A linear time string matching algorithm on
average with efficient text storage

T. Berry and S. Ravindran

Department of Computer Science
Liverpool John Moores University
Byrom Street
Liverpool
United Kingdom

e-mail: T.Berry@livjm.ac.uk,S.Ravindran@livjm.ac.uk

Abstract. In this paper we describe an algorithm to search for a pattern in an
efficiently stored text. The method used to store the text tranforms it to %
of its original size, where o is the size of the alphabet set 3. We prove that the
algorithm takes linear time on average. We compare the new algorithm with
some existing string matching algorithms by experimentation.

1 Introduction

String matching and Compression are two widely studied areas in computer science
[5]. String matching is detecting a pattern P of length m in a larger text T of length
n over an alphabet set ¥ of size 0. Compression involves transforming a string into
a new string which contains the same information but whose length is as small as
possible. These two areas naturally lead to compressed string matching, i.e. searching
for a pattern in a compressed text. This method will save both space and time.

In this paper we describe a string matching algorithm to search a pattern in a
efficiently stored text. We can reduce the size of any given text according to the size
of the alphabet being used. This is useful as although the cost of memory is reducing,
the sizes of text databases are growing exponentially.

In Section 2 we describe our storage method that will transform the text to %
of its original size. This method is compared with other well-known compression
algorithms by experiments in Section 3.

Section 4 describes a novel string matching algorithm on a text that is stored by
using the method in Section 2. In Section 5 we prove that on average this algorithm
takes O(n + m) time. Our algorithm is compared with other well known string
matching algorithms by experiments in Section 6.

2 Efficient storage of a text

We assume that the size of the alphabet set, o, is in the range 1 < o < 128 and
that we are representing each character in the alphabet with one byte. There are
redundant bits in each byte as we only need [log, o] bits to represent a character.

Proceedings of the Prague Stringology Conference '01

After we replace the characters in a text with [log, o] bits, it is possible to replace
eight consecutive bits in the binary text with its corresponding ASCII character.
These eight consecutive bits are called a block. The decimal value of a block is the
code of the block. This representation will reduce the storage space to “Ogs—2”1n , Where
n is the size of the original text.

For example, consider ¥ = {A, B,C,D,E} and T = CACDABEB. This text
T of eight characters can be represented with three characters 7 = Ala. First we
represent the characters with A = 000, B = 001,C' = 010,D = 011 and E = 100.

This will give the binary representation of the text T:
010000010011000001100001

The first bit in each block are shown in bold font. The codes for the text blocks
are 65, 48 and 95 and their corresponding ASCII characters are 'A’, '1’, and ’a’
respectively.

3 Comparison with existing compression algorithms

The method described in the last section is not compression as in the literature but
does reduce the size of the original text. In this section we compare the well known
text compression methods, Huffman encoding [8] and Lempel-Ziv encoding [9, 13, 14]
with our method.

The Huffman encoding determines the length of the bit representation of the
characters according to their frequency. It assigns smaller codes to high frequency
characters and larger codes to low frequency characters.

In Lempel-Ziv (LZ) encoding [14] the file may be compressed to less than [log, o]
bits per character but requires re-occurring strings. Each of the repeated strings and
each of the characters in the alphabet are represent by 12 bits. The gains from this
method are reliant on there being enough repeated strings to counter the 12 bits
which are used to represent each of the compressed strings.

The LZ encoding and its derivative LZW encoding [13] are used in UNIX utilities,
compress and gzip. Another variation of LZ encoding (NR) is described in [9].

Table 1 (see Appendix) shows that our storage method is comparable to these
methods. Although our method is not very good for text files with large alphabets.
The method is competive for DNA, Recombinant DNA (RDNA) and hexadecimal
files. Note that the main purpose of this paper is not compression, but for the
searching of a pattern in a compressed file.

4 Searching in a text with efficient storage

In this section we describe an algorithm to find all exact occurrences of a pattern in
a text. Here we assume that the text is stored as described in Section 2 and o < 128.
We describe the algorithm for o = 2, we will see later that the algorithm can be easily
adapted for o > 2.

A substring of the pattern may overlap between consecutive text-blocks and a
pattern may start in a text-block at any one of eight positions. During the search
we need to look whether a prefix (or suffix) of a pattern is a suffix (or prefix) of a

2

A linear time string matching algorithm on average with efficient text storage

text-block. Due to this problem we have to consider eight different expressions. Each
expression is made up of pattern-blocks of length eight bits. There will be m + 7
pattern-blocks, where m is the length of a pattern.

For a pattern P,P,.. P,, we can construct the expressions as shown in Figure 1.
Here we consider the case for m mod 8 = 0. We number the pattern-blocks starting
from 0 at the top left corner to m+6 in the bottom right corner as shown in brackets.
The wildcard character N represents either 0 or 1, and P;_; represents P;..P;_,P;, for
1<i1<j <m.

Exp0: NNNNNNNP; (0) Pm—14.m-7 (m-8) Pp_6.mN (m)
Expl: NNNNNNPj 5 (1) oo P 13.m—6 (M-7) P 5 NN (m+1)
Exp2: NNNNNPy 3 (2) ... Pm12.m—5 (M6) P 4 ,mNNN (m +2)
Exp3: NNNNP; 4 (G - Pm—11.m-4 (m-5) Pp_3. » NNNN (m + 3)
Expd: NNNPy 5 (4) o, P 10.m-3 (m-4) Pp_5 nNNNNN (m+4)
Exp5: NNPi.6 (5) Pm—9.m—-2 (m—3) P—1.m NNNNNN (m+5)
Exp6: NPy 7 (6) orreen. Pm s.m_ 1 (m2) P,NNNNNNN (m+6)
Exp7: Pi.s (7). Pm—7.m (m-1)

Figure 1: Expressions for a pattern P{P,.. P,, when m mod 8 = 0.

The naive algorithm will compare a text-block with the first pattern-blocks in
each expression. If any of these pattern-blocks matched with the text-block, we need
to compare the consecutive text-blocks with the rest of the pattern-blocks in the
expression.

Our algorithm first constructs a table called the Block-Table. The Block-Table
has 256 columns and m + 7 rows as there are 256 possible blocks in a text and m+7
is the number of pattern-blocks we need to consider. The table is initialised to 0.
The (i, 7)™ entry in the table is defined as follows, where i, 0 < i < m + 6, is the
pattern-block number and j, 0 < 5 < 255, is the code for a block. Suppose that the
pattern-block does not have a wildcard character, the (4,)" entry is 1, if the code for
pattern-block 7 is equal to j. If there is one or more wild cards in the pattern-block,
we consider all the possible blocks. For example, if the i*" pattern-block is NN111000,
the (i,7)™ entry is equal to 1 for all j, where j is the code for 00111000, 01111000,
10111000 or 11111000.

For each expression we only have to compare one pattern-block with a text-block,
and if these two match then we compare the rest of the pattern-blocks in the ex-
pression with the corresponding text-blocks. We choose a pattern-block (from each
expression) which has the minimum number of possibilities of matching with a text-
block. We build the Order-Table of dimensions 8 by [“47] which contains the order
in which to examine the pattern-blocks for each expression. For each pattern-block
the number of possibilities of matching a text-block can be found by adding the values
in the row of the pattern-block in the Block-Table.

. From these we construct a Search-Table of dimensions 8 x 256, and it is initialised
to -1. In the first row of the Search-Table, we enter pattern-block numbers from the
first column of the Order-Table. If j is the code for these pattern-blocks, we enter the
pattern-block numbers at the j* column, for all j, 0 < j < 255. A column number
may be the code for more than one of the chosen pattern-blocks. This is because a
text-block can match pattern-blocks from more than one expression. As there are

Proceedings of the Prague Stringology Conference 01

only eight expressions we need a maximum of eight rows. For example, the chosen
pattern-blocks, 110011NN and NN001100, will both match the block 11001100. We
enter the pattern-blocks (110011NN and NN001100) numbers in the first and second
rows respectively of the column k, where k is the code for 11001100.

We begin the search at the begining of the text and compare the text-blocks with
chosen pattern-blocks in the Search-Table. We check the j** column in the Search-
Table, where j is the code of the text-block. If the entry is -1 then we check the next
text-block. Otherwise we know that the text-block is in the pattern. We compare
the rest of the pattern-blocks in the expression with the corresponding text-blocks
until either full match or mismatch is found using the Block-Table and Order-Table.
Before we move to the next text-block, we check if the entry in the next row of the
Search-Table is -1. We repeat this process if the entry is not -1, otherwise we check
the next text-block.

If 0 > 2, we have to convert the pattern into a binary string by mapping the
characters into [log, o] bits as we did in Section 2. Here we don’t have to consider all
the expressions. This is because in the pattern-blocks 0, 1, .. , 7 (from expressions 0
to 7 respectively) the pattern starts at positions 7, 6, .. , 0 respectively (see Figure 1).
The positions are numbered from left to right in a pattern-block.

We can show that for all o, in a comparison we need at most fﬁ} expressions.
There are two cases which depend on whether ﬁ
is an integer then we have the following case. For example, if an

is an integer.

Suppose ﬁ
alphabet is represented by two bits in the compressed file (i.e. ¢ = 3 or 4) then a
pattern can only start at even positions in the text-blocks. So in this case we only
need to consider expressions 1, 3, 5 and 7.

Suppose ﬁ is not an integer then we have the following case. For example
if we are using 3 bits (i.e. 5 < o < 8) to represent an alphabet, then we need all
the eight expressions. But in any comparison we need at most three expressions.
Consider three consecutive text-blocks. Without loss of generality assume that the
binary representation of a character starting at position 0 in the first of these three
blocks. Then a pattern can start at positions 0, 3, or 6 in the first text-block, positions
1,4 or 7 in the second text-block or positions 2 or 5 in the third text-block. For the
first text-block we need to consider the expressions 7, 4 and 1. For the second text-
block we need to consider the expressions 0, 3 and 6. For the third text-block we
need to consider the expressions 2 and 5.

5 The average running time

The pre-processing of our algorithm takes O(m) time, as the Block-Table, Order-
Table and the Search-Table can be constructed in O(m) time. The worst case for the
search will take O(mn) time. In this section we will show that the algorithm performs
on average at most 2n comparisons. ;From this we can say that the average running
time of the algorithm is O(n + m). We also justify this with experiments at the end
of this section.

At the end of the previous section we showed that we need to consider all eight
expressions only when o = 2. First we prove that the average number of comparisons
for this worst case.

A linear time string matching algorithm on average with efficient text storage

There are only 256 possible different blocks. If we assume that each of the 256
blocks occurs in a text with equal frequency, then we have the following lemma. Let
T'pp(j) be the probability of a pattern-block j matches a text-block.

Lemma 1: T'pp(j) = 5=, where w is the number of wildcard character N in the
pattern-block.

Recall that when we compare a text-block with a pattern-block, we choose a
pattern-block (from each expression) which has the minimum number of possibili-
ties of matching with a text-block (i.e. the pattern-block with minimum number of
wildcard character N). If any of these pattern-blocks matches with the text-block,
then we choose the pattern-block with the minimum number of wild cards among the
remaining pattern-blocks in the expression. In an attempt, for each expression we
repeat this step until either a full match or mismatch is found.

For example, consider the expressions for m = 34. Figure 2 shows the values of w
in a pattern-block for each expression (pattern-block numbers are in brackets).

Exp0:
Expl:
Exp2:
Exp3:
Exp4:
Expb:
Exp6:
ExpT7:

7 (40)

O N WHR UL N
[=NeloloBoNoleNe]l
[=NeloloBeoRel=Ne]l
[=NeloloBoNoleNe]l
DU WN - OO

Figure 2: The number of wildcards in pattern-blocks for m = 34

There are three columns with all zeros which are the first three columns in the

Order-Table. In general, for all m, if m mod 8 # 7, there are A = LmTJJ number of

columns will have all zeros. If m mod 8 = 7, and m > 15 we will have A — 1 columns
with all zeros, and the remaining one with seven zeros in a column and the eighth
zero in another column. For example, Figure 3 shows the number of wildcards in
pattern-blocks for m = 23 (i.e. m mod 8 = 7.). We can see that there is one (i.e.
A—1) column which is the second column with all zeros. The remaining column of all
zeros is the fourth column with seven zeros and the eighth zero is in the first column
(shown in bold font).

ExpO0:
Expl:
Exp2:
Exp3:
Exp4:
Expb:
Exp6:
ExpT7:

O N WK Ut
DU W N~ O
NSNS AN

[=NeloloReRel=Ne]l

—_— 0000000

~
~

)

Figure 3: The number of wildcards in pattern-blocks for m = 23

.From this observation we have Lemma 2. Let ®; be the probability of ¢« number
of pattern-blocks matching with the text-blocks in an expression at an attempt. In

Y

Proceedings of the Prague Stringology Conference 01

other words ®; is the probability of the algorithm making at least i + 1 comparisons
at an attempt.

Lemma 2: For allmand 0 =2,1 <i <\, & =8 x 3, where A = | 27|

Proof: For all m, each expression has A number of pattern-blocks with w = 0. At an
attempt, we can choose pattern-blocks with w = 0 from each of the eight expressions
for the first A comparisons. From Lemma 1 we have I'pg(j) = 1/256 if w = 0. In an
attempt we will have the i 4+ 1" comparison only if i number of pattern-blocks in an
expression matches the corresponding text-blocks. The probability of ¢ matches for

an expression is 2516,. and there are eight expressions and so ®; is %, 1<i< A O

In an attempt, for 2 < m < 9 and 10 < m < 14 we have at most 2 and 3
comparisons respectively. Hence we only need to know the values of ®; for 2 < m <9,
and ®; and &, for 10 < m < 14. We can calculate these values easily. For example,
the following shows the values of w in a pattern-block for each expression (pattern-
block numbers are in brackets) for m = 10. First we will select the pattern-blocks 8
to 11 and 4 to 7.

Exp0:
Expl:
Exp2:
Exp3:
Exp4:
Expb:
Exp6:
ExpT:

O =N WK Tt N
DU W - OO

Figure 4: The number of wildcards in pattern-blocks for m = 10

(I)l - FPB(S) + FPB(Q) + FPB(]_O) + FPB(]-]-) + FPB(4) + FPB(5) + FPB(6) + FPB(7)

1 1 1 1 1 1 1 1
— g8-o + 38—0 + g8—1 + g8—2 + 38-3 + 382 + g8—1 + 380 (Lemma 1)

1/256 + 1/256 4+ 1/128 +1/64 + 1/32 4+ 1/64 + 1/128 + 1/256
= 23/256

For &, we only need to consider the first expression. We can have at least 3 com-
parisons, iff pattern-blocks 8 and (assume we select) 0 match with the corresponding
text-blocks.

(I)Q = FPB(S) XFPB(O)

1
= W X W (Lemma].)
— 1/256 x 1/2
1/512

In an attempt, for all m > 15, after A\ comparisons the pattern-blocks which have
not yet been compared will be similar to the expressions for patterns of length m’,

6

A linear time string matching algorithm on average with efficient text storage

7 < m' <14, where m' = (m mod 8) + 8 if m mod 8 # 7. Otherwise m’ = 7. In other
words, if we remove all the A columns with all zeros from the expressions of pattern
length m > 15, the number of wildcards in pattern-blocks will be the same as in the
expressions of pattern length m/. For example, if we remove (i.e. \) columns of all
zeros from the number of wildcards in pattern-blocks, for m = 34 (see Figure 2), we
will get the number of wildcards in pattern-blocks, for m’ = 10 (see Figure 4) as in
Figure 5.

Exp0:
Expl:
Exp2:
Exp3:
Exp4:
Expb:
Exp6:
ExpT7:

7 (40)

O N WHR UL N
DU W~ OO

Figure 5: The number of wildcards in pattern-blocks, for m' = 10

Note that in any attempt for all m, we can have at most A + 1 matches before
we make the last comparison, if m mod 8 = 0, 1 or 7, otherwise A + 2. For m > 15,
we need to know ®,,; and @, 5. From the above observation we can calculate these
values from the values of ®; and ®, for m, 7 < m < 14. From these base values we
can have the following Lemma. Note that A = 0 for all m < 14.

Lemma 3: For m > 7,

dyyy = (1/256)* x oy, and
Bryy = (1/256)* x By,

where a3 and 3, are the values of b*" base case in the first and second columns in the

table below respectively and b = m mod 8.

base case « B

0 11/64

1 15/128

2 23/256 1/512
3 /16 1/512
1 13/256 1/512
5 5/128 3/2048
6 9/256 5/4096
7 7/32

Let ¥; be the probability of making exactly ¢+ comparisons at an attempt. Using
®; we can have an equation for W;:

¢ = Ui+ Vit

This gives

Proceedings of the Prague Stringology Conference 01

We know that we will make at least one comparison in every attempt. So @ is 1.

For all m and o = 2, the maximum number of comparisons in any attempt is
= [mT”], which is equal to A + 2 if m mod 8 = 0, 1 or 7, otherwise A + 3. So ®; is
0 for all ¢ > p. This gives:

‘Ill - 1 - (Dl
U, = &1 —9;,2<:<p—1
\Ijﬂ - (bﬂfl

Lemma 4: For o0 = 2, the total number of comparisons, Wy, is less than or equal
to 2n’ on average, where n' is the number of text-blocks in the text.

m
Proof: U, = n'x) ixV,
otal)

i—=1

= WX ((1=®) +2(P = Pg) + -+ 5= U(Ppo — D) + 1Py 1)
= ' x 14+ 4+ +P, 5+,)

A
8
= n x (1 + Z ﬁ + Pyy1 + @,\.1_2) (Lemma 2)
=1

on'

IN

This is because Y2, % + @)1+ Pyio <1 (Lemmas 2 and 3) O

Lemma 5: For o > 2, the total number of comparisons, Uy, is O(n), where n is
the size of the original text.

Proof: The probability of more than one comparison in an attempt is &; + --- +
P, _o+P, 1 (see Lemma 4), where ;1 = [M] Note that m[log, o] is the length
of the pattern when we convert it into a binary string. We show in the last section
that in an attempt we only need to consider a maximum of [m] expressions when
o > 2. Hence, foro > 2, &1 4---+®, 5+ P, is less than the value given for o = 2.
O

From these Lemmas we have the following Theorem.
Theorem: The average running time of our algorithm is O(n + m).

To show this is also true in practice we counted the number of comparisons by
running our algorithm. Table 2 in the Appendix shows the estimated number of
comparisons (Ury,) and the actual number of comparisons. We used the same texts
for each o as in Table 1 (Section 3). For each pattern length we use 100 random
patterns. The actual number of comparisons in the table is the total number of
comparisons divided by the number of patterns of that length. The pattern length
given in Table 2 is the length of the original pattern.

A linear time string matching algorithm on average with efficient text storage

6 Comparison with existing string matching algo-
rithms

In this section we compare the existing string matching algorithms with our algorithm,
the BRS algorithm. There are a number of strings matching algorithms available in
the literature. We have chosen seven of them, BR, BM, HOR, QS, RAI, SMI, RF
and NR algorithms which can be found in [1, 2, 7, 12, 10, 11, 6, 9] respectively. The
first six algorithms were found to be fast in [1]. Animations of these algorithms can
be found at [4] and more information about the algorithms can be found in [3].

The experiments were carried for all the algorithms on an un-compressed text,
except for our BRS algorithm and the NR algorithm [9]. The text used for these
experiments was the same text as in Table 1 (Section 3). The patterns used in these
experiments are generated randomly. For each ¢ and m, we tested 100 patterns and
we measured the total (user) time (including pre-computation time) in seconds to
search for all 100 patterns. We repeat each test 10 times and take the average. We
used an Intel 486-DX2-66 processor based machine with 8 megabytes of RAM and a
100 megabyte hard drive running S.u.S.E. Linux 5.2 to conduct the experiments. All
the algorithms were coded in C. The results of the experiments are in the Appendix
(Tables 4 to 8).

7 Conclusions

The method described in Section 2 to store a text will reduce the original text size
to Mﬂ. Although this method is not compression as in the literature, it reduces
the space and it is comparable with the existing methods.

The main aim of this paper is string matching in a compressed text. Our string
matching algorithm compares two blocks, checks whether a prefix (or suffix) of a
block is a suffix (or prefix) of the other block. This takes constant time and uses byte
processing. In practice, byte processing is much faster than bit processing because
bit shifting and masking operations are not necessary at search time. We prove that
the average time taken by our algorithm is O(n + m). We also justified our average
running time by experiments.

Using our algorithm one can keep texts (with an alphabet of 2 < o < 128 char-
acters) compressed indefinitely and perform the search for a pattern. These methods
will save both time and space. The experimental results show that our algorithm
is more efficient than the existing algorithms for o < 16. Texts with such a small
alphabet are DNA, RDNA and hexadecimal files. One can improve our algorithm so
that it performs well for large alphabet sets.

References

[1] Berry T., Ravindran S., "A fast string matching algorithm and experimental
results”, Prague Stringology Club Workshop ’99, 1999.

[2] Boyer R. S., Moore J. S., 7A fast string searching algorithm”, Communications
of the ACM, 23(5), pp 1075-1091, 1977.

9

Proceedings of the Prague Stringology Conference 01

3]

[4]

[5]

[10]

[11]

[12]

[13]

[14]

Charras C., Lecroq T., 1997, Exact string matching, available at:
http://www-igm.univ-mlv.fr/“lecroq/string.ps

Charras C., Lecroq T., 1998, Exact string matching animation in JAVA avail-
able at: http://www-igm.univ-mlv.fr/“lecroq/string/

Crochemore M., Rytter W., ”"Text algorithms”, Oxford University Press, 1994.

Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., LeCroq, T.,
Plandowki, W., Rytter, W., "Speeding up two string matching algorithms”,
Algorithmica 12(4/5), pp 247-267, 1994.

Horspool R. N., "Practical fast searching in strings”, Software Practice and
Experience, 10(6), pp 501-506, 1980.

Huffman D.A., A method for the construction of minimum redundancy codes”,
Proceedings of the Institute of Radio Engineers, 40, pp 1098-1101, 1951.

Navarro G., Raffinot M., ”A general practical approach to pattern matching over
Zw-Lempel compressed text”, Proceedings of Combinatorial Pattern Matching
99, Lecture Notes in Computer Science, 1645, pp 14-36, 1999. .

Raita T., "Tuning the Boyer-Moore-Horspool string searching algorithm”; Soft-
ware Practice and Experience, 22(10), pp 879-884, 1992.

Smith P. D., ”Ezxperiments with a very fast substring search algorithm?”, Soft-
ware Practice and Experience 21(10), pp 1065-1074,1991.

Sunday D. M., "A wvery fast substring search algorithm”, Communications of
the ACM. 33(8), pp 132-142, 1990.

Welch T. A., ”A technique for high-performance data compression”, IEEE Com-
puter, 17(6), pp 8-19, 1984.

Ziv J., Lempel A., 7A universal algorithm for sequential data compression”,
IEEE Trans. On Information Theory, IT-23, 1978.

10

A linear time string matching algorithm on average with efficient text storage

Appendix

o | Our method | Huffman | Compress Gzip NR

2 62500 62500 71579 79644 | 121110
3 125000 104107 110629 118776 | 178706
4 125000 125000 136945 146402 | 215764
5 187500 149935 161641 168813 | 244192
8 187500 187500 209053 211543 | 297634
9 250000 201313 223571 226617 | 310964
16 250000 250000 288546 285834 | 373658
17 312500 257293 294476 290854 | 377491
32 312500 312500 367527 330150 | 449265
33 375000 316232 370975 332592 | 451570
64 375000 375000 461069 378224 | 493981

Table 1: Compressed text sizes for a random text of 500,000 bytes.

alphabet of 2 alphabet of 4 alphabet of 8
Pat Len. [Wpoqr |Actual [Pat Len. [Up,iq; |Actual [Pat Len. [Upyeq; |Actual
5 85938 85413 2 156250 [156258 2 207031 [255959
10 68237 68276 4 135742 (136513 4 190795 (191710
20 64556 64446 8 127288 126999 6 189632 (189931
30 64460 64460 12 126962 126962 8 189462 [189537
40 64460 64467 18 126960 126962 12 189460 [189898
50 64460 64473 24 126960 126962 16 189460 (189551

Table 2: Estimated versus actual number of comparisons of our BRS algorithm

alphabet of 16 alphabet of 32 alphabet of 64
Pat. Len. [Ur,tq; |Actual [Pat Len. [Up,iq; |Actual [Pat Len. U, |Actual
2 260742 265331 2 318237 |322155 2 378296 |378678
4 252288 (252013 3 314507 |314567 3 377132 376990
6 251960 [251956 4 314556 [314581 4 376962 376980
8 251960 [251962 6 314460 [314509 5 376962 376965
10 251960 [251957 8 314460 [314297 7 376960 376482
12 251960 [251959 10 314460 [314348 9 376960 376503

Table 3: Estimated versus actual number of comparisons of our BRS algorithm

11

Proceedings of the Prague Stringology Conference 01

Pat. Length BRS BR BM HOR Qs RAI SMI RE NR

5 4.2 29.1 31.3 315 311 28.7 31.8 32.6 30.7

10 5.3 27.0 247 30.9 31.0 277 31.4 22.0 305

20 W 27.3 204 28.8 32.4 26.6 31.0 8.2 29.5

30) 273 18.3 31.2 31.2 23.0 314 16.0 27.5

10) 283 17.3 29.7 31.3 27.9 30.7 3.5 285

50 5.2 26.5 16.4 305 30.0 277 31.1 5.0 284
Table 4: Search times for o = 2

Pat. Length BRS BR BM HOR Qs RAI SMI RF NR

1 3.6 5.3 20.5 20.9 20.3 20.2 238 21.3 21.6

) 53 3.1 17.6 8.1 19.3 8.7 195 17.3 20.7

12 5.7 2.5 19.3 8.8 8.7 8.0 8.3 5.3 17.6

16 5.7 12.9 17.4 5.8 17.4 17.3 7.7 3.6 8.4

20 5.7 12.0 17.2 8.5 17.6 17.9 8.5 4.1 20.5

24 5.7 125 6.7 77 8.6 16.6 8.1 2.7 20.2
Table 5: Search times for 0 = 4

Pat. Length BRS BR BM HOR Qs RAI SMI RF NR

3 9.9 5.7 22.6 8.6 17.6 6.9 19.3 8.0 23.9

1 14.0 17.0 25.8 21.2 8.7 21.1 21.3 8.9 27.6

6 3.6 3.7 9.7 6.9 16.0 6.5 16.0 5.8 235

10 85 2.7 5.7 41 5.1 14.9 5.1 41 25.5

14 8.7 12.0 5.7 2.4 4.2 13.3 3.8 13.0 25.2

18 8.4 1 5.0 13.6 14.0 2.7 3.4 3.2 25.5
Table 6: Search times for o = 8

Pat. Length BRS BR BM HOR Qs RAI SMI RF NR

2 41 19.4 33.0 25.8 21.0 244 244 19.6 33.4

1 9.8 5.2 21.7 17.8 17.0 17.9 77 6.2 315

6 9.8 3.4 16.6 14.0 14.6 13.6 5.0 3.4 315

8 9.7 2.3 6.2 4.4 3.9 3.2 3.8 3.2 277

10 9.7 12.1 14.2 13.2 13.6 12.3 13.0 13.6 29.6

12 9.9 1.1 14.3 3.0 12.3 3.0 13.4 12.9 31.1
Table 7: Search times for o = 16

Pat. Length BRS BR BM HOR Qs RAI SMI RE NR

D) 66.5 18.6 33.0 23.6 19.5 23.8 22.3 19.0 39.1

3 2.1 16.3 24.0 20.2 7.7 19.8 20.3 16.6 20.1

1 31.9 14.8 21.2 7.1 5.5 5.4 7.5 5.0 37.2

6 39.7 12.3 7.5 13.2 14.7 14.6 5.5 4.1 36.2

) 37.9 12.3 5.5 13.4 13.4 13.2 3.9 3.5 338

10 182 1.5 5.0 12.4 11.8 2.5 3.7 3.0 34.2

Table 8: Search times for o = 32

12

