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Abstrat. In this paper we desribe an algorithm to searh for a pattern in an

eÆiently stored text. The method used to store the text tranforms it to

dlog

2

�e

8

of its original size, where � is the size of the alphabet set �. We prove that the

algorithm takes linear time on average. We ompare the new algorithm with

some existing string mathing algorithms by experimentation.

1 Introdution

String mathing and Compression are two widely studied areas in omputer siene

[5℄. String mathing is deteting a pattern P of length m in a larger text T of length

n over an alphabet set � of size �. Compression involves transforming a string into

a new string whih ontains the same information but whose length is as small as

possible. These two areas naturally lead to ompressed string mathing, i.e. searhing

for a pattern in a ompressed text. This method will save both spae and time.

In this paper we desribe a string mathing algorithm to searh a pattern in a

eÆiently stored text. We an redue the size of any given text aording to the size

of the alphabet being used. This is useful as although the ost of memory is reduing,

the sizes of text databases are growing exponentially.

In Setion 2 we desribe our storage method that will transform the text to

dlog

2

�e

8

of its original size. This method is ompared with other well-known ompression

algorithms by experiments in Setion 3.

Setion 4 desribes a novel string mathing algorithm on a text that is stored by

using the method in Setion 2. In Setion 5 we prove that on average this algorithm

takes O(n + m) time. Our algorithm is ompared with other well known string

mathing algorithms by experiments in Setion 6.

2 EÆient storage of a text

We assume that the size of the alphabet set, �, is in the range 1 � � � 128 and

that we are representing eah harater in the alphabet with one byte. There are

redundant bits in eah byte as we only need dlog

2

�e bits to represent a harater.
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After we replae the haraters in a text with dlog

2

�e bits, it is possible to replae

eight onseutive bits in the binary text with its orresponding ASCII harater.

These eight onseutive bits are alled a blok. The deimal value of a blok is the

ode of the blok. This representation will redue the storage spae to

dlog

2

�e

8

n , where

n is the size of the original text.

For example, onsider � = fA;B;C;D;Eg and T = CACDABEB. This text

T of eight haraters an be represented with three haraters T

0

= A1a. First we

represent the haraters with A = 000; B = 001; C = 010; D = 011 and E = 100.

This will give the binary representation of the text T:

010000010011000001100001

The �rst bit in eah blok are shown in bold font. The odes for the text bloks

are 65, 48 and 95 and their orresponding ASCII haraters are 'A', '1', and 'a'

respetively.

3 Comparison with existing ompression algorithms

The method desribed in the last setion is not ompression as in the literature but

does redue the size of the original text. In this setion we ompare the well known

text ompression methods, Hu�man enoding [8℄ and Lempel-Ziv enoding [9, 13, 14℄

with our method.

The Hu�man enoding determines the length of the bit representation of the

haraters aording to their frequeny. It assigns smaller odes to high frequeny

haraters and larger odes to low frequeny haraters.

In Lempel-Ziv (LZ) enoding [14℄ the �le may be ompressed to less than dlog

2

�e

bits per harater but requires re-ourring strings. Eah of the repeated strings and

eah of the haraters in the alphabet are represent by 12 bits. The gains from this

method are reliant on there being enough repeated strings to ounter the 12 bits

whih are used to represent eah of the ompressed strings.

The LZ enoding and its derivative LZW enoding [13℄ are used in UNIX utilities,

ompress and gzip. Another variation of LZ enoding (NR) is desribed in [9℄.

Table 1 (see Appendix) shows that our storage method is omparable to these

methods. Although our method is not very good for text �les with large alphabets.

The method is ompetive for DNA, Reombinant DNA (RDNA) and hexadeimal

�les. Note that the main purpose of this paper is not ompression, but for the

searhing of a pattern in a ompressed �le.

4 Searhing in a text with eÆient storage

In this setion we desribe an algorithm to �nd all exat ourrenes of a pattern in

a text. Here we assume that the text is stored as desribed in Setion 2 and � � 128.

We desribe the algorithm for � = 2, we will see later that the algorithm an be easily

adapted for � > 2.

A substring of the pattern may overlap between onseutive text-bloks and a

pattern may start in a text-blok at any one of eight positions. During the searh

we need to look whether a pre�x (or suÆx) of a pattern is a suÆx (or pre�x) of a
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text-blok. Due to this problem we have to onsider eight di�erent expressions. Eah

expression is made up of pattern-bloks of length eight bits. There will be m + 7

pattern-bloks, where m is the length of a pattern.

For a pattern P

1

P

2

.. P

m

we an onstrut the expressions as shown in Figure 1.

Here we onsider the ase for m mod 8 = 0. We number the pattern-bloks starting

from 0 at the top left orner to m+6 in the bottom right orner as shown in brakets.

The wildard harater N represents either 0 or 1, and P

i::j

represents P

i

..P

j�1

P

j

, for

1 � i < j � m.

Exp0: NNNNNNNP

1

(0) ......... P

m�14::m�7

(m-8) P

m�6::m

N (m)

Exp1: NNNNNNP

1::2

(1) ......... P

m�13::m�6

(m-7) P

m�5::m

NN (m + 1)

Exp2: NNNNNP

1::3

(2) ......... P

m�12::m�5

(m-6) P

m�4::m

NNN (m + 2)

Exp3: NNNNP

1::4

(3) ......... P

m�11::m�4

(m-5) P

m�3::m

NNNN (m + 3)

Exp4: NNNP

1::5

(4) ......... P

m�10::m�3

(m-4) P

m�2::m

NNNNN (m + 4)

Exp5: NNP

1::6

(5) ......... P

m�9::m�2

(m-3) P

m�1::m

NNNNNN (m + 5)

Exp6: NP

1::7

(6) ......... P

m�8::m�1

(m-2) P

m

NNNNNNN (m + 6)

Exp7: P

1::8

(7) ......... P

m�7::m

(m-1)

Figure 1: Expressions for a pattern P

1

P

2

.. P

m

when m mod 8 = 0.

The naive algorithm will ompare a text-blok with the �rst pattern-bloks in

eah expression. If any of these pattern-bloks mathed with the text-blok, we need

to ompare the onseutive text-bloks with the rest of the pattern-bloks in the

expression.

Our algorithm �rst onstruts a table alled the Blok-Table. The Blok-Table

has 256 olumns and m+ 7 rows as there are 256 possible bloks in a text and m+7

is the number of pattern-bloks we need to onsider. The table is initialised to 0.

The (i; j)

th

entry in the table is de�ned as follows, where i, 0 � i � m + 6, is the

pattern-blok number and j, 0 � j � 255, is the ode for a blok. Suppose that the

pattern-blok does not have a wildard harater, the (i; j)

th

entry is 1, if the ode for

pattern-blok i is equal to j. If there is one or more wild ards in the pattern-blok,

we onsider all the possible bloks. For example, if the i

th

pattern-blok is NN111000,

the (i; j)

th

entry is equal to 1 for all j, where j is the ode for 00111000, 01111000,

10111000 or 11111000.

For eah expression we only have to ompare one pattern-blok with a text-blok,

and if these two math then we ompare the rest of the pattern-bloks in the ex-

pression with the orresponding text-bloks. We hoose a pattern-blok (from eah

expression) whih has the minimum number of possibilities of mathing with a text-

blok. We build the Order-Table of dimensions 8 by d

m+7

8

e whih ontains the order

in whih to examine the pattern-bloks for eah expression. For eah pattern-blok

the number of possibilities of mathing a text-blok an be found by adding the values

in the row of the pattern-blok in the Blok-Table.

>From these we onstrut a Searh-Table of dimensions 8� 256, and it is initialised

to -1. In the �rst row of the Searh-Table, we enter pattern-blok numbers from the

�rst olumn of the Order-Table. If j is the ode for these pattern-bloks, we enter the

pattern-blok numbers at the j

th

olumn, for all j, 0 � j � 255. A olumn number

may be the ode for more than one of the hosen pattern-bloks. This is beause a

text-blok an math pattern-bloks from more than one expression. As there are

3
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only eight expressions we need a maximum of eight rows. For example, the hosen

pattern-bloks, 110011NN and NN001100, will both math the blok 11001100. We

enter the pattern-bloks (110011NN and NN001100) numbers in the �rst and seond

rows respetively of the olumn k, where k is the ode for 11001100.

We begin the searh at the begining of the text and ompare the text-bloks with

hosen pattern-bloks in the Searh-Table. We hek the j

th

olumn in the Searh-

Table, where j is the ode of the text-blok. If the entry is -1 then we hek the next

text-blok. Otherwise we know that the text-blok is in the pattern. We ompare

the rest of the pattern-bloks in the expression with the orresponding text-bloks

until either full math or mismath is found using the Blok-Table and Order-Table.

Before we move to the next text-blok, we hek if the entry in the next row of the

Searh-Table is -1. We repeat this proess if the entry is not -1, otherwise we hek

the next text-blok.

If � > 2, we have to onvert the pattern into a binary string by mapping the

haraters into dlog

2

�e bits as we did in Setion 2. Here we don't have to onsider all

the expressions. This is beause in the pattern-bloks 0, 1, .. , 7 (from expressions 0

to 7 respetively) the pattern starts at positions 7, 6, .. , 0 respetively (see Figure 1).

The positions are numbered from left to right in a pattern-blok.

We an show that for all �, in a omparison we need at most d

8

dlog

2

�e

e expressions.

There are two ases whih depend on whether

8

dlog

2

�e

is an integer.

Suppose

8

dlog

2

�e

is an integer then we have the following ase. For example, if an

alphabet is represented by two bits in the ompressed �le (i.e. � = 3 or 4) then a

pattern an only start at even positions in the text-bloks. So in this ase we only

need to onsider expressions 1, 3, 5 and 7.

Suppose

8

dlog

2

�e

is not an integer then we have the following ase. For example

if we are using 3 bits (i.e. 5 � � � 8) to represent an alphabet, then we need all

the eight expressions. But in any omparison we need at most three expressions.

Consider three onseutive text-bloks. Without loss of generality assume that the

binary representation of a harater starting at position 0 in the �rst of these three

bloks. Then a pattern an start at positions 0, 3, or 6 in the �rst text-blok, positions

1,4 or 7 in the seond text-blok or positions 2 or 5 in the third text-blok. For the

�rst text-blok we need to onsider the expressions 7, 4 and 1. For the seond text-

blok we need to onsider the expressions 0, 3 and 6. For the third text-blok we

need to onsider the expressions 2 and 5.

5 The average running time

The pre-proessing of our algorithm takes O(m) time, as the Blok-Table, Order-

Table and the Searh-Table an be onstruted in O(m) time. The worst ase for the

searh will take O(mn) time. In this setion we will show that the algorithm performs

on average at most 2n omparisons. >From this we an say that the average running

time of the algorithm is O(n+m). We also justify this with experiments at the end

of this setion.

At the end of the previous setion we showed that we need to onsider all eight

expressions only when � = 2. First we prove that the average number of omparisons

for this worst ase.
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There are only 256 possible di�erent bloks. If we assume that eah of the 256

bloks ours in a text with equal frequeny, then we have the following lemma. Let

�

PB

(j) be the probability of a pattern-blok j mathes a text-blok.

Lemma 1: �

PB

(j) =

1

2

8�w

, where w is the number of wildard harater N in the

pattern-blok.

Reall that when we ompare a text-blok with a pattern-blok, we hoose a

pattern-blok (from eah expression) whih has the minimum number of possibili-

ties of mathing with a text-blok (i.e. the pattern-blok with minimum number of

wildard harater N). If any of these pattern-bloks mathes with the text-blok,

then we hoose the pattern-blok with the minimum number of wild ards among the

remaining pattern-bloks in the expression. In an attempt, for eah expression we

repeat this step until either a full math or mismath is found.

For example, onsider the expressions for m = 34. Figure 2 shows the values of w

in a pattern-blok for eah expression (pattern-blok numbers are in brakets).

Exp0: 7 (0) 0 (8) 0 (16) 0 (24) 0 (32) 7 (40)

Exp1: 6 (1) 0 (9) 0 (17) 0 (25) 0 (33)

Exp2: 5 (2) 0 (10) 0 (18) 0 (26) 1 (34)

Exp3: 4 (3) 0 (11) 0 (19) 0 (27) 2 (35)

Exp4: 3 (4) 0 (12) 0 (20) 0 (28) 3 (36)

Exp5: 2 (5) 0 (13) 0 (21) 0 (29) 4 (37)

Exp6: 1 (6) 0 (14) 0 (22) 0 (30) 5 (38)

Exp7: 0 (7) 0 (15) 0 (23) 0 (31) 6 (39)

Figure 2: The number of wildards in pattern-bloks for m = 34

There are three olumns with all zeros whih are the �rst three olumns in the

Order-Table. In general, for all m, if m mod 8 6= 7, there are � = b

m�7

8

 number of

olumns will have all zeros. If m mod 8 = 7, and m � 15 we will have �� 1 olumns

with all zeros, and the remaining one with seven zeros in a olumn and the eighth

zero in another olumn. For example, Figure 3 shows the number of wildards in

pattern-bloks for m = 23 (i.e. m mod 8 = 7.). We an see that there is one (i.e.

��1) olumn whih is the seond olumn with all zeros. The remaining olumn of all

zeros is the fourth olumn with seven zeros and the eighth zero is in the �rst olumn

(shown in bold font).

Exp0: 7 (0) 0 (8) 0 (16) 2 (24)

Exp1: 6 (1) 0 (9) 0 (17) 3 (25)

Exp2: 5 (2) 0 (10) 0 (18) 4 (26)

Exp3: 4 (3) 0 (11) 0 (19) 5 (27)

Exp4: 3 (4) 0 (12) 0 (20) 6 (28)

Exp5: 2 (5) 0 (13) 0 (21) 7 (29)

Exp6: 1 (6) 0 (14) 0 (22)

Exp7: 0 (7) 0 (15) 1 (23)

Figure 3: The number of wildards in pattern-bloks for m = 23

>From this observation we have Lemma 2. Let �

i

be the probability of i number

of pattern-bloks mathing with the text-bloks in an expression at an attempt. In
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other words �

i

is the probability of the algorithm making at least i+ 1 omparisons

at an attempt.

Lemma 2: For all m and � = 2, 1 � i � �, �

i

= 8�

1

256

i

, where � = b

m�7

8

.

Proof: For all m, eah expression has � number of pattern-bloks with w = 0. At an

attempt, we an hoose pattern-bloks with w = 0 from eah of the eight expressions

for the �rst � omparisons. From Lemma 1 we have �

PB

(j) = 1=256 if w = 0. In an

attempt we will have the i+ 1

th

omparison only if i number of pattern-bloks in an

expression mathes the orresponding text-bloks. The probability of i mathes for

an expression is

1

256

i

and there are eight expressions and so �

i

is

8

256

i

, 1 � i � �. 2

In an attempt, for 2 � m � 9 and 10 � m � 14 we have at most 2 and 3

omparisons respetively. Hene we only need to know the values of �

1

for 2 � m � 9,

and �

1

and �

2

for 10 � m � 14. We an alulate these values easily. For example,

the following shows the values of w in a pattern-blok for eah expression (pattern-

blok numbers are in brakets) for m = 10. First we will selet the pattern-bloks 8

to 11 and 4 to 7.

Exp0: 7 (0) 0 (8) 7 (16)

Exp1: 6 (1) 0 (9)

Exp2: 5 (2) 1 (10)

Exp3: 4 (3) 2 (11)

Exp4: 3 (4) 3 (12)

Exp5: 2 (5) 4 (13)

Exp6: 1 (6) 5 (14)

Exp7: 0 (7) 6 (15)

Figure 4: The number of wildards in pattern-bloks for m = 10

�

1

= �

PB

(8) + �

PB

(9) + �

PB

(10) + �

PB

(11) + �

PB

(4) + �

PB

(5) + �

PB

(6) + �

PB

(7)

=

1

8

8�0

+

1

8

8�0

+

1

8

8�1

+

1

8

8�2

+

1

8

8�3

+

1

8

8�2

+

1

8

8�1

+

1

8

8�0

(Lemma 1)

= 1=256 + 1=256 + 1=128 + 1=64 + 1=32 + 1=64 + 1=128 + 1=256

= 23=256

For �

2

we only need to onsider the �rst expression. We an have at least 3 om-

parisons, i� pattern-bloks 8 and (assume we selet) 0 math with the orresponding

text-bloks.

�

2

= �

PB

(8)� �

PB

(0)

=

1

8

8�0

�

1

8

8�7

(Lemma 1)

= 1=256� 1=2

= 1=512

In an attempt, for all m � 15, after � omparisons the pattern-bloks whih have

not yet been ompared will be similar to the expressions for patterns of length m

0

,
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7 � m

0

� 14, where m

0

= (m mod 8) + 8 if m mod 8 6= 7. Otherwise m

0

= 7. In other

words, if we remove all the � olumns with all zeros from the expressions of pattern

length m � 15, the number of wildards in pattern-bloks will be the same as in the

expressions of pattern length m

0

. For example, if we remove (i.e. �) olumns of all

zeros from the number of wildards in pattern-bloks, for m = 34 (see Figure 2), we

will get the number of wildards in pattern-bloks, for m

0

= 10 (see Figure 4) as in

Figure 5.

Exp0: 7 (0) 0 (32) 7 (40)

Exp1: 6 (1) 0 (33)

Exp2: 5 (2) 1 (34)

Exp3: 4 (3) 2 (35)

Exp4: 3 (4) 3 (36)

Exp5: 2 (5) 4 (37)

Exp6: 1 (6) 5 (38)

Exp7: 0 (7) 6 (39)

Figure 5: The number of wildards in pattern-bloks, for m

0

= 10

Note that in any attempt for all m, we an have at most � + 1 mathes before

we make the last omparison, if m mod 8 = 0, 1 or 7, otherwise � + 2. For m > 15,

we need to know �

�+1

and �

�+2

. From the above observation we an alulate these

values from the values of �

1

and �

2

for m, 7 � m � 14. From these base values we

an have the following Lemma. Note that � = 0 for all m � 14.

Lemma 3: For m � 7,

�

�+1

= (1=256)

�

� �

b

and

�

�+2

= (1=256)

�

� �

b

,

where �

b

and �

b

are the values of b

th

base ase in the �rst and seond olumns in the

table below respetively and b = m mod 8.

base ase � �

0 11/64

1 15/128

2 23/256 1/512

3 1/16 1/512

4 13/256 1/512

5 5/128 3/2048

6 9/256 5/4096

7 7/32

Let 	

i

be the probability of making exatly i omparisons at an attempt. Using

�

i

we an have an equation for 	

i

:

�

i

= 	

i+1

+	

i+2

+ � � �

This gives

	

i

= �

i�1

� �

i

7
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We know that we will make at least one omparison in every attempt. So �

0

is 1.

For all m and � = 2, the maximum number of omparisons in any attempt is

� = d

m+7

8

e, whih is equal to �+ 2 if m mod 8 = 0, 1 or 7, otherwise �+ 3. So �

i

is

0 for all i � �. This gives:

	

1

= 1� �

1

	

i

= �

i�1

� �

i

; 2 � i � �� 1

	

�

= �

��1

Lemma 4: For � = 2, the total number of omparisons, 	

Total

, is less than or equal

to 2n

0

on average, where n

0

is the number of text-bloks in the text.

Proof: 	

Total

= n

0

�

�

X

i=1

i� 	

i

= n

0

� ((1� �

1

) + 2(�

1

� �

2

) + � � �+ �� 1(�

��2

� �

��1

) + ��

��1

)

= n

0

� (1 + �

1

+ � � �+ �

��2

+ �

��1

)

= n

0

� (1 +

�

X

i=1

8

256

i

+ �

�+1

+ �

�+2

) (Lemma 2)

� 2n

0

This is beause

P

�

i=1

8

256

i

+ �

�+1

+ �

�+2

� 1 (Lemmas 2 and 3) 2

Lemma 5: For � > 2, the total number of omparisons, 	

Total

, is O(n), where n is

the size of the original text.

Proof: The probability of more than one omparison in an attempt is �

1

+ � � � +

�

��2

+�

��1

(see Lemma 4), where � = d

mdlog

2

�e+7

8

e. Note thatmdlog

2

�e is the length

of the pattern when we onvert it into a binary string. We show in the last setion

that in an attempt we only need to onsider a maximum of d

8

dlog

2

�e

e expressions when

� > 2. Hene, for � > 2, �

1

+ � � �+�

��2

+�

��1

is less than the value given for � = 2.

2

From these Lemmas we have the following Theorem.

Theorem: The average running time of our algorithm is O(n+m).

To show this is also true in pratie we ounted the number of omparisons by

running our algorithm. Table 2 in the Appendix shows the estimated number of

omparisons (	

Total

) and the atual number of omparisons. We used the same texts

for eah � as in Table 1 (Setion 3). For eah pattern length we use 100 random

patterns. The atual number of omparisons in the table is the total number of

omparisons divided by the number of patterns of that length. The pattern length

given in Table 2 is the length of the original pattern.

8



A linear time string mathing algorithm on average with eÆient text storage

6 Comparison with existing string mathing algo-

rithms

In this setion we ompare the existing string mathing algorithms with our algorithm,

the BRS algorithm. There are a number of strings mathing algorithms available in

the literature. We have hosen seven of them, BR, BM, HOR, QS, RAI, SMI, RF

and NR algorithms whih an be found in [1, 2, 7, 12, 10, 11, 6, 9℄ respetively. The

�rst six algorithms were found to be fast in [1℄. Animations of these algorithms an

be found at [4℄ and more information about the algorithms an be found in [3℄.

The experiments were arried for all the algorithms on an un-ompressed text,

exept for our BRS algorithm and the NR algorithm [9℄. The text used for these

experiments was the same text as in Table 1 (Setion 3). The patterns used in these

experiments are generated randomly. For eah � and m, we tested 100 patterns and

we measured the total (user) time (inluding pre-omputation time) in seonds to

searh for all 100 patterns. We repeat eah test 10 times and take the average. We

used an Intel 486-DX2-66 proessor based mahine with 8 megabytes of RAM and a

100 megabyte hard drive running S.u.S.E. Linux 5.2 to ondut the experiments. All

the algorithms were oded in C. The results of the experiments are in the Appendix

(Tables 4 to 8).

7 Conlusions

The method desribed in Setion 2 to store a text will redue the original text size

to

dlog

2

�e

8

n. Although this method is not ompression as in the literature, it redues

the spae and it is omparable with the existing methods.

The main aim of this paper is string mathing in a ompressed text. Our string

mathing algorithm ompares two bloks, heks whether a pre�x (or suÆx) of a

blok is a suÆx (or pre�x) of the other blok. This takes onstant time and uses byte

proessing. In pratie, byte proessing is muh faster than bit proessing beause

bit shifting and masking operations are not neessary at searh time. We prove that

the average time taken by our algorithm is O(n +m). We also justi�ed our average

running time by experiments.

Using our algorithm one an keep texts (with an alphabet of 2 � � � 128 har-

aters) ompressed inde�nitely and perform the searh for a pattern. These methods

will save both time and spae. The experimental results show that our algorithm

is more eÆient than the existing algorithms for � � 16. Texts with suh a small

alphabet are DNA, RDNA and hexadeimal �les. One an improve our algorithm so

that it performs well for large alphabet sets.
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Appendix

� Our method Hu�man Compress Gzip NR

2 62500 62500 71579 79644 121110

3 125000 104107 110629 118776 178706

4 125000 125000 136945 146402 215764

5 187500 149935 161641 168813 244192

8 187500 187500 209053 211543 297634

9 250000 201313 223571 226617 310964

16 250000 250000 288546 285834 373658

17 312500 257293 294476 290854 377491

32 312500 312500 367527 330150 449265

33 375000 316232 370975 332592 451570

64 375000 375000 461069 378224 493981

Table 1: Compressed text sizes for a random text of 500,000 bytes.

alphabet of 2 alphabet of 4 alphabet of 8

Pat Len. 	

Total

Atual Pat Len. 	

Total

Atual Pat Len. 	

Total

Atual

5 85938 85413 2 156250 156258 2 207031 255959

10 68237 68276 4 135742 136513 4 190795 191710

20 64556 64446 8 127288 126999 6 189632 189931

30 64460 64460 12 126962 126962 8 189462 189537

40 64460 64467 18 126960 126962 12 189460 189898

50 64460 64473 24 126960 126962 16 189460 189551

Table 2: Estimated versus atual number of omparisons of our BRS algorithm

alphabet of 16 alphabet of 32 alphabet of 64

Pat. Len. 	

Total

Atual Pat Len. 	

Total

Atual Pat Len. 	

Total

Atual

2 260742 265331 2 318237 322155 2 378296 378678

4 252288 252013 3 314507 314567 3 377132 376990

6 251960 251956 4 314556 314581 4 376962 376980

8 251960 251962 6 314460 314509 5 376962 376965

10 251960 251957 8 314460 314297 7 376960 376482

12 251960 251959 10 314460 314348 9 376960 376503

Table 3: Estimated versus atual number of omparisons of our BRS algorithm
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Pat. Length BRS BR BM HOR QS RAI SMI RF NR

5 14.2 29.1 31.3 31.5 31.1 28.7 31.8 32.6 30.7

10 5.3 27.0 24.7 30.9 31.0 27.7 31.4 22.0 30.5

20 4.4 27.3 20.4 28.8 32.4 26.6 31.0 18.2 29.5

30 4.2 27.3 18.3 31.2 31.2 28.0 31.4 16.0 27.5

40 4.2 28.3 17.3 29.7 31.3 27.9 30.7 13.5 28.5

50 5.2 26.5 16.4 30.5 30.0 27.7 31.1 15.0 28.4

Table 4: Searh times for � = 2

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

4 8.6 15.3 20.5 20.9 20.3 20.2 23.8 21.3 21.6

8 5.3 13.1 17.6 18.1 19.3 18.7 19.5 17.3 20.7

12 5.7 12.5 19.3 18.8 18.7 18.0 18.3 15.3 17.6

16 5.7 12.9 17.4 15.8 17.4 17.3 17.7 13.6 18.4

20 5.7 12.0 17.2 18.5 17.6 17.9 18.5 14.1 20.5

24 5.7 12.5 16.7 17.7 18.6 16.6 18.1 12.7 20.2

Table 5: Searh times for � = 4

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

3 9.9 15.7 22.6 18.6 17.6 16.9 19.3 18.0 28.9

4 14.0 17.0 25.8 21.2 18.7 21.1 21.3 18.9 27.6

6 8.6 13.7 19.7 16.9 16.0 16.5 16.0 15.8 23.5

10 8.5 12.7 15.7 14.1 15.1 14.9 15.1 14.1 25.5

14 8.7 12.0 15.7 12.4 14.2 13.3 13.8 13.0 25.2

18 8.4 11.1 15.0 13.6 14.0 12.7 13.4 13.2 25.5

Table 6: Searh times for � = 8

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

2 14.1 19.4 33.0 25.8 21.0 24.4 24.4 19.6 33.4

4 9.8 15.2 21.7 17.8 17.0 17.9 17.7 16.2 31.5

6 9.8 13.4 16.6 14.0 14.6 13.6 15.0 13.4 31.5

8 9.7 12.3 16.2 14.4 13.9 13.2 13.8 13.2 27.7

10 9.7 12.1 14.2 13.2 13.6 12.3 13.0 13.6 29.6

12 9.9 11.1 14.3 13.0 12.3 13.0 13.4 12.9 31.1

Table 7: Searh times for � = 16

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

2 66.5 18.6 33.0 23.6 19.5 23.8 22.3 19.0 39.1

3 42.1 16.3 24.0 20.2 17.7 19.8 20.3 16.6 40.1

4 31.9 14.8 21.2 17.1 15.5 15.4 17.5 15.0 37.2

6 39.7 12.3 17.5 13.2 14.7 14.6 15.5 14.1 36.2

8 37.9 12.3 15.5 13.4 13.4 13.2 13.9 13.5 38.8

10 48.2 11.5 15.0 12.4 11.8 12.5 13.7 13.0 34.2

Table 8: Searh times for � = 32
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