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Abstract. Here we consider computational problems on J-approximate and
(0,7y)-approximate string matching. These are two new notions of approximate
matching that arise naturally in applications of computer assisted music analy-
sis. We present fast, efficient and practical algorithms for these two notions of
approximate string matching.
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1 Introduction

This paper focuses on a set of string pattern-matching problems that arise in musical
analysis, and especially in musical information retrieval. A musical score can be
viewed as a string: at a very rudimentary level, the alphabet could simply be the
set of notes in the chromatic or diatonic notation, or the set of intervals that appear
between notes (e.g. pitch may be represented as MIDI numbers and pitch intervals
as number of semitones). Approximate repetitions in one or more musical works play
a crucial role in discovering similarities between different musical entities and may
be used for establishing “characteristic signatures” (see [6]). Such algorithms can be
particularly useful for melody identification and musical retrieval.

The approximate repetition problem has been extensively studied over the last few
years. Efficient algorithms for computing the approximate repetitions are directly ap-
plicable to molecular biology (see [7, 9, 12]) and in particular in DNA sequencing by
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hybridization ([13]), reconstruction of DNA sequences from known DNA fragments
(see [15, 16]), in human organ and bone marrow transplantation as well as the deter-
mination of evolutionary trees among distinct species ([15]).

The approximate matching problem has been used for a variety of musical ap-
plications (see overviews in McGettrick [11]; Crawford et al [6]; Rolland et al [14];
Cambouropoulos et al [3]). It is known that exact matching cannot be used to find
occurrences of a particular melody. Approximate matching should be used in order
to allow the presence of errors. The number of errors allowed will be referred to as
0. This paper focuses in one special type of approximation that arise especially in
musical information retrieval, i.e. d-approximation. Most computer-aided musical
applications adopt an absolute numeric pitch representation (most commonly MIDI
pitch and pitch intervals in semitones; duration is also encoded in a numeric form).
The absolute pitch encoding, however, may be insufficient for applications in tonal
music as it disregards tonal qualities of pitches and pitch-intervals (e.g. a tonal trans-
position from a major to a minor key results in a different encoding of the musical
passage and thus exact matching cannot detect the similarity between the two pas-
sages). One way to account for similarity between closely related but non-identical
musical strings is to use what will be referred to as d-approximate matching (and
v-approximate matching). In §-approximate matching, equal-length patterns consist-
ing of integers match if each corresponding integer differs by not more than - e.g.
a C-major {60,64,65,67} and a C-minor {60, 63,65,67} sequence can be matched
if a tolerance 6 = 1 is allowed in the matching process (y-approximate matching is
described in the next section).

In [4], a number of efficient algorithms for §-approximate matching were presented
(i.e. the SHIFT-AND algorithm and SHIFT-PLUS algorithm). The SHIFT-AND algo-
rithm is based on the O(1)-time computation of different states for each symbol in the
text. Hence the overall complexity is O(n). These algorithms use the bitwise tech-
nique. It is possible to adapt fast and practical exact pattern matching algorithms
to these kind of approximations. In this paper we will present the adaptations of
the TUNED-BOYER-MOORE [8], the SKIP-SEARCH algorithm [5] and the MAXIMAL-
SHIFT algorithm [17] and present some experiments to assert that these adaptations
are faster than the algorithms using the bitwise technique.

The paper is organised as follows. In the next section we present some basic
definitions for strings and background notions for approximate matching. In Sec-
tions 3-5 we present the adaptation of TUNED-BOYER-MOORE, SKIP-SEARCH and
MAXIMAL-SHIFT algorithms to speed-up d-approximate pattern matching algorithms
and in section 6 to speed-up (¢, y)-approximate pattern matching algorithms. In sec-
tion 7 we present the experimental results of these algorithms. Finally in Section 8
we present our conclusions.

2 Background and basic string definitions

A string is a sequence of zero or more symbols from an alphabet 3; the string with
zero symbols is denoted by €. The set of all strings over the alphabet ¥ is denoted
by ¥*. A string x of length n is represented by x; ...x,, where x; € ¥ for 1 <17 < n.
A string w is a substring of x if x = uwwv for u,v € ¥*; we equivalently say that the
string w occurs at position |u| + 1 of the string x. The position |u| 4+ 1 is said to be
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the starting position of w in x and the position |w| + |u| the end position of w in z.
A string w is a prefix of z if x = wu for u € ¥*. Similarly, w is a suffix of z if v = uw
for u € ¥*.

The string xy is a concatenation of two strings x and y. The concatenations of k
copies of z is denoted by z*. For two strings = 1 ...%, and y = y; .. . y,, such that
Tp—itl - Ty =1Y1...y; for some s > 1, the string =y ... 2, y;11 ... Y 1S & Superposition
of z and y. We say that x and y overlap.

Let = be a string of length n. The integer p is said to be a period of z, if z; = x;4,
for all 1 <i < n — p. The period of a string x is the smallest period of x. A string y
is a border of x if y is a prefix and a suffix of z.

Let X be an alphabet of integers and d an integer. Two symbols a, b of ¥ are said

to be d-approximate, denoted a 2 b if and only if
a—b <o
We say that two strings z,y are d-approximate, denoted x L y if and only if
|z| = |y|, and z; Ly, Vi€ {1,...,|z|} (2.1)

For a given integer v we say that two strings x,y are y-approximate, denoted
r = y if and only if

||

[ = y|, and Y |z — yil < (2.2)
i=1
Furthermore, we say that two strings x,y are {v, d }-approximate, denoted x 2 y, if
and only if z and y satisfy conditions (2.1) and (2.2).

3 0-TUNED-BOYER-MOORE Approximate Pattern
Matching

The problem of d-approximate pattern matching is formally defined as follows: given
a string t = t;...t, and a pattern p = p; ... p,, compute all positions j of ¢ such that

5o -
p=t[j.j+m—1]

A naive solution of this problem is to build an Aho-Corasick automaton (see [1])
of all strings that are d-approximate to p and then use the automaton to process
t. The time required to build the automaton is O(|X|%), thus this method is of no
practical use as e.g we can have |X| ~ 180 and || ~ 10. In [4] an efficient algorithm
was presented based on the O(1)-time computation of the “delta states” by using bit
operations under the assumption that m < w, where w is the number of bits in a
machine word.

Here we present an adaptation of the TUNED-BOYER-MOORE for exact pattern
matching algorithm to d-approximate pattern matching. The exact pattern matching
problem consists in finding one or more (generally all) exact occurrences of a pattern
p of length m in a text ¢ of length n. Basically a pattern matching algorithm uses a
window which size is equal to the length of the pattern. It first aligns the left ends
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of the window and the text. Then it checks if the pattern occurs in the window and
shifts the window to the right. It repeats the same procedure again until the right
end of the window goes beyond the right end of the text.

The TUNED-BOYER-MOORE algorithm is a very fast practical variant of the fa-
mous BOYER-MOORE algorithm [2]. It only uses the occurrence shift function to
perform the shifts. The occurrence shift function is defined for each symbol a in the
alphabet ¥ as follows:

shiftla] = min{{m — i | p; = a} U {m}}

The TUNED-BOYER-MOORE algorithm gains its efficiency by unrolling three
shifts in a very fast skip loop to locate the occurrences of the rightmost symbol
of the pattern in the text. Once an occurrence of p,, is found, it checks naively if the
whole pattern occurs in the text. Then the shift consists in aligning the rightmost
symbol of the window with the rightmost reoccurrrence of p,, in p;...p, 1, if any.
The length s of this shift is defined as follows:

s =min{{m — i | p; = pp, and i > 0} U {m}}

To do d-approximate pattern matching, the shift function can be defined to be for
each symbol a in the alphabet ¥ the distance from the right end of the pattern of the

closest symbol p; such that p; 2 a

shiftla] = min{{m — i | p; Z a} U {m}}
Then the length of the shift s becomes:

s=min{{m —i | p; £ p,, and i > 0} U {m}}
The pseudo-code for J-TUNED-BOYER-MOORE algorithm can be found in Fig-
ure 1.

4  )-SKIP-SEARCH Approximate Pattern Matching

In the SKIP-SEARCH algorithm, for each symbol of the alphabet, a bucket collects
all of that symbol’s positions in p. When a symbol occurs k£ times in the pattern,
there are k corresponding positions in the symbol’s bucket. When the word is much
shorter than the alphabet, many buckets are empty. The buckets are stored in a table
z defined as follows:

zla] = {i | pi = a}

The main loop of the search phase consists of examining every mth text symbol,
t; (so there will be n/m main iterations). Then for ¢;, it uses each position in the
bucket z[t;] to obtain a possible starting point of p in ¢ and checks if the pattern
occurs at that position.

To do d-approximate pattern matching, the buckets can be computed as follows:

2la) = {i| ps £ a}

Figure 2 shows the pseudo-code for §-SKIP-SEARCH algorithm.

4
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J-TUNED-BOYER-MOORE(p, m,t,n, §)
1 > Preprocessing
2 forallaeX
3 do shiftla] + min{{m —i | p; = a} U {m}}
4 s min{{m—i|p ZpntU{m}}
5 tn-wtnimet < (Pm)™
6 ©> Searching
7 4+ m
8 while j <n
9 do k < shift[t;]
10 while £ # 0
11 doj«—j+k
13 j—i+k
14 k < shift[t;]
15 j—J+k
16 k < shift[t;]
17 if P1---Pm—1 i tj—m-l—l Ce tj—l and j S n
18 then REPORT(j —m + 1)
19 JjJ+s

Figure 1: Adaptation of the TUNED-BOYER-MOORE exact pattern matching algo-
rithm to do d-approximate pattern matching.

5 O0-MAXIMAL-SHIFT Approximate Pattern Match-
ing

Sunday [17] designed an exact string matching algorithm where the pattern positions

are scanned from the one which will lead to a larger shift to the one which will lead

to a shorter shift, in case of a mismatch. Doing so one may hope to maximize the

lengths of the shifts and thus to minimize the overall number of comparisons.
Formally we define a permutation

o:{1,2,....mm+1} = {1,2,... ., mym+ 1}
and a function shift such that
shift[o(i)] £ shiftjo(i +1)]
for 1 <i<m and
shift[o(i)] = min{/ | for 1 < j <, pe(j)—t = Do) a0d Do(iy—e 7 Doy }

for 1 <i < m and o(m + 1) = m + 1. Furthermore shift[m + 1] is set with the
value of the period of the pattern p.
We also define a function be for each symbol of the alphabet:

5
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J-SKIP-SEARCH(p, m, t,n, )
> Preprocessing
for all a € ¥
do z[a] « {i | pi £ a}
> Searching
j—m
while j <n
do for all i € z]t]
do if p g tjfi R tjf'H»mfl
then REPORT(j — i)
Jj—J7+m

—_

S © 00 ~J O Ot = W N

—_

Figure 2: Adaptation of the SKIP-SEARCH exact pattern matching algorithm to do
d-approximate pattern matching.

bela] = min{j | 0 <j <m and p,,_; =a} , if a occurs in p
I m , otherwise

for a € X.
Then, when the pattern is aligned with the ¢[j..j +m — 1] the comparisons are per-
formed in the following order o(1),0(2),...,o(m) until the whole pattern is scanned

or a mismatch is found. If a mismatch is found when comparing p[o(i)] then a shift of
length max{shift[o(i)], bc[t[j +m +1]]} is performed. Otherwise an occurrence of the
pattern is found and the length of the shift is equal to the maximum value between
the period of the pattern and be[t[j + m + 1]]. Then the comparisons resume with
Po(1) Without keeping any memory of the comparisons previously done.

To perform d-approximate string matching the two functions can be redefined as
follows:

shiftlo(i)] = min{l | for 1 < j <4,ps(j)—¢ =25 Po(j) aNd Po(iy—r #5 Poli) }
for 1 <17 <m and
shiftim + 1] = min{¢ | p[i] =a5 p[i + (] for 1 < i < m — (}
and

be[a] = min{j | 0 < j <m and p,_; =5 a} , if such a j exists
Sl m , otherwise

for a € X.
The preprocessing phase can be done in O(m?). Figure 3 gives the pseudo-code
of the searching phase.
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d-MAXIMAL-SHIFT(p, m, t, n, )
> Searching
j <0
while j <n—m
doi+1
while i < m and plo(i)] = t[j + o(4)]
doi+i+1
if i >m
then REPORT(j)
J < j + max{shift[o(i)], be[t]j +m + 1]}

—_

© 00~ O T = W N

Figure 3: Adaptation of the MAXIMAL-SHIFT exact pattern matching algorithm to
do d-approximate pattern matching.

6 (J,7)-Approximate String Matching Algorithms

The problem of (6,~)-approzimate pattern matching is formally defined as follows:
given a string ¢t = t;...t, and a pattern p = p; ...p,, compute all positions j of ¢
such that

5 r. -
pZt[j.j+m—1]

In [4] this problem was solved by making use of the SHIFT-AND algorithm to find
the d-approximate matches of the pattern p in . Once a d-approximate match was
found, it was then tested to check whether it is also a y-approximate match. This
was done by computing successive “delta states” and “gamma states” in O(1) time
using bit operations under the assumption that m < w where w is the number of bits
in a machine word.

In order to adapt the 4-TUNED-BOYER-MOORE, 0-SKIP-SEARCH and §-MA-
XIMAL-SHIFT algorithms to the case of (4, v)-approximation, it just suffices to adapt
the naive check of the pattern. The resulting algorithms are named (0, ~)-TUNED-
BOYER-MOORE algorithm, (d,7)-SKIP-SEARCH algorithm and (4, y)-MAXIMAL-
SHIFT algorithm.

7 Experimental results

We implemented in C, in a homogeneous way, the following algorithms: SHIFT-AND,
J-TUNED-BOYER-MOORE, 0-SKIP-SEARCH, §-M AXIMAL-SHIFT, SHIFT-PLUS, (4, 7)-
TUNED-BOYER-MOORE, (0, 7)-SKIP-SEARCH and (, v)-MAXIMAL-SHIFT.

We randomly built a text of 500k symbols on an alphabet of size |3| = 70. We
then searched for each values 100 patterns and took the average running time. Times
are measured in hundredth of seconds and include both preprocessing and searching
times.

The results for d-approximation are shown in tables 1 to 5. For the values used
in these experiments, the -TUNED-BOYER-MOORE algorithm is always faster than
the J-SKIP-SEARCH algorithm which is itself always faster than the SHIFT-AND al-
gorithm.
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m | SHIFT-AND | J-TUNED-BOYER-MOORE | §-SKIP-SEARCH
8 32.98 10.78 18.61
9 32.90 10.55 18.11
10 32.93 10.10 17.65
20 32.86 9.32 15.81

Table 1: Running times for §-approximation with § = 5.

m | SHIFT-AND | 0-TUNED-BOYER-MOORE | §-SKIP-SEARCH
8 33.07 13.40 21.66
9 32.90 13.00 20.94
10 32.93 12.64 20.49
20 32.92 11.97 18.81

Table 2: Running times for d-approximation with § = 6.

m | SHIFT-AND | 0-TUNED-BOYER-MOORE | 0-SKIP-SEARCH
8 33.65 16.65 24.99
9 33.14 16.05 24.06
10 33.05 15.71 23.62
20 32.93 14.82 21.42

Table 3: Running times for §-approximation with § = 7.

m | SHIFT-AND | 0-TUNED-BOYER-MOORE | 0-SKIP-SEARCH
8 34.72 21.18 29.15
9 33.41 20.03 27.64
10 33.07 19.12 26.85
20 32.81 18.20 24.41

Table 4: Running times for d-approximation with § = 8.

The results for (,y)-approximation are shown in tables 6 to 10. For the values
used in these experiments, the (§,v)-TUNED-BOYER-MOORE algorithm is always
faster than the (9,7)-SKIP-SEARCH algorithm which is itself always faster than the
SHIFT-PLUS algorithm.

Experiments conduct only on y-approximation show that an adaptation to this
case of the SKIP-SEARCH algorithm is faster than an adaptation of the TUNED-
BOYER-MOORE algorithm.
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m | SHIFT-AND | )-TUNED-BOYER-MOORE | 4-SKIP-SEARCH
8 36.46 26.82 34.64
9 34.46 24.36 31.46
10 33.41 23.61 30.55
20 33.00 22.32 27.54

Table 5: Running times for §-approximation with § = 9.

m | SHIFT-PLUS | (0,7)-TUNED-BOYER-MOORE | (0,7)-SKIP-SEARCH
8 50.73 23.33 31.93
9 50.32 27.78 35.52
10 51.79 33.76 39.45
20 50.26 32.46 36.91

Table 6: Running times for (4, y)-approximation with 6 = min{m, 10} and v = 14.

m | SHIFT-PLUS | (0,7)-TUNED-BOYER-MOORE | (0,7)-SKIP-SEARCH
8 50.88 23.16 31.99
9 50.86 28.70 36.40
10 51.87 33.74 39.58
20 51.11 32.53 37.38

Table 7: Running times for (4, 7)-approximation with 6 = min{m, 10} and v = 15.

m | SHIFT-PLUS | (0,7)-TUNED-BOYER-MOORE | (0,7)-SKIP-SEARCH
8 50.72 23.33 32.02
9 50.70 27.96 35.65
10 51.94 33.88 40.00
20 51.35 33.20 37.03

Table 8: Running times for (4, ~)-approximation with 6 = min{m, 10} and v = 16.

One should notice that the SHIFT-AND and SHIFT-PLUS algorithms need constant
time to run whatever the values of the parameters are. In case of very high values for
d and/or v they have to be considered as the best choice.

9
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m | SHIFT-PLUS | (d,7)-TUNED-BOYER-MOORE | (,7)-SKIP-SEARCH
8 50.67 23.29 32.20
9 50.83 28.38 35.74
10 51.93 34.41 39.91
20 50.18 32.94 37.10

Table 9: Running times for (d,y)-approximation with 6 = min{m, 10} and v = 17.

m | SHIFT-PLUS | (J,7)-TUNED-BOYER-MOORE | (0, 7)-SKIP-SEARCH
8 51.24 23.57 32.22
9 50.31 28.33 35.73
10 51.83 34.36 40.15
20 49.97 32.77 37.03

Table 10: Running times for (J, v)-approximation with § = min{m, 10} and v = 18.

8 Conclusions

Here we presented the SKIP-SEARCH, TUNED-BOYER-MOORE and MAXIMAL-SHIFT
approximate string matching algorithms that outperform the one presented in [4].
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