
Approximate String Mathing in Musial

Sequenes

�

Maxime Crohemore

1

, Costas S. Iliopoulos

2 y

,

Thierry Leroq

3

and Y. J. Pinzon

2 z

1

Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Frane.

ma�univ-mlv.fr,

2

Dept. of Computer Siene, King's College London, London WC2R 2LS, England,

and Shool of Computing, Curtin University of Tehnology, GPO Box 1987 U, WA.

Australia

fsi,pinzong�ds.kl.a.uk,

3

LIFAR - ABISS, Universit�e de Rouen, 76821 Mont Saint Aignan Cedex, Frane.

leroq�dir.univ-rouen.fr

Abstrat. Here we onsider omputational problems on Æ-approximate and

(Æ;)-approximate string mathing. These are two new notions of approximate

mathing that arise naturally in appliations of omputer assisted musi analy-

sis. We present fast, eÆient and pratial algorithms for these two notions of

approximate string mathing.

Key words: String algorithms, approximate string mathing, dynami pro-

gramming, omputer-assisted musi analysis.

1 Introdution

This paper fouses on a set of string pattern-mathing problems that arise in musial

analysis, and espeially in musial information retrieval. A musial sore an be

viewed as a string: at a very rudimentary level, the alphabet ould simply be the

set of notes in the hromati or diatoni notation, or the set of intervals that appear

between notes (e.g. pith may be represented as MIDI numbers and pith intervals

as number of semitones). Approximate repetitions in one or more musial works play

a ruial role in disovering similarities between di�erent musial entities and may

be used for establishing \harateristi signatures" (see [6℄). Suh algorithms an be

partiularly useful for melody identi�ation and musial retrieval.

The approximate repetition problem has been extensively studied over the last few

years. EÆient algorithms for omputing the approximate repetitions are diretly ap-

pliable to moleular biology (see [7, 9, 12℄) and in partiular in DNA sequening by

�

This work was partially supported by a NATO grant PST.CLG.977017.

y

Partially supported by a Marie Curie fellowship, Wellome and Royal Soiety grants.

z

Partially supported by an ORS studentship and EPSRC Projet GR/L92150.

1

Proeedings of the Prague Stringology Conferene '01

hybridization ([13℄), reonstrution of DNA sequenes from known DNA fragments

(see [15, 16℄), in human organ and bone marrow transplantation as well as the deter-

mination of evolutionary trees among distint speies ([15℄).

The approximate mathing problem has been used for a variety of musial ap-

pliations (see overviews in MGettrik [11℄; Crawford et al [6℄; Rolland et al [14℄;

Cambouropoulos et al [3℄). It is known that exat mathing annot be used to �nd

ourrenes of a partiular melody. Approximate mathing should be used in order

to allow the presene of errors. The number of errors allowed will be referred to as

Æ. This paper fouses in one speial type of approximation that arise espeially in

musial information retrieval, i.e. Æ-approximation. Most omputer-aided musial

appliations adopt an absolute numeri pith representation (most ommonly MIDI

pith and pith intervals in semitones; duration is also enoded in a numeri form).

The absolute pith enoding, however, may be insuÆient for appliations in tonal

musi as it disregards tonal qualities of pithes and pith-intervals (e.g. a tonal trans-

position from a major to a minor key results in a di�erent enoding of the musial

passage and thus exat mathing annot detet the similarity between the two pas-

sages). One way to aount for similarity between losely related but non-idential

musial strings is to use what will be referred to as Æ-approximate mathing (and

-approximate mathing). In Æ-approximate mathing, equal-length patterns onsist-

ing of integers math if eah orresponding integer di�ers by not more than Æ- e.g.

a C-major f60; 64; 65; 67g and a C-minor f60; 63; 65; 67g sequene an be mathed

if a tolerane Æ = 1 is allowed in the mathing proess (-approximate mathing is

desribed in the next setion).

In [4℄, a number of eÆient algorithms for Æ-approximate mathing were presented

(i.e. the Shift-And algorithm and Shift-Plus algorithm). The Shift-And algo-

rithm is based on the O(1)-time omputation of di�erent states for eah symbol in the

text. Hene the overall omplexity is O(n). These algorithms use the bitwise teh-

nique. It is possible to adapt fast and pratial exat pattern mathing algorithms

to these kind of approximations. In this paper we will present the adaptations of

the Tuned-Boyer-Moore [8℄, the Skip-Searh algorithm [5℄ and the Maximal-

Shift algorithm [17℄ and present some experiments to assert that these adaptations

are faster than the algorithms using the bitwise tehnique.

The paper is organised as follows. In the next setion we present some basi

de�nitions for strings and bakground notions for approximate mathing. In Se-

tions 3-5 we present the adaptation of Tuned-Boyer-Moore, Skip-Searh and

Maximal-Shift algorithms to speed-up Æ-approximate pattern mathing algorithms

and in setion 6 to speed-up (Æ;)-approximate pattern mathing algorithms. In se-

tion 7 we present the experimental results of these algorithms. Finally in Setion 8

we present our onlusions.

2 Bakground and basi string de�nitions

A string is a sequene of zero or more symbols from an alphabet �; the string with

zero symbols is denoted by �. The set of all strings over the alphabet � is denoted

by �

�

. A string x of length n is represented by x

1

: : : x

n

, where x

i

2 � for 1 � i � n.

A string w is a substring of x if x = uwv for u; v 2 �

�

; we equivalently say that the

string w ours at position juj+ 1 of the string x. The position juj+ 1 is said to be

2

Approximate String Mathing in Musial Sequenes

the starting position of w in x and the position jwj+ juj the end position of w in x.

A string w is a pre�x of x if x = wu for u 2 �

�

. Similarly, w is a suÆx of x if x = uw

for u 2 �

�

.

The string xy is a onatenation of two strings x and y. The onatenations of k

opies of x is denoted by x

k

. For two strings x = x

1

: : : x

n

and y = y

1

: : : y

m

suh that

x

n�i+1

: : : x

n

= y

1

: : : y

i

for some i � 1, the string x

1

: : : x

n

y

i+1

: : : y

m

is a superposition

of x and y. We say that x and y overlap.

Let x be a string of length n. The integer p is said to be a period of x, if x

i

= x

i+p

for all 1 � i � n� p. The period of a string x is the smallest period of x. A string y

is a border of x if y is a pre�x and a suÆx of x.

Let � be an alphabet of integers and Æ an integer. Two symbols a; b of � are said

to be Æ-approximate, denoted a

Æ

= b if and only if

ja� bj � Æ

We say that two strings x; y are Æ-approximate, denoted x

Æ

= y if and only if

jxj = jyj; and x

i

Æ

= y

i

; 8i 2 f1; : : : ; jxjg (2:1)

For a given integer we say that two strings x; y are -approximate, denoted

x

= y if and only if

jxj = jyj; and

jxj

X

i=1

jx

i

� y

i

j � (2:2)

Furthermore, we say that two strings x; y are f; Æg-approximate, denoted x

Æ;

= y, if

and only if x and y satisfy onditions (2.1) and (2.2).

3 Æ-Tuned-Boyer-Moore Approximate Pattern

Mathing

The problem of Æ-approximate pattern mathing is formally de�ned as follows: given

a string t = t

1

: : : t

n

and a pattern p = p

1

: : : p

m

ompute all positions j of t suh that

p

Æ

= t[j::j +m� 1℄

A naive solution of this problem is to build an Aho-Corasik automaton (see [1℄)

of all strings that are Æ-approximate to p and then use the automaton to proess

t. The time required to build the automaton is O(j�j

Æ

), thus this method is of no

pratial use as e.g we an have j�j � 180 and jÆj � 10. In [4℄ an eÆient algorithm

was presented based on the O(1)-time omputation of the \delta states" by using bit

operations under the assumption that m � w, where w is the number of bits in a

mahine word.

Here we present an adaptation of the Tuned-Boyer-Moore for exat pattern

mathing algorithm to Æ-approximate pattern mathing. The exat pattern mathing

problem onsists in �nding one or more (generally all) exat ourrenes of a pattern

p of length m in a text t of length n. Basially a pattern mathing algorithm uses a

window whih size is equal to the length of the pattern. It �rst aligns the left ends

3

Proeedings of the Prague Stringology Conferene '01

of the window and the text. Then it heks if the pattern ours in the window and

shifts the window to the right. It repeats the same proedure again until the right

end of the window goes beyond the right end of the text.

The Tuned-Boyer-Moore algorithm is a very fast pratial variant of the fa-

mous Boyer-Moore algorithm [2℄. It only uses the ourrene shift funtion to

perform the shifts. The ourrene shift funtion is de�ned for eah symbol a in the

alphabet � as follows:

shift [a℄ = minffm� i j p

i

= ag [fmgg

The Tuned-Boyer-Moore algorithm gains its eÆieny by unrolling three

shifts in a very fast skip loop to loate the ourrenes of the rightmost symbol

of the pattern in the text. One an ourrene of p

m

is found, it heks naively if the

whole pattern ours in the text. Then the shift onsists in aligning the rightmost

symbol of the window with the rightmost reourrrene of p

m

in p

1

: : : p

m�1

, if any.

The length s of this shift is de�ned as follows:

s = minffm� i j p

i

= p

m

and i > 0g [fmgg

To do Æ-approximate pattern mathing, the shift funtion an be de�ned to be for

eah symbol a in the alphabet � the distane from the right end of the pattern of the

losest symbol p

i

suh that p

i

Æ

= a:

shift [a℄ = minffm� i j p

i

Æ

= ag [fmgg

Then the length of the shift s beomes:

s = minffm� i j p

i

2Æ

= p

m

and i > 0g [fmgg

The pseudo-ode for Æ-Tuned-Boyer-Moore algorithm an be found in Fig-

ure 1.

4 Æ-Skip-Searh Approximate Pattern Mathing

In the Skip-Searh algorithm, for eah symbol of the alphabet, a buket ollets

all of that symbol's positions in p. When a symbol ours k times in the pattern,

there are k orresponding positions in the symbol's buket. When the word is muh

shorter than the alphabet, many bukets are empty. The bukets are stored in a table

z de�ned as follows:

z[a℄ = fi j p

i

= ag

The main loop of the searh phase onsists of examining every mth text symbol,

t

j

(so there will be n=m main iterations). Then for t

j

, it uses eah position in the

buket z[t

j

℄ to obtain a possible starting point of p in t and heks if the pattern

ours at that position.

To do Æ-approximate pattern mathing, the bukets an be omputed as follows:

z[a℄ = fi j p

i

Æ

= ag

Figure 2 shows the pseudo-ode for Æ-Skip-Searh algorithm.

4

Approximate String Mathing in Musial Sequenes

Æ-Tuned-Boyer-Moore(p;m; t; n; Æ)

1 . Preproessing

2 for all a 2 �

3 do shift [a℄ minffm� i j p

i

Æ

= ag [fmgg

4 s minffm� i j p

i

2Æ

= p

m

g [fmgg

5 t

n

: : : t

n+m�1

 (p

m

)

m

6 . Searhing

7 j m

8 while j � n

9 do k shift [t

j

℄

10 while k 6= 0

11 do j j + k

12 k shift [t

j

℄

13 j j + k

14 k shift [t

j

℄

15 j j + k

16 k shift [t

j

℄

17 if p

1

: : : p

m�1

Æ

= t

j�m+1

: : : t

j�1

and j � n

18 then Report(j �m+ 1)

19 j j + s

Figure 1: Adaptation of the Tuned-Boyer-Moore exat pattern mathing algo-

rithm to do Æ-approximate pattern mathing.

5 Æ-Maximal-Shift Approximate Pattern Math-

ing

Sunday [17℄ designed an exat string mathing algorithm where the pattern positions

are sanned from the one whih will lead to a larger shift to the one whih will lead

to a shorter shift, in ase of a mismath. Doing so one may hope to maximize the

lengths of the shifts and thus to minimize the overall number of omparisons.

Formally we de�ne a permutation

� : f1; 2; : : : ; m;m+ 1g ! f1; 2; : : : ; m;m+ 1g

and a funtion shift suh that

shift [�(i)℄

= shift [�(i + 1)℄

for 1 � i < m and

shift [�(i)℄ = minf` j for 1 � j < i; p

�(j)�`

= p

�(j)

and p

�(i)�`

6= p

�(i)

g

for 1 � i � m and �(m + 1) = m + 1. Furthermore shift [m + 1℄ is set with the

value of the period of the pattern p.

We also de�ne a funtion b for eah symbol of the alphabet:

5

Proeedings of the Prague Stringology Conferene '01

Æ-Skip-Searh(p;m; t; n; Æ)

1 . Preproessing

2 for all a 2 �

3 do z[a℄ fi j p

i

Æ

= ag

4 . Searhing

5 j m

6 while j � n

7 do for all i 2 z[t

j

℄

8 do if p

Æ

= t

j�i

: : : t

j�i+m�1

9 then Report(j � i)

10 j j +m

Figure 2: Adaptation of the Skip-Searh exat pattern mathing algorithm to do

Æ-approximate pattern mathing.

b[a℄ =

(

minfj j 0 � j < m and p

m�j

= ag , if a ours in p

m , otherwise

for a 2 �.

Then, when the pattern is aligned with the t[j::j+m�1℄ the omparisons are per-

formed in the following order �(1); �(2); : : : ; �(m) until the whole pattern is sanned

or a mismath is found. If a mismath is found when omparing p[�(i)℄ then a shift of

length maxfshift [�(i)℄; b[t[j +m+1℄℄g is performed. Otherwise an ourrene of the

pattern is found and the length of the shift is equal to the maximum value between

the period of the pattern and b[t[j + m + 1℄℄. Then the omparisons resume with

p

�(1)

without keeping any memory of the omparisons previously done.

To perform Æ-approximate string mathing the two funtions an be rede�ned as

follows:

shift [�(i)℄ = minf` j for 1 � j < i; p

�(j)�`

=

2Æ

p

�(j)

and p

�(i)�`

6=

Æ

p

�(i)

g

for 1 � i � m and

shift [m + 1℄ = minf` j p[i℄ =

2Æ

p[i+ `℄ for 1 � i � m� `g

and

b[a℄ =

(

minfj j 0 � j < m and p

m�j

=

Æ

ag , if suh a j exists

m , otherwise

for a 2 �.

The preproessing phase an be done in O(m

2

). Figure 3 gives the pseudo-ode

of the searhing phase.

6

Approximate String Mathing in Musial Sequenes

Æ-Maximal-Shift(p;m; t; n; Æ)

1 . Searhing

2 j 0

3 while j � n�m

4 do i 1

5 while i � m and p[�(i)℄ = t[j + �(i)℄

6 do i i + 1

7 if i > m

8 then Report(j)

9 j j +maxfshift [�(i)℄; b[t[j +m+ 1℄℄g

Figure 3: Adaptation of the Maximal-Shift exat pattern mathing algorithm to

do Æ-approximate pattern mathing.

6 (Æ;)-Approximate String Mathing Algorithms

The problem of (Æ;)-approximate pattern mathing is formally de�ned as follows:

given a string t = t

1

: : : t

n

and a pattern p = p

1

: : : p

m

ompute all positions j of t

suh that

p

Æ;

= t[j::j +m� 1℄

In [4℄ this problem was solved by making use of the Shift-And algorithm to �nd

the Æ-approximate mathes of the pattern p in t. One a Æ-approximate math was

found, it was then tested to hek whether it is also a -approximate math. This

was done by omputing suessive \delta states" and \gamma states" in O(1) time

using bit operations under the assumption that m � w where w is the number of bits

in a mahine word.

In order to adapt the Æ-Tuned-Boyer-Moore, Æ-Skip-Searh and Æ-Ma-

ximal-Shift algorithms to the ase of (Æ;)-approximation, it just suÆes to adapt

the naive hek of the pattern. The resulting algorithms are named (Æ;)-Tuned-

Boyer-Moore algorithm, (Æ;)-Skip-Searh algorithm and (Æ;)-Maximal-

Shift algorithm.

7 Experimental results

We implemented in C, in a homogeneous way, the following algorithms: Shift-And,

Æ-Tuned-Boyer-Moore, Æ-Skip-Searh, Æ-Maximal-Shift, Shift-Plus, (Æ;)-

Tuned-Boyer-Moore, (Æ;)-Skip-Searh and (Æ;)-Maximal-Shift.

We randomly built a text of 500k symbols on an alphabet of size j�j = 70. We

then searhed for eah values 100 patterns and took the average running time. Times

are measured in hundredth of seonds and inlude both preproessing and searhing

times.

The results for Æ-approximation are shown in tables 1 to 5. For the values used

in these experiments, the Æ-Tuned-Boyer-Moore algorithm is always faster than

the Æ-Skip-Searh algorithm whih is itself always faster than the Shift-And al-

gorithm.

7

Proeedings of the Prague Stringology Conferene '01

m Shift-And Æ-Tuned-Boyer-Moore Æ-Skip-Searh

8 32.98 10.78 18.61

9 32.90 10.55 18.11

10 32.93 10.10 17.65

20 32.86 9.32 15.81

Table 1: Running times for Æ-approximation with Æ = 5.

m Shift-And Æ-Tuned-Boyer-Moore Æ-Skip-Searh

8 33.07 13.40 21.66

9 32.90 13.00 20.94

10 32.93 12.64 20.49

20 32.92 11.97 18.81

Table 2: Running times for Æ-approximation with Æ = 6.

m Shift-And Æ-Tuned-Boyer-Moore Æ-Skip-Searh

8 33.65 16.65 24.99

9 33.14 16.05 24.06

10 33.05 15.71 23.62

20 32.93 14.82 21.42

Table 3: Running times for Æ-approximation with Æ = 7.

m Shift-And Æ-Tuned-Boyer-Moore Æ-Skip-Searh

8 34.72 21.18 29.15

9 33.41 20.03 27.64

10 33.07 19.12 26.85

20 32.81 18.20 24.41

Table 4: Running times for Æ-approximation with Æ = 8.

The results for (Æ;)-approximation are shown in tables 6 to 10. For the values

used in these experiments, the (Æ;)-Tuned-Boyer-Moore algorithm is always

faster than the (Æ;)-Skip-Searh algorithm whih is itself always faster than the

Shift-Plus algorithm.

Experiments ondut only on -approximation show that an adaptation to this

ase of the Skip-Searh algorithm is faster than an adaptation of the Tuned-

Boyer-Moore algorithm.

8

Approximate String Mathing in Musial Sequenes

m Shift-And Æ-Tuned-Boyer-Moore Æ-Skip-Searh

8 36.46 26.82 34.64

9 34.46 24.36 31.46

10 33.41 23.61 30.55

20 33.00 22.32 27.54

Table 5: Running times for Æ-approximation with Æ = 9.

m Shift-Plus (Æ;)-Tuned-Boyer-Moore (Æ;)-Skip-Searh

8 50.73 23.33 31.93

9 50.32 27.78 35.52

10 51.79 33.76 39.45

20 50.26 32.46 36.91

Table 6: Running times for (Æ;)-approximation with Æ = minfm; 10g and = 14.

m Shift-Plus (Æ;)-Tuned-Boyer-Moore (Æ;)-Skip-Searh

8 50.88 23.16 31.99

9 50.86 28.70 36.40

10 51.87 33.74 39.58

20 51.11 32.53 37.38

Table 7: Running times for (Æ;)-approximation with Æ = minfm; 10g and = 15.

m Shift-Plus (Æ;)-Tuned-Boyer-Moore (Æ;)-Skip-Searh

8 50.72 23.33 32.02

9 50.70 27.96 35.65

10 51.94 33.88 40.00

20 51.35 33.20 37.03

Table 8: Running times for (Æ;)-approximation with Æ = minfm; 10g and = 16.

One should notie that the Shift-And and Shift-Plus algorithms need onstant

time to run whatever the values of the parameters are. In ase of very high values for

Æ and/or they have to be onsidered as the best hoie.

9

Proeedings of the Prague Stringology Conferene '01

m Shift-Plus (Æ;)-Tuned-Boyer-Moore (Æ;)-Skip-Searh

8 50.67 23.29 32.20

9 50.83 28.38 35.74

10 51.93 34.41 39.91

20 50.18 32.94 37.10

Table 9: Running times for (Æ;)-approximation with Æ = minfm; 10g and = 17.

m Shift-Plus (Æ;)-Tuned-Boyer-Moore (Æ;)-Skip-Searh

8 51.24 23.57 32.22

9 50.31 28.33 35.73

10 51.83 34.36 40.15

20 49.97 32.77 37.03

Table 10: Running times for (Æ;)-approximation with Æ = minfm; 10g and = 18.

8 Conlusions

Here we presented the Skip-Searh, Tuned-Boyer-Moore andMaximal-Shift

approximate string mathing algorithms that outperform the one presented in [4℄.

Referenes

[1℄ A.V. Aho and M.J. Corasik, EÆient string mathing: an aid to bibliographi

searh, Comm. ACM, (1975), 18(6), 333{340.

[2℄ R. S. Boyer and J. S. Moore. A fast string searhing algorithm. Comm. ACM,

20(10):762{772, 1977.

[3℄ E. Cambouropoulos, T. Crawford and C.S. Iliopoulos, (1999) Pattern Proess-

ing in Melodi Sequenes: Challenges, Caveats and Prospets. In Proeedings of

the AISB'99 Convention (Arti�ial Intelligene and Simulation of Behaviour),

Edinburgh, U.K., pp. 42-47 (1999).

[4℄ E. Cambouropoulos, M. Crohemore, C. S. Iliopoulos, L. Mouhard, and Y. J.

Pinzon. Algorithms for omputing approximate repetitions in musial se-

quenes. In R. Raman and J. Simpson, editors, Proeedings of the 10th Aus-

tralasian Workshop On Combinatorial Algorithms, pages 129{144, Perth, WA,

Australia, 1999.

[5℄ C. Charras, T. Leroq, and J.D. Pehoushek. A very fast string mathing al-

gorithm for small alphabets and long patterns. In M. Farah-Colton, editor,

Proeedings of the 9th Annual Symposium on Combinatorial Pattern Mathing,

10

Approximate String Mathing in Musial Sequenes

number 1448 in Leture Notes in Computer Siene, pages 55{64, Pisataway,

NJ, 1998. Springer-Verlag, Berlin.

[6℄ T. Crawford, C. S. Iliopoulos, R. Raman, String Mathing Tehniques for Musi-

al Similarity and Melodi Reognition, Computing in Musiology, Vol 11 (1998)

73{100.

[7℄ V. Fishetti, G. Landau, J.Shmidt and P. Sellers, Identifying periodi o-

urenes of a template with appliations to protein struture, Pro. 3rd Combi-

natorial Pattern Mathing , Leture Notes in Computer Siene, vol. 644, 1992,

pp. 111{120.

[8℄ A. Hume and D. M. Sunday. Fast string searhing. Software{Pratie and

Experiene, 21(11):1221{1248, 1991.

[9℄ S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung, EÆients algorithms for

moleular sequenes analysis, Pro. Natl. Aad. Si., USA (1988) 85:841{845

[10℄ G. Main and R. Lorentz, An O(n logn) algorithm for �nding all repetitions in

a string, Journal of Algorithms 5 (1984), pp. 422{432.

[11℄ P. MGettrik, MIDIMath: Musial Pattern Mathing in Real Time. MS

Dissertation, York University, U.K. (1997).

[12℄ A. Milosavljevi and J. Jurka, Disovering simple DNA sequenes by the algo-

rithmi signi�ane method, Comput. Appl. Biosi. (1993) 9:407{411

[13℄ P. A. Pevzner and W. Feldman, Gray Code Masks for DNA Sequening by

Hybridization, Genomis, 23, 233-235 (1993).

[14℄ P.Y. Rolland, J.G. Ganasia, Musial Pattern Extration and Similarity As-

sessment. In Readings in Musi and Arti�ial Intelligene. E. Miranda. (ed.).

Harwood Aademi Publishers (forthoming) (1999).

[15℄ J. P. Shmidt, All shortest paths in weighted grid graphs and its appliation

to �nding all approximate repeats in strings, SIAM Journal on Computing 27,

4 (1998), 972-992.

[16℄ S. S. Skiena and G. Sundaram, Reonstruting strings from substrings, J.

Computational Biol. 2 (1995) 333{353.

[17℄ D. M. Sunday, A very fast substring searh algorithm, CACM, Vol 33, (1990),

pp. 132{142.

[18℄ S. Wu and U. Manber, Fast text searhing allowing errors, CACM, Vol 35,

(1992), pp. 83{91.

11

