
A new family of Commentz-Walter-style

multiple-keyword pattern mathing algorithms

Brue W. Watson

watson�OpenFIRE.org

www.OpenFIRE.org

University of Pretoria

(Department of Computer Siene)

Pretoria 0002, South Afria

1 Introdution

In this paper, I present a new family of Commentz-Walter-style multiple-

keyword string pattern mathing algorithm. The problem is: given a �nite

set of keywords P and an input string S, �nd all ourrenes (inluding

overlapping ones) of a keyword (in P) as a sub string of S; register suh

an ourrene by the end-point within S.

The algorithm family presented in this paper is, in fat, very losely

related to the original Commentz-Walter algorithm. In [3, 4℄, all of the

(then-known) Commentz-Walter-style algorithms were presented with a

ommon algorithmi skeleton | they only di�ered in the shift fun-

tion used to move through the input string. In this paper, we present

a signi�antly improved skeleton, whih is able to use the same shift

funtions (and, therefore, all of their preomputable forms). In addi-

tion to the hanged skeleton, the output funtion (used to register the

mathes) is hanged | though it remains easily omputed. There have

previously been numerous e�orts to optimize the Commentz-Walter algo-

rithms, though most of them have foused on new shift funtions, more

easily preomputed shift funtions, and programming-language-spei�

oding triks.

I assume that the reader is familiar with the �eld of multiple-keyword

pattern mathing, and with the Commentz-Walter algorithm in partiu-

lar; for more information, see [3℄ or the bibliography therein. The style

of presentation is in Dijkstra's guarded ommands [2℄. In suh a style,

a number of seemingly redundant variables may be presented | though

this is usually only to make repetition (repetition) invariants easier to ex-

press. Furthermore, some variables are assumed to have ineÆient types,

suh as `sub string of the input S', whereas an implementation in C, C++

or Pasal would likely use indexing into S.

71

The mathematial prerequisites are quite simple. Funtion su� maps

a string or a set of strings to the orresponding set of suÆxes (inluding

the empty string "). In this paper, we use the reverse trie for P ; suh

a trie onsists of state set su�(P) (though, in pratie, they would be

represented using integers instead of strings), and transition funtion �

r

,

whih maps a state and an input harater to the orresponding extended

element (that is, state) of su�(P) or to ? if there is no suh element. The

notation z � 1 refers to the rightmost symbol of z.

2 The Commentz-Walter algorithm

The Commentz-Walter algorithm was derived in the mid- to late-1970s,

as a multiple-keyword generalization of the highly eÆient Boyer-Moore

style of pattern mathing algorithm. It operates by moving from left to

right through input string S. At eah stop in S, a math attempt (on-

duted by an inner repetition) proeeds from right to left, registering any

mathes along the way. Following the inner repetition, the algorithm may

make a shift to the right of more than one harater | without miss-

ing any mathes. This is done based on information gathered during the

math attempt.

The following rendition of the algorithm is taken diretly from [3℄,

where �

r

is the transition funtion of the reverse trie (there are also some

other some minor adjustments of notation to avoid introduing many new

de�nitions):

Algorithm 2.1 (Commentz-Walter skeleton):

u; r : = "; S;

l; v : = "; ";

O : = (f"g \ P)� fSg;

f invariant: u = lv ^ v 2 su�(P) g

do r 6= "!

u; r : = shift u; r right by k(l; v; r);

l; v : = u; ";

O : = O [(f"g \ P)� frg;

f invariant: u = lv ^ v 2 su�(P) g

do l 6= " ^ �

r

(v; l � 1) 6= ? !

l; v : = shift l; v right by one harater;

O : = O [(fvg \ P)� frg

od

72

od

f O = f (p; r) j ur = S ^ p 2 su�(u) g g

2

Note that the states of the reverse trie are elements of the set su�(P),

with " being the start state.

The expression k(l; v; r) is a plae-holder for any of the shift funtions

given in either the original Commentz-Walter artile [1℄ or in [3, Chap-

ter 4℄. A great many of these shift funtions were developed subsequent

to the original artile | and some of them have proven to have extremely

high performane, while being reasonably easy to preompute.

The ability of these algorithms to skip large portions of input S (with-

out examining every single harater) yields high performane | usually

exeeding that of the Aho-Corasik algorithm, as is shown in [3, Chap-

ter 13℄. (This begs the question: why is the Aho-Corasik algorithm more

popular in text-books and implementations? The Commentz-Walter fam-

ily of algorithms have worst-ase performane whih is substantially be-

low that of the (stable) Aho-Corasik variants; the Aho-Corasik algo-

rithms have also been partiularly easy to implement ompared to the

Commentz-Walter algorithms.)

Despite this superb performane, pro�ling the Commentz-Walter skele-

ton shows some interesting fats:

1. A great deal of the time is spend making transitions (using the reverse

trie) in the inner repetition.

2. A similar amount of time is spent heking (also in the inner repeti-

tion) whether a math has been enountered.

The �rst item appears (at this time) unavoidable, whereas the seond

one is amenable to optimization (as shown in the rest of this paper).

The registration of mathes an be expressed as a repetition-invariant

omputation, meaning that it an be removed from the inner repetition,

dramatially improving performane.

3 Some observations

The inner repetition iterates (using variable v) over the set su�(u) \

su�(P). We an haraterize this set in a way whih will prove easier to

implement. In the following derivation, let w be the longest element of

su�(u)\su�(P) (there is a unique longest element, sine su�(u) is linearly

ordered aording to the suÆx relation):

73

su�(u) \ su�(P)

= f split su�(u) into f z j z 2 su�(u) ^ jzj > jwj g and su�(w) g

(f z j z 2 su�(u) ^ jzj > jwj g [su�(w)) \ su�(P)

= f distribute \ over [g

(f z j z 2 su�(u) ^ jzj > jwj g \ su�(P)) [(su�(w) \ su�(P))

= f by w being the longest, f z j z 2 su�(u) ^ jzj > jwj g \ su�(P) = � g

su�(w) \ su�(P)

The inner repetition registers, as mathes, only those elements v : v 2 P .

It follows that the set registered during a single iteration of the outer

repetition is v 2 su�(u) \ su�(P) \ P , whih an be rewritten:

f v j v 2 su�(u) \ su�(P) ^ v 2 P g

= f set omprehensiong

f v j v 2 su�(u) \ su�(P) \ P g

= f set omprehensiong

su�(u) \ su�(P) \ P

= f previous derivation su�(u) \ su�(P) = su�(w) \ su�(P) g

su�(w) \ su�(P) \ P

= f set ontainment: P � su�(P) g

su�(w) \ P

This yields a set by whih O ould be updated after, instead of during,

the inner repetition.

The remaining problem is to alulate w. Fortunately, the post-ondition

of the inner repetition is that v is the longest element of su�(u) whih is

still an element of su�(P) | v = w.

For oniseness, we an de�ne funtion WCWOutput 2 su�(P) �!

P(P) as

WCWOutput(x) = su�(x) \ P

4 The new algorithm

Given the repetition-invariane of the updates (to variable O, in whih

mathes are registered), we an present the new algorithm skeleton:

Algorithm 4.1 (Watson-Commentz-Walter skeleton):

74

u; r : = "; S;

l; v : = "; ";

O : = (f"g \ P)� fSg;

f invariant: u = lv ^ v 2 su�(P) g

do r 6= "!

u; r : = shift u; r right by k(l; v; r);

l; v : = u; ";

O : = O [(f"g \ P)� frg;

f invariant: u = lv ^ v 2 su�(P) g

do l 6= " ^ �

r

(v; l � 1) 6= ? !

l; v : = shift l; v right by one harater;

od;

O : = O [WCWOutput(v) � frg

od

f O = f (p; r) j ur = S ^ p 2 su�(u) g g

2

Note that we retain the invariants found in the original skeleton, meaning

that exatly the same shift funtions may be used. The preomputation of

WCWOutput remains to be disussed. As of this writing, an eÆient al-

gorithm has not been derived, though it is learly possible to preompute

it via a brute-fore method. In all likelihood, an eÆient preomputation

algorithm will involve a breadth-�rst traversal of the reverse trie (the

states of whih, su�(P), form the domain of WCWOutput). This will be

disussed further in the �nal version of this paper.

5 Closing omments

In this setion, we briey disuss the expeted

1

performane and the

history of this algorithm variant.

Examining the generated mahine ode (from a ompiler suh as Gnu

C++) reveals that the new skeleton's inner repetition onsists of roughly

half the number of instrutions as in the original algorithm's skeleton.

Sine muh (upwards of 80%) of the exeution time is spend in the inner

repetition, we an expet WCW to run in roughly 60

The derivation presented here is markedly di�erent from the one �rst

obtained in 1999. In the �rst derivation, I started with a na��ve algorithm

1

Only the expeted performane is presented here, sine benhmarking is ongoing

and will be presented in the �nal version of the paper.

75

whih was used as a preursor to the Aho-Corasik algorithm in [3℄. From

that algorithm, a simple adjustment (in the step used to obtain the Aho-

Corasik algorithm) yields the invariant that we need to register mathes

su�(u) \ su�(P) \ P . As in this paper, this set an be haraterized by

its longest element | eventually leading to the WCW algorithm. The

alternative derivation is, in some sense, preferrable sine it also allows for

sets other than su�(P) in the registration proess. In partiular, pref(P)

an be used (leading to the Aho-Corasik algorithm); more interestingly,

the set of fators of P an be used | perhaps reating a new algorithm.

Referenes

1. Commentz-Walter, B. A string mathing algorithm fast on the average. (Tehnial

Report TR 79.09.007, IBM Germany, Heidelberg Sienti� Center, 1979).

2. Dijkstra, E.W. A Disipline of Programming. (Prentie Hall, Englewood Cli�s,

N.J., 1976).

3. Watson, B.W. Taxonomies and Toolkits of Regular Language Algorithms. (Ph.D

dissertation, Eindhoven University of Tehnology, The Netherlands, 1995). See

www.OpenFIRE.org

4. Watson, B.W. and G. Zwaan. A taxonomy of sublinear multiple keyword pattern

mathing algorithms. (Siene of Computer Programming 27(2), September 1996,

pp. 85{118).

76

