A new family of Commentz-Walter-style
multiple-keyword pattern matching algorithms

Bruce W. Watson

watson@OpenFIRE.org
www.0penFIRE. org
UNIVERSITY OF PRETORIA
(DEPARTMENT OF COMPUTER SCIENCE)
Pretoria 0002, South Africa

1 Introduction

In this paper, I present a new family of Commentz-Walter-style multiple-
keyword string pattern matching algorithm. The problem is: given a finite
set of keywords P and an input string S, find all occurrences (including
overlapping ones) of a keyword (in P) as a sub string of S; register such
an occurrence by the end-point within S.

The algorithm family presented in this paper is, in fact, very closely
related to the original Commentz-Walter algorithm. In [3,4], all of the
(then-known) Commentz-Walter-style algorithms were presented with a
common algorithmic skeleton — they only differed in the shift func-
tion used to move through the input string. In this paper, we present
a significantly improved skeleton, which is able to use the same shift
functions (and, therefore, all of their precomputable forms). In addi-
tion to the changed skeleton, the output function (used to register the
matches) is changed — though it remains easily computed. There have
previously been numerous efforts to optimize the Commentz-Walter algo-
rithms, though most of them have focused on new shift functions, more
easily precomputed shift functions, and programming-language-specific
coding tricks.

I assume that the reader is familiar with the field of multiple-keyword
pattern matching, and with the Commentz-Walter algorithm in particu-
lar; for more information, see [3] or the bibliography therein. The style
of presentation is in Dijkstra’s guarded commands [2]. In such a style,
a number of seemingly redundant variables may be presented — though
this is usually only to make repetition (repetition) invariants easier to ex-
press. Furthermore, some variables are assumed to have inefficient types,
such as ‘sub string of the input S’, whereas an implementation in C, C++
or Pascal would likely use indexing into S.

71

The mathematical prerequisites are quite simple. Function suff maps
a string or a set of strings to the corresponding set of suffixes (including
the empty string ¢). In this paper, we use the reverse trie for P; such
a trie consists of state set suff(P) (though, in practice, they would be
represented using integers instead of strings), and transition function 7,
which maps a state and an input character to the corresponding extended
element (that is, state) of suff(P) or to L if there is no such element. The
notation z [1 refers to the rightmost symbol of z.

2 The Commentz-Walter algorithm

The Commentz-Walter algorithm was derived in the mid- to late-1970s,
as a multiple-keyword generalization of the highly efficient Boyer-Moore
style of pattern matching algorithm. It operates by moving from left to
right through input string S. At each stop in S, a match attempt (con-
ducted by an inner repetition) proceeds from right to left, registering any
matches along the way. Following the inner repetition, the algorithm may
make a shift to the right of more than one character — without miss-
ing any matches. This is done based on information gathered during the
match attempt.

The following rendition of the algorithm is taken directly from [3],
where 7, is the transition function of the reverse trie (there are also some
other some minor adjustments of notation to avoid introducing many new
definitions):

Algorithm 2.1 (Commentz-Walter skeleton):

u,r:=¢,8;

lLbv:=¢,¢

0': = ({e}n P) x {8}

{ invariant: v = [v A v € suff(P) }

dor#e—
u, r : = shift u, r right by k(l,v,r);
l,v:=u,c¢;

O:=0U{e}nP)x{r};
{ invariant: u = lv A v € suff(P) }
dol#eAT(v,0]1)# L —
[,v : = shift [, v right by one character;
O:=0U{v}nP)x{r}
od

72

od
{O={(p,r) |ur=8 Apée€suff(u) } }

|

Note that the states of the reverse trie are elements of the set suff(P),
with € being the start state.

The expression k(l,v,r) is a place-holder for any of the shift functions
given in either the original Commentz-Walter article [1] or in [3, Chap-
ter 4]. A great many of these shift functions were developed subsequent
to the original article — and some of them have proven to have extremely
high performance, while being reasonably easy to precompute.

The ability of these algorithms to skip large portions of input S (with-
out examining every single character) yields high performance — usually
exceeding that of the Aho-Corasick algorithm, as is shown in [3, Chap-
ter 13]. (This begs the question: why is the Aho-Corasick algorithm more
popular in text-books and implementations? The Commentz-Walter fam-
ily of algorithms have worst-case performance which is substantially be-
low that of the (stable) Aho-Corasick variants; the Aho-Corasick algo-
rithms have also been particularly easy to implement compared to the
Commentz-Walter algorithms.)

Despite this superb performance, profiling the Commentz-Walter skele-
ton shows some interesting facts:

1. A great deal of the time is spend making transitions (using the reverse
trie) in the inner repetition.

2. A similar amount of time is spent checking (also in the inner repeti-
tion) whether a match has been encountered.

The first item appears (at this time) unavoidable, whereas the second
one is amenable to optimization (as shown in the rest of this paper).
The registration of matches can be expressed as a repetition-invariant
computation, meaning that it can be removed from the inner repetition,
dramatically improving performance.

3 Some observations

The inner repetition iterates (using variable v) over the set suff(u) N
suff(P). We can characterize this set in a way which will prove easier to
implement. In the following derivation, let w be the longest element of
suff (u) Nsuff(P) (there is a unique longest element, since suff(u) is linearly
ordered according to the suffix relation):

73

suff(u) N suff(P)
= { split suff(u) into { z | z € suff(u) A |z| > |w| } and suff(w) }
({ z | z € suff(u) A |z| > |w| } Usuff(w)) N suff(P)
= { distribute N over U }
({z | z € suff(u) A |z| > |w| } Nsuff(P)) U (suff(w) Nsuff(P))
= { by w being the longest, { z | z € suff(u) A |z] > |w| } Nsuff(P) =0}
suff(w) N suff(P)

The inner repetition registers, as matches, only those elements v : v € P.
It follows that the set registered during a single iteration of the outer
repetition is v € suff(u) N suff(P) N P, which can be rewritten:

{v | v €suff(u) Nsuff(P) Ave P}
= { set comprehension }
{v | v € suff(u) Nsuff(P)N P}
= { set comprehension }
suff(u) Nsuff(P) N P
= { previous derivation suff(u) N suff(P) = suff(w) N suff(P) }
suff(w) Nsuff(P) N P
= { set containment: P C suff(P) }
suff(w) N P

This yields a set by which O could be updated after, instead of during,
the inner repetition.

The remaining problem is to calculate w. Fortunately, the post-condition
of the inner repetition is that v is the longest element of suff(u) which is
still an element of suff(P) — v = w.

For conciseness, we can define function WCWOutput € suff(P) —
P(P) as

WCWOutput(z) = suff(z) N P

4 The new algorithm

Given the repetition-invariance of the updates (to variable O, in which
matches are registered), we can present the new algorithm skeleton:

Algorithm 4.1 (Watson-Commentz-Walter skeleton):

74

u,r:=¢,8;

lLbv:=¢,¢

0': = ({e}n P) x {8}

{ invariant: v = [lv A v € suff(P) }

dor#e—
u,r : = shift u, r right by k(l,v,r);
l,v:=u,c¢;

O:=0U({e}NnP)x{r};
{ invariant: u = lv A v € suff(P) }
dol#eAT(v,0]1)# L —
[,v : = shift [, v right by one character;
od;
O : = O UWCWOutput(v) x {r}
od
{O={(p,r) |ur=8Apesuff(u) } }

a

Note that we retain the invariants found in the original skeleton, meaning
that exactly the same shift functions may be used. The precomputation of
WCW Output remains to be discussed. As of this writing, an efficient al-
gorithm has not been derived, though it is clearly possible to precompute
it via a brute-force method. In all likelihood, an efficient precomputation
algorithm will involve a breadth-first traversal of the reverse trie (the
states of which, suff(P), form the domain of WCW Output). This will be
discussed further in the final version of this paper.

5 Closing comments

In this section, we briefly discuss the expected' performance and the
history of this algorithm variant.

Examining the generated machine code (from a compiler such as Gnu
C++) reveals that the new skeleton’s inner repetition consists of roughly
half the number of instructions as in the original algorithm’s skeleton.
Since much (upwards of 80%) of the execution time is spend in the inner
repetition, we can expect WCW to run in roughly 60

The derivation presented here is markedly different from the one first
obtained in 1999. In the first derivation, I started with a naive algorithm

! Only the expected performance is presented here, since benchmarking is ongoing
and will be presented in the final version of the paper.

75

which was used as a precursor to the Aho-Corasick algorithm in [3]. From
that algorithm, a simple adjustment (in the step used to obtain the Aho-
Corasick algorithm) yields the invariant that we need to register matches
suff(u) Nsuff(P) N P. As in this paper, this set can be characterized by
its longest element — eventually leading to the WCW algorithm. The
alternative derivation is, in some sense, preferrable since it also allows for
sets other than suff(P) in the registration process. In particular, pref(P)
can be used (leading to the Aho-Corasick algorithm); more interestingly,
the set of factors of P can be used — perhaps creating a new algorithm.

References

1. Commentz-Walter, B. A string matching algorithm fast on the average. (Technical
Report TR 79.09.007, IBM Germany, Heidelberg Scientific Center, 1979).

2. Dijkstra, E.W. A Discipline of Programming. (Prentice Hall, Englewood Cliffs,
N.J., 1976).

3. Watson, B.W. Tazonomies and Toolkits of Regular Language Algorithms. (Ph.D
dissertation, Eindhoven University of Technology, The Netherlands, 1995). See
www.OpenFIRE.org

4. Watson, BW. and G. Zwaan. A taxonomy of sublinear multiple keyword pattern
matching algorithms. (Science of Computer Programming 27(2), September 1996,
pp. 85-118).

76

