
A new family of Commentz-Walter-style

multiple-keyword pattern mat
hing algorithms

Bru
e W. Watson

watson�OpenFIRE.org

www.OpenFIRE.org

University of Pretoria

(Department of Computer S
ien
e)

Pretoria 0002, South Afri
a

1 Introdu
tion

In this paper, I present a new family of Commentz-Walter-style multiple-

keyword string pattern mat
hing algorithm. The problem is: given a �nite

set of keywords P and an input string S, �nd all o

urren
es (in
luding

overlapping ones) of a keyword (in P) as a sub string of S; register su
h

an o

urren
e by the end-point within S.

The algorithm family presented in this paper is, in fa
t, very
losely

related to the original Commentz-Walter algorithm. In [3, 4℄, all of the

(then-known) Commentz-Walter-style algorithms were presented with a

ommon algorithmi
 skeleton | they only di�ered in the shift fun
-

tion used to move through the input string. In this paper, we present

a signi�
antly improved skeleton, whi
h is able to use the same shift

fun
tions (and, therefore, all of their pre
omputable forms). In addi-

tion to the
hanged skeleton, the output fun
tion (used to register the

mat
hes) is
hanged | though it remains easily
omputed. There have

previously been numerous e�orts to optimize the Commentz-Walter algo-

rithms, though most of them have fo
used on new shift fun
tions, more

easily pre
omputed shift fun
tions, and programming-language-spe
i�

oding tri
ks.

I assume that the reader is familiar with the �eld of multiple-keyword

pattern mat
hing, and with the Commentz-Walter algorithm in parti
u-

lar; for more information, see [3℄ or the bibliography therein. The style

of presentation is in Dijkstra's guarded
ommands [2℄. In su
h a style,

a number of seemingly redundant variables may be presented | though

this is usually only to make repetition (repetition) invariants easier to ex-

press. Furthermore, some variables are assumed to have ineÆ
ient types,

su
h as `sub string of the input S', whereas an implementation in C, C++

or Pas
al would likely use indexing into S.

71

The mathemati
al prerequisites are quite simple. Fun
tion su� maps

a string or a set of strings to the
orresponding set of suÆxes (in
luding

the empty string "). In this paper, we use the reverse trie for P ; su
h

a trie
onsists of state set su�(P) (though, in pra
ti
e, they would be

represented using integers instead of strings), and transition fun
tion �

r

,

whi
h maps a state and an input
hara
ter to the
orresponding extended

element (that is, state) of su�(P) or to ? if there is no su
h element. The

notation z � 1 refers to the rightmost symbol of z.

2 The Commentz-Walter algorithm

The Commentz-Walter algorithm was derived in the mid- to late-1970s,

as a multiple-keyword generalization of the highly eÆ
ient Boyer-Moore

style of pattern mat
hing algorithm. It operates by moving from left to

right through input string S. At ea
h stop in S, a mat
h attempt (
on-

du
ted by an inner repetition) pro
eeds from right to left, registering any

mat
hes along the way. Following the inner repetition, the algorithm may

make a shift to the right of more than one
hara
ter | without miss-

ing any mat
hes. This is done based on information gathered during the

mat
h attempt.

The following rendition of the algorithm is taken dire
tly from [3℄,

where �

r

is the transition fun
tion of the reverse trie (there are also some

other some minor adjustments of notation to avoid introdu
ing many new

de�nitions):

Algorithm 2.1 (Commentz-Walter skeleton):

u; r : = "; S;

l; v : = "; ";

O : = (f"g \ P)� fSg;

f invariant: u = lv ^ v 2 su�(P) g

do r 6= "!

u; r : = shift u; r right by k(l; v; r);

l; v : = u; ";

O : = O [(f"g \ P)� frg;

f invariant: u = lv ^ v 2 su�(P) g

do l 6= " ^ �

r

(v; l � 1) 6= ? !

l; v : = shift l; v right by one
hara
ter;

O : = O [(fvg \ P)� frg

od

72

od

f O = f (p; r) j ur = S ^ p 2 su�(u) g g

2

Note that the states of the reverse trie are elements of the set su�(P),

with " being the start state.

The expression k(l; v; r) is a pla
e-holder for any of the shift fun
tions

given in either the original Commentz-Walter arti
le [1℄ or in [3, Chap-

ter 4℄. A great many of these shift fun
tions were developed subsequent

to the original arti
le | and some of them have proven to have extremely

high performan
e, while being reasonably easy to pre
ompute.

The ability of these algorithms to skip large portions of input S (with-

out examining every single
hara
ter) yields high performan
e | usually

ex
eeding that of the Aho-Corasi
k algorithm, as is shown in [3, Chap-

ter 13℄. (This begs the question: why is the Aho-Corasi
k algorithm more

popular in text-books and implementations? The Commentz-Walter fam-

ily of algorithms have worst-
ase performan
e whi
h is substantially be-

low that of the (stable) Aho-Corasi
k variants; the Aho-Corasi
k algo-

rithms have also been parti
ularly easy to implement
ompared to the

Commentz-Walter algorithms.)

Despite this superb performan
e, pro�ling the Commentz-Walter skele-

ton shows some interesting fa
ts:

1. A great deal of the time is spend making transitions (using the reverse

trie) in the inner repetition.

2. A similar amount of time is spent
he
king (also in the inner repeti-

tion) whether a mat
h has been en
ountered.

The �rst item appears (at this time) unavoidable, whereas the se
ond

one is amenable to optimization (as shown in the rest of this paper).

The registration of mat
hes
an be expressed as a repetition-invariant

omputation, meaning that it
an be removed from the inner repetition,

dramati
ally improving performan
e.

3 Some observations

The inner repetition iterates (using variable v) over the set su�(u) \

su�(P). We
an
hara
terize this set in a way whi
h will prove easier to

implement. In the following derivation, let w be the longest element of

su�(u)\su�(P) (there is a unique longest element, sin
e su�(u) is linearly

ordered a

ording to the suÆx relation):

73

su�(u) \ su�(P)

= f split su�(u) into f z j z 2 su�(u) ^ jzj > jwj g and su�(w) g

(f z j z 2 su�(u) ^ jzj > jwj g [su�(w)) \ su�(P)

= f distribute \ over [g

(f z j z 2 su�(u) ^ jzj > jwj g \ su�(P)) [(su�(w) \ su�(P))

= f by w being the longest, f z j z 2 su�(u) ^ jzj > jwj g \ su�(P) = � g

su�(w) \ su�(P)

The inner repetition registers, as mat
hes, only those elements v : v 2 P .

It follows that the set registered during a single iteration of the outer

repetition is v 2 su�(u) \ su�(P) \ P , whi
h
an be rewritten:

f v j v 2 su�(u) \ su�(P) ^ v 2 P g

= f set
omprehensiong

f v j v 2 su�(u) \ su�(P) \ P g

= f set
omprehensiong

su�(u) \ su�(P) \ P

= f previous derivation su�(u) \ su�(P) = su�(w) \ su�(P) g

su�(w) \ su�(P) \ P

= f set
ontainment: P � su�(P) g

su�(w) \ P

This yields a set by whi
h O
ould be updated after, instead of during,

the inner repetition.

The remaining problem is to
al
ulate w. Fortunately, the post-
ondition

of the inner repetition is that v is the longest element of su�(u) whi
h is

still an element of su�(P) | v = w.

For
on
iseness, we
an de�ne fun
tion WCWOutput 2 su�(P) �!

P(P) as

WCWOutput(x) = su�(x) \ P

4 The new algorithm

Given the repetition-invarian
e of the updates (to variable O, in whi
h

mat
hes are registered), we
an present the new algorithm skeleton:

Algorithm 4.1 (Watson-Commentz-Walter skeleton):

74

u; r : = "; S;

l; v : = "; ";

O : = (f"g \ P)� fSg;

f invariant: u = lv ^ v 2 su�(P) g

do r 6= "!

u; r : = shift u; r right by k(l; v; r);

l; v : = u; ";

O : = O [(f"g \ P)� frg;

f invariant: u = lv ^ v 2 su�(P) g

do l 6= " ^ �

r

(v; l � 1) 6= ? !

l; v : = shift l; v right by one
hara
ter;

od;

O : = O [WCWOutput(v) � frg

od

f O = f (p; r) j ur = S ^ p 2 su�(u) g g

2

Note that we retain the invariants found in the original skeleton, meaning

that exa
tly the same shift fun
tions may be used. The pre
omputation of

WCWOutput remains to be dis
ussed. As of this writing, an eÆ
ient al-

gorithm has not been derived, though it is
learly possible to pre
ompute

it via a brute-for
e method. In all likelihood, an eÆ
ient pre
omputation

algorithm will involve a breadth-�rst traversal of the reverse trie (the

states of whi
h, su�(P), form the domain of WCWOutput). This will be

dis
ussed further in the �nal version of this paper.

5 Closing
omments

In this se
tion, we brie
y dis
uss the expe
ted

1

performan
e and the

history of this algorithm variant.

Examining the generated ma
hine
ode (from a
ompiler su
h as Gnu

C++) reveals that the new skeleton's inner repetition
onsists of roughly

half the number of instru
tions as in the original algorithm's skeleton.

Sin
e mu
h (upwards of 80%) of the exe
ution time is spend in the inner

repetition, we
an expe
t WCW to run in roughly 60

The derivation presented here is markedly di�erent from the one �rst

obtained in 1999. In the �rst derivation, I started with a na��ve algorithm

1

Only the expe
ted performan
e is presented here, sin
e ben
hmarking is ongoing

and will be presented in the �nal version of the paper.

75

whi
h was used as a pre
ursor to the Aho-Corasi
k algorithm in [3℄. From

that algorithm, a simple adjustment (in the step used to obtain the Aho-

Corasi
k algorithm) yields the invariant that we need to register mat
hes

su�(u) \ su�(P) \ P . As in this paper, this set
an be
hara
terized by

its longest element | eventually leading to the WCW algorithm. The

alternative derivation is, in some sense, preferrable sin
e it also allows for

sets other than su�(P) in the registration pro
ess. In parti
ular, pref(P)

an be used (leading to the Aho-Corasi
k algorithm); more interestingly,

the set of fa
tors of P
an be used | perhaps
reating a new algorithm.

Referen
es

1. Commentz-Walter, B. A string mat
hing algorithm fast on the average. (Te
hni
al

Report TR 79.09.007, IBM Germany, Heidelberg S
ienti�
 Center, 1979).

2. Dijkstra, E.W. A Dis
ipline of Programming. (Prenti
e Hall, Englewood Cli�s,

N.J., 1976).

3. Watson, B.W. Taxonomies and Toolkits of Regular Language Algorithms. (Ph.D

dissertation, Eindhoven University of Te
hnology, The Netherlands, 1995). See

www.OpenFIRE.org

4. Watson, B.W. and G. Zwaan. A taxonomy of sublinear multiple keyword pattern

mat
hing algorithms. (S
ien
e of Computer Programming 27(2), September 1996,

pp. 85{118).

76

