbols for pro-
teins). An alignment of a set S of sequences is basically a matrix where the rows
correspond to the sequences in the set, possibly with some spaces inserted, and the
cost of an alignment is the sum of the costs of all columns. The goal is to compute
the alignment of & of minimum cost (or, in an equivalent formulation preferred by
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many biologists, maximum score). This general definition allows different specifica-
tions of the problem, according to the definition of cost of a column in the alignment
we choose. In practice at least two definitions make sense, the first (called Tree Align-
ment) requires a tree whose node set is exactly S and where the cost of a column
is the sum of the costs of the pairs of symbols of the two sequences that are adja-
cent in the tree. A particular case of this problem is called Star Alignment, which is
the restriction to trees with exactly one internal node. The other definition (called
SP-Alignment) will be the one studied in this paper and defines the cost of a column
as the sum of all pairs of symbols in the column. Equivalently, the SP-score can be
defined as the sum over the pairwise alignment scores of all induced alignments of
pairs of the sequences. The pairwise alignment scores are defined as follows. Let 3 be
a fixed alphabet and let A ¢ ¥ denote the space symbol, then a scoring scheme is a
symmetric scoring function dy @ (X UA) x (EUA) — N together with specifications
on how to handle gaps. A scoring function d,; can be conveniently represented by a
scoring matrix M. The cost of a pair of symbols sq, sy under the scoring matrix M
is dpr(s1, 82). A gap is a string of the form A’. Most scoring schemes used in practice
are affine, i.e., they specify a fixed gap opening penalty g (possibly 0) that is added
to the score calculated according to dys for each newly created gap in the alignment.
In this context, the numbers dys(s, A) for s € X are called gap extension penalties.
Note that if all gap extension penalties are zero, then we have a scoring scheme with
fized gap penalties. If dp(s, A) > 0 for all s € ¥, then we will say that the scoring
scheme specifies strictly positive gap extension penalties.

Both Tree Alignment and SP-Alignment problems have been proved to be NP-hard
by Wang and Jiang [WJ94]. Hence reasearch has focused on heuristic algorithms
or approximation algorithms for such problems and on finding restrictions that are
efficiently solvable. A restriction which has a natural interpretation is the one where
the scoring function is a metric. For this restriction some approximation algorithms
with guaranteed 2—o(1) error ratio have been described [G93, P92, BLP97]. Moreover,
optimal alignments in actual biological sequences tend to have relatively few gaps
[W93, F93, BCG93, PA92], but unfortunately even in such restricted cases the SP-
Alignment problem is still NP-hard [BDO00, J99]. In [J99], several such modifications
of the SP-Alignment problem were studied. In the Gap-0 Alignment problem, spaces
may be inserted at the beginning and at the end of sequences, but not between
characters from X, and the Gap-0-1 Alignment problem is the restriction of Gap-0
Alignment where at most one space can be inserted in each sequence. It turns out
that SP-Alignment, Gap-0 Alignment and Gap-0-1 Alignment problems are all NP-
hard for practically every affine scoring scheme with strictly positive gap extension
penalties used by molecular biologists [J99]. This leaves open the case of other ways
of calculating the gap penalties that are sometimes used in Molecular Biology. In
particular, this leaves open the interesting case of fixed gap penalties, where all gaps
are penalized equally, no matter where they occur and how long they are.

Moreover, it had been shown in [J99] that for some scoring matrix M the three
problems mentioned above are MAX SNP-hard. The scoring matrix M used in the
the latter result does not penalize all character mismatches, and thus is not metric.
In [JKL99], Jiang et al. ask whether a particular restriction of the SP-Alignment
problem (the case of metric scoring matrix) has a polynomial time approximation
scheme (PTAS), that is, there exists a polynomial time approximation algorithm for

61



Proceedings of the Prague Stringology Club Workshop 2000

any fixed constant guaranteed error ratio. In [LMW99] a related question has been
answered positively by showing that the Star-c-Alignment Problem (where the number
of gaps in the pairwise alignment between any given sequence and the median sequence
is bounded by a constant ¢) with Hamming distance admits a PTAS. In our paper
we show that a different restriction of the problem admits a PTAS. More precisely,
we show that a PTAS exists if the total number of spaces that can be inserted into
each sequence is bounded and the ratio of the costs between each pairwise alignment
is in a fixed interval. Our results trivially hold also for Gap-0-1 Alignment.

Moreover, we will show that at least for some scoring scheme with fixed gap penalty,
the Gap-0 Alignment and the SP-Alignment problems are MAX SNP-hard. Since the
optimal alignment in the example that yields the latter result contains only one space
in each sequence, the requirement of bounded cost ratio cannot be dropped from the
construction of the PTAS we describe in the paper.

2 Preliminaries

Let ¥ be a finite alphabet, let A ¢ 3 be the space symbol, let dy, : (X UA) x (¥ U
A) — N be a function called scoring function, and let g be a nonnegative integer
constant called gap opening penalty. The symbol «a(M) will denote the maximum
value dys(aqi,az) between two different symbols a1,as € ¥ U {A}. Given a sequence
a over ¥ U {A}, the symbol a[i] will denote the i-th character of a and |a| will
denote the length n of a sequence a = a[l],...,a[n]. Then given two sequences
s1 = si[l],...,s1[m], s2 = so[l],...,s2[m] of m symbols over (¥ U A), the cost
of aligning s; and sy is da(s1,52) = ¢(G1 + G2) + D0 da(s1]i], s2[i]), where G,
is the number of gaps (consecutive runs of space symbols) in s;. Given a k-tuple
< ty,...,tr > of sequences over the alphabet ¥ U {A}, a multiple alignment is a k-
tuple < aty, ... ,aty > of equal-length sequences (where at; stands for aligned t;) over
the alphabet ¥ U {A} such that each at; can be obtained from ¢; by inserting some
space symbols into the sequences without altering the order of symbols of ;. Given
two equal-length sequences aty, aty, their pairwise alignment is the pair of sequences
bty, bty that is obtained from aty, at, by removing all columns containing only As. If
L is a nonnegative integer, by d})\’fL(tl, to) we will denote the minimum cost among
all pairwise alignments of < t1,%5 > that insert at most L spaces into each of the
sequences t1, to. The SP-Alignment problem for a given scoring scheme (dy/, g) is to
find the multiple alignment < aty, ... ,at; > that minimizes SP(< aty,...at; >) =
21<i<j<k d(bt;, bt;) among all possible multiple alignments of < ¢;,... ¢, >.

Here we will study a restriction of SP-Alignment that captures to some extent the pat-
tern of space insertions observed in real biomolecular sequences and is different from
the restrictions studied in [J99]. A space-L alignment A of a k-tuple < t1,...  tx > of
sequences is an alignment < aty, ... ,aty > of < ty,... t; > such that |at;| < |t;|+ L
for each sequence t;. Note that space-L-alignments exist only if the length of the
shortest of these sequences is at least n — L, where n is the length of the longest
among the sequences %, ... ,t;. Please also note that there are no restrictions about
where the space symbols can be inserted. The Space-L Multiple Alignment problem
asks to find, for a k-tuple of sequences < t1,...,t; > and a scoring scheme (dys, g),
a space-L multiple alignment that minimizes the SP-score with respect to (d, g).
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Given an instance [ =<< ty,...,t; >, (dp,g) > of the Space-L Multiple Alignment
problem we define the variability of I, denoted by v(I), as

na(M) + Lg

v([) = max{—;
it t5)

1 <i<j<k},

Please note that the value v(I) of the instance I can be computed in polynomial time.
The Space-L Multiple Alignment(c) problem is the restriction of the Space-L Multiple
Alignment problem to instances I with v(I) < o.

A few comments are in order. The most common multiple alignment problem in
Molecular Biology is the alignment of homologous protein sequences from different
species. For a pair < t;,t; > of such sequences, < a(i, j)t;,a(i, j)t; > will be small
only if the sequences are very similar, which usually happens only if the two species
of origin have a relatively recent (in the timescale of evolution) common ancestor,
and will be close to the average distance of random sequences if the species diverged
a long time ago, or if the optimal alignment requires more than L spaces. For scoring
matrices used in practice, the average distance of random sequences is usually a
number of about the same order of magnitude as na(M). The algorithms used in
practice for multiple sequence alignment tend to perform well if all sequences are
closely related to each other, while our first theorem covers one of the cases that are
difficult in practice and quite common, namely the case where none of the sequences
are closely related to each other.

3 The PTAS

The main results of this section is the following:

Theorem 1 Let o be a constant. Then the Space-L Multiple Alignment (o) problem
has a polynomial time approzimation scheme.

Note that in the above theorem, the scoring scheme (dys, g) is considered part of the
input, thus the theorem works for all affine scoring schemes, no matter whether the
scoring function is a metric and the gap penalties are fixed or variable. This does
not contradict the results about MAX SNP-hardness from [J99] though, since the
variability of the instances used to obtain the latter results was not bounded.

Theorem 1 will be proved by reformulating it as a kind of facility location problem.
To see the connection, suppose a communication network is to be set up in a country
that consists of k£ regions. In each region, there should be one switchboard of the
network, and each switchboard is to be connected by expensive, high quality cable
to every other switchboard. If in each region there are several possible locations
for the switchboard that are equally good for the operation of the network within
this region, then the locations of switchboards should be chosen in such a way as
to minimize overall cost of cable between them. The question of choosing optimal
locations for the switchboards can then be formalized as follows. The Switchboard
Location problem has as instance some disjoint sets Ry, ..., Ry called regions, as well
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as a distance function d between all pairs of points z;, z; in Ry U- - -URy. The distance
function gives strictly positive values whenever the two points are distinct. A feasible
solution is a k-tuple < zy...,x > of points such that z; € R; for 1 < i < k. The
problem asks for a feasible solution that minimizes >, ; ;. d(zi, 7;).

While facility location problems with objective functions similar to those of Switch-
board Location have been studied for regions of the real line (see e.g. [AH97], [T94]),
we are not aware of any published results concerning the general formulation of Switch-
board Location given above.

We will discuss later how instances of Space-L Alignment (o) can be mapped to suitable
instances of Switchboard Location in order to have a (1 + ¢) approximation algorithm.
But first we have to introduce a restriction of Switchboard Location similar to the
one introduced for Space-L Alignment. Let I = {R;, ..., Ry,d} be an instance of the
Switchboard Location problem. We define the spread s(I) of I as

max{d(z;,z;): 1 <i<j <k, z; € Rj,z; € R;}
min{d(z;,z;): 1 <i<j <k, x; € R,z; € Rj}

s(I) =

It is immediate from the definition that s(i) > 1. For any pair of constants P, o, the
Switchboard Locationp(o) problem is the Switchboard Location problem restricted to
instances of spread at most ¢ and where each region contains at most P points.

Theorem 2 Let P,o be two constants. Then the Switchboard Locationp(o) problem
admits a PTAS.

Proof. The PTAS for Switchboard Location is based on the smooth polynomial pro-
gramming technique of Arora et. al [AKK99]. We will briefly recall the relevant
material from those papers. A c-smooth polynomial integer program (or PIP) is a
problem of the form

minimize  po(21,... ,T)
subject to  [; < pi(x1,...,7n) < u; (6)
z; € {0,1} fori={1,...,n}

where each p; is an n-variate polynomial of maximum degree d, and each coefficient
of each degree ¢ monomial (term) has an absolute value of at most c - n4=¢.

The fundamental result that we will use, Theorem 1.10 of [AKK99], asserts that, for

each § > 0, there exists an approximation algorithm running in time O(né%) that
computes a 0/1 assignment < y;,...,y, > to the variables z; of a c-smooth PIP
such that, for n-variate degree-d polynomials, the value of py(yi, ... ,¥,) is within an
additive error is at most dn? of minimum for 0/1 solutions that satisfy all constraints

P1,---,Pm, and such that < yy,...,y, > satisfies each linear constraint within an
additive error of O(dy/nlogn).

Now let o be a fixed constant, and suppose we have an instance I of the Switchboard
Locationp (o) problem, where {R; : 1 < i < k} are the regions of I, and R; = {z; :
1 < j < P}. (Since one can always add dummy points to the regions, we do not
lose generality by assuming the regions to be ezactly of cardinality P.) Let D be the
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value min{d(z; j,zps) : 1 <i < h < k,1 < j¢ < P}. Now we can formulate the
Switchboard Location problem as a PIP:

R d(z; ;,o
IMINImMize Zl§h<i§k, 1<j,0<k ( D h’l)yi,jyh,ﬂ
subject to Zj kyi; =k i=1,...,k (7)
yi,jE{O,l} v=1,...,k; j=1,... P

Please note that the total number of variables is at most kP. Since s(I) < o, all
coefficients of the objective functions are between 1 and ¢. Thus the PIP is o-smooth.

Now suppose we want to find a solution to the Switchboard Location problem that is
within a factor of (1 + ¢) of minimum. Setting § = 355, and running the algorithm
of [AKK99] on the PIP defined above, we find a 0/1 solution that satisfies all con-
straints within an additive error of O(0v/kP logkP). Since for 0/1 solutions the left
hand sides of our side constraints are multiples of k; for sufficiently large & we can
assume that these side constraints are satisfied ezactly. But then for each region R;,
exactly one of the numbers y; ; is equal to 1. Thus the corresponding z; ;’s form a
feasible solution of instance I of the Switchboard Location problem, and the sum of the
distances is within an additive error of De(’;). By the choice of D, the minimum value
for the sum of all distances in any feasible solution of instance I of the Switchboard
Location problem cannot be less than D(g), and thus we have found, in polynomial
time, an approximation within a factor of (1 +¢). O

Now let us show how Theorem 2 implies Theorem 1. Suppose we are given an instance
I =<< t1,...,t >,(dy,g) > of the Space-L Alignment(o) problem, and let e > 0.
We want to find a space-L multiple alignment of these sequences that scores within
(1 + ¢€) of optimum. Let N = [LZ] and note that N is a constant. Let n be the

length of the longest among the sequences ti, ... ,t;, and let K = [2N + a‘é]]\\;)].

First assume that n < K. In this case we let R; be the set of all sequences z; ; that are
obtainable by inserting L spaces into t; (at the beginning, end, or between symbols).
This set contains at most (Ker) elements. Note that (Ker) is a constant that does
not depend on the number of sequences k. Thus the family {R; : 1 <i < k} together
with the distances d(x;;,xy ;) defined by the scoring scheme is an instance of the
Switchboard Location problem where the cardinality of all regions is bounded by the
constant (K;:L) Feasible solutions of the Switchboard Location problem are exactly
all space-L alignments of our sequences, and the objective function of the Switchboard
Location problem is exactly the SP-score of the alignment. Since the variability of
the Space-L Alignment problem is bounded by o, the spread of the corresponding
Switchboard Location problem that we just constructed is also bounded by o. Thus

the PTAS for Switchboard Location(K+L) (0) finds a solution within (1+¢) of optimum.
L

Now assume that n > K. In this case we partition each sequence t; into consecutive
chunks < s;5 : 1 < h < N >, where the length of each chunk differs from § by no
more than 1. With each function f : {1,..., N+1} — Nsuch that >, ., f(i) < L
we associate a sequence t; ; by inserting f(h) space symbols to the left of each chunk
si - In other words,

tif = Af(l)si 1Af(2)sz~ . Af(N)Si NAf(N+1)
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Now we let R; be the set of all ¢;; for functions f : {1,... ,N + 1} — N that
satisfy D, ;o yyq f(4) < L. We run the approximation algorithm for Switchboard
Locationy1(0) that finds a solution within (1 4+ £) on the instance given by the
k + 1-tuple < Ry, ..., Rk, (dy,g) >.

The algorithm returns a space-L multiple alignment < ¢ f,,... %5 > of the se-
quences < ti,...,t; >. It remains to show that the alignment < ¢ ¢,... ,tk 5 >
scores within (1 + €) of optimum. Let < atq,...,aty > denote a space-L multiple
alignment with optimal SP-score. For each i, let ¢; : {1,... ,N +1} — N be the
function such that for each 1 <i < kand 1 < h < N, g; is equal to the number of
spaces in at; inserted immediately to the left of the chunk s; ) or between characters
of s;5. Instead of #; ,, we will write bt;. Since bt; € R; for each i, we have

SP(<tifyseestrg >) < (1+ %)SP(< bty, ..., bt >).

Since 14+ € > (14 ¢/2)(1 + €/3) whenever € < 1, it now suffices to show that

SP(< bty,... bty >) < (1+ g)SP(< at, ... ,atg >).

Let us split the sequences at;, bt; into N + 1 chunks at;p, bt;), for 1 < h < N +1
where bt; ), = Agi(h)si,h, $in+1 18 the empty string, and |bt; ;| = |at; x|, so that at; =
ati,lati,g s ati’N+1 and btz = bti,lbti,g s bti’N+1. From the definition of 4gi, whenever
gi(h) = g;(h) = 0, the pairwise alignment < at; 5, at; > is the same as < bt; j, bt; ), >.
Since at most L spaces are inserted into each sequence t;, and since the maximum
penalty on each chunk (excluding the newly inserted spaces) is equal to the length
of the chunk (i.e. at most % + 1) multiplied by a(M), and there are globally only L
extra spaces, we get the inequality

dar (bt;, bt;) < da(aty, aty) + a(M)L(2 + %) + Lg.

Since n > 2N + a’E—]]\V@ and thus a(M)L2 > 2La(M) + Lg, we get

2L
dM(btl, bt]) S dM(CLti, CLt]‘) + OZ(M)’I’LW
By the choice of N, the latter yields

a(M)ne_

dM(th, bt]) S dM(ati, (Zt]’) + 5
g

Since the variability of our instance was assumed to be at most o, the inequality
d(at;, at;) > a(aﬂ holds, and we get

g (b, bty) < das(ati, at) (1 + ).

as required.
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4 MAX SNP-hardness

The following theorem shows that the assumption of bounded variability cannot be
simply dropped in Theorem 1.

Theorem 3 There exists a scoring scheme (dyr, g) with fized gap penalties such that:
(a) For the scoring scheme (dyr, g) and for every L > 0 the Space-L Multiple Alignment
problem is MAX SNP-hard.

(b) For the scoring scheme (dur, g) the Gap-0 Alignment problem is MAX SNP-hard.
(c) For the scoring scheme (dy, g), the SP-Alignment problem is MAX SNP-hard.

Here is the scoring scheme mentioned in the above theorem. The alphabet will be
Y. = {A,C, T}, the gap opening penalty will be g = 2, and the scoring matrix M will
be:

=l Q| >

ool
—lo|o| o
o|lojo|o|

T
0
1
0
0

Proof. We will prove Theorem 3 by reducing the Max Cut problem on cubic graphs
(denoted by 3-Max Cut) to the respective multiple alignment problems. Recall that
an instance of size k of the 3-Max Cut problem is a simple graph G =< V| E' > such
that |V| = k and each vertex of G has degree exactly 3. The problem is to find a
partition of the set of vertices V' into disjoint sets V and V; such that the number
of edges that connect a vertex in Vy with a vertex in Vi, i.e., the size of the cut
determined by < Vi, Vi >, is as large as possible. It is well known that the 3-Max Cut
problem is MAX SNP-hard [AK97]. For our purposes, it is most important to note
that the latter implies that there exists a real ¢ > 0 such that no polynomial-time
approximation algorithm can find a cut such that the number of edges that are NOT
cut is within an additive constant of ek of minimum.

Given a cubic graph G =< V,E > with k vertices, we define a 2k-tuple ¢ =<
t1,...,tar > of sequences as follows: Enumerate V = {vy,... ,ux}, E ={eq,... ,er_1}.
Each sequence #; will have length 2(k* + [ak]¢), where a is a constant that will be
defined below. Intuitively speaking, for 1 < i < k, the sequence t; will encode
the vertex v;. Edge e, = {v;,v,} will be encoded by characters t,[j],¢;[j], where
J=2([aklm+1),...,2[ak](m+1). More precisely, we define ¢;[j], the j-th charac-
ter in ¢;, as follows. For 1 < m < ¢, e,, = {wp, v}, h <4, [ak]m < j < [ak]|(m + 1)
we put: t,[2j] = A, t;[2j] =T, and t,[2j] = C for p ¢ {i, h}.

The sequence t;; will act as a “mirror image” of ¢;. The purpose of mirror images is
to neutralize the effects of unbalanced cuts on the scores of aligments. For 1 < <k
and [ak]l +ik® < j < [ak]l+ (i + 1)k we put: #;[2j] = A, tri[27] = T, t,[2j] = C
forp ¢ {i,k+1i}.

For all p, j, we let ¢,[2j — 1] = C. Let us illustrate this construction with a picture.
We exhibit a situation where e, = {vy, v;}.
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t2(Jak]m + 1)] t2[ak]l +2(h — 1)E*]  t[2[ak]l+ 2(i — 1)k?]

+ + +
t . ACACA..ACACAC.CCCCOZC
t;: . TCTCT..CCCCCC..ACACA
thyn: .. C CCCC ..TCTOCTC..CCCCZC
thyit .. C CCCC..CCCCCC.TCTCOCT

Let us define a “benchmark alignment” of the above sequences. We will define this
alignment by partitioning the sequences into two sets £ and R and inserting one
space to the left of each sequence in £ and one space to the right of each sequence
in R. Let < V;,V5 > be a cut of G. We will show how to associate a benchmark
alignment to such cut. For each 1 < i < k we let t; € L iff t;,; € R. Moreover for
each 1 <i<kwelett; € Liff v; € V).

Note that the score for the benchmark alignment is 4k? 4+ kU, where U is the number
of edges that are not in the cut < Vi, V5, >. Moreover, the benchmark alignment is a
gap-0-1 alignment, and hence both a gap-0 alignment and a space-1 alignment.

We will show that there exists a fixed § > 0 such that if an alignment a of the above
sequences is found that scores within a factor of (14 9) of the benchmark alignment,
then it will be possible to reconstruct, in polynomial time, from this alignment a
partition of the vertex set that induces a cut whose size is within a additive constant
of ek of maximum. Suppose we have any alignment a that scores within 14 § of our
benchmark alignment, where ¢ is sufficiently small and will be determined later. Let
us say that a sequence pair < t,,t, > is static in a if there is no space in the induced
pairwise alignment < bt,, bt, >. Being static in a is easily seen to be an equivalence
relation. Let 77 and T, denote the two largest equivalence classes of the “static”
relation, and let 75 denote the set of sequences that are neither in 77 nor in 7,. Note
that none of the sequence pairs < t;,t,,; > can be static in a, otherwise the cost of
the alignment of < ¢;,¢,,; > is too large. Thus the size of T} and T5 is at most k. Let
|Ty| = k — k1, |To| = k — ky. Then |T3] = ky + ko. Since each pair of sequences from
different equivalence classes adds at least 4 to the SP-score of a, we have

SP(< aty,... atop >) > 4((k—k1)(k — ko) + (k= ki) (k1 + ko) + (k — ko) (k1 + ko)) =

A(K? + kika + k(K1 + ko) — (ky + ko)?) = 4(k* + kike + (k — |T3))|T3)).

Thus the numbers k; and ke must be such that ki ky+(k—|T3|)| T3] < 6k*+dakU, where
U is the number of edges that are not cut by the partition used in the benchmark
alignment. Note that U < 3k. We will choose § < {5. It follows that as long as « is
sufficiently small, we can assume that |T3| < k§. Now let «, § be as above, and let
Vi be the set of all vertices such that t; € T; for i € {1,2}. Consider the partition
< Vi, V\V1 >. Let W be the number of edges of G that are not cut by < V4, V\Vj >.
Note that this number differs from the number Z of edges {v;, v;} such that < ¢;,¢; >
is static by at most 3|T3|, since every edge in the difference must have an endpoint
in T3 and the degree of the graph is 3. If the SP-score of the alignment is within a
factor of (1 + J) of that of the benchmark alignment, then we have:

Ak + kW < 4k + k(7 + kg) < (14 0)(4k? + aklU) + a%k2.
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By the choice of ¢ and since U < 3k, we get

akW — akU < 46k> + SakU + a%kQ.
Assuming, as we may, that @ < 1, and noting that U < 3k, our choice of § gives:

€ € €
— d—>Fk + 3—ak + <k < €k.
W—-U< 100 +3100a +2 <e€

O

The following results on hardness of Switchboard Location problems are not covered
by Theorem 3.

Theorem 4 For every constant o > 1, the Switchboard Locationy (o) problem is NP-
hard.

Proof. Let o > 1. Since the number of instances of Switchboard Locationy(o) in-
creases with o, we may without loss of generality assume that ¢ < 2. We prove
the theorem by reducing the Max-Cut problem to Switchboard Locationy(o). Given
a graph G =< V. E > with vertices V' = {vy,..., v}, construct a metric space
X =A{x1,..., %% Y1,..., Yk} as follows: For i # j, we let d(x;, x;) = d(y;,y;) = 1. If
{vi,v;} € E, then d(z;,y;) = o3 if {v;,v;} ¢ E, then d(z;,y;) = 1. (Note that for our
choice of o, the distance function is actually a metric.) For 1 < i < k, the region R; is
defined as {w;,y;}. This gives us an instance I of the Switchboard Locationy (o) prob-
lem. Every solution Z of I induces a partition < V,,,V,, >, where V, = {v; : z; € 7}
and V, = {v; : y; € Z}. If ¢; denotes the size of the cut induced by the partition
< V4,V >, then the measure of 7 is equal to (k) + (0 —1)(|E| —cz), and the theorem

2
follows from NP-hardness of the Max-Cut problem (see [GJ79]). O

Theorem 5 The Switchboard Locationy problem is MAX SNP-hard.

In view of our observation that Gap-0-1 Alignment is a special case of Switchboard
Location, Theorem 5 is a corollary of Theorem 3(c) of [J99].
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