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Preface

This collaborative report contains the proceedings of the Prague Stringology Con-

ference '01 (PSC'01), held at the Department of Computer Science and Engineering

of Czech Technical University in Prague on September 4, 2001. The conference was

preceded by workshop PSCW'96 which was the �rst action of the Prague Stringology

Club, and continued each year. The proceedings of PSCW'96, PSCW'97, PSCW'98,

PSCW'99 and PSCW 2000 were published as collaborative reports DC{96{10, DC{

97{03, DC{98{06, DC{99-05 and DC-2000-03, respectively, of Department of Com-

puter Science and Engineering and are also available in the postscript form at Web

site with URL: http://cs.felk.cvut.cz/psc. While the papers of PSCW'96 were

invited papers, since 1997 they were selected from the papers submitted as a response

to a call for papers. The papers in this proceedings are alphabetically ordered by the

authors. The last two papers are invited.

The PSCW aims at strengthening the connection between stringology (the com-

puter science on strings and sequences) and �nite automata theory. The automata

theory has been developed and successfully used in the �eld of compiler construction

and can be very useful in the �eld of stringology too. The automata theory can facil-

itate the understanding of existing algorithms and the developing of new algorithms.

Miroslav Bal��k and Milan

�

Sim�anek, editors

v
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Searching in an E�ciently Stored DNA Text

Using a Hardware Solution

T. Berry, S. Keller and S. Ravindran

Department of Computer Science

Liverpool John Moores University

Byrom Street

Liverpool

United Kingdom

e-mail: fT.Berry, S.Keller, S.Ravindrang@livjm.ac.uk

Abstract. In this paper, we describe a storage method that reduces the size

of a DNA text �le to 25% of its original size. Also outlined is a new algorithm,

which can search an input stream of DNA text for multiple DNA sub-strings

in a single pass. Although this new algorithm is competitive when compared

to the majority of existing string matching algorithms, the intention is to fur-

ther improve performance by implementing the algorithm as a hardware-only

solution.

1 Introduction

String matching and Compression are two widely studied areas in computer Science

[10]. String matching is detecting a pattern P of length m in a larger text T of length

n. Compression involves transforming a string into a new string which contains the

same information but whose length is as small as possible. These two areas naturally

lead to Compressed String Matching, i.e. searching for a pattern in a compressed

text. This method will save both space and time.

In this paper we describe a hardware solution that searches in the compressed

DNA text. We also describe an algorithm coded in the programming language C that

will be synthesized into hardware. A DNA text (or molecule) encodes information

which by convention is represented as a string over the DNA alphabet A, C, G and

T. Compressed String Matching in a DNA text is useful for the following reasons.

Although the cost of memory is reducing, the sizes of DNA databases are growing

exponentially.

Optimal compression will devote two bits to represent each DNA character, if

each character is drawn uniformly at random from the DNA alphabet and that all

positions in the text are independent [14]. The compression method described in

Section 2 also devotes two bits per character, i.e. the method guarantees to compress

the DNA text to 25% of its original size. Section 3, outlines the BK algorithm,

as being a string matching algorithm, which as well as being relatively fast as a

software solution, could also be implement in a hardware-only solution. Section 4,

describes a modi�cation to the basic BK algorithm, which will search a stream of
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DNA text for multiple sub-strings in a single pass of the text. Section 5, covers

the process of implementing programs as hardware-only solutions. Attention is paid

to the inadequacies of modern microprocessors and the advantages which so-called

'hardware compilation techniques' can o�er as a means of accelerating the execution

of algorithms. Section 6, describes how the BK string matching algorithm may be

implemented as a hardware only solution. In section 7 we describe 5 existing string

matching algorithms. In section 8 we compare our new algorithm with the 5 existing

algorithms by experimentation. The texts and the patterns used for these experiments

have been taken from [11] and [1] respectively.

2 E�cient storage of a DNA text

In the DNA alphabet, S, there are four characters, namely A, C, G and T. As there

are only 4 possible characters in a DNA text we can represent the character's with

the function, f: �) [0 .. 3], such that:

f(A) = 0, f (C) = 1, f (G) = 2, and f (T) = 3.

Let a block be a string of four characters. The code of a block of DNA characters

is the value that returned by the function g, g: � � �� �� �) [0 .. 255], for the

block. The function g is de�ned as follows. g(���) = (f(�) �4

3

) + (f(�) �4

2

) +

(f() �4

1

) + (f(�) �4

0

)

This means that we can represent each of the DNA characters with 2 bits. Namely

A = 00, C = 01, G = 10 and T = 11. A DNA text block will be represented by 32-bits,

as each character needs 8-bits. Using the function g we can represent a text block

with 8-bits. For each text block we print an ASCII character whose ASCII number

is the value return by the function g. As the function g is a bijective function, we

can compress any text block into 8-bits and it is possible to reconstruct the original

DNA text exactly.

For example, CAAGAGCGCAGT ) 010000100010011001001011) 66 38 75 )

B&K. So we can store the string CAAGAGCGCAGT using 24 bits. This storage

method will guarantee to store the DNA text in a �le, which is 25% of its original

size.

3 Investigation into a hardware only solution to

the string matching problem

The string matching algorithm illustrated in Figure 1 was devised as part of a case

study to investigate the feasibility of performing computational algorithms in hard-

ware. String matching was chosen as one of the areas to be tested as such algorithms

typically involve many hardware manipulations of words of binary data. These manip-

ulations are invoked by the machine code instructions, which constitute the program

and performed by the general-purpose hardware within the microprocessor itself. So

called software to hardware synthesis techniques aim to accelerate algorithm execu-

tion by �rst of all removing the need for machine instructions and by also performing

computational and logical operations on bespoke hardware.
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while (match != 0 && word_count != 0) { 
      result = current & mask; 
      match  = result - target; 
      if (match != 0) { 
         current = current >> 2; 
         temp = buffer << 14; 
         current = current | temp; 
         if (shifted == 7) { 
            word_count--; 
            shifted = 0; 
            buffer = *ptr; 
            ptr++; 
         } 
         else { 
            buffer = buffer >> 2; 
            shifted++; 
         } 
      } 
   }  

Figure 1: The C code for searching for occurrences of a single pattern in a given text

The example code shown works on a word size of 16 bits and can detect a pattern

of up to 8 DNA characters in length. However, the algorithm is by no means limited

to this word size.

The algorithm works by shifting the input stream through the variable current.

When the data is shifted, it is shifted two bits at a time to the right. It is shifted two

bits at a time because this is more e�cient as the algorithm are searching for DNA

features which are encoded into two bit patterns. Each time current is shifted to the

right it is checked for a match with the target pattern. This concept is illustrated in

Figure 2.

Figure 2: Comparison of input stream against target

When shifted, the two least signi�cant bits (LSBs), which are bits 1 and 0, are lost

and the two most signi�cant bits (MSBs), which are bits 15 and 14, become empty.

These two null MSBs are �lled with the two LSBs of buffer. The variable buffer is

a pre-fetch word, which will contain word i+1 with current containing word i. This

is necessary if current is to kept full at all times. During initialisation, the �rst word

of data is copied to current from the input bu�er and buffer is �lled with the second

word of data.

In order to copy the two LSBs of buffer to the two MSBs of current, buffer is

�rst copied to a variable temp, which is then shifted 14 bits to the left. This shift

operation results in the two least signi�cant bits of bu�er (1 and 0) being moved to
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the two most signi�cant bits (15 and 14), with the remainder of the word (bits 13 to

0) being �lled with 0's. The contents of temp is then ORed with current resulting in

the two most signi�cant bits of current being replaced with the two least signi�cant

bits of buffer.

In order to make sure that buffer always has at least two bits available for

current, a count is kept of how many times current has been shifted to the right. This

count is stored in the variable shifted, which is initialised to 0 and then incremented

each time shifted is shifted to the right and the two MSBs replaced with the two

LSBs of buffer. If after a comparison shifted is less than 7, then buffer is shifted

two bits to the right in order to replace the two LSBs which have been moved to

current and the variable shifted is incremented. If shifted reaches 7, then the last

two bits of data have moved from buffer to current and buffer requires re-�lling.

When this occurs, shifted is set back to 0 and buffer is loaded with a complete new

word from the input stream.

The next byte to be fetched from the input stream is pointed to by the pointer

variable ptr, which is incremented once buffer has been re�lled with a word from

data bu�er named data buffer.

To ascertain whether current contains a match for the bit pattern being searched

for, current is �rst ANDed with a variable named mask. The purpose of mask is to

mask out those bits of current which are not required for the comparison. To ignore

a bit during the comparison between target and current, then the associated bit of

mask should be 0. Likewise, to include a bit in the comparison, then that bit of the

mask should be set to 1. As illustrated in Figure 3 below, the pattern 'ACGT' is

being searched for, which is only an 8 bit pattern. Hence the remaining upper eight

bits can be ignored during the comparison and are thus set to 0.

Figure 3: The use of the mask to reduce the number of bits compared

When current is ANDed with the mask, the result of the logical AND is stored

in result. A bit of result will only be set to 1 if both the corresponding bits of mask

and current are 1, otherwise the bit will be set to 0. A match with the target can

now be determined by subtracting target from result. If the result of this subtraction

is all 0's, then both result and the target must have contained the same values and

hence a match has been found. This process is illustrated in Figure 4.

4



Searching in an E�ciently Stored DNA Text Using a Hardware Solution

Figure 4: The steps required to determine whether the target matches the current

data

The program has been written to locate patterns of DNA up to and including

eight two bit codes. Hence, all words are 16bits in length and are declared as being of

type unsignedshort. However, the program could easily be amended to locate longer

patterns by simply changing the variable types and program constants.

4 Searching for multiple strings

The example algorithm illustrated in Figure 1, simply searches an input stream for

all occurrences of a single string. The program can be easily modi�ed to search an

input stream for all occurrences of many strings by reading in many targets from a

�le and storing them in an array. This way, each time current is shifted, it may be

compared with many targets before it is once more shifted. In order to do this, a

second array must be created to store the masks for each of the targets. These masks

may be automatically generated from the targets as they are read in.
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while (shifts>0) { 
      for (i=0; i<no_of_targets; i++) { 
         result = current & mask_array[i]; 
         match  = result - target_array[i]; 
         if (match == 0) { 
   .. match found  
         } 
      } 
 
      current = current >> 2; 
      shifts--; 
      temp = buffer << 14; 
      current = current | temp; 
 
      if (shifted == 7) { 
         shifted = 0; 
         buffer = *ptr; 
         ptr++; 
      } 
      else { 
         buff = buff >> 2; 
         shifted++; 
      } 
   } 

 

Figure 5: An algorithm to search for multiple patterns in a single text

Apart from this simple modi�cation, the program remains relatively unchanged.

This is the version of the program, which will be the subject of the investigation into

hardware acceleration of string matching.

Figure 6: Illustration of Figure 5
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5 Hardware acceleration

Over the past decade hardware synthesis has been explored as a method of accel-

erating computing tasks at which conventional general-purpose microprocessors are

ine�cient. The problem is that current microprocessors, although being suitable for

many tasks, are not particularly e�cient at performing any one task. This is because

they are designed to be applicable to as many problem areas or tasks as possible.

Therefore, through necessity they possess many features which although utilised by

one application may never be used by another application. Another problem with

conventional machines is the stored program concept whereby and algorithm is ex-

ecuted by the microprocessor obeying a series of commands, which are stored in

memory. These commands are the machine code instructions, which the micropro-

cessor fetches, decodes and then executes one at time. This fetching and decoding

takes comparatively vast amount of time due to the slow speed of memory and the

numerous instructions within the instruction set of the processor. Even the execution

phase is by no means e�cient. The execution circuits of a processor are �nite and

although some resources are replicated, many must be shared. This resource con-

tention slows execution times. Additionally, the execution circuits of microprocessors

are designed to perform many tasks, making them less e�cient.

Hardware and software co-design or hardware to software synthesis is a process

whereby computing algorithms expressed in high-level languages, are compiled to pro-

duce either an executable program and a hardware circuit design or just a hardware

circuit. In the case of hardware and software co-design [16, 17], the majority of the

program is turned into an executable binary for execution on a microprocessor, whilst

the remainder of the algorithm is synthesised to hardware. The portion synthesised

to hardware would be the section of the algorithm at which the microprocessor would

be least e�cient. The hardware portion is usually programmed into a Field Pro-

grammable Gate Array (FPGA) [18], which then acts as a co-processor to the host

microprocessor. Producing programs for such architectures is usually performed using

a hybrid programming language and appropriate compilers and synthesis tools [15].

Such programming languages tend to be based on C, with extensions being added to

express the hardware-only components for the FPGA.

With pure software to hardware synthesis [2, 3], an attempt is made to map the

entire algorithm into an FPGA, resulting in a digital circuit, which is functionally

identical to and directly derived from an algorithm, which was originally expressed

in a programming language. Such approaches tend to used hardware description

languages such as VHDL [13], which are exclusively used for expressing the function

of hardware circuits.

Synthesis to a hardware only solution o�ers the greatest potential increase in

speed, removing the need for instructions and a conventional fetch-decode-execute

cycle. However, it is also the most di�cult to achieve. The di�culty arises from the

design features of current FPGAs, which were originally intended for implementing

digital circuits. Although suitable for the prototyping and implementation of gen-

eral circuits comprising of digital logic, they are not well suited for implementing

algorithms. This is because algorithms require data storage for variables, buses for

register to register and register to execution unit transfers. Data storage and buses

are not available within an FPGA and must be created using the FPGAs resources,
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such as macro-cells and signal lines. What makes the situation worse is that both

registers and buses are expensive in terms of FPGA resources, which ultimately limits

the size of the algorithm to may be implemented in hardware.

As part of the research into implementing string matching algorithms in hardware-

solutions, recommendations will be made regarding the development of a new FPGA

architecture, which will be more suited to purpose of implementing software in hard-

ware.

6 Hardware Implementation of string Matching

The research currently being undertaken aims to overcome the limitations of current

FPGAs, with regards to con�gurable computing. First of all, it aims to do this by

recommending a new con�gurable device architecture, which lends itself more to the

mapping of software to hardware. The device will feature the busing systems, areas of

storage and synchronization circuits required to facilitate both e�ective and e�cient

hardware generation. Secondly, software tools are being developed which will process

standard C programs and as their output, will produce con�guration �les for the

programmable device.

Because of the low-level nature of the task of string matching, it is an ideal can-

didate for such acceleration techniques. At the hardware level, the most e�cient

method of searching a string for a sub-string is as illustrated in Figure 2. The stream

to be searched is passed through a register, shifting one bit at a time. Each time the

register is shifted, the register is compared with the sub-string being searched for.

This is the same method as employed in the C algorithm discussed previously. The

number of register bits to be compared need only be equal in length to the number

of bits in the sub-string, with any additional bits simply be masked out or ignored

in the same way as the C algorithm. Additionally, the register being searched need

not only be shifted one bit at a time. In the case of searching for occurrences of bit

patterns consisting of two bit sub-patterns, it is more e�cient to shift the register

two bits before a comparison with the target is made.

Figure 7., illustrates a simpli�ed diagram of the components to be implemented in

hardware. Missing are the hardware components responsible for shifting both current

and buffer to the right. Also missing are the circuits required for synchronizing the

activities of the components in order to perform the operations of the algorithm in

the correct order.

8
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Figure 7: Simpli�ed version of the components to be implemented in hardware

The memory labelled data buffer holds the data to be searched for a sub-string.

The width of the words contained in data buffer is immaterial and may be of any

width.

The registers labelled ptr and buffer are associated with the fetching of the

words from memory. The register buffer is the same width as the words contained

in data buffer. This register is used to contain a pre-fetch word. The register ptr is

used as a pointer to reference the words contained in data buffer. As such, its width

need only be su�cient to reference all of the words in data buffer.

The register current contains the current bit pattern to be matched against a

sub-string bit pattern. It is a shift register, with the data contained in the register

being shifted right two bits at a time, with the two least signi�cant bits being lost

and the two most signi�cant bits being replaced with the two least signi�cant bits of

bu�er. This is the purpose of bu�er, to keep current full of bits. Only once all the

bits contained in bu�er have been shifted into current, will new data be loaded into

buffer from data buffer.

As with the C algorithm, the mask register is used to contain a bit pattern to

mask o� the bits of current, which are not to be compared. When ANDed with the

contents of current, then the resulting word is stored in the register result. It is the

contents of result, which will be compared with the target to determine whether or

not a matching bit pattern has been located. To ascertain whether the contents of

result and target do match, result is subtracted from target. Again, if the result of

the subtraction is zero, then a match has been located.

The synchronisation techniques to be implemented to synchronise the functioning

of the component parts is beyond the scope of this paper. However, the techniques

employed and the architecture of the programmable logic device, will be reported
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upon in subsequent papers.

7 Existing string matching algorithms

The string matching algorithms described below work as follows. First the pattern

of length m, P[1..m], is aligned with the extreme left of the text of length n, T[1..n].

Then the pattern characters are compared with the text characters. The algorithms

vary in the order in which the comparisons are made. After a mismatch is found

the pattern is shifted to the right and the distance the pattern can be shifted is

determined by the algorithm that is being used. It is this shifting procedure, which

is the main di�erence between the string matching algorithms.

There are a number of string matching algorithms available in the literature. We

have chosen six of them, which were found to be fast in [5] and described them briey

below. All of the algorithms have worst-case search time O(nm). Animations of

these algorithms can be found at [9] and more information about the algorithms can

be found in [8].

In the Boyer-Moore (BM) algorithm [7] the characters are compared from right

to left starting with the rightmost character of the pattern. In a case of mismatch it

uses two functions, last occurrence function and good su�x function and shifts the

pattern by the maximum number of positions computed by these functions. The good

su�x function returns the number of positions for moving the pattern to the right by

the least amount, so as to align the already matched characters with the rightmost

substring in the pattern that are identical. The number of positions returned by the

last occurrence function determines the rightmost occurrence of the mismatched text

character in the pattern. If the text character does not appear in the pattern then

the last occurrence function returns m.

The Horspool (HOR) algorithm [12] is a simpli�cation of the BM algorithm. It

does not use the good su�x function, but uses a modi�ed version of the last occurrence

function. The modi�ed last occurrence function determines the right most occurrence

of the (k +m)

th

text character, T[k +m] in the pattern, if a mismatch occurs when

a pattern is aligned with T[k .. k +m]. This algorithm changes the order in which

characters of the pattern are compared with the text. It compares the rightmost

character in the pattern �rst then compares the leftmost character, then all the other

characters in ascending order from the second position to the m� 1

th

position.

The Berry-Ravindran (BR) algorithm [5] uses the next two characters outside the

pattern text alignment T[k+m+1] T[k+m+2] to calculate the shift. If the pair is in

the pattern then we shift the pattern so as to align it with the rightmost occurrence

of the pair in the pattern. If the pair is not in the pattern then we shift by m+2

places to the right.

The DS algorithm [6] is an algorithm designed to search directly in the e�ciently

stored DNA text. It was found to be the fastest algorithm for the task of string

matching in DNA �les. The speed of the algorithm was mainly due to the cut down

in the time required to scan in the text due to it being 25% of the size of the original

text. The DS algorithm has a worst case run time of O(nm) but an average case run

time of O(n +m). The algorithm compares text blocks with pattern blocks directly

to see if they match. Upon a mismatch the algorithm moves to the next text block

to be considered.

10
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The Shift-OR (SO) algorithm [4] has a worst case run time of O(n) independent

of the size of the alphabet being used or the pattern being searched for. The SO

algorithm constructs a bit array R of length m. The array has the initial state R

i

and R

i

[j] is equal to 0 if P[0,j] = T[i � j,i] for all 0 � j � m. Otherwise R

i

[j] is

equal to 1. R

i

is recalculated to form R

i

+ 1 by using two operations a logical shift

of 1 and a logical OR hence the name of the algorithm Shift-OR.

8 Comparison with existing algorithms

We measure the user time for the six algorithms. We timed the search of each of the

5 texts randomly chosen from the Entrez database [11] for all occurrences of the 62

enzyme cutting boundaries in [1]. There are 9 patterns of length 4, 50 of length 6

and 3 of length 8. The BK and DS algorithms searched in the e�ciently stored DNA

text �le and the BM, HOR, BR and SO algorithms searched in the original DNA text

�le. We used a 486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive

running SUSE 5.2. The user time includes the time taken for any pre-processing and

the reading of the text into memory. Each algorithm was evaluated ten times and

the average user time taken is given in Table 1. The timings were accurate to 1/100

of a second. The di�erence between the slowest and fastest time for each test for an

algorithm was less than 0.1 of a second.

Text Text size BM BR HOR SO DS BK

1 100,000 47.57 31.49 41.09 54.92 15.31 45.77

2 100,000 47.63 31.46 40.99 54.91 15.36 45.76

3 253,505 119.97 79.29 102.97 138.96 33.18 115.92

4 319,000 151.13 99.63 129.70 174.71 40.84 145.83

5 217,000 102.72 67.98 88.26 118.85 29.05 99.22

Table 1: The user time taken (given in seconds) to search for all 62 patterns in each

of the texts

>From Table 1 we can see that the DS algorithm is the fastest algorithm for the

task. This is due to the savings made by the algorithm searching in the compressed

DNA �le, which is a quarter of the size of the original DNA text �le. The BR

algorithm is the best algorithm for searching in the original DNA text �le. This

is due to the larger shift of m+2 given by this algorithm. Using two characters to

perform the search means that the probability of a large shift is increased. We would

expect the average shift for the algorithm to be greater than m for all the patterns

searched for. The BK algorithm is faster than the BM and the SO algorithms. The

BK algorithm is a C implementation of our proposed hardware solution. We expect

our hardware solution to be faster than our C implementation, which will also be

faster than the DS algorithm.
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9 Conclusion

Using the storage method described in Section 2 we can store DNA text �les in 25%

of space required for the original DNA text �le. Using algorithms such as the DS

and BK algorithm we can keep DNA texts e�ciently stored and perform searches on

them. Thus saving both time and space.

Although the BK algorithm, which is presented in this paper, is not the fastest

algorithm for the task of string matching in an e�ciently stored DNA text �le, it

is never-the-less still competitive when compared to existing string matching algo-

rithms. Although it is by no means the fastest algorithm for sub-string searches,

the hardware synthesis of the BK algorithm into a hardware only implementation is

expected to produce a solution that we estimate to be signi�cantly faster than even

the DS algorithm.
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Abstract. In this paper we describe an algorithm to search for a pattern in an

e�ciently stored text. The method used to store the text tranforms it to

dlog

2

�e

8

of its original size, where � is the size of the alphabet set �. We prove that the

algorithm takes linear time on average. We compare the new algorithm with

some existing string matching algorithms by experimentation.

1 Introduction

String matching and Compression are two widely studied areas in computer science

[5]. String matching is detecting a pattern P of length m in a larger text T of length

n over an alphabet set � of size �. Compression involves transforming a string into

a new string which contains the same information but whose length is as small as

possible. These two areas naturally lead to compressed string matching, i.e. searching

for a pattern in a compressed text. This method will save both space and time.

In this paper we describe a string matching algorithm to search a pattern in a

e�ciently stored text. We can reduce the size of any given text according to the size

of the alphabet being used. This is useful as although the cost of memory is reducing,

the sizes of text databases are growing exponentially.

In Section 2 we describe our storage method that will transform the text to

dlog

2

�e

8

of its original size. This method is compared with other well-known compression

algorithms by experiments in Section 3.

Section 4 describes a novel string matching algorithm on a text that is stored by

using the method in Section 2. In Section 5 we prove that on average this algorithm

takes O(n + m) time. Our algorithm is compared with other well known string

matching algorithms by experiments in Section 6.

2 E�cient storage of a text

We assume that the size of the alphabet set, �, is in the range 1 � � � 128 and

that we are representing each character in the alphabet with one byte. There are

redundant bits in each byte as we only need dlog

2

�e bits to represent a character.

14
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After we replace the characters in a text with dlog

2

�e bits, it is possible to replace

eight consecutive bits in the binary text with its corresponding ASCII character.

These eight consecutive bits are called a block. The decimal value of a block is the

code of the block. This representation will reduce the storage space to

dlog

2

�e

8

n , where

n is the size of the original text.

For example, consider � = fA;B;C;D;Eg and T = CACDABEB. This text

T of eight characters can be represented with three characters T

0

= A1a. First we

represent the characters with A = 000; B = 001; C = 010; D = 011 and E = 100.

This will give the binary representation of the text T:

010000010011000001100001

The �rst bit in each block are shown in bold font. The codes for the text blocks

are 65, 48 and 95 and their corresponding ASCII characters are 'A', '1', and 'a'

respectively.

3 Comparison with existing algorithms

The method described in the last section is not compression as in the literature but

does reduce the size of the original text. In this section we compare the well known

text compression methods, Hu�man encoding [8] and Lempel-Ziv encoding [9, 13, 14]

with our method.

The Hu�man encoding determines the length of the bit representation of the

characters according to their frequency. It assigns smaller codes to high frequency

characters and larger codes to low frequency characters.

In Lempel-Ziv (LZ) encoding [14] the �le may be compressed to less than dlog

2

�e

bits per character but requires re-occurring strings. Each of the repeated strings and

each of the characters in the alphabet are represent by 12 bits. The gains from this

method are reliant on there being enough repeated strings to counter the 12 bits

which are used to represent each of the compressed strings.

The LZ encoding and its derivative LZW encoding [13] are used in UNIX utilities,

compress and gzip. Another variation of LZ encoding (NR) is described in [9].

Table 1 (see Appendix) shows that our storage method is comparable to these

methods. Although our method is not very good for text �les with large alphabets.

The method is competive for DNA, Recombinant DNA (RDNA) and hexadecimal

�les. Note that the main purpose of this paper is not compression, but for the

searching of a pattern in a compressed �le.

4 Searching in a text with e�cient storage

In this section we describe an algorithm to �nd all exact occurrences of a pattern in

a text. Here we assume that the text is stored as described in Section 2 and � � 128.

We describe the algorithm for � = 2, we will see later that the algorithm can be easily

adapted for � > 2.

A substring of the pattern may overlap between consecutive text-blocks and a

pattern may start in a text-block at any one of eight positions. During the search

we need to look whether a pre�x (or su�x) of a pattern is a su�x (or pre�x) of a
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text-block. Due to this problem we have to consider eight di�erent expressions. Each

expression is made up of pattern-blocks of length eight bits. There will be m + 7

pattern-blocks, where m is the length of a pattern.

For a pattern P

1

P

2

.. P

m

we can construct the expressions as shown in Figure 1.

Here we consider the case for m mod 8 = 0. We number the pattern-blocks starting

from 0 at the top left corner to m+6 in the bottom right corner as shown in brackets.

The wildcard character N represents either 0 or 1, and P

i::j

represents P

i

..P

j�1

P

j

, for

1 � i < j � m.

Exp0: NNNNNNNP

1

(0) ......... P

m�14::m�7

(m-8) P

m�6::m

N (m)

Exp1: NNNNNNP

1::2

(1) ......... P

m�13::m�6

(m-7) P

m�5::m

NN (m+ 1)

Exp2: NNNNNP

1::3

(2) ......... P

m�12::m�5

(m-6) P

m�4::m

NNN (m+ 2)

Exp3: NNNNP

1::4

(3) ......... P

m�11::m�4

(m-5) P

m�3::m

NNNN (m+ 3)

Exp4: NNNP

1::5

(4) ......... P

m�10::m�3

(m-4) P

m�2::m

NNNNN (m+ 4)

Exp5: NNP

1::6

(5) ......... P

m�9::m�2

(m-3) P

m�1::m

NNNNNN (m+ 5)

Exp6: NP

1::7

(6) ......... P

m�8::m�1

(m-2) P

m

NNNNNNN (m+ 6)

Exp7: P

1::8

(7) ......... P

m�7::m

(m-1)

Figure 1: Expressions for a pattern P

1

P

2

.. P

m

when m mod 8 = 0.

The naive algorithm will compare a text-block with the �rst pattern-blocks in

each expression. If any of these pattern-blocks matched with the text-block, we need

to compare the consecutive text-blocks with the rest of the pattern-blocks in the

expression.

Our algorithm �rst constructs a table called the Block-Table. The Block-Table

has 256 columns and m+ 7 rows as there are 256 possible blocks in a text and m+7

is the number of pattern-blocks we need to consider. The table is initialised to 0.

The (i; j)

th

entry in the table is de�ned as follows, where i, 0 � i � m + 6, is the

pattern-block number and j, 0 � j � 255, is the code for a block. Suppose that the

pattern-block does not have a wildcard character, the (i; j)

th

entry is 1, if the code for

pattern-block i is equal to j. If there is one or more wild cards in the pattern-block,

we consider all the possible blocks. For example, if the i

th

pattern-block is NN111000,

the (i; j)

th

entry is equal to 1 for all j, where j is the code for 00111000, 01111000,

10111000 or 11111000.

For each expression we only have to compare one pattern-block with a text-block,

and if these two match then we compare the rest of the pattern-blocks in the ex-

pression with the corresponding text-blocks. We choose a pattern-block (from each

expression) which has the minimum number of possibilities of matching with a text-

block. We build the Order-Table of dimensions 8 by d

m+7

8

e which contains the order

in which to examine the pattern-blocks for each expression. For each pattern-block

the number of possibilities of matching a text-block can be found by adding the values

in the row of the pattern-block in the Block-Table.

>From these we construct a Search-Table of dimensions 8� 256, and it is initialised

to -1. In the �rst row of the Search-Table, we enter pattern-block numbers from the

�rst column of the Order-Table. If j is the code for these pattern-blocks, we enter the

pattern-block numbers at the j

th

column, for all j, 0 � j � 255. A column number

may be the code for more than one of the chosen pattern-blocks. This is because a

text-block can match pattern-blocks from more than one expression. As there are
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only eight expressions we need a maximum of eight rows. For example, the chosen

pattern-blocks, 110011NN and NN001100, will both match the block 11001100. We

enter the pattern-blocks (110011NN and NN001100) numbers in the �rst and second

rows respectively of the column k, where k is the code for 11001100.

We begin the search at the begining of the text and compare the text-blocks with

chosen pattern-blocks in the Search-Table. We check the j

th

column in the Search-

Table, where j is the code of the text-block. If the entry is -1 then we check the next

text-block. Otherwise we know that the text-block is in the pattern. We compare

the rest of the pattern-blocks in the expression with the corresponding text-blocks

until either full match or mismatch is found using the Block-Table and Order-Table.

Before we move to the next text-block, we check if the entry in the next row of the

Search-Table is -1. We repeat this process if the entry is not -1, otherwise we check

the next text-block.

If � > 2, we have to convert the pattern into a binary string by mapping the

characters into dlog

2

�e bits as we did in Section 2. Here we don't have to consider all

the expressions. This is because in the pattern-blocks 0, 1, .. , 7 (from expressions 0

to 7 respectively) the pattern starts at positions 7, 6, .. , 0 respectively (see Figure 1).

The positions are numbered from left to right in a pattern-block.

We can show that for all �, in a comparison we need at most d

8

dlog

2

�e

e expressions.

There are two cases which depend on whether

8

dlog

2

�e

is an integer.

Suppose

8

dlog

2

�e

is an integer then we have the following case. For example, if an

alphabet is represented by two bits in the compressed �le (i.e. � = 3 or 4) then a

pattern can only start at even positions in the text-blocks. So in this case we only

need to consider expressions 1, 3, 5 and 7.

Suppose

8

dlog

2

�e

is not an integer then we have the following case. For example

if we are using 3 bits (i.e. 5 � � � 8) to represent an alphabet, then we need all

the eight expressions. But in any comparison we need at most three expressions.

Consider three consecutive text-blocks. Without loss of generality assume that the

binary representation of a character starting at position 0 in the �rst of these three

blocks. Then a pattern can start at positions 0, 3, or 6 in the �rst text-block, positions

1,4 or 7 in the second text-block or positions 2 or 5 in the third text-block. For the

�rst text-block we need to consider the expressions 7, 4 and 1. For the second text-

block we need to consider the expressions 0, 3 and 6. For the third text-block we

need to consider the expressions 2 and 5.

5 The average running time

The pre-processing of our algorithm takes O(m) time, as the Block-Table, Order-

Table and the Search-Table can be constructed in O(m) time. The worst case for the

search will take O(mn) time. In this section we will show that the algorithm performs

on average at most 2n comparisons. >From this we can say that the average running

time of the algorithm is O(n +m). We also justify this with experiments at the end

of this section.

At the end of the previous section we showed that we need to consider all eight

expressions only when � = 2. First we prove that the average number of comparisons

for this worst case.
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There are only 256 possible di�erent blocks. If we assume that each of the 256

blocks occurs in a text with equal frequency, then we have the following lemma. Let

�

PB

(j) be the probability of a pattern-block j matches a text-block.

Lemma 1: �

PB

(j) =

1

2

8�w

, where w is the number of wildcard character N in the

pattern-block.

Recall that when we compare a text-block with a pattern-block, we choose a

pattern-block (from each expression) which has the minimum number of possibili-

ties of matching with a text-block (i.e. the pattern-block with minimum number of

wildcard character N). If any of these pattern-blocks matches with the text-block,

then we choose the pattern-block with the minimum number of wild cards among the

remaining pattern-blocks in the expression. In an attempt, for each expression we

repeat this step until either a full match or mismatch is found.

For example, consider the expressions for m = 34. Figure 2 shows the values of w

in a pattern-block for each expression (pattern-block numbers are in brackets).

Exp0: 7 (0) 0 (8) 0 (16) 0 (24) 0 (32) 7 (40)

Exp1: 6 (1) 0 (9) 0 (17) 0 (25) 0 (33)

Exp2: 5 (2) 0 (10) 0 (18) 0 (26) 1 (34)

Exp3: 4 (3) 0 (11) 0 (19) 0 (27) 2 (35)

Exp4: 3 (4) 0 (12) 0 (20) 0 (28) 3 (36)

Exp5: 2 (5) 0 (13) 0 (21) 0 (29) 4 (37)

Exp6: 1 (6) 0 (14) 0 (22) 0 (30) 5 (38)

Exp7: 0 (7) 0 (15) 0 (23) 0 (31) 6 (39)

Figure 2: The number of wildcards in pattern-blocks for m = 34

There are three columns with all zeros which are the �rst three columns in the

Order-Table. In general, for all m, if m mod 8 6= 7, there are � = b

m�7

8

c number of

columns will have all zeros. If m mod 8 = 7, and m � 15 we will have �� 1 columns

with all zeros, and the remaining one with seven zeros in a column and the eighth

zero in another column. For example, Figure 3 shows the number of wildcards in

pattern-blocks for m = 23 (i.e. m mod 8 = 7.). We can see that there is one (i.e.

��1) column which is the second column with all zeros. The remaining column of all

zeros is the fourth column with seven zeros and the eighth zero is in the �rst column

(shown in bold font).

Exp0: 7 (0) 0 (8) 0 (16) 2 (24)

Exp1: 6 (1) 0 (9) 0 (17) 3 (25)

Exp2: 5 (2) 0 (10) 0 (18) 4 (26)

Exp3: 4 (3) 0 (11) 0 (19) 5 (27)

Exp4: 3 (4) 0 (12) 0 (20) 6 (28)

Exp5: 2 (5) 0 (13) 0 (21) 7 (29)

Exp6: 1 (6) 0 (14) 0 (22)

Exp7: 0 (7) 0 (15) 1 (23)

Figure 3: The number of wildcards in pattern-blocks for m = 23

From this observation we have Lemma 2. Let �

i

be the probability of i number

of pattern-blocks matching with the text-blocks in an expression at an attempt. In
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other words �

i

is the probability of the algorithm making at least i + 1 comparisons

at an attempt.

Lemma 2: For all m and � = 2, 1 � i � �, �

i

= 8�

1

256

i

, where � = b

m�7

8

c.

Proof: For all m, each expression has � number of pattern-blocks with w = 0. At an

attempt, we can choose pattern-blocks with w = 0 from each of the eight expressions

for the �rst � comparisons. From Lemma 1 we have �

PB

(j) = 1=256 if w = 0. In an

attempt we will have the i+ 1

th

comparison only if i number of pattern-blocks in an

expression matches the corresponding text-blocks. The probability of i matches for

an expression is

1

256

i

and there are eight expressions and so �

i

is

8

256

i

, 1 � i � �. 2

In an attempt, for 2 � m � 9 and 10 � m � 14 we have at most 2 and 3

comparisons respectively. Hence we only need to know the values of �

1

for 2 � m � 9,

and �

1

and �

2

for 10 � m � 14. We can calculate these values easily. For example,

the following shows the values of w in a pattern-block for each expression (pattern-

block numbers are in brackets) for m = 10. First we will select the pattern-blocks 8

to 11 and 4 to 7.

Exp0: 7 (0) 0 (8) 7 (16)

Exp1: 6 (1) 0 (9)

Exp2: 5 (2) 1 (10)

Exp3: 4 (3) 2 (11)

Exp4: 3 (4) 3 (12)

Exp5: 2 (5) 4 (13)

Exp6: 1 (6) 5 (14)

Exp7: 0 (7) 6 (15)

Figure 4: The number of wildcards in pattern-blocks for m = 10

�

1

= �

PB

(8) + �

PB

(9) + �

PB

(10) + �

PB

(11) + �

PB

(4) + �

PB

(5) + �

PB

(6)

+�

PB

(7)

=

1

8

8�0

+

1

8

8�0

+

1

8

8�1

+

1

8

8�2

+

1

8

8�3

+

1

8

8�2

+

1

8

8�1

+

1

8

8�0

(Lemma 1)

= 1=256 + 1=256 + 1=128 + 1=64 + 1=32 + 1=64 + 1=128 + 1=256

= 23=256

For �

2

we only need to consider the �rst expression. We can have at least 3 com-

parisons, i� pattern-blocks 8 and (assume we select) 0 match with the corresponding

text-blocks.

�

2

= �

PB

(8)� �

PB

(0)

=

1

8

8�0

�

1

8

8�7

(Lemma 1)

= 1=256� 1=2

= 1=512

In an attempt, for all m � 15, after � comparisons the pattern-blocks which have

not yet been compared will be similar to the expressions for patterns of length m

0

,

19



Proceedings of the Prague Stringology Conference '01

7 � m

0

� 14, where m

0

= (m mod 8) + 8 ifm mod 8 6= 7. Otherwise m

0

= 7. In other

words, if we remove all the � columns with all zeros from the expressions of pattern

length m � 15, the number of wildcards in pattern-blocks will be the same as in the

expressions of pattern length m

0

. For example, if we remove (i.e. �) columns of all

zeros from the number of wildcards in pattern-blocks, for m = 34 (see Figure 2), we

will get the number of wildcards in pattern-blocks, for m

0

= 10 (see Figure 4) as in

Figure 5.

Exp0: 7 (0) 0 (32) 7 (40)

Exp1: 6 (1) 0 (33)

Exp2: 5 (2) 1 (34)

Exp3: 4 (3) 2 (35)

Exp4: 3 (4) 3 (36)

Exp5: 2 (5) 4 (37)

Exp6: 1 (6) 5 (38)

Exp7: 0 (7) 6 (39)

Figure 5: The number of wildcards in pattern-blocks, for m

0

= 10

Note that in any attempt for all m, we can have at most � + 1 matches before

we make the last comparison, if m mod 8 = 0, 1 or 7, otherwise �+ 2. For m > 15,

we need to know �

�+1

and �

�+2

. From the above observation we can calculate these

values from the values of �

1

and �

2

for m, 7 � m � 14. From these base values we

can have the following Lemma. Note that � = 0 for all m � 14.

Lemma 3: For m � 7,

�

�+1

= (1=256)

�

� �

b

and

�

�+2

= (1=256)

�

� �

b

,

where �

b

and �

b

are the values of b

th

base case in the �rst and second columns in the

table below respectively and b = m mod 8.

base case � �

0 11/64

1 15/128

2 23/256 1/512

3 1/16 1/512

4 13/256 1/512

5 5/128 3/2048

6 9/256 5/4096

7 7/32

Let 	

i

be the probability of making exactly i comparisons at an attempt. Using

�

i

we can have an equation for 	

i

:

�

i

= 	

i+1

+	

i+2

+ � � �

This gives

	

i

= �

i�1

� �

i
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We know that we will make at least one comparison in every attempt. So �

0

is 1.

For all m and � = 2, the maximum number of comparisons in any attempt is

� = d

m+7

8

e, which is equal to �+ 2 if m mod 8 = 0, 1 or 7, otherwise �+ 3. So �

i

is

0 for all i � �. This gives:

	

1

= 1� �

1

	

i

= �

i�1

� �

i

; 2 � i � �� 1

	

�

= �

��1

Lemma 4: For � = 2, the total number of comparisons, 	

Total

, is less than or equal

to 2n

0

on average, where n

0

is the number of text-blocks in the text.

Proof: (1)

	

Total

= n

0

�

�

X

i=1

i� 	

i

= n

0

� ((1� �

1

) + 2(�

1

� �

2

) + � � �+ �� 1(�

��2

� �

��1

) + ��

��1

)

= n

0

� (1 + �

1

+ � � �+ �

��2

+ �

��1

)

= n

0

� (1 +

�

X

i=1

8

256

i

+ �

�+1

+ �

�+2

) (Lemma 2)

� 2n

0

This is because

P

�

i=1

8

256

i

+ �

�+1

+ �

�+2

� 1 (Lemmas 2 and 3) 2

Lemma 5: For � > 2, the total number of comparisons, 	

Total

, is O(n), where n is

the size of the original text.

Proof: The probability of more than one comparison in an attempt is �

1

+ � � � +

�

��2

+�

��1

(see Lemma 4), where � = d

mdlog

2

�e+7

8

e. Note thatmdlog

2

�e is the length

of the pattern when we convert it into a binary string. We show in the last section

that in an attempt we only need to consider a maximum of d

8

dlog

2

�e

e expressions when

� > 2. Hence, for � > 2, �

1

+ � � �+�

��2

+�

��1

is less than the value given for � = 2.

2

From these Lemmas we have the following Theorem.

Theorem: The average running time of our algorithm is O(n +m).

To show this is also true in practice we counted the number of comparisons by

running our algorithm. Table 2 in the Appendix shows the estimated number of

comparisons (	

Total

) and the actual number of comparisons. We used the same texts

for each � as in Table 1 (Section 3). For each pattern length we use 100 random

patterns. The actual number of comparisons in the table is the total number of

comparisons divided by the number of patterns of that length. The pattern length

given in Table 2 is the length of the original pattern.
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6 Comparison with existing string matching algo-

rithms

In this section we compare the existing string matching algorithms with our algorithm,

the BRS algorithm. There are a number of strings matching algorithms available in

the literature. We have chosen seven of them, BR, BM, HOR, QS, RAI, SMI, RF

and NR algorithms which can be found in [1, 2, 7, 12, 10, 11, 6, 9] respectively. The

�rst six algorithms were found to be fast in [1]. Animations of these algorithms can

be found at [4] and more information about the algorithms can be found in [3].

The experiments were carried for all the algorithms on an un-compressed text,

except for our BRS algorithm and the NR algorithm [9]. The text used for these

experiments was the same text as in Table 1 (Section 3). The patterns used in these

experiments are generated randomly. For each � and m, we tested 100 patterns and

we measured the total (user) time (including pre-computation time) in seconds to

search for all 100 patterns. We repeat each test 10 times and take the average. We

used an Intel 486-DX2-66 processor based machine with 8 megabytes of RAM and a

100 megabyte hard drive running S.u.S.E. Linux 5.2 to conduct the experiments. All

the algorithms were coded in C. The results of the experiments are in the Appendix

(Tables 4 to 8).

7 Conclusions

The method described in Section 2 to store a text will reduce the original text size

to

dlog

2

�e

8

n. Although this method is not compression as in the literature, it reduces

the space and it is comparable with the existing methods.

The main aim of this paper is string matching in a compressed text. Our string

matching algorithm compares two blocks, checks whether a pre�x (or su�x) of a

block is a su�x (or pre�x) of the other block. This takes constant time and uses byte

processing. In practice, byte processing is much faster than bit processing because

bit shifting and masking operations are not necessary at search time. We prove that

the average time taken by our algorithm is O(n +m). We also justi�ed our average

running time by experiments.

Using our algorithm one can keep texts (with an alphabet of 2 � � � 128 char-

acters) compressed inde�nitely and perform the search for a pattern. These methods

will save both time and space. The experimental results show that our algorithm

is more e�cient than the existing algorithms for � � 16. Texts with such a small

alphabet are DNA, RDNA and hexadecimal �les. One can improve our algorithm so

that it performs well for large alphabet sets.
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Appendix

� Our method Hu�man Compress Gzip NR

2 62500 62500 71579 79644 121110

3 125000 104107 110629 118776 178706

4 125000 125000 136945 146402 215764

5 187500 149935 161641 168813 244192

8 187500 187500 209053 211543 297634

9 250000 201313 223571 226617 310964

16 250000 250000 288546 285834 373658

17 312500 257293 294476 290854 377491

32 312500 312500 367527 330150 449265

33 375000 316232 370975 332592 451570

64 375000 375000 461069 378224 493981

Table 1: Compressed text sizes for a random text of 500,000 bytes.

alphabet of 2 alphabet of 4 alphabet of 8

Pat Len. 	

Total

Actual Pat Len. 	

Total

Actual Pat Len. 	

Total

Actual

5 85938 85413 2 156250 156258 2 207031 255959

10 68237 68276 4 135742 136513 4 190795 191710

20 64556 64446 8 127288 126999 6 189632 189931

30 64460 64460 12 126962 126962 8 189462 189537

40 64460 64467 18 126960 126962 12 189460 189898

50 64460 64473 24 126960 126962 16 189460 189551

Table 2: Estimated versus actual number of comparisons of our BRS algorithm

alphabet of 16 alphabet of 32 alphabet of 64

Pat. Len. 	

Total

Actual Pat Len. 	

Total

Actual Pat Len. 	

Total

Actual

2 260742 265331 2 318237 322155 2 378296 378678

4 252288 252013 3 314507 314567 3 377132 376990

6 251960 251956 4 314556 314581 4 376962 376980

8 251960 251962 6 314460 314509 5 376962 376965

10 251960 251957 8 314460 314297 7 376960 376482

12 251960 251959 10 314460 314348 9 376960 376503

Table 3: Estimated versus actual number of comparisons of our BRS algorithm
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Pat. Length BRS BR BM HOR QS RAI SMI RF NR

5 14.2 29.1 31.3 31.5 31.1 28.7 31.8 32.6 30.7

10 5.3 27.0 24.7 30.9 31.0 27.7 31.4 22.0 30.5

20 4.4 27.3 20.4 28.8 32.4 26.6 31.0 18.2 29.5

30 4.2 27.3 18.3 31.2 31.2 28.0 31.4 16.0 27.5

40 4.2 28.3 17.3 29.7 31.3 27.9 30.7 13.5 28.5

50 5.2 26.5 16.4 30.5 30.0 27.7 31.1 15.0 28.4

Table 4: Search times for � = 2

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

4 8.6 15.3 20.5 20.9 20.3 20.2 23.8 21.3 21.6

8 5.3 13.1 17.6 18.1 19.3 18.7 19.5 17.3 20.7

12 5.7 12.5 19.3 18.8 18.7 18.0 18.3 15.3 17.6

16 5.7 12.9 17.4 15.8 17.4 17.3 17.7 13.6 18.4

20 5.7 12.0 17.2 18.5 17.6 17.9 18.5 14.1 20.5

24 5.7 12.5 16.7 17.7 18.6 16.6 18.1 12.7 20.2

Table 5: Search times for � = 4

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

3 9.9 15.7 22.6 18.6 17.6 16.9 19.3 18.0 28.9

4 14.0 17.0 25.8 21.2 18.7 21.1 21.3 18.9 27.6

6 8.6 13.7 19.7 16.9 16.0 16.5 16.0 15.8 23.5

10 8.5 12.7 15.7 14.1 15.1 14.9 15.1 14.1 25.5

14 8.7 12.0 15.7 12.4 14.2 13.3 13.8 13.0 25.2

18 8.4 11.1 15.0 13.6 14.0 12.7 13.4 13.2 25.5

Table 6: Search times for � = 8

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

2 14.1 19.4 33.0 25.8 21.0 24.4 24.4 19.6 33.4

4 9.8 15.2 21.7 17.8 17.0 17.9 17.7 16.2 31.5

6 9.8 13.4 16.6 14.0 14.6 13.6 15.0 13.4 31.5

8 9.7 12.3 16.2 14.4 13.9 13.2 13.8 13.2 27.7

10 9.7 12.1 14.2 13.2 13.6 12.3 13.0 13.6 29.6

12 9.9 11.1 14.3 13.0 12.3 13.0 13.4 12.9 31.1

Table 7: Search times for � = 16

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

2 66.5 18.6 33.0 23.6 19.5 23.8 22.3 19.0 39.1

3 42.1 16.3 24.0 20.2 17.7 19.8 20.3 16.6 40.1

4 31.9 14.8 21.2 17.1 15.5 15.4 17.5 15.0 37.2

6 39.7 12.3 17.5 13.2 14.7 14.6 15.5 14.1 36.2

8 37.9 12.3 15.5 13.4 13.4 13.2 13.9 13.5 38.8

10 48.2 11.5 15.0 12.4 11.8 12.5 13.7 13.0 34.2

Table 8: Search times for � = 32
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Abstract. Here we consider computational problems on �-approximate and

(�; )-approximate string matching. These are two new notions of approximate

matching that arise naturally in applications of computer assisted music analy-

sis. We present fast, e�cient and practical algorithms for these two notions of

approximate string matching.

Key words: String algorithms, approximate string matching, dynamic pro-

gramming, computer-assisted music analysis.

1 Introduction

This paper focuses on a set of string pattern-matching problems that arise in musical

analysis, and especially in musical information retrieval. A musical score can be

viewed as a string: at a very rudimentary level, the alphabet could simply be the

set of notes in the chromatic or diatonic notation, or the set of intervals that appear

between notes (e.g. pitch may be represented as MIDI numbers and pitch intervals

as number of semitones). Approximate repetitions in one or more musical works play

a crucial role in discovering similarities between di�erent musical entities and may

be used for establishing \characteristic signatures" (see [6]). Such algorithms can be

particularly useful for melody identi�cation and musical retrieval.

The approximate repetition problem has been extensively studied over the last few

years. E�cient algorithms for computing the approximate repetitions are directly ap-

plicable to molecular biology (see [7, 9, 12]) and in particular in DNA sequencing by

�
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hybridization ([13]), reconstruction of DNA sequences from known DNA fragments

(see [15, 16]), in human organ and bone marrow transplantation as well as the deter-

mination of evolutionary trees among distinct species ([15]).

The approximate matching problem has been used for a variety of musical ap-

plications (see overviews in McGettrick [11]; Crawford et al [6]; Rolland et al [14];

Cambouropoulos et al [3]). It is known that exact matching cannot be used to �nd

occurrences of a particular melody. Approximate matching should be used in order

to allow the presence of errors. The number of errors allowed will be referred to as

�. This paper focuses in one special type of approximation that arise especially in

musical information retrieval, i.e. �-approximation. Most computer-aided musical

applications adopt an absolute numeric pitch representation (most commonly MIDI

pitch and pitch intervals in semitones; duration is also encoded in a numeric form).

The absolute pitch encoding, however, may be insu�cient for applications in tonal

music as it disregards tonal qualities of pitches and pitch-intervals (e.g. a tonal trans-

position from a major to a minor key results in a di�erent encoding of the musical

passage and thus exact matching cannot detect the similarity between the two pas-

sages). One way to account for similarity between closely related but non-identical

musical strings is to use what will be referred to as �-approximate matching (and

-approximate matching). In �-approximate matching, equal-length patterns consist-

ing of integers match if each corresponding integer di�ers by not more than �- e.g.

a C-major f60; 64; 65; 67g and a C-minor f60; 63; 65; 67g sequence can be matched

if a tolerance � = 1 is allowed in the matching process (-approximate matching is

described in the next section).

In [4], a number of e�cient algorithms for �-approximate matching were presented

(i.e. the Shift-And algorithm and Shift-Plus algorithm). The Shift-And algo-

rithm is based on the O(1)-time computation of di�erent states for each symbol in the

text. Hence the overall complexity is O(n). These algorithms use the bitwise tech-

nique. It is possible to adapt fast and practical exact pattern matching algorithms

to these kind of approximations. In this paper we will present the adaptations of

the Tuned-Boyer-Moore [8], the Skip-Search algorithm [5] and the Maximal-

Shift algorithm [17] and present some experiments to assert that these adaptations

are faster than the algorithms using the bitwise technique.

The paper is organised as follows. In the next section we present some basic

de�nitions for strings and background notions for approximate matching. In Sec-

tions 3-5 we present the adaptation of Tuned-Boyer-Moore, Skip-Search and

Maximal-Shift algorithms to speed-up �-approximate pattern matching algorithms

and in section 6 to speed-up (�; )-approximate pattern matching algorithms. In sec-

tion 7 we present the experimental results of these algorithms. Finally in Section 8

we present our conclusions.

2 Background and basic string de�nitions

A string is a sequence of zero or more symbols from an alphabet �; the string with

zero symbols is denoted by �. The set of all strings over the alphabet � is denoted

by �

�

. A string x of length n is represented by x

1

: : : x

n

, where x

i

2 � for 1 � i � n.

A string w is a substring of x if x = uwv for u; v 2 �

�

; we equivalently say that the

string w occurs at position juj+ 1 of the string x. The position juj+ 1 is said to be
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the starting position of w in x and the position jwj+ juj the end position of w in x.

A string w is a pre�x of x if x = wu for u 2 �

�

. Similarly, w is a su�x of x if x = uw

for u 2 �

�

.

The string xy is a concatenation of two strings x and y. The concatenations of k

copies of x is denoted by x

k

. For two strings x = x

1

: : : x

n

and y = y

1

: : : y

m

such that

x

n�i+1

: : : x

n

= y

1

: : : y

i

for some i � 1, the string x

1

: : : x

n

y

i+1

: : : y

m

is a superposition

of x and y. We say that x and y overlap.

Let x be a string of length n. The integer p is said to be a period of x, if x

i

= x

i+p

for all 1 � i � n� p. The period of a string x is the smallest period of x. A string y

is a border of x if y is a pre�x and a su�x of x.

Let � be an alphabet of integers and � an integer. Two symbols a; b of � are said

to be �-approximate, denoted a

�

= b if and only if

ja� bj � �

We say that two strings x; y are �-approximate, denoted x

�

= y if and only if

jxj = jyj; and x

i

�

= y

i

; 8i 2 f1; : : : ; jxjg (2:1)

For a given integer  we say that two strings x; y are -approximate, denoted

x



= y if and only if

jxj = jyj; and

jxj

X

i=1

jx

i

� y

i

j �  (2:2)

Furthermore, we say that two strings x; y are f; �g-approximate, denoted x

�;

= y, if

and only if x and y satisfy conditions (2.1) and (2.2).

3 �-Tuned-Boyer-Moore Approximate Pattern

Matching

The problem of �-approximate pattern matching is formally de�ned as follows: given

a string t = t

1

: : : t

n

and a pattern p = p

1

: : : p

m

compute all positions j of t such that

p

�

= t[j::j +m� 1]

A naive solution of this problem is to build an Aho-Corasick automaton (see [1])

of all strings that are �-approximate to p and then use the automaton to process

t. The time required to build the automaton is O(j�j

�

), thus this method is of no

practical use as e.g we can have j�j � 180 and j�j � 10. In [4] an e�cient algorithm

was presented based on the O(1)-time computation of the \delta states" by using bit

operations under the assumption that m � w, where w is the number of bits in a

machine word.

Here we present an adaptation of the Tuned-Boyer-Moore for exact pattern

matching algorithm to �-approximate pattern matching. The exact pattern matching

problem consists in �nding one or more (generally all) exact occurrences of a pattern

p of length m in a text t of length n. Basically a pattern matching algorithm uses a

window which size is equal to the length of the pattern. It �rst aligns the left ends
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of the window and the text. Then it checks if the pattern occurs in the window and

shifts the window to the right. It repeats the same procedure again until the right

end of the window goes beyond the right end of the text.

The Tuned-Boyer-Moore algorithm is a very fast practical variant of the fa-

mous Boyer-Moore algorithm [2]. It only uses the occurrence shift function to

perform the shifts. The occurrence shift function is de�ned for each symbol a in the

alphabet � as follows:

shift [a] = minffm� i j p

i

= ag [ fmgg

The Tuned-Boyer-Moore algorithm gains its e�ciency by unrolling three

shifts in a very fast skip loop to locate the occurrences of the rightmost symbol

of the pattern in the text. Once an occurrence of p

m

is found, it checks naively if the

whole pattern occurs in the text. Then the shift consists in aligning the rightmost

symbol of the window with the rightmost reoccurrrence of p

m

in p

1

: : : p

m�1

, if any.

The length s of this shift is de�ned as follows:

s = minffm� i j p

i

= p

m

and i > 0g [ fmgg

To do �-approximate pattern matching, the shift function can be de�ned to be for

each symbol a in the alphabet � the distance from the right end of the pattern of the

closest symbol p

i

such that p

i

�

= a:

shift [a] = minffm� i j p

i

�

= ag [ fmgg

Then the length of the shift s becomes:

s = minffm� i j p

i

2�

= p

m

and i > 0g [ fmgg

The pseudo-code for �-Tuned-Boyer-Moore algorithm can be found in Fig-

ure 1.

4 �-Skip-Search Approximate Pattern Matching

In the Skip-Search algorithm, for each symbol of the alphabet, a bucket collects

all of that symbol's positions in p. When a symbol occurs k times in the pattern,

there are k corresponding positions in the symbol's bucket. When the word is much

shorter than the alphabet, many buckets are empty. The buckets are stored in a table

z de�ned as follows:

z[a] = fi j p

i

= ag

The main loop of the search phase consists of examining every mth text symbol,

t

j

(so there will be n=m main iterations). Then for t

j

, it uses each position in the

bucket z[t

j

] to obtain a possible starting point of p in t and checks if the pattern

occurs at that position.

To do �-approximate pattern matching, the buckets can be computed as follows:

z[a] = fi j p

i

�

= ag

Figure 2 shows the pseudo-code for �-Skip-Search algorithm.

29



Proceedings of the Prague Stringology Conference '01

�-Tuned-Boyer-Moore(p;m; t; n; �)

1 . Preprocessing

2 for all a 2 �

3 do shift [a] minffm� i j p

i

�

= ag [ fmgg

4 s minffm� i j p

i

2�

= p

m

g [ fmgg

5 t

n

: : : t

n+m�1

 (p

m

)

m

6 . Searching

7 j  m

8 while j � n

9 do k  shift [t

j

]

10 while k 6= 0

11 do j  j + k

12 k  shift [t

j

]

13 j  j + k

14 k  shift [t

j

]

15 j  j + k

16 k  shift [t

j

]

17 if p

1

: : : p

m�1

�

= t

j�m+1

: : : t

j�1

and j � n

18 then Report(j �m+ 1)

19 j  j + s

Figure 1: Adaptation of the Tuned-Boyer-Moore exact pattern matching algo-

rithm to do �-approximate pattern matching.

5 �-Maximal-Shift Approximate Pattern Match-

ing

Sunday [17] designed an exact string matching algorithm where the pattern positions

are scanned from the one which will lead to a larger shift to the one which will lead

to a shorter shift, in case of a mismatch. Doing so one may hope to maximize the

lengths of the shifts and thus to minimize the overall number of comparisons.

Formally we de�ne a permutation

� : f1; 2; : : : ; m;m+ 1g ! f1; 2; : : : ; m;m + 1g

and a function shift such that

shift [�(i)]



= shift [�(i+ 1)]

for 1 � i < m and

shift [�(i)] = minf` j for 1 � j < i; p

�(j)�`

= p

�(j)

and p

�(i)�`

6= p

�(i)

g

for 1 � i � m and �(m + 1) = m + 1. Furthermore shift [m + 1] is set with the

value of the period of the pattern p.

We also de�ne a function bc for each symbol of the alphabet:
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�-Skip-Search(p;m; t; n; �)

1 . Preprocessing

2 for all a 2 �

3 do z[a] fi j p

i

�

= ag

4 . Searching

5 j  m

6 while j � n

7 do for all i 2 z[t

j

]

8 do if p

�

= t

j�i

: : : t

j�i+m�1

9 then Report(j � i)

10 j  j +m

Figure 2: Adaptation of the Skip-Search exact pattern matching algorithm to do

�-approximate pattern matching.

bc[a] =

(

minfj j 0 � j < m and p

m�j

= ag , if a occurs in p

m , otherwise

for a 2 �.

Then, when the pattern is aligned with the t[j::j+m�1] the comparisons are per-

formed in the following order �(1); �(2); : : : ; �(m) until the whole pattern is scanned

or a mismatch is found. If a mismatch is found when comparing p[�(i)] then a shift of

length maxfshift [�(i)]; bc[t[j+m+1]]g is performed. Otherwise an occurrence of the

pattern is found and the length of the shift is equal to the maximum value between

the period of the pattern and bc[t[j + m + 1]]. Then the comparisons resume with

p

�(1)

without keeping any memory of the comparisons previously done.

To perform �-approximate string matching the two functions can be rede�ned as

follows:

shift [�(i)] = minf` j for 1 � j < i; p

�(j)�`

=

2�

p

�(j)

and p

�(i)�`

6=

�

p

�(i)

g

for 1 � i � m and

shift [m+ 1] = minf` j p[i] =

2�

p[i+ `] for 1 � i � m� `g

and

bc[a] =

(

minfj j 0 � j < m and p

m�j

=

�

ag , if such a j exists

m , otherwise

for a 2 �.

The preprocessing phase can be done in O(m

2

). Figure 3 gives the pseudo-code

of the searching phase.
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�-Maximal-Shift(p;m; t; n; �)

1 . Searching

2 j  0

3 while j � n�m

4 do i 1

5 while i � m and p[�(i)] = t[j + �(i)]

6 do i i+ 1

7 if i > m

8 then Report(j)

9 j  j +maxfshift [�(i)]; bc[t[j +m + 1]]g

Figure 3: Adaptation of the Maximal-Shift exact pattern matching algorithm to

do �-approximate pattern matching.

6 (�; )-Approximate String Matching Algorithms

The problem of (�; )-approximate pattern matching is formally de�ned as follows:

given a string t = t

1

: : : t

n

and a pattern p = p

1

: : : p

m

compute all positions j of t

such that

p

�;

= t[j::j +m� 1]

In [4] this problem was solved by making use of the Shift-And algorithm to �nd

the �-approximate matches of the pattern p in t. Once a �-approximate match was

found, it was then tested to check whether it is also a -approximate match. This

was done by computing successive \delta states" and \gamma states" in O(1) time

using bit operations under the assumption that m � w where w is the number of bits

in a machine word.

In order to adapt the �-Tuned-Boyer-Moore, �-Skip-Search and �-Ma-

ximal-Shift algorithms to the case of (�; )-approximation, it just su�ces to adapt

the naive check of the pattern. The resulting algorithms are named (�; )-Tuned-

Boyer-Moore algorithm, (�; )-Skip-Search algorithm and (�; )-Maximal-

Shift algorithm.

7 Experimental results

We implemented in C, in a homogeneous way, the following algorithms: Shift-And,

�-Tuned-Boyer-Moore, �-Skip-Search, �-Maximal-Shift, Shift-Plus, (�;-

)-Tuned-Boyer-Moore, (�; )-Skip-Search and (�; )-Maximal-Shift.

We randomly built a text of 500k symbols on an alphabet of size j�j = 70. We

then searched for each values 100 patterns and took the average running time. Times

are measured in hundredth of seconds and include both preprocessing and searching

times.

The results for �-approximation are shown in tables 1 to 5. For the values used

in these experiments, the �-Tuned-Boyer-Moore algorithm is always faster than

the �-Skip-Search algorithm which is itself always faster than the Shift-And al-

gorithm.
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m Shift-And �-Tuned-Boyer-Moore �-Skip-Search

8 32.98 10.78 18.61

9 32.90 10.55 18.11

10 32.93 10.10 17.65

20 32.86 9.32 15.81

Table 1: Running times for �-approximation with � = 5.

m Shift-And �-Tuned-Boyer-Moore �-Skip-Search

8 33.07 13.40 21.66

9 32.90 13.00 20.94

10 32.93 12.64 20.49

20 32.92 11.97 18.81

Table 2: Running times for �-approximation with � = 6.

m Shift-And �-Tuned-Boyer-Moore �-Skip-Search

8 33.65 16.65 24.99

9 33.14 16.05 24.06

10 33.05 15.71 23.62

20 32.93 14.82 21.42

Table 3: Running times for �-approximation with � = 7.

m Shift-And �-Tuned-Boyer-Moore �-Skip-Search

8 34.72 21.18 29.15

9 33.41 20.03 27.64

10 33.07 19.12 26.85

20 32.81 18.20 24.41

Table 4: Running times for �-approximation with � = 8.

The results for (�; )-approximation are shown in tables 6 to 10. For the values

used in these experiments, the (�; )-Tuned-Boyer-Moore algorithm is always

faster than the (�; )-Skip-Search algorithm which is itself always faster than the

Shift-Plus algorithm.

Experiments conduct only on -approximation show that an adaptation to this

case of the Skip-Search algorithm is faster than an adaptation of the Tuned-

Boyer-Moore algorithm.
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m Shift-And �-Tuned-Boyer-Moore �-Skip-Search

8 36.46 26.82 34.64

9 34.46 24.36 31.46

10 33.41 23.61 30.55

20 33.00 22.32 27.54

Table 5: Running times for �-approximation with � = 9.

m Shift-Plus (�; )-Tuned-Boyer-Moore (�; )-Skip-Search

8 50.73 23.33 31.93

9 50.32 27.78 35.52

10 51.79 33.76 39.45

20 50.26 32.46 36.91

Table 6: Running times for (�; )-approximation with � = minfm; 10g and  = 14.

m Shift-Plus (�; )-Tuned-Boyer-Moore (�; )-Skip-Search

8 50.88 23.16 31.99

9 50.86 28.70 36.40

10 51.87 33.74 39.58

20 51.11 32.53 37.38

Table 7: Running times for (�; )-approximation with � = minfm; 10g and  = 15.

m Shift-Plus (�; )-Tuned-Boyer-Moore (�; )-Skip-Search

8 50.72 23.33 32.02

9 50.70 27.96 35.65

10 51.94 33.88 40.00

20 51.35 33.20 37.03

Table 8: Running times for (�; )-approximation with � = minfm; 10g and  = 16.

One should notice that the Shift-And and Shift-Plus algorithms need constant

time to run whatever the values of the parameters are. In case of very high values for

� and/or  they have to be considered as the best choice.
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m Shift-Plus (�; )-Tuned-Boyer-Moore (�; )-Skip-Search

8 50.67 23.29 32.20

9 50.83 28.38 35.74

10 51.93 34.41 39.91

20 50.18 32.94 37.10

Table 9: Running times for (�; )-approximation with � = minfm; 10g and  = 17.

m Shift-Plus (�; )-Tuned-Boyer-Moore (�; )-Skip-Search

8 51.24 23.57 32.22

9 50.31 28.33 35.73

10 51.83 34.36 40.15

20 49.97 32.77 37.03

Table 10: Running times for (�; )-approximation with � = minfm; 10g and  = 18.

8 Conclusions

Here we presented the Skip-Search, Tuned-Boyer-Moore andMaximal-Shift

approximate string matching algorithms that outperform the one presented in [4].
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Abstract. Trie is a tree structure to represent a set of strings. When the

strings have many common pre�xes, the number of nodes in the trie is much

less than the total length of the strings. In this paper, we propose an algorithm

for constructing the Compact Directed Acyclic Word Graph for a trie, which

runs in linear time and space with respect to the number of nodes in the trie.

Key words: Pattern matching, Index structure, Trie, Su�x trie, Su�x tree,

DAWG, CDAWG, Linear time algorithm

1 Introduction

Crochemore and V�erin displayed a relationship among su�x tries, su�x trees, Di-

rected Acyclic Word Graphs (DAWGs), and Compact Directed Acyclic Word Graphs

(CDAWGs) [CV97]. It states that a su�x tree (DAWG, resp.) can be obtained by

compacting (minimizing, resp.) the corresponding su�x trie. Similarly, a CDAWG

can be obtained by either compacting the corresponding DAWG or minimizing the

corresponding su�x tree.

It is known that all of these indexing structures, except su�x tries, can be con-

structed in linear time and space: Weiner [Wei73], McCreight [McC76], and Ukko-

nen [Ukk95] for su�x trees, and Blumer et al. [BBH

+

85] for DAWGs.

In [BBH

+

87] Blumer et al. gave an algorithm for constructing a CDAWG by

compacting the corresponding DAWG. Direct construction of a CDAWG from a

given string is also important, since the hidden constant of the space complexity

of CDAWGs is strictly smaller than those of su�x trees and DAWGs [BBH

+

87].

Actually, Crochemore and V�erin [CV97] gave the �rst algorithm that directly con-

structs CDAWGs, which is based on McCreight's algorithm for su�x trees. Recently,

Inenaga et al. [IHS

+

01a] developed an on-line algorithm for the direct construction

of CDAWGs, which is based on Ukkonen's algorithm.

Their algorithm can also construct a CDAWG for a set S of strings in linear time

with respect to the total length ` of the strings in S. In this paper, we consider the

case that the set S is given in the form of a trie, as input. Since the trie shares

common pre�xes of the strings in S, the number n of nodes of the trie is less than `.

We show a non-trivial extension of the algorithm that constructs CDAWG for a trie

in O(n) time and space.

Some related work can be seen in literature: Kosaraju [Kos89] introduced the

su�x tree for a reversed trie, and showed an algorithm to construct it in O(n logn)
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time. Breslauer [Bre98] reduced it to O(n) time. On the other hand, our algorithm

constructs a CDAWG for a (normal) trie. We remark that our algorithm can be easily

adopted to construct su�x trees and DAWGs instead of CDAWGs, with a slight

modi�cation in the same way as in [IHS

+

01b]. That means, all of these indexing

structures for a trie can be constructed in linear time with respect to the number of

nodes in the trie.

2 Preliminaries

The Compact Directed Acyclic Word Graph (CDAWG) can be seen as either the

compaction of the Directed Acyclic Word Graph (DAWG), or the minimization of

the su�x tree [BBH

+

87, CV97]. In this section, we recall the properties of CDAWGs,

compared with those of su�x trees.

2.1 Notations

Let � be a �nite alphabet. An element of �

�

is called a string. Strings x, y, and z are

said to be a pre�x, factor, and su�x of the string w = xyz, respectively. The sets of

pre�xes, factors, and su�xes of a string w are denoted by Pre�x(w), Factor(w), and

Su�x(w), respectively. The length of a string w is denoted by jwj. The empty string

is denoted by ", that is, j"j = 0. The ith symbol of a string w is denoted by w[i] for

1� i�jwj, and the factor of a string w that begins at position i and ends at position

j is denoted by w[i :j] for 1� i�j�jwj. For convenience, let w[i :j] = " for j<i.

Given a set S of strings, let kSk represent the total length of the strings in S, and

jSj the cardinality of S. The sets of pre�xes, factors, and su�xes of the strings in S

are denoted by Pre�x(S), Factor(S), and Su�x(S), respectively.

2.2 Compact Directed Acyclic Word Graphs

Here we show the properties of CDAWGs. For comparison, we �rst recall the proper-

ties of su�x trees. The su�x tree for a set S of strings is a rooted tree whose edges

are labeled with strings in Factor(S) (see Fig. 1). We denote by STree(S) the su�x

tree for S. We here assume that each string w

i

in S=fw

1

; : : : ; w

k

g ends with a unique

endmarker $

i

=2�, where 1� i�k. Let S

0

=fw

1

$

1

; : : : ; w

k

$

k

g. On the above assump-

tion, every string in Su�x(S

0

) is associated with a leaf node in STree(S

0

). STree(S

0

)

has the following properties:

1. It has a root node, at most kSk�1 internal nodes, and kSk+jSj leaf nodes.

2. The root node and any internal nodes have at least two outgoing edges.

3. Labels of any two edges leaving the same node do not begin with the same

letter.

4. Any string in Factor(S) is represented by a path starting at the root node.

5. Any string in Su�x(S

0

) is represented by a path starting at the root node and

ending at a leaf node.
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Figure 1: STree(S) for S = fmammalg. Since the last letter l plays the role of the endmarker, the

endmarker is omitted.

The compact directed acyclic word graph (CDAWG) was �rst introduced by

Blumer et al. [BBH

+

87]. The CDAWG for a set S of strings is a directed acyclic graph

with edges labeled by strings in Factor(S) (see Fig. 2). We denote by CDAWG(S) the

CDAWG for S. We similarly assume that each string in S ends with a unique end-

marker. It is because the algorithm for constructing the CDAWG for a set of strings,

which was given in [IHS

+

01a], requires the endmarkers. Remark that for any set S of

strings CDAWG(S

0

), whose edges labeled with $

i

are removed for any i (1� i � jSj),

is equal to the CDAWG of S. CDAWG(S

0

) has the following properties:

1. It has an initial node, at most kSk�1 internal nodes, and jSj �nal nodes.

2. The initial node and any internal nodes have at least two outgoing edges.

3. Labels of any two edges leaving the same node do not begin with the same

letter.

4. Any string in Factor(S) is represented by a path starting at the initial node.

5. Any string in Su�x(S

0

) is represented by a path starting at the initial node and

ending at a �nal node.

6. Suppose that a path spelling out �2�

�

ends at a node v. If a string � is always

preceded by 2�

�

and �=� in any string x2S

0

such that �2Factor(x), the

path spelling out � also ends at node v.

m

m

a

a

l

a

m
m
a

l

l

l

Figure 2: CDAWG(S) for S = fmammalg. Since the last letter l plays the role of the endmarker,

the endmarker is omitted.
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In Fig. 2, one can see that the path spelling out a ends at the same node as the

one spelling out ma, with regard to the property 6 written above. This is because a

is always preceded by m in string mammal.

Hereafter, we denote by (u; �; v) an edge labeled with � which starts at node u

and ends at node v, both in CDAWGs and su�x trees.

2.3 Trie and Reversed Trie

Given a set S = fw

1

; : : : ; w

k

g such that w

i

=2 Su�x(w

j

) for any 1 � i 6= j � k,

consider the set S

00

= fw

1

$ : : : w

k

$g where $ denotes the common endmarker. Then

the reversed trie for S

00

is a tree in which strings in Su�x(S

00

) are merged as long and

many as possible [Bre98] (see Fig. 3). We associate each node in a reversed trie with

a unique number, as in Fig. 3. We write as Trie

R

(S

00

) the reversed trie for a set S

00

of strings. Every string in Pre�x(S

00

) is represented by a path beginning from a leaf

node. The number of nodes in Trie

R

(S

00

) is at most kS

00

k�jS

00

j+2. If the strings in

S

00

have long and many common su�xes, the number of nodes in Trie

R

(S

00

) is by far

smaller than the upper bound kS

00

k�jS

00

j+2.

$
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Figure 3: Trie

R

(S

00

) for S

00

= faaab$; aac$; aa$; abc$; bab$; ba$g

On the other hand, for a set S

0

= fw

1

$

1

; : : : ; w

k

$

k

g where $

i

denotes the endmarker

for w

i

(1� i�k), the trie for a set S

0

of strings is a tree in which strings in Pre�x(S

0

)

are merged as long and many as possible (see Fig. 4). We denote the trie for a set S

0

by Trie(S

0

). It is easy to see that the number of nodes in Trie(S

0

) is at most kS

0

k+1.

Thanks to the unique endmarkers, tries do not require the condition that reversed

tries instead do. That is, even if a string x2S

0

belongs to Pre�x(y) for some string

y 2S

0

, the path spelling out x always ends at a leaf node in Trie(S

0

). For example,

although string aa is a pre�x of aaab in Fig. 4, the path spelling out aa$

3

ends at leaf

node 8.
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Figure 4: Trie(S

0

) for S

0

= faaab$

1

; aac$

2

; aa$

3

; abc$

4

; bab$

5

; ba$

6

g

Tries are used as inputs of our algorithm that will be introduced in Section 4.
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3 Algorithm to Construct the CDAWG for a Set

of Strings

This section is devoted to recalling the algorithm to construct the CDAWG for a

set of strings, which was proposed in [IHS

+

01a]. By illustrating the construction of

CDAWG(ababcbc$) in Fig. 5, we roughly show how the algorithm builds a CDWAG.

More detailed description of the algorithm can be seen in [IHS

+

01b]. For simplicity,

we have put a single string to the input of the algorithm in Fig. 5.
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Figure 5: Construction of CDAWG(w) for w = ababcbc$. The broken lines represent the su�x

links, and the gray starred points represent the active points.

3.1 Su�x Links

As in literature [Wei73, McC76, Ukk95] about the construction of su�x trees, this

algorithm to construct CDAWGs also utilizes su�x links. By means of the su�x

links, the time complexity of these algorithms can be linear.

Let us assume that in a CDAWG the shortest path from the initial node to a node

v spells out � = c�, where �; � 2 �

�

and c 2 �. Then, node v has the su�x link

that points to a node u such that the path spelling out � is the longest path from

the initial node to the node u. The algorithm determines the su�x link of each node

during the construction of a CDAWG. For example, at phase ababc in Fig. 5, one can
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see that the su�x link of node 1, at which the path spelling out b ends, accordingly

points to the initial node the empty string " corresponds to. The su�x link of the

initial node points to a special node, the bottom node, as in [Ukk95]. It has an edge

labeled with � that represents an arbitrary letter in the alphabet � in this case. With

this bottom node, we do not need to treat the initial node as an exception during

the construction of a CDAWG. In Fig. 5, the bottom node, the initial node, and the

�nal node are expressed by B, I, and F , respectively. Until the construction of the

CDAWG of the whole input string is �nished, the su�x link of the �nal node is left

unde�ned (see the 1st phase to 8th in Fig 5), since the node to which the su�x link

of the �nal node points can change during the construction. This implies that we

cannot achieve a linear time algorithm if we update the su�x link of the �nal node

at every phase. It can happen that a node r, which was the latest created in some

phase, does not have the su�x link until another node is newly created in the phase,

because the new node is just the one to which the su�x link of r should point.

3.2 The Active Point

The gray starred point in Fig. 5 denotes the location from which the algorithm starts

to update the current CDAWG at the next phase. This is called active point similarly

in [Ukk95]. An active point p is represented by the pair of a node v and a string

� such that p can be reached from node v along the edge whose label begins with

�. In the running example, the active point is represented by (2; ") at phase ababcb,

whereas it is represented by (2; c) at phase ababcbc.

From now on, we sketch how the active point moves and stops in a phase. Suppose

that the algorithm has already �nished a phase  and now faces phase c with c 2 �,

that is, a letter c follows  in the input string. Then there can be four cases, that is,

the active point is now:

(1) on a node that has an outgoing edge whose label begins with letter c;

(2) on a node that has no outgoing edge whose label begins with letter c;

(3) on the middle of an edge and followed by letter c in the label of the edge;

(4) on the middle of an edge and not followed by letter c in the label of the edge.

In case (1), the active point advances by letter c along the edge and then stops over

there. This can be seen between phase ab and phase aba in Fig. 5. If it faces case

(3) in the following phases, the active point keeps on moving and stopping along the

edge, as seen in phase abab. In case (2), a new edge labeled with c is created and

then connected from the node the active point is now on to the �nal node. The

active point then moves to another node via the su�x link in order to check if there

is an outgoing edge whose label begins with letter c. Finally, in case (4), a new node

is created where the active point presents, splits the edge into two over there, and

creates a new edge labeled with c from the new node to the �nal node. Then the

algorithm has to look for the location where the active point will move next.

We illustrate how the algorithm behaves after facing case (4). See phase abab and

phase ababc in Fig. 5. Since the active point of phase abab can not move along the

edge any longer because c dose not follow ab there, new node 1 is created and then a

42



Construction of the CDAWG for a Trie

new edge labeled with c is created and connected to the �nal node. After that, the

algorithm has to �nd the location where the active point next moves. Since node 1

does not have the su�x link yet, the active point moves backwards to node I that

has the su�x link. After arriving at node B via the su�x link of node I, it resumes

moving along the path corresponding to ab, where ab is the part of the label of the

edge that the active point moved backwards. Remark that, although the one spelling

out ab from node I consists of an edge, the path spelling out ab from node B consists

of two edges. Anyway, the active point �nally arrives in the middle of edge (I; bab; F )

while spelling out ab from the bottom node.

3.3 Edge Merging

(The above story still continues here.) Since the active point cannot move with

spelling out c from the current location, it seems necessary to create a new node

and a new edge labeled with c over there. However, the fact is that letter b is always

preceded by letter a in string ababc and that node 1 which corresponds to ab obviously

has an edge labeled with c. That is why edge (I; bab; F ) is merged into node 1 with

label b, that is, it becomes (I; b; 1). After that, the active point again moves backwards

to I and arrives at B via the su�x link of I. It then stops just on node I spelling

out b. Creating a new edge (I; c; F ), the active point moves to node B via the su�x

link and then moves and stops on node I while spelling out c.

As seen above, thanks to the bottom node, we can obtain the following lemma

similarly in [Ukk95].

Lemma 1 For any string w and any i (1� i�jwj), CDAWG(w[1 : i�1]) always has

the location on which the active point of phase w[1 : i] stops.

The above lemma holds in case of a set of strings, as well.

3.4 Node Separation

The completely opposite thing to edge merging above mentioned, node separation can

also happen, as seen at phase ababcb in Fig. 5. Recall that the active point was on

node I at phase ababc. Then since the letter b follows string ababc, the active point

moves to node 1. Note that it has arrived at node 1 along the edge labeled by b which

does not compose the longest path from node I to node 1. Then node 1 is separated

into two, that is, a new node 2 is created with the same outgoing edges as those of

node 1, and edge (I; b; 1) becomes (I; b; 2). The reason of the above is that letter b

is not always preceded by letter a in string ababcb, though it was in string ababc. If

node 1 had incoming edges composing shorter paths between node I and 1 than the

path which contains the edge the active point traveled, the last edges in all the paths

would be also redirected to node 2.

3.5 Update of Edges Entering to Final Node

Given a set S = fw

1

; : : : ; w

k

g, a label of any edge in CDAWG(S) is implemented with

a triple of integers (h; i; j) such that the label corresponds to w

h

[i :j], where 1�h �k.

Let us hereafter call i and j starting position and ending position, respectively. We
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make the ending position of every edge which enters to the �nal node refer to the

integer e in the �nal node. By increasing e each time the CDAWG is extended with

a new letter, we obtain the constant time update of all the edges entering to the �nal

node.

As a result of the above discussion, the following theorem holds.

Theorem 1 (Inenaga et al., [IHS

+

01a]) For a �xed alphabet, the CDAWG for a

set S of strings can be directly constructed on-line, in linear time and space with

respect to kSk+jSj.

4 Algorithm to Construct the CDAWG for a Trie

We are now ready to show our main algorithm that constructs CDAWGs for tries.

First we note that the CDAWG for Trie(S) is the same as the CDAWG of S for any

set S of string, except only one thing. While the label of an edge in CDAWG(S) is

implemented by a triple of integers (h; i; j) representing the starting position i and

ending position j of the label in the h-th string in S, that in the CDAWG for Trie(S)

refers to a pair of nodes in Trie(S), between of which there is the string corresponding

to the label.

The basic action of the algorithm for Trie(S) is to update the CDAWG incremen-

tally, synchronized with the depth-�rst traversal of Trie(S). The key idea to achieve

the linear time construction is as follows.

(1) Trace the advanced point q in the CDAWG so that the path from the root node

to q coincides with the path from the root node to node v, where v is the node

currently visited in the trie.

(2) Create a new node in the CDAWG where the advanced point q is, before step-

ping into the �rst branch at each branching node in the trie.

We will explain the detail in the sequel. Suppose that, after having traveled nodes

with scanning �2�

�

in Trie(S), the algorithm encounters a node v having k (� 2)

branches in Trie(S). Moreover suppose that it then chooses an edge with which a

path spelling out � and ending at a leaf node begins. After updating the CDAWG

with string ��, the algorithm has to update it with the other strings represented in

Trie(S). Notice that the current CDAWG already has the path representing � from

the initial node, which corresponds to pre�xes of at least k strings in S. Thus the

algorithm has only to restart updating the CDAWG from the location to which �

corresponds and to continue traversing Trie(S) from the node v. For that purpose,

we trace the advanced point q mentioned in (1) above.

Let us now clarify the aim of (2). The aim is to make the advanced point q be an

explicit node whenever the algorithm encounters a branching node in Trie(S). That

is, the reference pair of q should then become of the form (s; ") for some node s.

What is the matter if the advanced point q is not explicit before stepping into the

�rst branch? Assume that the advanced point q was referred as (u; ) with some node

u and string  6= " when the algorithm encountered the node v corresponding to � in

Trie(S). After �nishing updating the CDAWG with ��, the algorithm focuses back
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on v and q=(u; ). The matter is that the reference (u; ) might not be canonical any

longer: the path spelling out  may contain extra nodes. Namely, the path spelling

out  may have been split while the algorithm updated the CDAWG with string �.

A concrete example is shown in Fig. 6.
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Figure 6: Trie(S) for S = fabcaab$
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; abcb$

2

g is shown left. When the algorithm focuses on node

3 in Trie(S), it needs to memorize the location in the CDAWG corresponding to abc. Since there

is no node but F

1

at the location, it is memorized by a reference pair (I; abc). After having visited

node 7 in Trie(S), the algorithm updates the CDAWG from (I; abc), and with node 3 in the trie.

However, since the path spelling abc dose not consist of an edge any more, the algorithm has to �nd

the nearest node from the location the path ends on, that is, node 2. We have to avoid this, because

traversing the path spelling abc in the CDAWG just deserves traversing Trie(S) from node 0 to 3.

If the algorithm scans such extra nodes, its time complexity can become quadratic

with respect to the number of nodes in Trie(S). In order to avoid this matter, the

algorithm creates a new node s so that the active point is guaranteed to be on an

explicit node. However, the algorithm dose not merge any other edges because at the

moment it is unknown how many edges should be merged into the new node s. Of

course, if =", there is no need to create any new node.

The algorithm is described as follows.

main routine

current node := 0; /* the root node in the trie */

active point := (I; "); /* the initial node in the CDAWG */

advanced point := (I; "); /* the initial node in the CDAWG */

traverse-and-update(current node; active point; advanced point);

procedure traverse-and-update(current node; active point; advanced point)

Let label set be the set of labels of the outgoing edges of current node;

if jlabel setj = 0 then return;

else if jlabel setj � 2 then create-node(advanced point);

for each c 2 label set do

new active point := update-CDAWG(c; active point);

Let new advanced point be the location where active point advances with c;

Let v be the node to which the edge labeled c points;
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traverse-and-update(v; new active point; new advanced point);

The variable current node indicates the node that the algorithm currently focuses on

in Trie(S). The variable advanced point is of the form of a reference pair (u; �), where

u is the parent node nearest to advanced point. As mentioned above, the string � is

actually implemented by a pair of nodes in Trie(S).

In the procedure traverse-and-update, the function update-CDAWG updates the

CDAWG with a letter c. update-CDAWG is the same as the one for the construction of

the CDAWG for a set of strings [IHS

+

01a, IHS

+

01b], excepting that update-CDAWG

creates a new edge stemming from the node latest created by function create-node.

An example of the construction of the CDAWG for a trie is shown in Fig. 7.

Finally, we have the following theorem.

Theorem 2 The proposed algorithm constructs the CDAWG for a trie in linear time

and space with respect to the number of nodes in the trie.

Proof. We �rst explain that the modi�cation of the function update-CDAWG and the

function create-node itself do not a�ect the linearity of the algorithm.

Suppose that an input trie has n nodes. It is clear that the number of nodes

visited by advanced point in the CDAWG is at most n. Hence it takes O(n) time

to calculate advanced point all through the construction. Furthermore suppose that

m nodes in Trie(S) are branching. It is clear that m < n, because any trie has at

least one leaf node. Therefore, function create-node creates at most m nodes in the

CDAWG, and it implies that the time complexity of create-node is O(m). This implies

the modi�cation, creating new edges due to the nodes made by function create-node,

takes O(m) time as well.

We from now on verify the overall linearity of the proposed algorithm. The matter

we have to clarify is the upper bound of the number of nodes active point visits

throughout the construction. Assume that a node v in the trie has k branches and

there is a path spelling � between the root and v. When current node arrives at

node v in the trie for the �rst time, function create-node creates a new node u where

advanced point is in the CDAWG. Then active point may traverse at most kj�j nodes

from p to the initial node via su�x links until �nding the location it can stop on.

However, k � j�j. Therefore, for a trie with n nodes, the number of nodes active point

visits throughout the construction is O(j�jn). Thus, if � is a �xed alphabet, the

proposed algorithm constructs the CDAWG for a trie in O(n) time and space. 2

5 Conclusion

We gave an algorithm for constructing the CDAWG for a trie in linear time and

space with respect to the number of nodes in the trie. The truth is, with a slight

modi�cation, the proposed algorithm can be adopted to construct the su�x tree and

the DAWG for a trie. When input strings are given in the form of a trie, the pro-

posed algorithm constructs the CDAWG for the strings faster than the one presented

in [IHS

+

01a] directly does from a set of the strings, especially when the strings have

many common pre�xes. As the space complexity of CDAWGs is bounded strictly
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Figure 7: Construction of the CDAWG for Trie(S), where S = fabc$

1
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g. The gray starred

point represents active point, and the black dotted point represents advanced point. For simplicity,

the bottom node is omitted. As node 2 in the trie is branching, a new node 1 is created in the

CDAWG when current node arrives at node 2 for the �rst time. After current node visits node 4,

the algorithm updates the CDAWG with current node = 2 and advanced point = 1.
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lower than that of su�x trees, the algorithm presented in this paper also allows to

save memory space.
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Abstract. The sequence of the human genome is a 3.2 billion letter string built

upon a four letter alphabet. In this string, bioinformics researcher are trying

to �nd the complete set of genes that produce proteins. Genes represent 3 to

5 of the length of the human genome, most of this genome being non-coding

sequences, including highly repetitive regions, non-activated copies of genes, ...

The public databases containing biological sequences that world-wide scientists

are feeding everyday have grown exponentially for the last 15 years and the

ood of genomic data, produced by a large number of genomics e�ort, has

begun to a�ect the way we can deal with information. We are producing more

information than we can handle.

The interaction between biologists and computer scientists can greatly bene�t

to computer scientists (and stringologists) by proposing new problems, news

applications to problems that have been solved previously in a di�erent context

and asking for additional extensions.

The �rst part of my talk will be a presentation of a wide range of problems where

stringology and molecular biology (more speci�cally genomics research) meet,

from traditional pattern matching problems to shortest common superstring,

repeat detection, motif modelisation, comparison of multiple strings, infering

3D structure from a 1D sequence and so on. I will also give several examples

of biology-stringology-graph theory problems, from the assembly of the human

genome to the Sequencing By Hybridation.

In the second part of my talk, I will focus on a couple of these problems, that

is: - sequence comparison - I will discuss the traditional solutions that have

been proposed and used so far, their implementation on sequential and parallel

computers or dedicated cards and will discuss new problems arising in this

restricted �eld. - repeat detection, where several kinds of repeats are studied:

tandem and non-tandem repeats, exact or approximative to name a few and

will discuss new open problems we encounter recently.
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abbreviations: DNA - deoxyribonucleic acid; bp - base pair; contig - a long region of

DNA assembled from shorter DNA sequences

1 Genomics and Bioinformatics

Information that directs all processes in living cells is stored in sequences of nu-

cleotides in deoxyribonucleic acid (DNA). Contemporary methods of determining the

nucleotide sequences, the so-called sequencing of DNA, are so e�ective that sequenc-

ing of whole genomes became feasible.

The �eld of Genomics is aimed at complex analysis of genomes based on our

knowledge of the nucleotide sequences in DNA. Complete structures of several tenths

of genomes have been determined so far (see http://kegg.genome.ad.jp/kegg/catalog/

/org list.html or http://www.tigr.org/tdb/mdb). Most of them are bacterial geno-

mes. These genomes usually consist from one chromosome sometimes accompanied by

one or several plasmids. Bacterial chromosomes and plasmids are circular molecules

of DNA. The number of nucleotides in prokaryotic (e.g. bacterial) genomes ranges

from a fraction of million to several millions. Several genomes of higher eukaryotic or-

ganisms were also sequenced. They are the genomes of the yeast Saccharomyces cere-

visiae (12 Mbp), the worm Caenorhabditis elegans (97 Mbp), the fruit y Drosophila

melanogaster (137 Mbp) and the plant Arabidopsis thaliana (116 Mbp). In 2001

nearly complete nucleotide sequence of the human DNA was announced. The com-

plete human genome consists of more than three billion nucleotides. Several genome

projects are completed every months. Most of them are bacterial genome projects,

but genomes of several higher organisms (e.g. mouse or chimp) are getting close to

completion.

Accumulation of the vast number of nucleotide sequences calls for a robust com-

puter analysis. Bioinformatics is a new �eld devoted to analysis of long strings of

nucleotide sequences generated in genome projects. Analysis of amino acid sequences
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of proteins encoded in the genomes usually follows the analysis of DNA and is an

important part of bioinformatics.

To obtain the complete genome sequence it is necessary to assemble stepwise

long nucleotide strings from the shorter nucleotide sequences usually generated from

individual clones. In a typical example a sequence of several hundred nucleotides

is determined in one sequence run. From these partial sequences longer and longer

strings (the so-called contigs) are assembled until the complete genome sequence is

obtained.

The long contigs, in the ideal case the complete genome, are subjected to further

computer analysis. We try to identify all genes present in the nucleotide sequence,

to elucidate their structure (e.g. exon-intron organization), �nd elements regulating

gene expression (e.g. promotors, enhancers, transcription terminators) and to identify

other important DNA features. Genes are translated into the sequence of amino acids

of the corresponding proteins. From these amino acid sequences basic features of

the proteins are derived. This may for instance be the protein's secondary structure.

Usually the overall DNA characteristics such as its base composition is also described.

After this basic DNA characterization nucleotide and amino acid sequences are

often compared with the entries in international databases. Contemporary databases

are very large. For instance the EMBL database of nucleotide sequences contains

more then ten billion nucleotides of many genes and genomes. This number grows

exponentially.

From the similarities found by this search we can often ascribe functions to in-

dividual genes and the corresponding proteins. The ultimate goal is to describe the

complete metabolism of the organism. An important result of these comparisons are

evolutionary relationships among organisms. It is now possible to describe on the

molecule level individual taxons.

2 Features of Biological Sequences

Nucleotide and amino acid sequences have several special features that have to be

taken into account when performing computer analysis. These special features are

connected with the biochemical and biological function of genes and proteins. For

instance, variations in nucleotide sequences performing the same function (e.g. pro-

moters) make the analysis di�cult.

2.1 DNA

DNA is the polymer molecule in which genetic information of organisms is stored.

DNA consists of four basic components, the so-called nucleotides. Each nucleotide

consists of a sugar deoxyribose, a residue of phosphate and one of the four nitroge-

nous bases. These basis are adenine (A), guanine (G), cytosine (C) and thymine (T).

Nucleotides are connected by sugar-phosphate bonds into long strings. DNA is com-

posed from two strings that run antiparallel in the well known double helix. The two

strings (strands) are complementary. This means that A in one strand pairs through

hydrogen bonds with T in the other strand and G pairs with C. Genetic information

stored in the sequence of A, C, G and T reads in one direction only. Because the

two strands are antiparallel genetic information reads in the two strands in opposite
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direction. For instance the sequence ATTGCA in one strand reads TGCAAT in the

complementary strand.

In databases and for computer analysis the DNA sequences are stored in the

single-letter code. Because of occasional ambiguities in sequence analysis additional

letters are used to facilitate nucleotide analysis (Tab. 1).

Table 1: Nucleotide code. Compl. stands for complementary nucleotide.

name code nucleotide compl.

Adenine A A T

Cytosine C C G

Guanine G G C

Thymine T T A

Uracil U U A

code nucleotide compl.

M A/C K

R A/G Y

W A/T S

S C/G W

Y C/T R

K G/T M

V A/C/G B

H A/C/T D

D A/G/T H

B C/G/T V

N A/C/G/T N

- space -

2.2 Translation of DNA to Proteins

Regions of DNA to which most attention is devoted are genes. In prokaryotic cells

genes usually consist of uninterrupted nucleotide sequence. In contrast, genetic in-

formation of eukaryotic organisms is organized in a more complex fashion. Regions

encoding amino acids (exons) are interspaced by long non-coding sequences (introns).

Thus only two to three percent of human DNA encodes proteins.

A sequence of three nucleotides, the so-called triplet or codon, determine which

amino acid is incorporated in the corresponding protein. Proteins consist of 20 types

of two amino acids. With the exception of two amino acids all are encoded by more

then one codon. This implies that although translation of DNA to protein is unique

it is impossible to unequivocally derive nucleotide sequence from the amino acid

sequence. In addition, a region of DNA can encode six di�erent proteins.

Genetic code is in Table 2.

2.3 Proteins

Proteins are the functional molecules operating in cells. Basic building blocks of

proteins are amino acids. Proteins consists of 20 types of amino acids. For amino

acids a one letter code is used, although the older three letter code can be occasionally

also found in biochemical literature (Tab. 3).

From the biochemical point of view it is important that unlike nucleotides amino

acids generally are much more chemically di�erent. However, some of them are so

similar that they can replace each other in functional proteins. For example leucine,
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Table 2: Genetic code

2

1

A

A G C T

Lys Arg Thr Ile A

Lys Arg Thr Met G

Asn Ser Thr Ile C

Asn Ser Thr Ile T

G

Glu Gly Ala Val A

Glu Gly Ala Val G

Asp Gly Ala Val C

Asp Gly Ala Val T

C

Gln Arg Pro Leu A

Gln Arg Pro Leu G

His Arg Pro Leu C

His Arg Pro Leu T

T

* * Ser Leu A

* Trp Ser Leu G

Tyr Cys Ser Phe C

Tyr Cys Ser Phe T

3

isoleucine and valine are often found in the same position in functionally identical

proteins isolated from di�erent organisms.

Table 3: Amino acid code

1-code 3-code amino acid

A Ala alanine

C Cys cysteine

D Asp asparagic acid

E Glu glutamic acid

F Phe phenylalanine

G Gly glycine

H His histidine

I Ile isoleucine

K Lys lysine

L Leu leucine

M Met methionine

N Asn asparagine

1-code 3-code amino acid

P Pro proline

Q Gln glutamine

R Arg arginine

S Ser serine

T Thr threonine

V Val valine

W Trp tryptophan

Y Tyr tyrosine

B Asx aspartic acid or

asparagine

Z Glx glutamic acid or

glutamine

X Xxx any amino acid

* | stop

3 Main types of analyses

The most frequent tasks of DNA and protein analysis are:

� Assembly: to assemble contigs from short (several hundred nucleotide long)

sequences.
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� Gene prediction: to identify genes in DNA.

� Pattern search: to �nd regions composed of typical short sequences.

� Pairwise alignment: to �nd in a database similar or homologous sequence.

� Multiple alignment: to assess relationship of several sequences.

4 Comparison of Biological Sequences

The basic step in analyzing a determined nucleotide sequence is its comparison with

the sequences already deposited in databases. We are looking for related and/or

similar sequences. The presumption for this search is that in evolution nucleotide

substitutions, and less frequently nucleotide deletions and insertions, are accumulated.

Thus similarity of genes and proteins can be traced in more or less distantly related

organisms. Accumulation of these changes is not random. It is more frequent in the

DNA regions encoding those part of proteins that are not fundamentally important

for the protein's function.

An algorithm for pairwise comparison of amino acid sequences was described for

the �rst time by Needleman & Wunsch in [1] and is known as the global Needleman-

Wunsch algorithm. Because in most cases two sequences are more similar in certain

regions and less similar in other in other regions, the Needleman-Wunsch algorithm

was improved for evaluation of local similarities. This is called local Smith-Waterman

alignment [2] [3] [4].

The basic principle of the similarity search is known as the pairwise alignment and

is based on comparison of sequences pair by pair and on search for the best alignment

with highest similarity. Score of bonuses and penalizations for matches, mismatches,

deletions etc. are calculated for all possible pairs. Scores of all alignments are then

calculated as the sum of scores of all pairs in the alignment. The best similarity it

then ascribed to the alignment with the highest score. This is known as the Smith-

Waterman score and is usually used as basic characteristics of the alignment.

4.1 Scoring Matrix

When comparing two nucleotide sequences, it is not necessary to evaluate similarity of

individual nucleotides. It is su�cient to consider identities. Fundamentally di�erent

are comparisons of amino acid sequences. When analyzing evolutionarily related

proteins it was discovered that for enzyme activities general biochemical properties of

individual amino acids are very important. For many comparisons it is useful to group

amino acids according to their chemical properties such as hydrophobicity, charge,

size, polarity etc. Substitution of amino acids belonging to one such group may be

penalized less compared to substitutions of unrelated amino acids.

However, it is also important to take into account genetic (evolutionary) related-

ness of individual amino acids. For instance, tryptophane is encoded by the TGG

codon. One mutation leads to codons for glycine (GGG), serine (TCG) and leucine

(TTG), two codons for cysteine (TGT, TGC), arginine (CGG, AGG) and two stop

codons (TGA, TAG). Conversion of tryptophane to arginine is therefore more likely
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than conversion to glycine in spite of the fact that tryptophane and arginine are chem-

ically very di�erent: tryptophane is hydrophobic aromatic amino acid and arginine

is hydrophilic polar positively charged amino acid.

These considerations are taken into account in the so-called scoring matrix, which

is basically evaluation of a replacement of one amino acid by another amino acid.

Today we use two types of scoring matrix: PAM and BLOSUM. PAM and BLOSUM

di�er by the calculation method and they give similar results. Table 4 shows a part

of the scoring matrix concerning tryptophane (W).

Table 4: Scoring matrix for tryptophane (W) and its change to selected amino acids

(R,N,D,C).

W R N D C W

PAM 50 -1 -7 -12 -13 13

PAM 100 1 -5 -9 -9 12

PAM 250 2 -4 -7 -8 17

BLOSUM 100 -7 -8 -10 -7 17

BLOSUM 62 -3 -4 -4 -2 11

BLOSUM 30 0 -7 -4 -2 20

5 Often Used Programs

Demands for memory and computational time grows with the length of the biological

sequence under evaluation and with volume of the database. This is why an important

principle is pre-selection of possible hits. This pre-selection is based on observation

that two evolutionarily distant sequences usually contain conserved short regions.

These conserved regions can served for �shing out evolutionarily related sequences.

Most commonly used programs based on this principle are FASTA and BLAST, which

are designed to compare both nucleotide and amino acid sequences. Moreover, these

two programs deal with a basic feature of genetic information, i.e. conversion of

the language of the nucleotide sequences in DNA into the language of amino acids

sequences in proteins. This is done in the six possible reading frames.

5.1 FASTA

The FASTA program (FAST Algorithm) [5] was one of the �rst freely available pro-

grams of bioinformatics. FASTA �rst prepares list of \words", i.e. very short por-

tions of the sequence in question. This list is then compared with the entries in the

database. If several words match an entry in the database in the right order and

close-by the sequence is selected for the complete Smith-Waterman alignment.

There are several variants of the FASTA program, according to the type of

the sequence and database used. The main FASTA program is used for search-

ing nucleotide sequences in DNA databases or amino acid sequences in protein

databases. FASTX/FASTY are used for comparison od DNA against proteins.

TFASTX/TFASTY can be used to look for proteins in DNA databases.

An important parameter of the search is \expectancy" (E). E is proportional to

the probability with which the same degree of similarity can be found in a random
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sequence of the same length. Because Smith-Waterman score depends on the sequence

length it was normalized to the unit of length (so-called \bit score")

Next is an example of the FASTA search.

FASTA searches a protein or DNA sequence data bank

version 3.3t09 May 18, 2001

428405286 residues in 67627 sequences

statistics extrapolated from 60000 to 69642 sequences

Expectation_n fit: rho(ln(x))= 13.2503+/-0.000153; mu= -20.9826+/- 0.010

mean_var=452.3589+/-70.442, 0's: 3 Z-trim: 470 B-trim: 62 in 1/86

Lambda= 0.0603

FASTA (3.39 May 2001) function [optimized, +5/-4 matrix (5:-4)] ktup: 6

join: 73, opt: 58, gap-pen: -16/ -4, width: 16

Scan time: 16.480

The best scores are: opt bits E(69642)

EM_INV:DM19269 U19269 Drosophila melanogaste (4976) [f] 736 80 6.2e-13

EM_INV:AC007185 AC007185 Drosophila melanoga (77732) [r] 723 80 7.8e-13

EM_INV:AF139019 AF139019 Cepaea nemoralis mi ( 624) [r] 452 55 2.6e-05

...

>>EM_INV:DM19269 U19269 Drosophila melanogaster Dachshun (4976 nt)

initn: 870 init1: 692 opt: 736 Z-score: 352.9 bits: 80.3 E(): 6.2e-13

59.627% identity (62.036% ungapped) in 644 nt overlap (242-877:976-1602)

220 230 240 250 260 270

gi CAGTCACCTCTCCTGGTGGCGGCGGCGGCGGCAGCGGAGGCGGCGGTGGCAGCGGCGGCA

::::: :: :: :: :::: :: ::

EM_INV TCCGGTGAGCTCCCTCAACCACTCCATGATGCAGCAGATGCAGC---AACAGCAGCAACA

950 960 970 980 990 1000

280 290 300 310 320 330

gi ACGGAGGCGGCGGCGGGAGCAACTGCAACCCCAGCCTGGCGGCCGGGAGCAGCGGCGGCG

:: : :: :: : : :::: : ::::: ::: : : ::: :: : :

EM_INV ACAGCAGCAGCAACAGCAGCAGCAGCAACACCATCAGCTCAGCCCCCCGCCACATGGAAT

1010 1020 1030 1040 1050 1060

340 350 360 370 380

gi GCGTTAGCG---CTGGCGGCGGCGGCGCCTCCAGCACCCCCATCACCGCGAGCACCGGCA

:: : : : : : : :: : : :::: : :: :: :: :: :: : :

EM_INV GCCATCGGGCAACGGACTGCCGACGGGCCTACCGC-CCAGAATGCCC-----CATGGACT

1070 1080 1090 1100 1110

...

5.2 BLAST

BLAST (Basic Local Alignment Search Tool) [6] [7] [8] was developed in 1990. BLAST

�rst maps the database for presence of various strings and lists them. Then, similarly

to FASTA, it creates a list of \words" from the searched sequence. These words are

then compared to the list of strings. This leads to selection of the best hits which are

then extended from both sides. The BLAST program has several variants similarly

to FASTA.

56



Bioinformatics: tools for analysis of biological sequences

6 Multiple Alignment

A very important task in evaluating biological sequences is comparison of more then

two sequences at the same time. This is called multiple alignment. Multiple alignment

helps to identify biologically important parts of genes. In addition it enables to

estimate evolutionary distances among biological sequences, to formulate consensus

sequences and parental sequences. Especially important are consensus sequences

because they can serve in identi�cation of additional, often more distant members

of the gene family in question.

The most common program for the multiple alignments is CLUSTALW ([9] [10]

[11] [12]). CLUSTALW compares by the Needleman-Wunsch algorithm all sequences

in the query and it selects the most similar pair. From these two sequences a consensus

sequence is generated and it is used for aligning another sequence. With this stepwise

mechanism whole family of sequences are compared. The relatedness of individual

members of a sequence family can be assessed..

An example of the CLUSTALW search follows.

Hs-U3 LDALSRECCVTAGGRDGTVRVWKI----PEESQLVFYGH---------------------------

Mm-U3 LDALSRECCVTAGGRDGTVRVWKI----PEESQLVFYGH---------------------------

Xl-U3 LDSLSRERCVTVGGRDGTMRIWKI----AEETQLVFSGH---------------------------

At-U3a IDALRKERALTVG-RDRTMLYHKV----PESTRMIYRAP---------------------------

At-U3b IDALGRERVLSVG-RDRTMQLYKVGIVVPESTRLIYRAS---------------------------

Dm-U3 IDALSRERAITAGGSDCSLRIWKI----TEESQLIYNGH---------------------------

Sp-U3 VDALARERCVSVGGRDRTSRLWKI----VEESQLVFRSGGTSMKAT-----AGYM-----------

Nc-U3 IDALAGERCVSVGARDRTARYWKV----PEESQLVFRGGVSEKKSHKNRDQAVNH-----------

Ce-U3 IGVLSKQRVATVGGRDRSARLWKV----EDESQLMFSGLQN-------------------------

Sc-U3 ISALAMERCVTVGARDRTAMLWKI----PDETRLTFRGGDEPQKLLRRWMKENAKEGEDGEVKYPD

:. * : :.* * : *: :.::: : .

Hs-U3 ---------QGSIDCIHLINEEHMVSGADDGSVALWGLSKKRPLALQREAHGLRGE----------

Mm-U3 ---------QGSIDCIHLINEEHMVSGADDGSVALWGLSKKRPLALQREAHGLHGE----------

Xl-U3 ---------EGSIDCVRLINEEHIVTGADDGSLALWTVGKKKPLTQMKCAHGSYGE----------

At-U3a ---------ASSLESCCFISDNEYLSGSDNGTVALWGMLKKKPVFVFKNAHQDIPDGITTNGILEN

At-U3b ---------ESNFECCCFVNSDEFLSGSDNGSIALWSILKKKPVFIVNNAHHVIAD----------

Dm-U3 ---------KDSIECVKYINDEHFVSGGMDGAIGLWSALKKKPICTTQLAHGVGEN----------

Sp-U3 ---------EGSVDCVAMIDEDHFVTGSDNGVIALWSVQRKKPLFTYPLAHGLDPILAPGRHSAET

Nc-U3 ---------DGTMDQVAMIDDELFVTGDSAGTLSLWGINRKKALFTQPCAHGIDPPLKPTEVSADA

Ce-U3 ---------CVSLDCVAMINEEHFATGSADGSIALWSFWKKRALHVRKQAHGTQNG----------

Sc-U3 ESEAPLFFCEGSIDVVSMVDDFHFITGSDNGNICLWSLAKKKPIFTERIAHGILPEPSFNDISGET

..: :.. :* * : ** :*:.: **
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