
Approximate String Mat
hing in Musi
al

Sequen
es

�

Maxime Cro
hemore

1

, Costas S. Iliopoulos

2 y

,

Thierry Le
roq

3

and Y. J. Pinzon

2 z

1

Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Fran
e.

ma
�univ-mlv.fr,

2

Dept. of Computer S
ien
e, King's College London, London WC2R 2LS, England,

and S
hool of Computing, Curtin University of Te
hnology, GPO Box 1987 U, WA.

Australia

f
si,pinzong�d
s.k
l.a
.uk,

3

LIFAR - ABISS, Universit�e de Rouen, 76821 Mont Saint Aignan Cedex, Fran
e.

le
roq�dir.univ-rouen.fr

Abstra
t. Here we
onsider
omputational problems on Æ-approximate and

(Æ;
)-approximate string mat
hing. These are two new notions of approximate

mat
hing that arise naturally in appli
ations of
omputer assisted musi
 analy-

sis. We present fast, eÆ
ient and pra
ti
al algorithms for these two notions of

approximate string mat
hing.

Key words: String algorithms, approximate string mat
hing, dynami
 pro-

gramming,
omputer-assisted musi
 analysis.

1 Introdu
tion

This paper fo
uses on a set of string pattern-mat
hing problems that arise in musi
al

analysis, and espe
ially in musi
al information retrieval. A musi
al s
ore
an be

viewed as a string: at a very rudimentary level, the alphabet
ould simply be the

set of notes in the
hromati
 or diatoni
 notation, or the set of intervals that appear

between notes (e.g. pit
h may be represented as MIDI numbers and pit
h intervals

as number of semitones). Approximate repetitions in one or more musi
al works play

a
ru
ial role in dis
overing similarities between di�erent musi
al entities and may

be used for establishing \
hara
teristi
 signatures" (see [6℄). Su
h algorithms
an be

parti
ularly useful for melody identi�
ation and musi
al retrieval.

The approximate repetition problem has been extensively studied over the last few

years. EÆ
ient algorithms for
omputing the approximate repetitions are dire
tly ap-

pli
able to mole
ular biology (see [7, 9, 12℄) and in parti
ular in DNA sequen
ing by

�

This work was partially supported by a NATO grant PST.CLG.977017.

y

Partially supported by a Marie Curie fellowship, Well
ome and Royal So
iety grants.

z

Partially supported by an ORS studentship and EPSRC Proje
t GR/L92150.

1

Pro
eedings of the Prague Stringology Conferen
e '01

hybridization ([13℄), re
onstru
tion of DNA sequen
es from known DNA fragments

(see [15, 16℄), in human organ and bone marrow transplantation as well as the deter-

mination of evolutionary trees among distin
t spe
ies ([15℄).

The approximate mat
hing problem has been used for a variety of musi
al ap-

pli
ations (see overviews in M
Gettri
k [11℄; Crawford et al [6℄; Rolland et al [14℄;

Cambouropoulos et al [3℄). It is known that exa
t mat
hing
annot be used to �nd

o

urren
es of a parti
ular melody. Approximate mat
hing should be used in order

to allow the presen
e of errors. The number of errors allowed will be referred to as

Æ. This paper fo
uses in one spe
ial type of approximation that arise espe
ially in

musi
al information retrieval, i.e. Æ-approximation. Most
omputer-aided musi
al

appli
ations adopt an absolute numeri
 pit
h representation (most
ommonly MIDI

pit
h and pit
h intervals in semitones; duration is also en
oded in a numeri
 form).

The absolute pit
h en
oding, however, may be insuÆ
ient for appli
ations in tonal

musi
 as it disregards tonal qualities of pit
hes and pit
h-intervals (e.g. a tonal trans-

position from a major to a minor key results in a di�erent en
oding of the musi
al

passage and thus exa
t mat
hing
annot dete
t the similarity between the two pas-

sages). One way to a

ount for similarity between
losely related but non-identi
al

musi
al strings is to use what will be referred to as Æ-approximate mat
hing (and

-approximate mat
hing). In Æ-approximate mat
hing, equal-length patterns
onsist-

ing of integers mat
h if ea
h
orresponding integer di�ers by not more than Æ- e.g.

a C-major f60; 64; 65; 67g and a C-minor f60; 63; 65; 67g sequen
e
an be mat
hed

if a toleran
e Æ = 1 is allowed in the mat
hing pro
ess (
-approximate mat
hing is

des
ribed in the next se
tion).

In [4℄, a number of eÆ
ient algorithms for Æ-approximate mat
hing were presented

(i.e. the Shift-And algorithm and Shift-Plus algorithm). The Shift-And algo-

rithm is based on the O(1)-time
omputation of di�erent states for ea
h symbol in the

text. Hen
e the overall
omplexity is O(n). These algorithms use the bitwise te
h-

nique. It is possible to adapt fast and pra
ti
al exa
t pattern mat
hing algorithms

to these kind of approximations. In this paper we will present the adaptations of

the Tuned-Boyer-Moore [8℄, the Skip-Sear
h algorithm [5℄ and the Maximal-

Shift algorithm [17℄ and present some experiments to assert that these adaptations

are faster than the algorithms using the bitwise te
hnique.

The paper is organised as follows. In the next se
tion we present some basi

de�nitions for strings and ba
kground notions for approximate mat
hing. In Se
-

tions 3-5 we present the adaptation of Tuned-Boyer-Moore, Skip-Sear
h and

Maximal-Shift algorithms to speed-up Æ-approximate pattern mat
hing algorithms

and in se
tion 6 to speed-up (Æ;
)-approximate pattern mat
hing algorithms. In se
-

tion 7 we present the experimental results of these algorithms. Finally in Se
tion 8

we present our
on
lusions.

2 Ba
kground and basi
 string de�nitions

A string is a sequen
e of zero or more symbols from an alphabet �; the string with

zero symbols is denoted by �. The set of all strings over the alphabet � is denoted

by �

�

. A string x of length n is represented by x

1

: : : x

n

, where x

i

2 � for 1 � i � n.

A string w is a substring of x if x = uwv for u; v 2 �

�

; we equivalently say that the

string w o

urs at position juj+ 1 of the string x. The position juj+ 1 is said to be

2

Approximate String Mat
hing in Musi
al Sequen
es

the starting position of w in x and the position jwj+ juj the end position of w in x.

A string w is a pre�x of x if x = wu for u 2 �

�

. Similarly, w is a suÆx of x if x = uw

for u 2 �

�

.

The string xy is a
on
atenation of two strings x and y. The
on
atenations of k

opies of x is denoted by x

k

. For two strings x = x

1

: : : x

n

and y = y

1

: : : y

m

su
h that

x

n�i+1

: : : x

n

= y

1

: : : y

i

for some i � 1, the string x

1

: : : x

n

y

i+1

: : : y

m

is a superposition

of x and y. We say that x and y overlap.

Let x be a string of length n. The integer p is said to be a period of x, if x

i

= x

i+p

for all 1 � i � n� p. The period of a string x is the smallest period of x. A string y

is a border of x if y is a pre�x and a suÆx of x.

Let � be an alphabet of integers and Æ an integer. Two symbols a; b of � are said

to be Æ-approximate, denoted a

Æ

= b if and only if

ja� bj � Æ

We say that two strings x; y are Æ-approximate, denoted x

Æ

= y if and only if

jxj = jyj; and x

i

Æ

= y

i

; 8i 2 f1; : : : ; jxjg (2:1)

For a given integer
 we say that two strings x; y are
-approximate, denoted

x

= y if and only if

jxj = jyj; and

jxj

X

i=1

jx

i

� y

i

j �
 (2:2)

Furthermore, we say that two strings x; y are f
; Æg-approximate, denoted x

Æ;

= y, if

and only if x and y satisfy
onditions (2.1) and (2.2).

3 Æ-Tuned-Boyer-Moore Approximate Pattern

Mat
hing

The problem of Æ-approximate pattern mat
hing is formally de�ned as follows: given

a string t = t

1

: : : t

n

and a pattern p = p

1

: : : p

m

ompute all positions j of t su
h that

p

Æ

= t[j::j +m� 1℄

A naive solution of this problem is to build an Aho-Corasi
k automaton (see [1℄)

of all strings that are Æ-approximate to p and then use the automaton to pro
ess

t. The time required to build the automaton is O(j�j

Æ

), thus this method is of no

pra
ti
al use as e.g we
an have j�j � 180 and jÆj � 10. In [4℄ an eÆ
ient algorithm

was presented based on the O(1)-time
omputation of the \delta states" by using bit

operations under the assumption that m � w, where w is the number of bits in a

ma
hine word.

Here we present an adaptation of the Tuned-Boyer-Moore for exa
t pattern

mat
hing algorithm to Æ-approximate pattern mat
hing. The exa
t pattern mat
hing

problem
onsists in �nding one or more (generally all) exa
t o

urren
es of a pattern

p of length m in a text t of length n. Basi
ally a pattern mat
hing algorithm uses a

window whi
h size is equal to the length of the pattern. It �rst aligns the left ends

3

Pro
eedings of the Prague Stringology Conferen
e '01

of the window and the text. Then it
he
ks if the pattern o

urs in the window and

shifts the window to the right. It repeats the same pro
edure again until the right

end of the window goes beyond the right end of the text.

The Tuned-Boyer-Moore algorithm is a very fast pra
ti
al variant of the fa-

mous Boyer-Moore algorithm [2℄. It only uses the o

urren
e shift fun
tion to

perform the shifts. The o

urren
e shift fun
tion is de�ned for ea
h symbol a in the

alphabet � as follows:

shift [a℄ = minffm� i j p

i

= ag [fmgg

The Tuned-Boyer-Moore algorithm gains its eÆ
ien
y by unrolling three

shifts in a very fast skip loop to lo
ate the o

urren
es of the rightmost symbol

of the pattern in the text. On
e an o

urren
e of p

m

is found, it
he
ks naively if the

whole pattern o

urs in the text. Then the shift
onsists in aligning the rightmost

symbol of the window with the rightmost reo

urrren
e of p

m

in p

1

: : : p

m�1

, if any.

The length s of this shift is de�ned as follows:

s = minffm� i j p

i

= p

m

and i > 0g [fmgg

To do Æ-approximate pattern mat
hing, the shift fun
tion
an be de�ned to be for

ea
h symbol a in the alphabet � the distan
e from the right end of the pattern of the

losest symbol p

i

su
h that p

i

Æ

= a:

shift [a℄ = minffm� i j p

i

Æ

= ag [fmgg

Then the length of the shift s be
omes:

s = minffm� i j p

i

2Æ

= p

m

and i > 0g [fmgg

The pseudo-
ode for Æ-Tuned-Boyer-Moore algorithm
an be found in Fig-

ure 1.

4 Æ-Skip-Sear
h Approximate Pattern Mat
hing

In the Skip-Sear
h algorithm, for ea
h symbol of the alphabet, a bu
ket
olle
ts

all of that symbol's positions in p. When a symbol o

urs k times in the pattern,

there are k
orresponding positions in the symbol's bu
ket. When the word is mu
h

shorter than the alphabet, many bu
kets are empty. The bu
kets are stored in a table

z de�ned as follows:

z[a℄ = fi j p

i

= ag

The main loop of the sear
h phase
onsists of examining every mth text symbol,

t

j

(so there will be n=m main iterations). Then for t

j

, it uses ea
h position in the

bu
ket z[t

j

℄ to obtain a possible starting point of p in t and
he
ks if the pattern

o

urs at that position.

To do Æ-approximate pattern mat
hing, the bu
kets
an be
omputed as follows:

z[a℄ = fi j p

i

Æ

= ag

Figure 2 shows the pseudo-
ode for Æ-Skip-Sear
h algorithm.

4

Approximate String Mat
hing in Musi
al Sequen
es

Æ-Tuned-Boyer-Moore(p;m; t; n; Æ)

1 . Prepro
essing

2 for all a 2 �

3 do shift [a℄ minffm� i j p

i

Æ

= ag [fmgg

4 s minffm� i j p

i

2Æ

= p

m

g [fmgg

5 t

n

: : : t

n+m�1

 (p

m

)

m

6 . Sear
hing

7 j m

8 while j � n

9 do k shift [t

j

℄

10 while k 6= 0

11 do j j + k

12 k shift [t

j

℄

13 j j + k

14 k shift [t

j

℄

15 j j + k

16 k shift [t

j

℄

17 if p

1

: : : p

m�1

Æ

= t

j�m+1

: : : t

j�1

and j � n

18 then Report(j �m+ 1)

19 j j + s

Figure 1: Adaptation of the Tuned-Boyer-Moore exa
t pattern mat
hing algo-

rithm to do Æ-approximate pattern mat
hing.

5 Æ-Maximal-Shift Approximate Pattern Mat
h-

ing

Sunday [17℄ designed an exa
t string mat
hing algorithm where the pattern positions

are s
anned from the one whi
h will lead to a larger shift to the one whi
h will lead

to a shorter shift, in
ase of a mismat
h. Doing so one may hope to maximize the

lengths of the shifts and thus to minimize the overall number of
omparisons.

Formally we de�ne a permutation

� : f1; 2; : : : ; m;m+ 1g ! f1; 2; : : : ; m;m+ 1g

and a fun
tion shift su
h that

shift [�(i)℄

= shift [�(i + 1)℄

for 1 � i < m and

shift [�(i)℄ = minf` j for 1 � j < i; p

�(j)�`

= p

�(j)

and p

�(i)�`

6= p

�(i)

g

for 1 � i � m and �(m + 1) = m + 1. Furthermore shift [m + 1℄ is set with the

value of the period of the pattern p.

We also de�ne a fun
tion b
 for ea
h symbol of the alphabet:

5

Pro
eedings of the Prague Stringology Conferen
e '01

Æ-Skip-Sear
h(p;m; t; n; Æ)

1 . Prepro
essing

2 for all a 2 �

3 do z[a℄ fi j p

i

Æ

= ag

4 . Sear
hing

5 j m

6 while j � n

7 do for all i 2 z[t

j

℄

8 do if p

Æ

= t

j�i

: : : t

j�i+m�1

9 then Report(j � i)

10 j j +m

Figure 2: Adaptation of the Skip-Sear
h exa
t pattern mat
hing algorithm to do

Æ-approximate pattern mat
hing.

b
[a℄ =

(

minfj j 0 � j < m and p

m�j

= ag , if a o

urs in p

m , otherwise

for a 2 �.

Then, when the pattern is aligned with the t[j::j+m�1℄ the
omparisons are per-

formed in the following order �(1); �(2); : : : ; �(m) until the whole pattern is s
anned

or a mismat
h is found. If a mismat
h is found when
omparing p[�(i)℄ then a shift of

length maxfshift [�(i)℄; b
[t[j +m+1℄℄g is performed. Otherwise an o

urren
e of the

pattern is found and the length of the shift is equal to the maximum value between

the period of the pattern and b
[t[j + m + 1℄℄. Then the
omparisons resume with

p

�(1)

without keeping any memory of the
omparisons previously done.

To perform Æ-approximate string mat
hing the two fun
tions
an be rede�ned as

follows:

shift [�(i)℄ = minf` j for 1 � j < i; p

�(j)�`

=

2Æ

p

�(j)

and p

�(i)�`

6=

Æ

p

�(i)

g

for 1 � i � m and

shift [m + 1℄ = minf` j p[i℄ =

2Æ

p[i+ `℄ for 1 � i � m� `g

and

b
[a℄ =

(

minfj j 0 � j < m and p

m�j

=

Æ

ag , if su
h a j exists

m , otherwise

for a 2 �.

The prepro
essing phase
an be done in O(m

2

). Figure 3 gives the pseudo-
ode

of the sear
hing phase.

6

Approximate String Mat
hing in Musi
al Sequen
es

Æ-Maximal-Shift(p;m; t; n; Æ)

1 . Sear
hing

2 j 0

3 while j � n�m

4 do i 1

5 while i � m and p[�(i)℄ = t[j + �(i)℄

6 do i i + 1

7 if i > m

8 then Report(j)

9 j j +maxfshift [�(i)℄; b
[t[j +m+ 1℄℄g

Figure 3: Adaptation of the Maximal-Shift exa
t pattern mat
hing algorithm to

do Æ-approximate pattern mat
hing.

6 (Æ;
)-Approximate String Mat
hing Algorithms

The problem of (Æ;
)-approximate pattern mat
hing is formally de�ned as follows:

given a string t = t

1

: : : t

n

and a pattern p = p

1

: : : p

m

ompute all positions j of t

su
h that

p

Æ;

= t[j::j +m� 1℄

In [4℄ this problem was solved by making use of the Shift-And algorithm to �nd

the Æ-approximate mat
hes of the pattern p in t. On
e a Æ-approximate mat
h was

found, it was then tested to
he
k whether it is also a
-approximate mat
h. This

was done by
omputing su

essive \delta states" and \gamma states" in O(1) time

using bit operations under the assumption that m � w where w is the number of bits

in a ma
hine word.

In order to adapt the Æ-Tuned-Boyer-Moore, Æ-Skip-Sear
h and Æ-Ma-

ximal-Shift algorithms to the
ase of (Æ;
)-approximation, it just suÆ
es to adapt

the naive
he
k of the pattern. The resulting algorithms are named (Æ;
)-Tuned-

Boyer-Moore algorithm, (Æ;
)-Skip-Sear
h algorithm and (Æ;
)-Maximal-

Shift algorithm.

7 Experimental results

We implemented in C, in a homogeneous way, the following algorithms: Shift-And,

Æ-Tuned-Boyer-Moore, Æ-Skip-Sear
h, Æ-Maximal-Shift, Shift-Plus, (Æ;
)-

Tuned-Boyer-Moore, (Æ;
)-Skip-Sear
h and (Æ;
)-Maximal-Shift.

We randomly built a text of 500k symbols on an alphabet of size j�j = 70. We

then sear
hed for ea
h values 100 patterns and took the average running time. Times

are measured in hundredth of se
onds and in
lude both prepro
essing and sear
hing

times.

The results for Æ-approximation are shown in tables 1 to 5. For the values used

in these experiments, the Æ-Tuned-Boyer-Moore algorithm is always faster than

the Æ-Skip-Sear
h algorithm whi
h is itself always faster than the Shift-And al-

gorithm.

7

Pro
eedings of the Prague Stringology Conferen
e '01

m Shift-And Æ-Tuned-Boyer-Moore Æ-Skip-Sear
h

8 32.98 10.78 18.61

9 32.90 10.55 18.11

10 32.93 10.10 17.65

20 32.86 9.32 15.81

Table 1: Running times for Æ-approximation with Æ = 5.

m Shift-And Æ-Tuned-Boyer-Moore Æ-Skip-Sear
h

8 33.07 13.40 21.66

9 32.90 13.00 20.94

10 32.93 12.64 20.49

20 32.92 11.97 18.81

Table 2: Running times for Æ-approximation with Æ = 6.

m Shift-And Æ-Tuned-Boyer-Moore Æ-Skip-Sear
h

8 33.65 16.65 24.99

9 33.14 16.05 24.06

10 33.05 15.71 23.62

20 32.93 14.82 21.42

Table 3: Running times for Æ-approximation with Æ = 7.

m Shift-And Æ-Tuned-Boyer-Moore Æ-Skip-Sear
h

8 34.72 21.18 29.15

9 33.41 20.03 27.64

10 33.07 19.12 26.85

20 32.81 18.20 24.41

Table 4: Running times for Æ-approximation with Æ = 8.

The results for (Æ;
)-approximation are shown in tables 6 to 10. For the values

used in these experiments, the (Æ;
)-Tuned-Boyer-Moore algorithm is always

faster than the (Æ;
)-Skip-Sear
h algorithm whi
h is itself always faster than the

Shift-Plus algorithm.

Experiments
ondu
t only on
-approximation show that an adaptation to this

ase of the Skip-Sear
h algorithm is faster than an adaptation of the Tuned-

Boyer-Moore algorithm.

8

Approximate String Mat
hing in Musi
al Sequen
es

m Shift-And Æ-Tuned-Boyer-Moore Æ-Skip-Sear
h

8 36.46 26.82 34.64

9 34.46 24.36 31.46

10 33.41 23.61 30.55

20 33.00 22.32 27.54

Table 5: Running times for Æ-approximation with Æ = 9.

m Shift-Plus (Æ;
)-Tuned-Boyer-Moore (Æ;
)-Skip-Sear
h

8 50.73 23.33 31.93

9 50.32 27.78 35.52

10 51.79 33.76 39.45

20 50.26 32.46 36.91

Table 6: Running times for (Æ;
)-approximation with Æ = minfm; 10g and
 = 14.

m Shift-Plus (Æ;
)-Tuned-Boyer-Moore (Æ;
)-Skip-Sear
h

8 50.88 23.16 31.99

9 50.86 28.70 36.40

10 51.87 33.74 39.58

20 51.11 32.53 37.38

Table 7: Running times for (Æ;
)-approximation with Æ = minfm; 10g and
 = 15.

m Shift-Plus (Æ;
)-Tuned-Boyer-Moore (Æ;
)-Skip-Sear
h

8 50.72 23.33 32.02

9 50.70 27.96 35.65

10 51.94 33.88 40.00

20 51.35 33.20 37.03

Table 8: Running times for (Æ;
)-approximation with Æ = minfm; 10g and
 = 16.

One should noti
e that the Shift-And and Shift-Plus algorithms need
onstant

time to run whatever the values of the parameters are. In
ase of very high values for

Æ and/or
 they have to be
onsidered as the best
hoi
e.

9

Pro
eedings of the Prague Stringology Conferen
e '01

m Shift-Plus (Æ;
)-Tuned-Boyer-Moore (Æ;
)-Skip-Sear
h

8 50.67 23.29 32.20

9 50.83 28.38 35.74

10 51.93 34.41 39.91

20 50.18 32.94 37.10

Table 9: Running times for (Æ;
)-approximation with Æ = minfm; 10g and
 = 17.

m Shift-Plus (Æ;
)-Tuned-Boyer-Moore (Æ;
)-Skip-Sear
h

8 51.24 23.57 32.22

9 50.31 28.33 35.73

10 51.83 34.36 40.15

20 49.97 32.77 37.03

Table 10: Running times for (Æ;
)-approximation with Æ = minfm; 10g and
 = 18.

8 Con
lusions

Here we presented the Skip-Sear
h, Tuned-Boyer-Moore andMaximal-Shift

approximate string mat
hing algorithms that outperform the one presented in [4℄.

Referen
es

[1℄ A.V. Aho and M.J. Corasi
k, EÆ
ient string mat
hing: an aid to bibliographi

sear
h, Comm. ACM, (1975), 18(6), 333{340.

[2℄ R. S. Boyer and J. S. Moore. A fast string sear
hing algorithm. Comm. ACM,

20(10):762{772, 1977.

[3℄ E. Cambouropoulos, T. Crawford and C.S. Iliopoulos, (1999) Pattern Pro
ess-

ing in Melodi
 Sequen
es: Challenges, Caveats and Prospe
ts. In Pro
eedings of

the AISB'99 Convention (Arti�
ial Intelligen
e and Simulation of Behaviour),

Edinburgh, U.K., pp. 42-47 (1999).

[4℄ E. Cambouropoulos, M. Cro
hemore, C. S. Iliopoulos, L. Mou
hard, and Y. J.

Pinzon. Algorithms for
omputing approximate repetitions in musi
al se-

quen
es. In R. Raman and J. Simpson, editors, Pro
eedings of the 10th Aus-

tralasian Workshop On Combinatorial Algorithms, pages 129{144, Perth, WA,

Australia, 1999.

[5℄ C. Charras, T. Le
roq, and J.D. Pehoushek. A very fast string mat
hing al-

gorithm for small alphabets and long patterns. In M. Fara
h-Colton, editor,

Pro
eedings of the 9th Annual Symposium on Combinatorial Pattern Mat
hing,

10

Approximate String Mat
hing in Musi
al Sequen
es

number 1448 in Le
ture Notes in Computer S
ien
e, pages 55{64, Pis
ataway,

NJ, 1998. Springer-Verlag, Berlin.

[6℄ T. Crawford, C. S. Iliopoulos, R. Raman, String Mat
hing Te
hniques for Musi-

al Similarity and Melodi
 Re
ognition, Computing in Musi
ology, Vol 11 (1998)

73{100.

[7℄ V. Fis
hetti, G. Landau, J.S
hmidt and P. Sellers, Identifying periodi
 o
-

uren
es of a template with appli
ations to protein stru
ture, Pro
. 3rd Combi-

natorial Pattern Mat
hing , Le
ture Notes in Computer S
ien
e, vol. 644, 1992,

pp. 111{120.

[8℄ A. Hume and D. M. Sunday. Fast string sear
hing. Software{Pra
ti
e and

Experien
e, 21(11):1221{1248, 1991.

[9℄ S. Karlin, M. Morris, G. Ghandour, and M.-Y. Leung, EÆ
ients algorithms for

mole
ular sequen
es analysis, Pro
. Natl. A
ad. S
i., USA (1988) 85:841{845

[10℄ G. Main and R. Lorentz, An O(n logn) algorithm for �nding all repetitions in

a string, Journal of Algorithms 5 (1984), pp. 422{432.

[11℄ P. M
Gettri
k, MIDIMat
h: Musi
al Pattern Mat
hing in Real Time. MS

Dissertation, York University, U.K. (1997).

[12℄ A. Milosavljevi
 and J. Jurka, Dis
overing simple DNA sequen
es by the algo-

rithmi
 signi�
an
e method, Comput. Appl. Bios
i. (1993) 9:407{411

[13℄ P. A. Pevzner and W. Feldman, Gray Code Masks for DNA Sequen
ing by

Hybridization, Genomi
s, 23, 233-235 (1993).

[14℄ P.Y. Rolland, J.G. Ganas
ia, Musi
al Pattern Extra
tion and Similarity As-

sessment. In Readings in Musi
 and Arti�
ial Intelligen
e. E. Miranda. (ed.).

Harwood A
ademi
 Publishers (forth
oming) (1999).

[15℄ J. P. S
hmidt, All shortest paths in weighted grid graphs and its appli
ation

to �nding all approximate repeats in strings, SIAM Journal on Computing 27,

4 (1998), 972-992.

[16℄ S. S. Skiena and G. Sundaram, Re
onstru
ting strings from substrings, J.

Computational Biol. 2 (1995) 333{353.

[17℄ D. M. Sunday, A very fast substring sear
h algorithm, CACM, Vol 33, (1990),

pp. 132{142.

[18℄ S. Wu and U. Manber, Fast text sear
hing allowing errors, CACM, Vol 35,

(1992), pp. 83{91.

11

