Searching in an Efficiently Stored DNA Text
Using a Hardware Solution

T. Berry, S. Keller and S. Ravindran

Department of Computer Science
Liverpool John Moores University
Byrom Street
Liverpool
United Kingdom

e-mail: T.Berry@livjm.ac.uk, S.Keller@livjm.ac.uk, S.Ravindran@livjm.ac.uk

Abstract. In this paper, we describe a storage method that reduces the size
of a DNA text file to 25% of its original size. Also outlined is a new algorithm,
which can search an input stream of DNA text for multiple DNA sub-strings
in a single pass. Although this new algorithm is competitive when compared
to the majority of existing string matching algorithms, the intention is to fur-
ther improve performance by implementing the algorithm as a hardware-only
solution.

1 Introduction

String matching and Compression are two widely studied areas in computer Science
[10]. String matching is detecting a pattern P of length m in a larger text T of length
n. Compression involves transforming a string into a new string which contains the
same information but whose length is as small as possible. These two areas naturally
lead to Compressed String Matching, i.e. searching for a pattern in a compressed
text. This method will save both space and time.

In this paper we describe a hardware solution that searches in the compressed
DNA text. We also describe an algorithm coded in the programming language C that
will be synthesized into hardware. A DNA text (or molecule) encodes information
which by convention is represented as a string over the DNA alphabet A, C, G and
T. Compressed String Matching in a DNA text is useful for the following reasons.
Although the cost of memory is reducing, the sizes of DNA databases are growing
exponentially.

Optimal compression will devote two bits to represent each DNA character, if
each character is drawn uniformly at random from the DNA alphabet and that all
positions in the text are independent [14]. The compression method described in
Section 2 also devotes two bits per character, i.e. the method guarantees to compress
the DNA text to 25% of its original size. Section 3, outlines the BK algorithm,
as being a string matching algorithm, which as well as being relatively fast as a
software solution, could also be implement in a hardware-only solution. Section 4,
describes a modification to the basic BK algorithm, which will search a stream of

Proceedings of the Prague Stringology Conference '01

DNA text for multiple sub-strings in a single pass of the text. Section 5, covers
the process of implementing programs as hardware-only solutions. Attention is paid
to the inadequacies of modern microprocessors and the advantages which so-called
’hardware compilation techniques’ can offer as a means of accelerating the execution
of algorithms. Section 6, describes how the BK string matching algorithm may be
implemented as a hardware only solution. In section 7 we describe 5 existing string
matching algorithms. In section 8 we compare our new algorithm with the 5 existing
algorithms by experimentation. The texts and the patterns used for these experiments
have been taken from [11] and [1] respectively.

2 Efficient storage of a DNA text

In the DNA alphabet, S, there are four characters, namely A, C, G and T. As there
are only 4 possible characters in a DNA text we can represent the character’s with
the function, f: ¥ = [0 .. 3], such that:

f(A) = 0,£(C) =1, (G) =2, and f (T) = 3.

Let a block be a string of four characters. The code of a block of DNA characters
is the value that returned by the function g, g: ¥ x ¥ x ¥ x ¥ = [0 .. 255], for the
block. The function g is defined as follows. g(afvd) = (f(a) x43) + (f(B) x4?) +
(f(y) x4h) + (£(3) x4%)

This means that we can represent each of the DNA characters with 2 bits. Namely
A=00,C=01,G=10and T = 11. A DNA text block will be represented by 32-bits,
as each character needs 8-bits. Using the function g we can represent a text block
with 8-bits. For each text block we print an ASCII character whose ASCII number
is the value return by the function g. As the function g is a bijective function, we
can compress any text block into 8-bits and it is possible to reconstruct the original
DNA text exactly.

For example, CAAGAGCGCAGT = 010000100010011001001011 = 66 38 75 =
B&K. So we can store the string CAAGAGCGCAGT using 24 bits. This storage
method will guarantee to store the DNA text in a file, which is 25% of its original
size.

3 Investigation into a hardware only solution to
the string matching problem

The string matching algorithm illustrated in Figure 1 was devised as part of a case
study to investigate the feasibility of performing computational algorithms in hard-
ware. String matching was chosen as one of the areas to be tested as such algorithms
typically involve many hardware manipulations of words of binary data. These manip-
ulations are invoked by the machine code instructions, which constitute the program
and performed by the general-purpose hardware within the microprocessor itself. So
called software to hardware synthesis techniques aim to accelerate algorithm execu-
tion by first of all removing the need for machine instructions and by also performing
computational and logical operations on bespoke hardware.

2

Searching in an Efficiently Stored DNA Text Using a Hardware Solution

while (match != 0 && word_count != 0) {
result = current & mask;
match = result - target;
if (match != 0) {
current = current >> 2;
temp = buffer << 14;
current = current | temp;
if (shifted == 7) {
word_count--;
shifted = 0;
buffer = *ptr;
ptr++;
}
else {
buffer = buffer >> 2;
shifted++;
}

Figure 1: The C code for searching for occurrences of a single pattern in a given text

The example code shown works on a word size of 16 bits and can detect a pattern
of up to 8 DNA characters in length. However, the algorithm is by no means limited
to this word size.

The algorithm works by shifting the input stream through the variable current.
When the data is shifted, it is shifted two bits at a time to the right. It is shifted two
bits at a time because this is more efficient as the algorithm are searching for DNA
features which are encoded into two bit patterns. Each time current is shifted to the
right it is checked for a match with the target pattern. This concept is illustrated in
Figure 2.

kit 7|10|0)0|1|1(0|1|1|bit0
I

bit» |0[{0]1|@:9:0]0|1|0|0|0

Input data stream

0(1{1|bita

Direction of shiff ——»

Figure 2: Comparison of input stream against target

When shifted, the two least significant bits (LSBs), which are bits 1 and 0, are lost
and the two most significant bits (MSBs), which are bits 15 and 14, become empty.
These two null MSBs are filled with the two LSBs of buf fer. The variable buf fer is
a pre-fetch word, which will contain word i+1 with current containing word ¢. This
is necessary if current is to kept full at all times. During initialisation, the first word
of data is copied to current from the input buffer and bu f fer is filled with the second
word of data.

In order to copy the two LLSBs of buf fer to the two MSBs of current, buf fer is
first copied to a variable temp, which is then shifted 14 bits to the left. This shift
operation results in the two least significant bits of buffer (1 and 0) being moved to

3

Proceedings of the Prague Stringology Conference 01

the two most significant bits (15 and 14), with the remainder of the word (bits 13 to
0) being filled with 0’s. The contents of temp is then ORed with current resulting in
the two most significant bits of current being replaced with the two least significant
bits of bu.f fer.

In order to make sure that buf fer always has at least two bits available for
current, a count is kept of how many times current has been shifted to the right. This
count is stored in the variable shifted, which is initialised to 0 and then incremented
each time shifted is shifted to the right and the two MSBs replaced with the two
LSBs of buf fer. If after a comparison shifted is less than 7, then buf fer is shifted
two bits to the right in order to replace the two LLSBs which have been moved to
current and the variable shifted is incremented. If shifted reaches 7, then the last
two bits of data have moved from buf fer to current and buf fer requires re-filling.
When this occurs, shifted is set back to 0 and buf fer is loaded with a complete new
word from the input stream.

The next byte to be fetched from the input stream is pointed to by the pointer
variable ptr, which is incremented once buf fer has been refilled with a word from
data buffer named data_buf fer.

To ascertain whether current contains a match for the bit pattern being searched
for, current is first ANDed with a variable named mask. The purpose of mask is to
mask out those bits of current which are not required for the comparison. To ignore
a bit during the comparison between target and current, then the associated bit of
mask should be 0. Likewise, to include a bit in the comparison, then that bit of the
mask should be set to 1. As illustrated in Figure 3 below, the pattern ’ACGT’ is
being searched for, which is only an 8 bit pattern. Hence the remaining upper eight
bits can be ignored during the comparison and are thus set to 0.

target AC G T

bit 15 ‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘1‘1‘0‘1‘1‘ bit 0

mask
[lefolelelofefe]t]«[s[1]}<[1[1]
I ——

AND
buffer I Lttty ¥ current

1H 0‘0‘1‘0‘1‘0‘0‘1‘0‘0‘0 1‘1‘0‘1‘1}—>

rY rF Y YYYYY r ¥
15 GOS0 S

result

Figure 3: The use of the mask to reduce the number of bits compared

When current is ANDed with the mask, the result of the logical AND is stored
in result. A bit of result will only be set to 1 if both the corresponding bits of mask
and current are 1, otherwise the bit will be set to 0. A match with the target can
now be determined by subtracting target from result. If the result of this subtraction
is all 0’s, then both result and the target must have contained the same values and
hence a match has been found. This process is illustrated in Figure 4.

Searching in an Efficiently Stored DNA Text Using a Hardware Solution

buffer current

mask
1|@i] |0‘0‘0‘0‘0|0‘0|01‘1‘1‘1|1‘1|1‘1
TT o4

ry
(=]
=
"y
a
=]
=~
=]
= I
ok
=]
=~
[=]
Q
=]
=
=
a
—

Logical AND
target ACGT result
|@‘@‘@‘@‘@‘@‘@|@ 0|0‘0‘1‘1‘0|1‘1| |@‘@‘@‘@‘@|@‘@|@ 0‘0‘0‘1|1‘0|1‘1

Subtraction

match

‘o|o‘o|o‘o‘o‘o‘o 0‘0|0‘0‘0‘0‘0|0‘ \0|0\0\0\0\0|0\0 o\o\o\o\o\o\op
Comparison
Equal Not Equal

Figure 4: The steps required to determine whether the target matches the current
data

The program has been written to locate patterns of DNA up to and including
eight two bit codes. Hence, all words are 16bits in length and are declared as being of
type unsignedshort. However, the program could easily be amended to locate longer
patterns by simply changing the variable types and program constants.

4 Searching for multiple strings

The example algorithm illustrated in Figure 1, simply searches an input stream for
all occurrences of a single string. The program can be easily modified to search an
input stream for all occurrences of many strings by reading in many targets from a
file and storing them in an array. This way, each time current is shifted, it may be
compared with many targets before it is once more shifted. In order to do this, a
second array must be created to store the masks for each of the targets. These masks
may be automatically generated from the targets as they are read in.

Proceedings of the Prague Stringology Conference 01

while (shifts>0) {

for (i=0; i<no_of_targets; i++) {
result = current & mask_array[il];
match = result - target_array[i];
if (match == 0) {

. match found

}

}

current = current >> 2;
shifts——;

temp = buffer << 14;
current = current | temp;

if (shifted == 7) {
shifted = 0;
buffer = *ptr;
ptr++;

}

else {
buff = buff >> 2;
shifted++;

Figure 5: An algorithm to search for multiple patterns in a single text

Apart from this simple modification, the program remains relatively unchanged.
This is the version of the program, which will be the subject of the investigation into
hardware acceleration of string matching.

gigel][1[1]1)1[1[1]1]1]1]1]1
ro@soe(e]11]11)11/1]1|1]1
A AR
current *leleigele]11]1[1]1)1[11]1]1
’mmmmi‘] A1
H[o[1] [olg1|d1/dg ~olgdelgdels 1111111} -
by mask
Logical AND
Tracee--{aeldd 111 1oold 11| g«
TreTe lgaielaiald 111111119
atteecTé |ool/111/1/0j0/1/0111]1]9
acate "ggegeg oo oo ilo
anatteeloeloloogodo (11 fo] | resut
AceT -+e|ojgoodeldold 11011 [eloeoldelelgold o1 1d1]1]
target

Subtraction

match

Figure 6: Tllustration of Figure 5

Searching in an Efficiently Stored DNA Text Using a Hardware Solution

5 Hardware acceleration

Over the past decade hardware synthesis has been explored as a method of accel-
erating computing tasks at which conventional general-purpose microprocessors are
inefficient. The problem is that current microprocessors, although being suitable for
many tasks, are not particularly efficient at performing any one task. This is because
they are designed to be applicable to as many problem areas or tasks as possible.
Therefore, through necessity they possess many features which although utilised by
one application may never be used by another application. Another problem with
conventional machines is the stored program concept whereby and algorithm is ex-
ecuted by the microprocessor obeying a series of commands, which are stored in
memory. These commands are the machine code instructions, which the micropro-
cessor fetches, decodes and then executes one at time. This fetching and decoding
takes comparatively vast amount of time due to the slow speed of memory and the
numerous instructions within the instruction set of the processor. Even the execution
phase is by no means efficient. The execution circuits of a processor are finite and
although some resources are replicated, many must be shared. This resource con-
tention slows execution times. Additionally, the execution circuits of microprocessors
are designed to perform many tasks, making them less efficient.

Hardware and software co-design or hardware to software synthesis is a process
whereby computing algorithms expressed in high-level languages, are compiled to pro-
duce either an executable program and a hardware circuit design or just a hardware
circuit. In the case of hardware and software co-design [16, 17], the majority of the
program is turned into an executable binary for execution on a microprocessor, whilst
the remainder of the algorithm is synthesised to hardware. The portion synthesised
to hardware would be the section of the algorithm at which the microprocessor would
be least efficient. The hardware portion is usually programmed into a Field Pro-
grammable Gate Array (FPGA) [18], which then acts as a co-processor to the host
microprocessor. Producing programs for such architectures is usually performed using
a hybrid programming language and appropriate compilers and synthesis tools [15].
Such programming languages tend to be based on C, with extensions being added to
express the hardware-only components for the FPGA.

With pure software to hardware synthesis [2, 3], an attempt is made to map the
entire algorithm into an FPGA, resulting in a digital circuit, which is functionally
identical to and directly derived from an algorithm, which was originally expressed
in a programming language. Such approaches tend to used hardware description
languages such as VHDL [13], which are exclusively used for expressing the function
of hardware circuits.

Synthesis to a hardware only solution offers the greatest potential increase in
speed, removing the need for instructions and a conventional fetch-decode-execute
cycle. However, it is also the most difficult to achieve. The difficulty arises from the
design features of current FPGAs, which were originally intended for implementing
digital circuits. Although suitable for the prototyping and implementation of gen-
eral circuits comprising of digital logic, they are not well suited for implementing
algorithms. This is because algorithms require data storage for variables, buses for
register to register and register to execution unit transfers. Data storage and buses
are not, available within an FPGA and must be created using the FPGAs resources,

7

Proceedings of the Prague Stringology Conference 01

such as macro-cells and signal lines. What makes the situation worse is that both
registers and buses are expensive in terms of FPGA resources, which ultimately limits
the size of the algorithm to may be implemented in hardware.

As part of the research into implementing string matching algorithms in hardware-
solutions, recommendations will be made regarding the development of a new FPGA
architecture, which will be more suited to purpose of implementing software in hard-
ware.

6 Hardware Implementation of string Matching

The research currently being undertaken aims to overcome the limitations of current
FPGAs, with regards to configurable computing. First of all, it aims to do this by
recommending a new configurable device architecture, which lends itself more to the
mapping of software to hardware. The device will feature the busing systems, areas of
storage and synchronization circuits required to facilitate both effective and efficient
hardware generation. Secondly, software tools are being developed which will process
standard C programs and as their output, will produce configuration files for the
programmable device.

Because of the low-level nature of the task of string matching, it is an ideal can-
didate for such acceleration techniques. At the hardware level, the most efficient
method of searching a string for a sub-string is as illustrated in Figure 2. The stream
to be searched is passed through a register, shifting one bit at a time. Each time the
register is shifted, the register is compared with the sub-string being searched for.
This is the same method as employed in the C algorithm discussed previously. The
number of register bits to be compared need only be equal in length to the number
of bits in the sub-string, with any additional bits simply be masked out or ignored
in the same way as the C algorithm. Additionally, the register being searched need
not only be shifted one bit at a time. In the case of searching for occurrences of bit
patterns consisting of two bit sub-patterns, it is more efficient to shift the register
two bits before a comparison with the target is made.

Figure 7., illustrates a simplified diagram of the components to be implemented in
hardware. Missing are the hardware components responsible for shifting both current
and buf fer to the right. Also missing are the circuits required for synchronizing the
activities of the components in order to perform the operations of the algorithm in
the correct order.

Searching in an Efficiently Stored DNA Text Using a Hardware Solution

temp

[ey
ADD SHIFT OR
mask
ptr buffer
\ | — |
current

AND

target

result

18

data_buffer —_—
SUB

match

IF

equal l l not equal

Figure 7: Simplified version of the components to be implemented in hardware

The memory labelled data_bu f fer holds the data to be searched for a sub-string.
The width of the words contained in data_buf fer is immaterial and may be of any
width.

The registers labelled ptr and buf fer are associated with the fetching of the
words from memory. The register buf fer is the same width as the words contained
in data_buf fer. This register is used to contain a pre-fetch word. The register ptr is
used as a pointer to reference the words contained in data_buf fer. As such, its width
need only be sufficient to reference all of the words in data_buf fer.

The register current contains the current bit pattern to be matched against a
sub-string bit pattern. It is a shift register, with the data contained in the register
being shifted right two bits at a time, with the two least significant bits being lost
and the two most significant bits being replaced with the two least significant bits of
buffer. This is the purpose of buffer, to keep current full of bits. Only once all the
bits contained in buffer have been shifted into current, will new data be loaded into
buf fer from data_buf fer.

As with the C algorithm, the mask register is used to contain a bit pattern to
mask off the bits of current, which are not to be compared. When ANDed with the
contents of current, then the resulting word is stored in the register result. It is the
contents of result, which will be compared with the target to determine whether or
not a matching bit pattern has been located. To ascertain whether the contents of
result and target do match, result is subtracted from target. Again, if the result of
the subtraction is zero, then a match has been located.

The synchronisation techniques to be implemented to synchronise the functioning
of the component parts is beyond the scope of this paper. However, the techniques
employed and the architecture of the programmable logic device, will be reported

Proceedings of the Prague Stringology Conference 01

upon in subsequent papers.

7 Existing string matching algorithms

The string matching algorithms described below work as follows. First the pattern
of length m, P[1..m], is aligned with the extreme left of the text of length n, T[1..n].
Then the pattern characters are compared with the text characters. The algorithms
vary in the order in which the comparisons are made. After a mismatch is found
the pattern is shifted to the right and the distance the pattern can be shifted is
determined by the algorithm that is being used. It is this shifting procedure, which
is the main difference between the string matching algorithms.

There are a number of string matching algorithms available in the literature. We
have chosen six of them, which were found to be fast in [5] and described them briefly
below. All of the algorithms have worst-case search time O(nm). Animations of
these algorithms can be found at [9] and more information about the algorithms can
be found in [8].

In the Boyer-Moore (BM) algorithm [7] the characters are compared from right
to left starting with the rightmost character of the pattern. In a case of mismatch it
uses two functions, last occurrence function and good suffix function and shifts the
pattern by the maximum number of positions computed by these functions. The good
suffix function returns the number of positions for moving the pattern to the right by
the least amount, so as to align the already matched characters with the rightmost
substring in the pattern that are identical. The number of positions returned by the
last occurrence function determines the rightmost occurrence of the mismatched text
character in the pattern. If the text character does not appear in the pattern then
the last occurrence function returns m.

The Horspool (HOR) algorithm [12] is a simplification of the BM algorithm. It
does not use the good suffix function, but uses a modified version of the last occurrence
function. The modified last occurrence function determines the right most occurrence
of the (k +m)™ text character, T[k + m] in the pattern, if a mismatch occurs when
a pattern is aligned with T[k .. k£ + m]. This algorithm changes the order in which
characters of the pattern are compared with the text. It compares the rightmost
character in the pattern first then compares the leftmost character, then all the other
characters in ascending order from the second position to the m — 1 position.

The Berry-Ravindran (BR) algorithm [5] uses the next two characters outside the
pattern text alignment T[k+m+1] T[k+m+2] to calculate the shift. If the pair is in
the pattern then we shift the pattern so as to align it with the rightmost occurrence
of the pair in the pattern. If the pair is not in the pattern then we shift by m+2
places to the right.

The DS algorithm [6] is an algorithm designed to search directly in the efficiently
stored DNA text. It was found to be the fastest algorithm for the task of string
matching in DNA files. The speed of the algorithm was mainly due to the cut down
in the time required to scan in the text due to it being 25% of the size of the original
text. The DS algorithm has a worst case run time of O(nm) but an average case run
time of O(n + m). The algorithm compares text blocks with pattern blocks directly
to see if they match. Upon a mismatch the algorithm moves to the next text block
to be considered.

10

Searching in an Efficiently Stored DNA Text Using a Hardware Solution

The Shift-OR (SO) algorithm [4] has a worst case run time of O(n) independent
of the size of the alphabet being used or the pattern being searched for. The SO
algorithm constructs a bit array R of length m. The array has the initial state R;
and R;[j] is equal to 0 if P[0,j] = T[i — j,i] for all 0 < j < m. Otherwise R;[j] is
equal to 1. R; is recalculated to form R; + 1 by using two operations a logical shift
of 1 and a logical OR hence the name of the algorithm Shift-OR.

8 Comparison with existing algorithms

We measure the user time for the six algorithms. We timed the search of each of the
5 texts randomly chosen from the Entrez database [11] for all occurrences of the 62
enzyme cutting boundaries in [1]. There are 9 patterns of length 4, 50 of length 6
and 3 of length 8. The BK and DS algorithms searched in the efficiently stored DNA
text file and the BM, HOR, BR and SO algorithms searched in the original DNA text
file. We used a 486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive
running SUSE 5.2. The user time includes the time taken for any pre-processing and
the reading of the text into memory. Each algorithm was evaluated ten times and
the average user time taken is given in Table 1. The timings were accurate to 1/100
of a second. The difference between the slowest and fastest time for each test for an
algorithm was less than 0.1 of a second.

Text | Text size BM BR | HOR SO DS BK
100,000 | 47.57 | 31.49 | 41.09 | 54.92 | 15.31 | 45.77
100,000 | 47.63 | 31.46 | 40.99 | 54.91 | 15.36 | 45.76
253,505 | 119.97 | 79.29 | 102.97 | 138.96 | 33.18 | 115.92
319,000 | 151.13 | 99.63 | 129.70 | 174.71 | 40.84 | 145.83
217,000 | 102.72 | 67.98 | 88.26 | 118.85 | 29.05 | 99.22

Y | W N+~

Table 1: The user time taken (given in seconds) to search for all 62 patterns in each
of the texts

. From Table 1 we can see that the DS algorithm is the fastest algorithm for the
task. This is due to the savings made by the algorithm searching in the compressed
DNA file, which is a quarter of the size of the original DNA text file. The BR
algorithm is the best algorithm for searching in the original DNA text file. This
is due to the larger shift of m+2 given by this algorithm. Using two characters to
perform the search means that the probability of a large shift is increased. We would
expect the average shift for the algorithm to be greater than m for all the patterns
searched for. The BK algorithm is faster than the BM and the SO algorithms. The
BK algorithm is a C implementation of our proposed hardware solution. We expect
our hardware solution to be faster than our C implementation, which will also be
faster than the DS algorithm.

11

Proceedings of the Prague Stringology Conference 01

9 Conclusion

Using the storage method described in Section 2 we can store DNA text files in 25%
of space required for the original DNA text file. Using algorithms such as the DS
and BK algorithm we can keep DNA texts efficiently stored and perform searches on
them. Thus saving both time and space.

Although the BK algorithm, which is presented in this paper, is not the fastest
algorithm for the task of string matching in an efficiently stored DNA text file, it
is never-the-less still competitive when compared to existing string matching algo-
rithms. Although it is by no means the fastest algorithm for sub-string searches,
the hardware synthesis of the BK algorithm into a hardware only implementation is
expected to produce a solution that we estimate to be significantly faster than even
the DS algorithm.

References

References

[1] Amersham life science products catalogue, pp 378-379, 1998.

[2] James B. Peterson, R. Brendan O’Connor, Peter M. Athanas, ”Scheduling and
Partitioning ANSI-C' Programs onto Multi-FPGA CCM Architectures”, The
Bradley Department of Electrical Engineering, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia.

(3] James B. Peterson, Peter M. Athanas, ”High-Speed 2-D Convolution with a Cus-
tom Computing Machine”, The Bradley Department of Electrical Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

[4] Baeza-Yates R. A., Gonnet G. H., "A New Approach to Text Searching”, Com-
munications of the ACM, 35(10), pp. 74-82, 1992

[5] Berry T., Ravindran S., "A fast string matching algorithm and experimental
results”, Prague Stringology Club Workshop 99, 1999.

(6] Berry T., Ravindran S., "String matching in a compressed DNA text”, Proceed-
ings of the Australian Workshop on Combinatorial Algorithms (AWOCA ’99),
pp. 53-62, 1999.

[7] Boyer R. S., Moore J. S., ”A fast string searching algorithm”, Communications
of the ACM, 23(5), pp 1075-1091, 1977.

[8] Charras C., Lecroq T., 1997, Exact string matching, available at:
http://www-igm.univ-mlv.fr/~lecroq/string.ps

9] Charras C., Lecroq T., 1998, Exact string matching animation in JAVA avail-
able at: http://www-igm.univ-mlv.fr/“lecroq/string/

[10] Crochemore M., Rytter W., "Text algorithms”, Oxford University Press, 1994.

[11] Entrez database available at: http://www.ncbi.nlm.nih.gov/Entrez/

12

Searching in an Efficiently Stored DNA Text Using a Hardware Solution

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Horspool R. N., ”Practical fast searching in strings”, Software Practice and
Experience, 10(6), pp 501-506, 1980.

"IEEFE Standard VHDL Language Reference Manual”, The Institute of Electri-
cal and Electronics Engineers, Inc. (1987)

Loewenstern D., Yianilos P., ”Significantly lower entropy estimates for natural
DNA sequences”, Journal of Computational Biology, 6(1), 1999.

Page 1., Luk W., "Compiling occam into FPGAs”, in FPGA, eds., Will Moore
and Wayne Luk, 271-283, Abingdon EE&CS books, (1991).

Page 1., ”Constructing Hardware-Software Systems from a Single Description”,
Oxford University Computing Laboratory.

Page 1., Aubury M., Randall G., Saul J., Watts R., "hcc: A Handel-C Com-
piler”, Oxford University Computing Laboratory.

Xilinx Inc., ”Spartan and SpartanXL Families of Field Programmable Gate Ar-
rays”, Preliminary Product Specification”. San Jose, CA, (1999)

13

