
Sear
hing in an EÆ
iently Stored DNA Text

Using a Hardware Solution

T. Berry, S. Keller and S. Ravindran

Department of Computer S
ien
e

Liverpool John Moores University

Byrom Street

Liverpool

United Kingdom

e-mail: T.Berry�livjm.a
.uk, S.Keller�livjm.a
.uk, S.Ravindran�livjm.a
.uk

Abstra
t. In this paper, we des
ribe a storage method that redu
es the size

of a DNA text �le to 25% of its original size. Also outlined is a new algorithm,

whi
h
an sear
h an input stream of DNA text for multiple DNA sub-strings

in a single pass. Although this new algorithm is
ompetitive when
ompared

to the majority of existing string mat
hing algorithms, the intention is to fur-

ther improve performan
e by implementing the algorithm as a hardware-only

solution.

1 Introdu
tion

String mat
hing and Compression are two widely studied areas in
omputer S
ien
e

[10℄. String mat
hing is dete
ting a pattern P of length m in a larger text T of length

n. Compression involves transforming a string into a new string whi
h
ontains the

same information but whose length is as small as possible. These two areas naturally

lead to Compressed String Mat
hing, i.e. sear
hing for a pattern in a
ompressed

text. This method will save both spa
e and time.

In this paper we des
ribe a hardware solution that sear
hes in the
ompressed

DNA text. We also des
ribe an algorithm
oded in the programming language C that

will be synthesized into hardware. A DNA text (or mole
ule) en
odes information

whi
h by
onvention is represented as a string over the DNA alphabet A, C, G and

T. Compressed String Mat
hing in a DNA text is useful for the following reasons.

Although the
ost of memory is redu
ing, the sizes of DNA databases are growing

exponentially.

Optimal
ompression will devote two bits to represent ea
h DNA
hara
ter, if

ea
h
hara
ter is drawn uniformly at random from the DNA alphabet and that all

positions in the text are independent [14℄. The
ompression method des
ribed in

Se
tion 2 also devotes two bits per
hara
ter, i.e. the method guarantees to
ompress

the DNA text to 25% of its original size. Se
tion 3, outlines the BK algorithm,

as being a string mat
hing algorithm, whi
h as well as being relatively fast as a

software solution,
ould also be implement in a hardware-only solution. Se
tion 4,

des
ribes a modi�
ation to the basi
 BK algorithm, whi
h will sear
h a stream of

1

Pro
eedings of the Prague Stringology Conferen
e '01

DNA text for multiple sub-strings in a single pass of the text. Se
tion 5,
overs

the pro
ess of implementing programs as hardware-only solutions. Attention is paid

to the inadequa
ies of modern mi
ropro
essors and the advantages whi
h so-
alled

'hardware
ompilation te
hniques'
an o�er as a means of a

elerating the exe
ution

of algorithms. Se
tion 6, des
ribes how the BK string mat
hing algorithm may be

implemented as a hardware only solution. In se
tion 7 we des
ribe 5 existing string

mat
hing algorithms. In se
tion 8 we
ompare our new algorithm with the 5 existing

algorithms by experimentation. The texts and the patterns used for these experiments

have been taken from [11℄ and [1℄ respe
tively.

2 EÆ
ient storage of a DNA text

In the DNA alphabet, S, there are four
hara
ters, namely A, C, G and T. As there

are only 4 possible
hara
ters in a DNA text we
an represent the
hara
ter's with

the fun
tion, f: �) [0 .. 3℄, su
h that:

f(A) = 0, f (C) = 1, f (G) = 2, and f (T) = 3.

Let a blo
k be a string of four
hara
ters. The
ode of a blo
k of DNA
hara
ters

is the value that returned by the fun
tion g, g: � � �� �� �) [0 .. 255℄, for the

blo
k. The fun
tion g is de�ned as follows. g(��
Æ) = (f(�) �4

3

) + (f(�) �4

2

) +

(f(
) �4

1

) + (f(Æ) �4

0

)

This means that we
an represent ea
h of the DNA
hara
ters with 2 bits. Namely

A = 00, C = 01, G = 10 and T = 11. A DNA text blo
k will be represented by 32-bits,

as ea
h
hara
ter needs 8-bits. Using the fun
tion g we
an represent a text blo
k

with 8-bits. For ea
h text blo
k we print an ASCII
hara
ter whose ASCII number

is the value return by the fun
tion g. As the fun
tion g is a bije
tive fun
tion, we

an
ompress any text blo
k into 8-bits and it is possible to re
onstru
t the original

DNA text exa
tly.

For example, CAAGAGCGCAGT) 010000100010011001001011) 66 38 75)

B&K. So we
an store the string CAAGAGCGCAGT using 24 bits. This storage

method will guarantee to store the DNA text in a �le, whi
h is 25% of its original

size.

3 Investigation into a hardware only solution to

the string mat
hing problem

The string mat
hing algorithm illustrated in Figure 1 was devised as part of a
ase

study to investigate the feasibility of performing
omputational algorithms in hard-

ware. String mat
hing was
hosen as one of the areas to be tested as su
h algorithms

typi
ally involve many hardware manipulations of words of binary data. These manip-

ulations are invoked by the ma
hine
ode instru
tions, whi
h
onstitute the program

and performed by the general-purpose hardware within the mi
ropro
essor itself. So

alled software to hardware synthesis te
hniques aim to a

elerate algorithm exe
u-

tion by �rst of all removing the need for ma
hine instru
tions and by also performing

omputational and logi
al operations on bespoke hardware.

2

Sear
hing in an EÆ
iently Stored DNA Text Using a Hardware Solution

while (match != 0 && word_count != 0) {
 result = current & mask;
 match = result - target;
 if (match != 0) {
 current = current >> 2;
 temp = buffer << 14;
 current = current | temp;
 if (shifted == 7) {
 word_count--;
 shifted = 0;
 buffer = *ptr;
 ptr++;
 }
 else {
 buffer = buffer >> 2;
 shifted++;
 }
 }
 }

Figure 1: The C
ode for sear
hing for o

urren
es of a single pattern in a given text

The example
ode shown works on a word size of 16 bits and
an dete
t a pattern

of up to 8 DNA
hara
ters in length. However, the algorithm is by no means limited

to this word size.

The algorithm works by shifting the input stream through the variable
urrent.

When the data is shifted, it is shifted two bits at a time to the right. It is shifted two

bits at a time be
ause this is more eÆ
ient as the algorithm are sear
hing for DNA

features whi
h are en
oded into two bit patterns. Ea
h time
urrent is shifted to the

right it is
he
ked for a mat
h with the target pattern. This
on
ept is illustrated in

Figure 2.

Figure 2: Comparison of input stream against target

When shifted, the two least signi�
ant bits (LSBs), whi
h are bits 1 and 0, are lost

and the two most signi�
ant bits (MSBs), whi
h are bits 15 and 14, be
ome empty.

These two null MSBs are �lled with the two LSBs of buffer. The variable buffer is

a pre-fet
h word, whi
h will
ontain word i+1 with
urrent
ontaining word i. This

is ne
essary if
urrent is to kept full at all times. During initialisation, the �rst word

of data is
opied to
urrent from the input bu�er and buffer is �lled with the se
ond

word of data.

In order to
opy the two LSBs of buffer to the two MSBs of
urrent, buffer is

�rst
opied to a variable temp, whi
h is then shifted 14 bits to the left. This shift

operation results in the two least signi�
ant bits of bu�er (1 and 0) being moved to

3

Pro
eedings of the Prague Stringology Conferen
e '01

the two most signi�
ant bits (15 and 14), with the remainder of the word (bits 13 to

0) being �lled with 0's. The
ontents of temp is then ORed with
urrent resulting in

the two most signi�
ant bits of
urrent being repla
ed with the two least signi�
ant

bits of buffer.

In order to make sure that buffer always has at least two bits available for

urrent, a
ount is kept of how many times
urrent has been shifted to the right. This

ount is stored in the variable shifted, whi
h is initialised to 0 and then in
remented

ea
h time shifted is shifted to the right and the two MSBs repla
ed with the two

LSBs of buffer. If after a
omparison shifted is less than 7, then buffer is shifted

two bits to the right in order to repla
e the two LSBs whi
h have been moved to

urrent and the variable shifted is in
remented. If shifted rea
hes 7, then the last

two bits of data have moved from buffer to
urrent and buffer requires re-�lling.

When this o

urs, shifted is set ba
k to 0 and buffer is loaded with a
omplete new

word from the input stream.

The next byte to be fet
hed from the input stream is pointed to by the pointer

variable ptr, whi
h is in
remented on
e buffer has been re�lled with a word from

data bu�er named data buffer.

To as
ertain whether
urrent
ontains a mat
h for the bit pattern being sear
hed

for,
urrent is �rst ANDed with a variable named mask. The purpose of mask is to

mask out those bits of
urrent whi
h are not required for the
omparison. To ignore

a bit during the
omparison between target and
urrent, then the asso
iated bit of

mask should be 0. Likewise, to in
lude a bit in the
omparison, then that bit of the

mask should be set to 1. As illustrated in Figure 3 below, the pattern 'ACGT' is

being sear
hed for, whi
h is only an 8 bit pattern. Hen
e the remaining upper eight

bits
an be ignored during the
omparison and are thus set to 0.

Figure 3: The use of the mask to redu
e the number of bits
ompared

When
urrent is ANDed with the mask, the result of the logi
al AND is stored

in result. A bit of result will only be set to 1 if both the
orresponding bits of mask

and
urrent are 1, otherwise the bit will be set to 0. A mat
h with the target
an

now be determined by subtra
ting target from result. If the result of this subtra
tion

is all 0's, then both result and the target must have
ontained the same values and

hen
e a mat
h has been found. This pro
ess is illustrated in Figure 4.

4

Sear
hing in an EÆ
iently Stored DNA Text Using a Hardware Solution

Figure 4: The steps required to determine whether the target mat
hes the
urrent

data

The program has been written to lo
ate patterns of DNA up to and in
luding

eight two bit
odes. Hen
e, all words are 16bits in length and are de
lared as being of

type unsignedshort. However, the program
ould easily be amended to lo
ate longer

patterns by simply
hanging the variable types and program
onstants.

4 Sear
hing for multiple strings

The example algorithm illustrated in Figure 1, simply sear
hes an input stream for

all o

urren
es of a single string. The program
an be easily modi�ed to sear
h an

input stream for all o

urren
es of many strings by reading in many targets from a

�le and storing them in an array. This way, ea
h time
urrent is shifted, it may be

ompared with many targets before it is on
e more shifted. In order to do this, a

se
ond array must be
reated to store the masks for ea
h of the targets. These masks

may be automati
ally generated from the targets as they are read in.

5

Pro
eedings of the Prague Stringology Conferen
e '01

while (shifts>0) {
 for (i=0; i<no_of_targets; i++) {
 result = current & mask_array[i];
 match = result - target_array[i];
 if (match == 0) {
 .. match found
 }
 }

 current = current >> 2;
 shifts--;
 temp = buffer << 14;
 current = current | temp;

 if (shifted == 7) {
 shifted = 0;
 buffer = *ptr;
 ptr++;
 }
 else {
 buff = buff >> 2;
 shifted++;
 }
 }

Figure 5: An algorithm to sear
h for multiple patterns in a single text

Apart from this simple modi�
ation, the program remains relatively un
hanged.

This is the version of the program, whi
h will be the subje
t of the investigation into

hardware a

eleration of string mat
hing.

Figure 6: Illustration of Figure 5

6

Sear
hing in an EÆ
iently Stored DNA Text Using a Hardware Solution

5 Hardware a

eleration

Over the past de
ade hardware synthesis has been explored as a method of a

el-

erating
omputing tasks at whi
h
onventional general-purpose mi
ropro
essors are

ineÆ
ient. The problem is that
urrent mi
ropro
essors, although being suitable for

many tasks, are not parti
ularly eÆ
ient at performing any one task. This is be
ause

they are designed to be appli
able to as many problem areas or tasks as possible.

Therefore, through ne
essity they possess many features whi
h although utilised by

one appli
ation may never be used by another appli
ation. Another problem with

onventional ma
hines is the stored program
on
ept whereby and algorithm is ex-

e
uted by the mi
ropro
essor obeying a series of
ommands, whi
h are stored in

memory. These
ommands are the ma
hine
ode instru
tions, whi
h the mi
ropro-

essor fet
hes, de
odes and then exe
utes one at time. This fet
hing and de
oding

takes
omparatively vast amount of time due to the slow speed of memory and the

numerous instru
tions within the instru
tion set of the pro
essor. Even the exe
ution

phase is by no means eÆ
ient. The exe
ution
ir
uits of a pro
essor are �nite and

although some resour
es are repli
ated, many must be shared. This resour
e
on-

tention slows exe
ution times. Additionally, the exe
ution
ir
uits of mi
ropro
essors

are designed to perform many tasks, making them less eÆ
ient.

Hardware and software
o-design or hardware to software synthesis is a pro
ess

whereby
omputing algorithms expressed in high-level languages, are
ompiled to pro-

du
e either an exe
utable program and a hardware
ir
uit design or just a hardware

ir
uit. In the
ase of hardware and software
o-design [16, 17℄, the majority of the

program is turned into an exe
utable binary for exe
ution on a mi
ropro
essor, whilst

the remainder of the algorithm is synthesised to hardware. The portion synthesised

to hardware would be the se
tion of the algorithm at whi
h the mi
ropro
essor would

be least eÆ
ient. The hardware portion is usually programmed into a Field Pro-

grammable Gate Array (FPGA) [18℄, whi
h then a
ts as a
o-pro
essor to the host

mi
ropro
essor. Produ
ing programs for su
h ar
hite
tures is usually performed using

a hybrid programming language and appropriate
ompilers and synthesis tools [15℄.

Su
h programming languages tend to be based on C, with extensions being added to

express the hardware-only
omponents for the FPGA.

With pure software to hardware synthesis [2, 3℄, an attempt is made to map the

entire algorithm into an FPGA, resulting in a digital
ir
uit, whi
h is fun
tionally

identi
al to and dire
tly derived from an algorithm, whi
h was originally expressed

in a programming language. Su
h approa
hes tend to used hardware des
ription

languages su
h as VHDL [13℄, whi
h are ex
lusively used for expressing the fun
tion

of hardware
ir
uits.

Synthesis to a hardware only solution o�ers the greatest potential in
rease in

speed, removing the need for instru
tions and a
onventional fet
h-de
ode-exe
ute

y
le. However, it is also the most diÆ
ult to a
hieve. The diÆ
ulty arises from the

design features of
urrent FPGAs, whi
h were originally intended for implementing

digital
ir
uits. Although suitable for the prototyping and implementation of gen-

eral
ir
uits
omprising of digital logi
, they are not well suited for implementing

algorithms. This is be
ause algorithms require data storage for variables, buses for

register to register and register to exe
ution unit transfers. Data storage and buses

are not available within an FPGA and must be
reated using the FPGAs resour
es,

7

Pro
eedings of the Prague Stringology Conferen
e '01

su
h as ma
ro-
ells and signal lines. What makes the situation worse is that both

registers and buses are expensive in terms of FPGA resour
es, whi
h ultimately limits

the size of the algorithm to may be implemented in hardware.

As part of the resear
h into implementing string mat
hing algorithms in hardware-

solutions, re
ommendations will be made regarding the development of a new FPGA

ar
hite
ture, whi
h will be more suited to purpose of implementing software in hard-

ware.

6 Hardware Implementation of string Mat
hing

The resear
h
urrently being undertaken aims to over
ome the limitations of
urrent

FPGAs, with regards to
on�gurable
omputing. First of all, it aims to do this by

re
ommending a new
on�gurable devi
e ar
hite
ture, whi
h lends itself more to the

mapping of software to hardware. The devi
e will feature the busing systems, areas of

storage and syn
hronization
ir
uits required to fa
ilitate both e�e
tive and eÆ
ient

hardware generation. Se
ondly, software tools are being developed whi
h will pro
ess

standard C programs and as their output, will produ
e
on�guration �les for the

programmable devi
e.

Be
ause of the low-level nature of the task of string mat
hing, it is an ideal
an-

didate for su
h a

eleration te
hniques. At the hardware level, the most eÆ
ient

method of sear
hing a string for a sub-string is as illustrated in Figure 2. The stream

to be sear
hed is passed through a register, shifting one bit at a time. Ea
h time the

register is shifted, the register is
ompared with the sub-string being sear
hed for.

This is the same method as employed in the C algorithm dis
ussed previously. The

number of register bits to be
ompared need only be equal in length to the number

of bits in the sub-string, with any additional bits simply be masked out or ignored

in the same way as the C algorithm. Additionally, the register being sear
hed need

not only be shifted one bit at a time. In the
ase of sear
hing for o

urren
es of bit

patterns
onsisting of two bit sub-patterns, it is more eÆ
ient to shift the register

two bits before a
omparison with the target is made.

Figure 7., illustrates a simpli�ed diagram of the
omponents to be implemented in

hardware. Missing are the hardware
omponents responsible for shifting both
urrent

and buffer to the right. Also missing are the
ir
uits required for syn
hronizing the

a
tivities of the
omponents in order to perform the operations of the algorithm in

the
orre
t order.

8

Sear
hing in an EÆ
iently Stored DNA Text Using a Hardware Solution

Figure 7: Simpli�ed version of the
omponents to be implemented in hardware

The memory labelled data buffer holds the data to be sear
hed for a sub-string.

The width of the words
ontained in data buffer is immaterial and may be of any

width.

The registers labelled ptr and buffer are asso
iated with the fet
hing of the

words from memory. The register buffer is the same width as the words
ontained

in data buffer. This register is used to
ontain a pre-fet
h word. The register ptr is

used as a pointer to referen
e the words
ontained in data buffer. As su
h, its width

need only be suÆ
ient to referen
e all of the words in data buffer.

The register
urrent
ontains the
urrent bit pattern to be mat
hed against a

sub-string bit pattern. It is a shift register, with the data
ontained in the register

being shifted right two bits at a time, with the two least signi�
ant bits being lost

and the two most signi�
ant bits being repla
ed with the two least signi�
ant bits of

bu�er. This is the purpose of bu�er, to keep
urrent full of bits. Only on
e all the

bits
ontained in bu�er have been shifted into
urrent, will new data be loaded into

buffer from data buffer.

As with the C algorithm, the mask register is used to
ontain a bit pattern to

mask o� the bits of
urrent, whi
h are not to be
ompared. When ANDed with the

ontents of
urrent, then the resulting word is stored in the register result. It is the

ontents of result, whi
h will be
ompared with the target to determine whether or

not a mat
hing bit pattern has been lo
ated. To as
ertain whether the
ontents of

result and target do mat
h, result is subtra
ted from target. Again, if the result of

the subtra
tion is zero, then a mat
h has been lo
ated.

The syn
hronisation te
hniques to be implemented to syn
hronise the fun
tioning

of the
omponent parts is beyond the s
ope of this paper. However, the te
hniques

employed and the ar
hite
ture of the programmable logi
 devi
e, will be reported

9

Pro
eedings of the Prague Stringology Conferen
e '01

upon in subsequent papers.

7 Existing string mat
hing algorithms

The string mat
hing algorithms des
ribed below work as follows. First the pattern

of length m, P[1..m℄, is aligned with the extreme left of the text of length n, T[1..n℄.

Then the pattern
hara
ters are
ompared with the text
hara
ters. The algorithms

vary in the order in whi
h the
omparisons are made. After a mismat
h is found

the pattern is shifted to the right and the distan
e the pattern
an be shifted is

determined by the algorithm that is being used. It is this shifting pro
edure, whi
h

is the main di�eren
e between the string mat
hing algorithms.

There are a number of string mat
hing algorithms available in the literature. We

have
hosen six of them, whi
h were found to be fast in [5℄ and des
ribed them brie
y

below. All of the algorithms have worst-
ase sear
h time O(nm). Animations of

these algorithms
an be found at [9℄ and more information about the algorithms
an

be found in [8℄.

In the Boyer-Moore (BM) algorithm [7℄ the
hara
ters are
ompared from right

to left starting with the rightmost
hara
ter of the pattern. In a
ase of mismat
h it

uses two fun
tions, last o

urren
e fun
tion and good suÆx fun
tion and shifts the

pattern by the maximum number of positions
omputed by these fun
tions. The good

suÆx fun
tion returns the number of positions for moving the pattern to the right by

the least amount, so as to align the already mat
hed
hara
ters with the rightmost

substring in the pattern that are identi
al. The number of positions returned by the

last o

urren
e fun
tion determines the rightmost o

urren
e of the mismat
hed text

hara
ter in the pattern. If the text
hara
ter does not appear in the pattern then

the last o

urren
e fun
tion returns m.

The Horspool (HOR) algorithm [12℄ is a simpli�
ation of the BM algorithm. It

does not use the good suÆx fun
tion, but uses a modi�ed version of the last o

urren
e

fun
tion. The modi�ed last o

urren
e fun
tion determines the right most o

urren
e

of the (k +m)

th

text
hara
ter, T[k +m℄ in the pattern, if a mismat
h o

urs when

a pattern is aligned with T[k .. k +m℄. This algorithm
hanges the order in whi
h

hara
ters of the pattern are
ompared with the text. It
ompares the rightmost

hara
ter in the pattern �rst then
ompares the leftmost
hara
ter, then all the other

hara
ters in as
ending order from the se
ond position to the m� 1

th

position.

The Berry-Ravindran (BR) algorithm [5℄ uses the next two
hara
ters outside the

pattern text alignment T[k+m+1℄ T[k+m+2℄ to
al
ulate the shift. If the pair is in

the pattern then we shift the pattern so as to align it with the rightmost o

urren
e

of the pair in the pattern. If the pair is not in the pattern then we shift by m+2

pla
es to the right.

The DS algorithm [6℄ is an algorithm designed to sear
h dire
tly in the eÆ
iently

stored DNA text. It was found to be the fastest algorithm for the task of string

mat
hing in DNA �les. The speed of the algorithm was mainly due to the
ut down

in the time required to s
an in the text due to it being 25% of the size of the original

text. The DS algorithm has a worst
ase run time of O(nm) but an average
ase run

time of O(n +m). The algorithm
ompares text blo
ks with pattern blo
ks dire
tly

to see if they mat
h. Upon a mismat
h the algorithm moves to the next text blo
k

to be
onsidered.

10

Sear
hing in an EÆ
iently Stored DNA Text Using a Hardware Solution

The Shift-OR (SO) algorithm [4℄ has a worst
ase run time of O(n) independent

of the size of the alphabet being used or the pattern being sear
hed for. The SO

algorithm
onstru
ts a bit array R of length m. The array has the initial state R

i

and R

i

[j℄ is equal to 0 if P[0,j℄ = T[i � j,i℄ for all 0 � j � m. Otherwise R

i

[j℄ is

equal to 1. R

i

is re
al
ulated to form R

i

+ 1 by using two operations a logi
al shift

of 1 and a logi
al OR hen
e the name of the algorithm Shift-OR.

8 Comparison with existing algorithms

We measure the user time for the six algorithms. We timed the sear
h of ea
h of the

5 texts randomly
hosen from the Entrez database [11℄ for all o

urren
es of the 62

enzyme
utting boundaries in [1℄. There are 9 patterns of length 4, 50 of length 6

and 3 of length 8. The BK and DS algorithms sear
hed in the eÆ
iently stored DNA

text �le and the BM, HOR, BR and SO algorithms sear
hed in the original DNA text

�le. We used a 486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive

running SUSE 5.2. The user time in
ludes the time taken for any pre-pro
essing and

the reading of the text into memory. Ea
h algorithm was evaluated ten times and

the average user time taken is given in Table 1. The timings were a

urate to 1/100

of a se
ond. The di�eren
e between the slowest and fastest time for ea
h test for an

algorithm was less than 0.1 of a se
ond.

Text Text size BM BR HOR SO DS BK

1 100,000 47.57 31.49 41.09 54.92 15.31 45.77

2 100,000 47.63 31.46 40.99 54.91 15.36 45.76

3 253,505 119.97 79.29 102.97 138.96 33.18 115.92

4 319,000 151.13 99.63 129.70 174.71 40.84 145.83

5 217,000 102.72 67.98 88.26 118.85 29.05 99.22

Table 1: The user time taken (given in se
onds) to sear
h for all 62 patterns in ea
h

of the texts

>From Table 1 we
an see that the DS algorithm is the fastest algorithm for the

task. This is due to the savings made by the algorithm sear
hing in the
ompressed

DNA �le, whi
h is a quarter of the size of the original DNA text �le. The BR

algorithm is the best algorithm for sear
hing in the original DNA text �le. This

is due to the larger shift of m+2 given by this algorithm. Using two
hara
ters to

perform the sear
h means that the probability of a large shift is in
reased. We would

expe
t the average shift for the algorithm to be greater than m for all the patterns

sear
hed for. The BK algorithm is faster than the BM and the SO algorithms. The

BK algorithm is a C implementation of our proposed hardware solution. We expe
t

our hardware solution to be faster than our C implementation, whi
h will also be

faster than the DS algorithm.

11

Pro
eedings of the Prague Stringology Conferen
e '01

9 Con
lusion

Using the storage method des
ribed in Se
tion 2 we
an store DNA text �les in 25%

of spa
e required for the original DNA text �le. Using algorithms su
h as the DS

and BK algorithm we
an keep DNA texts eÆ
iently stored and perform sear
hes on

them. Thus saving both time and spa
e.

Although the BK algorithm, whi
h is presented in this paper, is not the fastest

algorithm for the task of string mat
hing in an eÆ
iently stored DNA text �le, it

is never-the-less still
ompetitive when
ompared to existing string mat
hing algo-

rithms. Although it is by no means the fastest algorithm for sub-string sear
hes,

the hardware synthesis of the BK algorithm into a hardware only implementation is

expe
ted to produ
e a solution that we estimate to be signi�
antly faster than even

the DS algorithm.

Referen
es

Referen
es

[1℄ Amersham life s
ien
e produ
ts
atalogue, pp 378-379, 1998.

[2℄ James B. Peterson, R. Brendan O'Connor, Peter M. Athanas, "S
heduling and

Partitioning ANSI-C Programs onto Multi-FPGA CCM Ar
hite
tures", The

Bradley Department of Ele
tri
al Engineering, Virginia Polyte
hni
 Institute

and State University, Bla
ksburg, Virginia.

[3℄ James B. Peterson, Peter M. Athanas, "High-Speed 2-D Convolution with a Cus-

tom Computing Ma
hine", The Bradley Department of Ele
tri
al Engineering,

Virginia Polyte
hni
 Institute and State University, Bla
ksburg, Virginia.

[4℄ Baeza-Yates R. A., Gonnet G. H., "A New Approa
h to Text Sear
hing", Com-

muni
ations of the ACM, 35(10), pp. 74-82, 1992

[5℄ Berry T., Ravindran S., "A fast string mat
hing algorithm and experimental

results", Prague Stringology Club Workshop '99, 1999.

[6℄ Berry T., Ravindran S., "String mat
hing in a
ompressed DNA text", Pro
eed-

ings of the Australian Workshop on Combinatorial Algorithms (AWOCA '99),

pp. 53-62, 1999.

[7℄ Boyer R. S., Moore J. S., "A fast string sear
hing algorithm", Communi
ations

of the ACM, 23(5), pp 1075-1091, 1977.

[8℄ Charras C., Le
roq T., 1997, Exa
t string mat
hing, available at:

http://www-igm.univ-mlv.fr/~le
roq/string.ps

[9℄ Charras C., Le
roq T., 1998, Exa
t string mat
hing animation in JAVA avail-

able at: http://www-igm.univ-mlv.fr/~le
roq/string/

[10℄ Cro
hemore M., Rytter W., "Text algorithms", Oxford University Press, 1994.

[11℄ Entrez database available at: http://www.n
bi.nlm.nih.gov/Entrez/

12

Sear
hing in an EÆ
iently Stored DNA Text Using a Hardware Solution

[12℄ Horspool R. N., "Pra
ti
al fast sear
hing in strings", Software Pra
ti
e and

Experien
e, 10(6), pp 501-506, 1980.

[13℄ "IEEE Standard VHDL Language Referen
e Manual", The Institute of Ele
tri-

al and Ele
troni
s Engineers, In
. (1987)

[14℄ Loewenstern D., Yianilos P., "Signi�
antly lower entropy estimates for natural

DNA sequen
es", Journal of Computational Biology, 6(1), 1999.

[15℄ Page I., Luk W., "Compiling o

am into FPGAs", in FPGA, eds., Will Moore

and Wayne Luk, 271-283, Abingdon EE&CS books, (1991).

[16℄ Page I., "Constru
ting Hardware-Software Systems from a Single Des
ription",

Oxford University Computing Laboratory.

[17℄ Page I., Aubury M., Randall G., Saul J., Watts R., "h

: A Handel-C Com-

piler", Oxford University Computing Laboratory.

[18℄ Xilinx In
., "Spartan and SpartanXL Families of Field Programmable Gate Ar-

rays", Preliminary Produ
t Spe
i�
ation". San Jose, CA, (1999)

13

