
A linear time string mat
hing algorithm on

average with eÆ
ient text storage

T. Berry and S. Ravindran

Department of Computer S
ien
e

Liverpool John Moores University

Byrom Street

Liverpool

United Kingdom

e-mail: T.Berry�livjm.a
.uk,S.Ravindran�livjm.a
.uk

Abstra
t. In this paper we des
ribe an algorithm to sear
h for a pattern in an

eÆ
iently stored text. The method used to store the text tranforms it to

dlog

2

�e

8

of its original size, where � is the size of the alphabet set �. We prove that the

algorithm takes linear time on average. We
ompare the new algorithm with

some existing string mat
hing algorithms by experimentation.

1 Introdu
tion

String mat
hing and Compression are two widely studied areas in
omputer s
ien
e

[5℄. String mat
hing is dete
ting a pattern P of length m in a larger text T of length

n over an alphabet set � of size �. Compression involves transforming a string into

a new string whi
h
ontains the same information but whose length is as small as

possible. These two areas naturally lead to
ompressed string mat
hing, i.e. sear
hing

for a pattern in a
ompressed text. This method will save both spa
e and time.

In this paper we des
ribe a string mat
hing algorithm to sear
h a pattern in a

eÆ
iently stored text. We
an redu
e the size of any given text a

ording to the size

of the alphabet being used. This is useful as although the
ost of memory is redu
ing,

the sizes of text databases are growing exponentially.

In Se
tion 2 we des
ribe our storage method that will transform the text to

dlog

2

�e

8

of its original size. This method is
ompared with other well-known
ompression

algorithms by experiments in Se
tion 3.

Se
tion 4 des
ribes a novel string mat
hing algorithm on a text that is stored by

using the method in Se
tion 2. In Se
tion 5 we prove that on average this algorithm

takes O(n + m) time. Our algorithm is
ompared with other well known string

mat
hing algorithms by experiments in Se
tion 6.

2 EÆ
ient storage of a text

We assume that the size of the alphabet set, �, is in the range 1 � � � 128 and

that we are representing ea
h
hara
ter in the alphabet with one byte. There are

redundant bits in ea
h byte as we only need dlog

2

�e bits to represent a
hara
ter.

1

Pro
eedings of the Prague Stringology Conferen
e '01

After we repla
e the
hara
ters in a text with dlog

2

�e bits, it is possible to repla
e

eight
onse
utive bits in the binary text with its
orresponding ASCII
hara
ter.

These eight
onse
utive bits are
alled a blo
k. The de
imal value of a blo
k is the

ode of the blo
k. This representation will redu
e the storage spa
e to

dlog

2

�e

8

n , where

n is the size of the original text.

For example,
onsider � = fA;B;C;D;Eg and T = CACDABEB. This text

T of eight
hara
ters
an be represented with three
hara
ters T

0

= A1a. First we

represent the
hara
ters with A = 000; B = 001; C = 010; D = 011 and E = 100.

This will give the binary representation of the text T:

010000010011000001100001

The �rst bit in ea
h blo
k are shown in bold font. The
odes for the text blo
ks

are 65, 48 and 95 and their
orresponding ASCII
hara
ters are 'A', '1', and 'a'

respe
tively.

3 Comparison with existing
ompression algorithms

The method des
ribed in the last se
tion is not
ompression as in the literature but

does redu
e the size of the original text. In this se
tion we
ompare the well known

text
ompression methods, Hu�man en
oding [8℄ and Lempel-Ziv en
oding [9, 13, 14℄

with our method.

The Hu�man en
oding determines the length of the bit representation of the

hara
ters a

ording to their frequen
y. It assigns smaller
odes to high frequen
y

hara
ters and larger
odes to low frequen
y
hara
ters.

In Lempel-Ziv (LZ) en
oding [14℄ the �le may be
ompressed to less than dlog

2

�e

bits per
hara
ter but requires re-o

urring strings. Ea
h of the repeated strings and

ea
h of the
hara
ters in the alphabet are represent by 12 bits. The gains from this

method are reliant on there being enough repeated strings to
ounter the 12 bits

whi
h are used to represent ea
h of the
ompressed strings.

The LZ en
oding and its derivative LZW en
oding [13℄ are used in UNIX utilities,

ompress and gzip. Another variation of LZ en
oding (NR) is des
ribed in [9℄.

Table 1 (see Appendix) shows that our storage method is
omparable to these

methods. Although our method is not very good for text �les with large alphabets.

The method is
ompetive for DNA, Re
ombinant DNA (RDNA) and hexade
imal

�les. Note that the main purpose of this paper is not
ompression, but for the

sear
hing of a pattern in a
ompressed �le.

4 Sear
hing in a text with eÆ
ient storage

In this se
tion we des
ribe an algorithm to �nd all exa
t o

urren
es of a pattern in

a text. Here we assume that the text is stored as des
ribed in Se
tion 2 and � � 128.

We des
ribe the algorithm for � = 2, we will see later that the algorithm
an be easily

adapted for � > 2.

A substring of the pattern may overlap between
onse
utive text-blo
ks and a

pattern may start in a text-blo
k at any one of eight positions. During the sear
h

we need to look whether a pre�x (or suÆx) of a pattern is a suÆx (or pre�x) of a

2

A linear time string mat
hing algorithm on average with eÆ
ient text storage

text-blo
k. Due to this problem we have to
onsider eight di�erent expressions. Ea
h

expression is made up of pattern-blo
ks of length eight bits. There will be m + 7

pattern-blo
ks, where m is the length of a pattern.

For a pattern P

1

P

2

.. P

m

we
an
onstru
t the expressions as shown in Figure 1.

Here we
onsider the
ase for m mod 8 = 0. We number the pattern-blo
ks starting

from 0 at the top left
orner to m+6 in the bottom right
orner as shown in bra
kets.

The wild
ard
hara
ter N represents either 0 or 1, and P

i::j

represents P

i

..P

j�1

P

j

, for

1 � i < j � m.

Exp0: NNNNNNNP

1

(0) P

m�14::m�7

(m-8) P

m�6::m

N (m)

Exp1: NNNNNNP

1::2

(1) P

m�13::m�6

(m-7) P

m�5::m

NN (m + 1)

Exp2: NNNNNP

1::3

(2) P

m�12::m�5

(m-6) P

m�4::m

NNN (m + 2)

Exp3: NNNNP

1::4

(3) P

m�11::m�4

(m-5) P

m�3::m

NNNN (m + 3)

Exp4: NNNP

1::5

(4) P

m�10::m�3

(m-4) P

m�2::m

NNNNN (m + 4)

Exp5: NNP

1::6

(5) P

m�9::m�2

(m-3) P

m�1::m

NNNNNN (m + 5)

Exp6: NP

1::7

(6) P

m�8::m�1

(m-2) P

m

NNNNNNN (m + 6)

Exp7: P

1::8

(7) P

m�7::m

(m-1)

Figure 1: Expressions for a pattern P

1

P

2

.. P

m

when m mod 8 = 0.

The naive algorithm will
ompare a text-blo
k with the �rst pattern-blo
ks in

ea
h expression. If any of these pattern-blo
ks mat
hed with the text-blo
k, we need

to
ompare the
onse
utive text-blo
ks with the rest of the pattern-blo
ks in the

expression.

Our algorithm �rst
onstru
ts a table
alled the Blo
k-Table. The Blo
k-Table

has 256
olumns and m+ 7 rows as there are 256 possible blo
ks in a text and m+7

is the number of pattern-blo
ks we need to
onsider. The table is initialised to 0.

The (i; j)

th

entry in the table is de�ned as follows, where i, 0 � i � m + 6, is the

pattern-blo
k number and j, 0 � j � 255, is the
ode for a blo
k. Suppose that the

pattern-blo
k does not have a wild
ard
hara
ter, the (i; j)

th

entry is 1, if the
ode for

pattern-blo
k i is equal to j. If there is one or more wild
ards in the pattern-blo
k,

we
onsider all the possible blo
ks. For example, if the i

th

pattern-blo
k is NN111000,

the (i; j)

th

entry is equal to 1 for all j, where j is the
ode for 00111000, 01111000,

10111000 or 11111000.

For ea
h expression we only have to
ompare one pattern-blo
k with a text-blo
k,

and if these two mat
h then we
ompare the rest of the pattern-blo
ks in the ex-

pression with the
orresponding text-blo
ks. We
hoose a pattern-blo
k (from ea
h

expression) whi
h has the minimum number of possibilities of mat
hing with a text-

blo
k. We build the Order-Table of dimensions 8 by d

m+7

8

e whi
h
ontains the order

in whi
h to examine the pattern-blo
ks for ea
h expression. For ea
h pattern-blo
k

the number of possibilities of mat
hing a text-blo
k
an be found by adding the values

in the row of the pattern-blo
k in the Blo
k-Table.

>From these we
onstru
t a Sear
h-Table of dimensions 8� 256, and it is initialised

to -1. In the �rst row of the Sear
h-Table, we enter pattern-blo
k numbers from the

�rst
olumn of the Order-Table. If j is the
ode for these pattern-blo
ks, we enter the

pattern-blo
k numbers at the j

th

olumn, for all j, 0 � j � 255. A
olumn number

may be the
ode for more than one of the
hosen pattern-blo
ks. This is be
ause a

text-blo
k
an mat
h pattern-blo
ks from more than one expression. As there are

3

Pro
eedings of the Prague Stringology Conferen
e '01

only eight expressions we need a maximum of eight rows. For example, the
hosen

pattern-blo
ks, 110011NN and NN001100, will both mat
h the blo
k 11001100. We

enter the pattern-blo
ks (110011NN and NN001100) numbers in the �rst and se
ond

rows respe
tively of the
olumn k, where k is the
ode for 11001100.

We begin the sear
h at the begining of the text and
ompare the text-blo
ks with

hosen pattern-blo
ks in the Sear
h-Table. We
he
k the j

th

olumn in the Sear
h-

Table, where j is the
ode of the text-blo
k. If the entry is -1 then we
he
k the next

text-blo
k. Otherwise we know that the text-blo
k is in the pattern. We
ompare

the rest of the pattern-blo
ks in the expression with the
orresponding text-blo
ks

until either full mat
h or mismat
h is found using the Blo
k-Table and Order-Table.

Before we move to the next text-blo
k, we
he
k if the entry in the next row of the

Sear
h-Table is -1. We repeat this pro
ess if the entry is not -1, otherwise we
he
k

the next text-blo
k.

If � > 2, we have to
onvert the pattern into a binary string by mapping the

hara
ters into dlog

2

�e bits as we did in Se
tion 2. Here we don't have to
onsider all

the expressions. This is be
ause in the pattern-blo
ks 0, 1, .. , 7 (from expressions 0

to 7 respe
tively) the pattern starts at positions 7, 6, .. , 0 respe
tively (see Figure 1).

The positions are numbered from left to right in a pattern-blo
k.

We
an show that for all �, in a
omparison we need at most d

8

dlog

2

�e

e expressions.

There are two
ases whi
h depend on whether

8

dlog

2

�e

is an integer.

Suppose

8

dlog

2

�e

is an integer then we have the following
ase. For example, if an

alphabet is represented by two bits in the
ompressed �le (i.e. � = 3 or 4) then a

pattern
an only start at even positions in the text-blo
ks. So in this
ase we only

need to
onsider expressions 1, 3, 5 and 7.

Suppose

8

dlog

2

�e

is not an integer then we have the following
ase. For example

if we are using 3 bits (i.e. 5 � � � 8) to represent an alphabet, then we need all

the eight expressions. But in any
omparison we need at most three expressions.

Consider three
onse
utive text-blo
ks. Without loss of generality assume that the

binary representation of a
hara
ter starting at position 0 in the �rst of these three

blo
ks. Then a pattern
an start at positions 0, 3, or 6 in the �rst text-blo
k, positions

1,4 or 7 in the se
ond text-blo
k or positions 2 or 5 in the third text-blo
k. For the

�rst text-blo
k we need to
onsider the expressions 7, 4 and 1. For the se
ond text-

blo
k we need to
onsider the expressions 0, 3 and 6. For the third text-blo
k we

need to
onsider the expressions 2 and 5.

5 The average running time

The pre-pro
essing of our algorithm takes O(m) time, as the Blo
k-Table, Order-

Table and the Sear
h-Table
an be
onstru
ted in O(m) time. The worst
ase for the

sear
h will take O(mn) time. In this se
tion we will show that the algorithm performs

on average at most 2n
omparisons. >From this we
an say that the average running

time of the algorithm is O(n+m). We also justify this with experiments at the end

of this se
tion.

At the end of the previous se
tion we showed that we need to
onsider all eight

expressions only when � = 2. First we prove that the average number of
omparisons

for this worst
ase.

4

A linear time string mat
hing algorithm on average with eÆ
ient text storage

There are only 256 possible di�erent blo
ks. If we assume that ea
h of the 256

blo
ks o

urs in a text with equal frequen
y, then we have the following lemma. Let

�

PB

(j) be the probability of a pattern-blo
k j mat
hes a text-blo
k.

Lemma 1: �

PB

(j) =

1

2

8�w

, where w is the number of wild
ard
hara
ter N in the

pattern-blo
k.

Re
all that when we
ompare a text-blo
k with a pattern-blo
k, we
hoose a

pattern-blo
k (from ea
h expression) whi
h has the minimum number of possibili-

ties of mat
hing with a text-blo
k (i.e. the pattern-blo
k with minimum number of

wild
ard
hara
ter N). If any of these pattern-blo
ks mat
hes with the text-blo
k,

then we
hoose the pattern-blo
k with the minimum number of wild
ards among the

remaining pattern-blo
ks in the expression. In an attempt, for ea
h expression we

repeat this step until either a full mat
h or mismat
h is found.

For example,
onsider the expressions for m = 34. Figure 2 shows the values of w

in a pattern-blo
k for ea
h expression (pattern-blo
k numbers are in bra
kets).

Exp0: 7 (0) 0 (8) 0 (16) 0 (24) 0 (32) 7 (40)

Exp1: 6 (1) 0 (9) 0 (17) 0 (25) 0 (33)

Exp2: 5 (2) 0 (10) 0 (18) 0 (26) 1 (34)

Exp3: 4 (3) 0 (11) 0 (19) 0 (27) 2 (35)

Exp4: 3 (4) 0 (12) 0 (20) 0 (28) 3 (36)

Exp5: 2 (5) 0 (13) 0 (21) 0 (29) 4 (37)

Exp6: 1 (6) 0 (14) 0 (22) 0 (30) 5 (38)

Exp7: 0 (7) 0 (15) 0 (23) 0 (31) 6 (39)

Figure 2: The number of wild
ards in pattern-blo
ks for m = 34

There are three
olumns with all zeros whi
h are the �rst three
olumns in the

Order-Table. In general, for all m, if m mod 8 6= 7, there are � = b

m�7

8

 number of

olumns will have all zeros. If m mod 8 = 7, and m � 15 we will have �� 1
olumns

with all zeros, and the remaining one with seven zeros in a
olumn and the eighth

zero in another
olumn. For example, Figure 3 shows the number of wild
ards in

pattern-blo
ks for m = 23 (i.e. m mod 8 = 7.). We
an see that there is one (i.e.

��1)
olumn whi
h is the se
ond
olumn with all zeros. The remaining
olumn of all

zeros is the fourth
olumn with seven zeros and the eighth zero is in the �rst
olumn

(shown in bold font).

Exp0: 7 (0) 0 (8) 0 (16) 2 (24)

Exp1: 6 (1) 0 (9) 0 (17) 3 (25)

Exp2: 5 (2) 0 (10) 0 (18) 4 (26)

Exp3: 4 (3) 0 (11) 0 (19) 5 (27)

Exp4: 3 (4) 0 (12) 0 (20) 6 (28)

Exp5: 2 (5) 0 (13) 0 (21) 7 (29)

Exp6: 1 (6) 0 (14) 0 (22)

Exp7: 0 (7) 0 (15) 1 (23)

Figure 3: The number of wild
ards in pattern-blo
ks for m = 23

>From this observation we have Lemma 2. Let �

i

be the probability of i number

of pattern-blo
ks mat
hing with the text-blo
ks in an expression at an attempt. In

5

Pro
eedings of the Prague Stringology Conferen
e '01

other words �

i

is the probability of the algorithm making at least i+ 1
omparisons

at an attempt.

Lemma 2: For all m and � = 2, 1 � i � �, �

i

= 8�

1

256

i

, where � = b

m�7

8

.

Proof: For all m, ea
h expression has � number of pattern-blo
ks with w = 0. At an

attempt, we
an
hoose pattern-blo
ks with w = 0 from ea
h of the eight expressions

for the �rst �
omparisons. From Lemma 1 we have �

PB

(j) = 1=256 if w = 0. In an

attempt we will have the i+ 1

th

omparison only if i number of pattern-blo
ks in an

expression mat
hes the
orresponding text-blo
ks. The probability of i mat
hes for

an expression is

1

256

i

and there are eight expressions and so �

i

is

8

256

i

, 1 � i � �. 2

In an attempt, for 2 � m � 9 and 10 � m � 14 we have at most 2 and 3

omparisons respe
tively. Hen
e we only need to know the values of �

1

for 2 � m � 9,

and �

1

and �

2

for 10 � m � 14. We
an
al
ulate these values easily. For example,

the following shows the values of w in a pattern-blo
k for ea
h expression (pattern-

blo
k numbers are in bra
kets) for m = 10. First we will sele
t the pattern-blo
ks 8

to 11 and 4 to 7.

Exp0: 7 (0) 0 (8) 7 (16)

Exp1: 6 (1) 0 (9)

Exp2: 5 (2) 1 (10)

Exp3: 4 (3) 2 (11)

Exp4: 3 (4) 3 (12)

Exp5: 2 (5) 4 (13)

Exp6: 1 (6) 5 (14)

Exp7: 0 (7) 6 (15)

Figure 4: The number of wild
ards in pattern-blo
ks for m = 10

�

1

= �

PB

(8) + �

PB

(9) + �

PB

(10) + �

PB

(11) + �

PB

(4) + �

PB

(5) + �

PB

(6) + �

PB

(7)

=

1

8

8�0

+

1

8

8�0

+

1

8

8�1

+

1

8

8�2

+

1

8

8�3

+

1

8

8�2

+

1

8

8�1

+

1

8

8�0

(Lemma 1)

= 1=256 + 1=256 + 1=128 + 1=64 + 1=32 + 1=64 + 1=128 + 1=256

= 23=256

For �

2

we only need to
onsider the �rst expression. We
an have at least 3
om-

parisons, i� pattern-blo
ks 8 and (assume we sele
t) 0 mat
h with the
orresponding

text-blo
ks.

�

2

= �

PB

(8)� �

PB

(0)

=

1

8

8�0

�

1

8

8�7

(Lemma 1)

= 1=256� 1=2

= 1=512

In an attempt, for all m � 15, after �
omparisons the pattern-blo
ks whi
h have

not yet been
ompared will be similar to the expressions for patterns of length m

0

,

6

A linear time string mat
hing algorithm on average with eÆ
ient text storage

7 � m

0

� 14, where m

0

= (m mod 8) + 8 if m mod 8 6= 7. Otherwise m

0

= 7. In other

words, if we remove all the �
olumns with all zeros from the expressions of pattern

length m � 15, the number of wild
ards in pattern-blo
ks will be the same as in the

expressions of pattern length m

0

. For example, if we remove (i.e. �)
olumns of all

zeros from the number of wild
ards in pattern-blo
ks, for m = 34 (see Figure 2), we

will get the number of wild
ards in pattern-blo
ks, for m

0

= 10 (see Figure 4) as in

Figure 5.

Exp0: 7 (0) 0 (32) 7 (40)

Exp1: 6 (1) 0 (33)

Exp2: 5 (2) 1 (34)

Exp3: 4 (3) 2 (35)

Exp4: 3 (4) 3 (36)

Exp5: 2 (5) 4 (37)

Exp6: 1 (6) 5 (38)

Exp7: 0 (7) 6 (39)

Figure 5: The number of wild
ards in pattern-blo
ks, for m

0

= 10

Note that in any attempt for all m, we
an have at most � + 1 mat
hes before

we make the last
omparison, if m mod 8 = 0, 1 or 7, otherwise � + 2. For m > 15,

we need to know �

�+1

and �

�+2

. From the above observation we
an
al
ulate these

values from the values of �

1

and �

2

for m, 7 � m � 14. From these base values we

an have the following Lemma. Note that � = 0 for all m � 14.

Lemma 3: For m � 7,

�

�+1

= (1=256)

�

� �

b

and

�

�+2

= (1=256)

�

� �

b

,

where �

b

and �

b

are the values of b

th

base
ase in the �rst and se
ond
olumns in the

table below respe
tively and b = m mod 8.

base
ase � �

0 11/64

1 15/128

2 23/256 1/512

3 1/16 1/512

4 13/256 1/512

5 5/128 3/2048

6 9/256 5/4096

7 7/32

Let 	

i

be the probability of making exa
tly i
omparisons at an attempt. Using

�

i

we
an have an equation for 	

i

:

�

i

= 	

i+1

+	

i+2

+ � � �

This gives

	

i

= �

i�1

� �

i

7

Pro
eedings of the Prague Stringology Conferen
e '01

We know that we will make at least one
omparison in every attempt. So �

0

is 1.

For all m and � = 2, the maximum number of
omparisons in any attempt is

� = d

m+7

8

e, whi
h is equal to �+ 2 if m mod 8 = 0, 1 or 7, otherwise �+ 3. So �

i

is

0 for all i � �. This gives:

	

1

= 1� �

1

	

i

= �

i�1

� �

i

; 2 � i � �� 1

	

�

= �

��1

Lemma 4: For � = 2, the total number of
omparisons, 	

Total

, is less than or equal

to 2n

0

on average, where n

0

is the number of text-blo
ks in the text.

Proof: 	

Total

= n

0

�

�

X

i=1

i� 	

i

= n

0

� ((1� �

1

) + 2(�

1

� �

2

) + � � �+ �� 1(�

��2

� �

��1

) + ��

��1

)

= n

0

� (1 + �

1

+ � � �+ �

��2

+ �

��1

)

= n

0

� (1 +

�

X

i=1

8

256

i

+ �

�+1

+ �

�+2

) (Lemma 2)

� 2n

0

This is be
ause

P

�

i=1

8

256

i

+ �

�+1

+ �

�+2

� 1 (Lemmas 2 and 3) 2

Lemma 5: For � > 2, the total number of
omparisons, 	

Total

, is O(n), where n is

the size of the original text.

Proof: The probability of more than one
omparison in an attempt is �

1

+ � � � +

�

��2

+�

��1

(see Lemma 4), where � = d

mdlog

2

�e+7

8

e. Note thatmdlog

2

�e is the length

of the pattern when we
onvert it into a binary string. We show in the last se
tion

that in an attempt we only need to
onsider a maximum of d

8

dlog

2

�e

e expressions when

� > 2. Hen
e, for � > 2, �

1

+ � � �+�

��2

+�

��1

is less than the value given for � = 2.

2

From these Lemmas we have the following Theorem.

Theorem: The average running time of our algorithm is O(n+m).

To show this is also true in pra
ti
e we
ounted the number of
omparisons by

running our algorithm. Table 2 in the Appendix shows the estimated number of

omparisons (

Total

) and the a
tual number of
omparisons. We used the same texts

for ea
h � as in Table 1 (Se
tion 3). For ea
h pattern length we use 100 random

patterns. The a
tual number of
omparisons in the table is the total number of

omparisons divided by the number of patterns of that length. The pattern length

given in Table 2 is the length of the original pattern.

8

A linear time string mat
hing algorithm on average with eÆ
ient text storage

6 Comparison with existing string mat
hing algo-

rithms

In this se
tion we
ompare the existing string mat
hing algorithms with our algorithm,

the BRS algorithm. There are a number of strings mat
hing algorithms available in

the literature. We have
hosen seven of them, BR, BM, HOR, QS, RAI, SMI, RF

and NR algorithms whi
h
an be found in [1, 2, 7, 12, 10, 11, 6, 9℄ respe
tively. The

�rst six algorithms were found to be fast in [1℄. Animations of these algorithms
an

be found at [4℄ and more information about the algorithms
an be found in [3℄.

The experiments were
arried for all the algorithms on an un-
ompressed text,

ex
ept for our BRS algorithm and the NR algorithm [9℄. The text used for these

experiments was the same text as in Table 1 (Se
tion 3). The patterns used in these

experiments are generated randomly. For ea
h � and m, we tested 100 patterns and

we measured the total (user) time (in
luding pre-
omputation time) in se
onds to

sear
h for all 100 patterns. We repeat ea
h test 10 times and take the average. We

used an Intel 486-DX2-66 pro
essor based ma
hine with 8 megabytes of RAM and a

100 megabyte hard drive running S.u.S.E. Linux 5.2 to
ondu
t the experiments. All

the algorithms were
oded in C. The results of the experiments are in the Appendix

(Tables 4 to 8).

7 Con
lusions

The method des
ribed in Se
tion 2 to store a text will redu
e the original text size

to

dlog

2

�e

8

n. Although this method is not
ompression as in the literature, it redu
es

the spa
e and it is
omparable with the existing methods.

The main aim of this paper is string mat
hing in a
ompressed text. Our string

mat
hing algorithm
ompares two blo
ks,
he
ks whether a pre�x (or suÆx) of a

blo
k is a suÆx (or pre�x) of the other blo
k. This takes
onstant time and uses byte

pro
essing. In pra
ti
e, byte pro
essing is mu
h faster than bit pro
essing be
ause

bit shifting and masking operations are not ne
essary at sear
h time. We prove that

the average time taken by our algorithm is O(n +m). We also justi�ed our average

running time by experiments.

Using our algorithm one
an keep texts (with an alphabet of 2 � � � 128
har-

a
ters)
ompressed inde�nitely and perform the sear
h for a pattern. These methods

will save both time and spa
e. The experimental results show that our algorithm

is more eÆ
ient than the existing algorithms for � � 16. Texts with su
h a small

alphabet are DNA, RDNA and hexade
imal �les. One
an improve our algorithm so

that it performs well for large alphabet sets.

Referen
es

[1℄ Berry T., Ravindran S., "A fast string mat
hing algorithm and experimental

results", Prague Stringology Club Workshop '99, 1999.

[2℄ Boyer R. S., Moore J. S., "A fast string sear
hing algorithm", Communi
ations

of the ACM, 23(5), pp 1075-1091, 1977.

9

Pro
eedings of the Prague Stringology Conferen
e '01

[3℄ Charras C., Le
roq T., 1997, Exa
t string mat
hing, available at:

http://www-igm.univ-mlv.fr/~le
roq/string.ps

[4℄ Charras C., Le
roq T., 1998, Exa
t string mat
hing animation in JAVA avail-

able at: http://www-igm.univ-mlv.fr/~le
roq/string/

[5℄ Cro
hemore M., Rytter W., "Text algorithms", Oxford University Press, 1994.

[6℄ Cro
hemore, M., Czumaj, A., Gasienie
, L., Jarominek, S., LeCroq, T.,

Plandowki, W., Rytter, W., "Speeding up two string mat
hing algorithms",

Algorithmi
a 12(4/5), pp 247-267, 1994.

[7℄ Horspool R. N., "Pra
ti
al fast sear
hing in strings", Software Pra
ti
e and

Experien
e, 10(6), pp 501-506, 1980.

[8℄ Hu�man D.A., "A method for the
onstru
tion of minimum redundan
y
odes",

Pro
eedings of the Institute of Radio Engineers, 40, pp 1098-1101, 1951.

[9℄ Navarro G., RaÆnot M., "A general pra
ti
al approa
h to pattern mat
hing over

Ziv-Lempel
ompressed text", Pro
eedings of Combinatorial Pattern Mat
hing

99, Le
ture Notes in Computer S
ien
e, 1645, pp 14-36, 1999. .

[10℄ Raita T., "Tuning the Boyer-Moore-Horspool string sear
hing algorithm", Soft-

ware Pra
ti
e and Experien
e, 22(10), pp 879-884, 1992.

[11℄ Smith P. D., "Experiments with a very fast substring sear
h algorithm", Soft-

ware Pra
ti
e and Experien
e 21(10), pp 1065-1074,1991.

[12℄ Sunday D. M., "A very fast substring sear
h algorithm", Communi
ations of

the ACM. 33(8), pp 132-142, 1990.

[13℄ Wel
h T. A., "A te
hnique for high-performan
e data
ompression", IEEE Com-

puter, 17(6), pp 8-19, 1984.

[14℄ Ziv J., Lempel A., "A universal algorithm for sequential data
ompression",

IEEE Trans. On Information Theory, IT-23, 1978.

10

A linear time string mat
hing algorithm on average with eÆ
ient text storage

Appendix

� Our method Hu�man Compress Gzip NR

2 62500 62500 71579 79644 121110

3 125000 104107 110629 118776 178706

4 125000 125000 136945 146402 215764

5 187500 149935 161641 168813 244192

8 187500 187500 209053 211543 297634

9 250000 201313 223571 226617 310964

16 250000 250000 288546 285834 373658

17 312500 257293 294476 290854 377491

32 312500 312500 367527 330150 449265

33 375000 316232 370975 332592 451570

64 375000 375000 461069 378224 493981

Table 1: Compressed text sizes for a random text of 500,000 bytes.

alphabet of 2 alphabet of 4 alphabet of 8

Pat Len. 	

Total

A
tual Pat Len. 	

Total

A
tual Pat Len. 	

Total

A
tual

5 85938 85413 2 156250 156258 2 207031 255959

10 68237 68276 4 135742 136513 4 190795 191710

20 64556 64446 8 127288 126999 6 189632 189931

30 64460 64460 12 126962 126962 8 189462 189537

40 64460 64467 18 126960 126962 12 189460 189898

50 64460 64473 24 126960 126962 16 189460 189551

Table 2: Estimated versus a
tual number of
omparisons of our BRS algorithm

alphabet of 16 alphabet of 32 alphabet of 64

Pat. Len. 	

Total

A
tual Pat Len. 	

Total

A
tual Pat Len. 	

Total

A
tual

2 260742 265331 2 318237 322155 2 378296 378678

4 252288 252013 3 314507 314567 3 377132 376990

6 251960 251956 4 314556 314581 4 376962 376980

8 251960 251962 6 314460 314509 5 376962 376965

10 251960 251957 8 314460 314297 7 376960 376482

12 251960 251959 10 314460 314348 9 376960 376503

Table 3: Estimated versus a
tual number of
omparisons of our BRS algorithm

11

Pro
eedings of the Prague Stringology Conferen
e '01

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

5 14.2 29.1 31.3 31.5 31.1 28.7 31.8 32.6 30.7

10 5.3 27.0 24.7 30.9 31.0 27.7 31.4 22.0 30.5

20 4.4 27.3 20.4 28.8 32.4 26.6 31.0 18.2 29.5

30 4.2 27.3 18.3 31.2 31.2 28.0 31.4 16.0 27.5

40 4.2 28.3 17.3 29.7 31.3 27.9 30.7 13.5 28.5

50 5.2 26.5 16.4 30.5 30.0 27.7 31.1 15.0 28.4

Table 4: Sear
h times for � = 2

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

4 8.6 15.3 20.5 20.9 20.3 20.2 23.8 21.3 21.6

8 5.3 13.1 17.6 18.1 19.3 18.7 19.5 17.3 20.7

12 5.7 12.5 19.3 18.8 18.7 18.0 18.3 15.3 17.6

16 5.7 12.9 17.4 15.8 17.4 17.3 17.7 13.6 18.4

20 5.7 12.0 17.2 18.5 17.6 17.9 18.5 14.1 20.5

24 5.7 12.5 16.7 17.7 18.6 16.6 18.1 12.7 20.2

Table 5: Sear
h times for � = 4

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

3 9.9 15.7 22.6 18.6 17.6 16.9 19.3 18.0 28.9

4 14.0 17.0 25.8 21.2 18.7 21.1 21.3 18.9 27.6

6 8.6 13.7 19.7 16.9 16.0 16.5 16.0 15.8 23.5

10 8.5 12.7 15.7 14.1 15.1 14.9 15.1 14.1 25.5

14 8.7 12.0 15.7 12.4 14.2 13.3 13.8 13.0 25.2

18 8.4 11.1 15.0 13.6 14.0 12.7 13.4 13.2 25.5

Table 6: Sear
h times for � = 8

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

2 14.1 19.4 33.0 25.8 21.0 24.4 24.4 19.6 33.4

4 9.8 15.2 21.7 17.8 17.0 17.9 17.7 16.2 31.5

6 9.8 13.4 16.6 14.0 14.6 13.6 15.0 13.4 31.5

8 9.7 12.3 16.2 14.4 13.9 13.2 13.8 13.2 27.7

10 9.7 12.1 14.2 13.2 13.6 12.3 13.0 13.6 29.6

12 9.9 11.1 14.3 13.0 12.3 13.0 13.4 12.9 31.1

Table 7: Sear
h times for � = 16

Pat. Length BRS BR BM HOR QS RAI SMI RF NR

2 66.5 18.6 33.0 23.6 19.5 23.8 22.3 19.0 39.1

3 42.1 16.3 24.0 20.2 17.7 19.8 20.3 16.6 40.1

4 31.9 14.8 21.2 17.1 15.5 15.4 17.5 15.0 37.2

6 39.7 12.3 17.5 13.2 14.7 14.6 15.5 14.1 36.2

8 37.9 12.3 15.5 13.4 13.4 13.2 13.9 13.5 38.8

10 48.2 11.5 15.0 12.4 11.8 12.5 13.7 13.0 34.2

Table 8: Sear
h times for � = 32

12

