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Prefae

The Prague Stringology Conferene 2002 (PSC'02) was held at the Department of

Computer Siene and Engineering of the Czeh Tehnial University in Prague,

Czeh Republi, on September 23{24, 2002. The onferene foused on stringology

and related topis. Stringology is a disipline onerned with algorithmi proessing

of strings and sequenes.

The papers submitted were reviewed by the programme ommittee and eleven

were seleted for presentation at the onferene, based on originality and quality.

This volume ontains these seleted papers.

In years 1996{2000 the Prague Stringology Club Workshops (PSCW's) and the

Prague Stringology Conferene in 2001 preeded this onferene. The proeedings of

these workshops and the onferene had been published by Czeh Tehnial University

and are available on WWW pages of PSC. Seleted ontributions were published in

a speial issue of the journal Kybernetika.

The Prague Stringology Club (PSC) was founded in 1996 as a researh group at the

Department of Computer Siene and Engineering of the Czeh Tehnial University

in Prague. The goal of PSC is to study algorithms on strings and sequenes with a

speial emphasis on the �nite automata theory. The �rst event PSC organized was

the workshop PSCW'96 onsisting only of invited talks. However, sine PSCW'97 the

papers are seleted based on peer reviews. The aim is not only to present new results

in stringology, but also to have people working on these topis meeting in person.

I would like to thank all those who had submitted papers for PSC'02 as well as

the reviewers. A speial thank goes to all the members of the programme ommittee,

without whose e�orts it would not have been possible to put together suh a stimu-

lating program of PSC'02. Last, but not least, my thanks go to the members of the

organizing ommittee for ensuring suh a smooth running of the onferene.

In Hamilton, Ontario, Canada

on August 2002

Jan Holub

v



vi



A Work-Optimal Parallel Implementation of

Lossless Image Compression by Blok Mathing

Sergio De Agostino

Shool of Computing

Armstrong Atlanti State University

11935 Aberorn Street

Savannah, Georgia 31419

USA

e-mail: agos�armstrong.edu

Abstrat. Storer suggested that fast enoders are possible for two-dimensional

lossless ompression by showing a square greedy mathing LZ1 heuristi for bi-

level images, whih an be implemented by a simple hashing sheme [S96℄. In

this paper, we show a work-optimal parallel algorithm using a retangle greedy

mathing tehnique requiring O(logM logn) time on the PRAM EREW model,

where n is the size of the image and M the maximum size of a retangle.

Key words: lossless image ompression, sliding ditionary, parallel algorithm,

PRAM EREW

1 Introdution

Textual substitution ompression methods (often alled \LZ" methods due to the

work of Lempel and Ziv [LZ76℄) have been designed by Lempel and Ziv [LZ77, ZL78℄

and Storer and Szymanski [SS82℄. These methods parse a string in phrases and

replae them with pointers to opies, alled targets of the pointers, that are stored in a

ditionary. The enoded string is a sequene of pointers (some of whih may represent

single haraters). Stati methods are when the ditionary is known in advane. By

ontrast, with dynami methods (LZ1 [LZ77℄ and LZ2 [ZL78℄) the ditionary may be

onstantly hanging as the data is proessed (see [BCW90, St88℄ for referenes).

Storer [S96℄ and Storer and Helfgott [SH97℄ generalized the LZ1 method to lossless

image ompression and suggested that very fast enoders are possible by showing a

square greedy mathing LZ1 ompression heuristi, whih an be implemented by a

simple hashing sheme and ahieves 60 to 70 perent of the ompression of JBIG1 on

the CCITT bi-level image test set.

With LZ1 text ompression, one simply proeeds from left to right making mathes

in greedy fashion between a substring in the urrent position and a opy in the part

of the string already seen. A key advantage of LZ1 ompression is that deoding is

always simple and fast. Another advantage is that it is relatively easy to implement.

The two key issues for pratial implementations are how the enoder searhes for

mathes and how pointers are enoded.
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An image has to be sanned in some linear order. In order to ahieve a good

ompression performane, bidimensional mathes have to be omputed. In [SH97℄, a

square-math enoding algorithm is proposed using a simple hashing sheme direted

to bi-level images. A 64K table with one position for eah possible 4x4 subarray is the

only data struture used. All-zero and all-one squares are handled di�erently. The

enoding sheme is to preede eah item with a ag �eld indiating whether there is

a monohromati square, a math or raw data. When there is a math, the 4 x 4

subarray in the urrent position is hashed to yield a pointer to a opy. This pointer

is used for the urrent square greedy math and then replaed in the hash table by a

pointer to the urrent position.

To improve the ompression performane, it was also introdued a slower retangle

greedy mathing tehnique requiring O(M logM) time where M is the size of the

math [SH97℄. Therefore, O(n logM) is the best sequential time for an image of size

n if we ompress by retangle mathing with M the maximum size of a retangle.

Both heuristis work with an unrestrited window. In [CDG01℄ a retangle greedy

mathing heuristi using a �nite window and a bound to the math size was pre-

sented. The heuristi is suitable for a fast implementation similar to the one in [S96℄

and ahieves 75 to 90 perent of the ompression of JBIG1 on the CCITT bi-level

image test set. In this paper, we show a work-optimal PRAM EREW implementation

of lossless image ompression by blok mathing requiring O(logM logn) time whih

uses a retangle greedy mathing tehnique similar to the one in [CDG01℄. The par-

allel heuristi ahieves 95 to 97 perent of the ompression of the sequential heuristi

mentioned above [CDL02℄. In setion 2, we show how the sequential heuristi works.

In setion 3, we explain the parallel algorithm. In setion 4, onlusions and future

work are given.

2 The Retangle Greedy Mathing Tehnique

The ompression heuristi sans an image n x m row by row (raster san) (the greedy

mathing tehnique ould work with any other san desribed in [SH97℄). We denote

with p

i;j

the pixel in position (i; j). The proedure for �nding the largest retangle

with left upper orner (i; j) that mathes a retangle with left upper orner (k; h) is

desribed in Fig. 1.

At the �rst step, the proedure omputes the longest possible width for a retangle

math in (i; j) with respet to the position (k; h). The retangle 1 x ` omputed at

the �rst step is the urrent retangle math and the sizes of its sides are stored in

side1 and side2. In order to hek whether there is a better math than the urrent

one, the longest one-dimensional math on the next row and olumn j, not exeeding

the urrent width, is omputed with respet to the row next to the urrent opy and

to olumn h. Its length is stored in the temporary variable width and the temporary

variable length is inreased by one. If the retangle R whose sides have size width

and length is greater than the urrent math, the urrent math is replaed by R.

We iterate this operation on eah row until the area of the urrent math is greater

or equal to the area of the longest feasible width-wide retangle, sine no further

improvement would be possible at that point. For example, in Fig. 2 we apply the

proedure to �nd the largest retangle math between position (0; 0) and (6; 6).

2
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Figure 1: Computing the largest retangle math in (i; j) and (k; h).

A one-dimensional math of width 6 is found at step 1. Then, at step 2 a better

math is obtained whih is 2 x 4. At step 3 and step 4 the urrent math is still 2 x 4

sine the longest math on row 3 and 9 has width 2. At step 5, another math of width

2 provides a better retangle math whih is 5 x 2. At step 6, the proedure stops sine

the longest math has width 1 and the retangle math an over at most 7 rows. It

follows that 5 x 2 is the greedy math sine a retangle of width 1 annot have a larger

area. Obviously, this proedure an be used for omputing the largest monohromati

retangle in a given position (i; j) as well. If the 4 x 4 subarray in position (i; j)

is monohromati, then we ompute the largest monohromati retangle in that

position. Otherwise, we ompute the largest retangle math in the position provided

by the hash table and update the table with the urrent position. If the subarray

is not hashed to a pointer, then it is left unompressed and added to the hash table

with its urrent position. The positions overed by mathes are skipped in the linear

san of the image.

As pointed out in [SH97℄, for typial bi-level images this sheme is extremely

fast for square mathes and there is no signi�ant slowdown over simply reading and

writing the image. As mentioned in the introdution, in [SH97℄ it is shown that the

retangle greedy mathing tehnique requires O(M logM) time where M is the size

of the math. Therefore, O(n logM) is the best sequential time for an image of size n

if we ompress by retangle mathing with M the maximum size of a retangle. The

enoding sheme is to preede eah item with a ag �eld indiating whether there

is a monohromati square (0 for white, 10 for blak), a math (110) or raw data

(111). Pointers are enoded with the straightforward enoding with three integers

for x, y and size while a simple variable-length ode is used to speify the size of a

monohromati square. We also mentioned in the introdution that a key issue for

3
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Figure 2: The largest math in (0,0) and (6,6) is omputed at step 5.

pratial implementations is how pointers are enoded. As pointed out in [SH97℄, good

pointer oding shemes are important for text ompression and beome even more

important for images sine the number of mathes that are used is typially less than

the number found and the straightforward oding uses many more bits per pointer.

With retangular mathes this issue beomes even more signi�ant. The enoding of

monohromati retangles is a dominant fator of the ompression performane and

the eÆieny of the method inreases with large images.

In [CDG01℄ we experimented our retangle greedy mathing algorithm with a

bounded size ditionary de�ned by a window omprising the last 64K pixels read. We

bounded by twelve the number of bits to enode either the width or the length of a

retangle math. We use either four or eight or twelve bits to enode one retangle

side. Therefore, nine di�erent kinds of retangle are de�ned. A pointer is enoded in

the following way:

� the ag �eld indiating the type of item;

� if the item is not monohromati, sixteen bits whih are raw or indiating the

position of the math in the window;

� three or four bits enoding one of the nine kinds of retangle;

� bits for the length and the width.

Larger retangles are less frequent but still relevant for the ompression performane.

Then, four bits are used to indiate when twelve bits or eight and twelve bits are

needed for the length and the width. This way of enoding retangles plays a relevant

role for the ompression performane. In fat, it wastes four bits when twelve bits are

required for the sides but saves four to twelve bits when four or eight bits suÆe. On

4



AWork-Optimal Parallel Implementation of Lossless Image Compression by Blok Mathing

the CCITT bi-level image test set, we ahieved 75 to 90 perent of the ompression

of JBIG1.

3 The Parallel Algorithm

To ahieve logarithmi time we partition an m x n image I in x x y retangular

areas where x and y are �(log

1=2

mn). In parallel for eah area, one proessor applies

the sequential parsing algorithm so that in logarithmi time eah area will be parsed

in retangles, some of whih are monohromati. We do not allow overlapping of

the monohromati retangles when we apply the sequential algorithm to eah area.

Eah proessor ould work with a sliding window of size 64K and bounded mathes,

using the same pointer enoding sheme desribed in the previous setion. However,

before enoding we wish to ompute larger monohromati retangles. If we ompute

unbounded monohromati retangles, the oding for them ould be the ag �eld, log

m bits for the length and log n bits for the width.

In the desription of the algorithm, we use four m x n matries RC, CC, W and

L whih are determined by the parsing proedure on eah area. RC[i; j℄ and CC[i; j℄

are equal to zero if I[i; j℄ is not overed by a monohromati retangle, otherwise

they are equal to the row and olumn oordinate of the left upper orner of the

monohromati retangle. W [i; j℄ and L[i; j℄ are equal to zero if I[i; j℄ is not overed

by a monohromati retangle, otherwise they are equal to the width and length of

the monohromati retangle. We also use four matries TRC, TCC, TW and TR

to store temporary values needed for the omputation of the �nal parsing, whih are

initially set to RC, CC, W and L. The proedure to ompute larger monohromati

retangles works as in Fig. 3.

Basially, we try to merge monohromati retangles adjaent on the horizontal

boundaries and then on the vertial boundaries, doubling in this way the length and

width of eah area at eah step. It is always the retangle of an area in odd position

with respet either to the vertial or horizontal order whih tries to merge with the

adjaent retangle in the next area. Generally, this merging operation auses that the

retangles split into two or three subretangles. The retangle from whih we start

the merging is split in at most two subretangles sine we want to preserve the upper

left orner. The merging is realized by updating the temporary matries storing the

information on the monohromati retangles omputed on the image. If we obtain a

larger retangle then we update the original matries, otherwise we ontinue merging

by working with the temporary values to see if we an get a larger retangle later.

We desribe the proedure more in details. At the �rst line internal to the main

loop (Figure 3), we onsider in parallel the left lower orners of monohromati ret-

angles of the areas in odd positions whih are adjaent to a monohromati retangle

with the same olor in the next area below. Then, at line 3 we hange the width and

length of the retangle onsidered, where the length is the sum of the lengths of the

two adjaent retangles and the width hanges if the right orners of the retangle in

the next area are to the left of the right orners of the other retangle. At line 4 and

5 the values in the temporary matries are hanged also for the pixels in the next

area sine they merged. Obviously, these hanges an be made with optimal work in

logarithmi time. As mentioned above, the merging auses a splitting of retangles

into subretangles and the values in the temporary matries must be rede�ned also

5
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Figure 3: How to ompute monohromati retangles in parallel.

for the pixels overed by the other retangles produed by the merging. This is done

from line 6 to 10. In parallel we onsider all the pixels for whih, aording to the

temporary values, either they are not on the leftmost olumn of a retangle and the

adjaent pixels in front of them result to be on the rightest olumn of a retangle

(line 6) or they are on the leftmost olumn (line 7). For eah of them, we ompute

the losest pixel to the right for whih, aording to the temporary values, either it

is not on the rightmost olumn of a retangle and the next pixel results to be on the

leftmost olumn of a retangle (line 8) or it is on the rightmost olumn of a retan-

gle (line 9). Being this pixel the losest to the one omputed in lines 6 and 7, they

must be on the rightmost and leftmost olumn of the same monohromati retangle

respetively. This is rede�ned in the temporary matries at line 10. At this point,

for eah left upper orner of a monohromati retangle (line 11) if we obtained a

larger retangle after the merging (line 12) we an ovewrite the information on the

6
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new retangle on the original matries (line 13). Observe that this way of updating

the matries may introdue overlapping of the monohromati retangles. Then, we

repeat the same proedure trying to merge retangles horizontally (line 14{26).

To analize the omplexity of the algorithm, it is enough to onsider that at eah

iteration of the main loop we double the sides of the areas and to reall the lassial

parallel pre�x omputation tehnique. All the statements inside the loop require

logarithmi time with optimal parallel work (lines 8{9 and 21{22 by parallel pre�x).

Sine no operation is exeuted if there is nothing to merge, the total running time

with optimal parallel work is O(log n logM), where M is the maximum size of a

monohromati retangle. Then, from the matries we an easily derive the sequene

of pointers with optimal parallel work and logarithmi time by parallel pre�x.

4 Conlusions

In this paper, we showed a work-optimal parallel algorithm for lossless image ompres-

sion by blok mathing using a retangle greedy mathing tehnique whih requires

O(logM logn) time. The algorithm is suitable for an implementation on pratial

parallel arhitetures as meshes of trees, multigrids and pyramids.

As future work, a detailed study on how the algorithm must be implemented on

these arhitetures ould be provided. Also, pratial parallel algorithms for deom-

pression should be designed.
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A Note on Randomized Algorithm for String

Mathing with Mismathes

Kensuke Baba, Ayumi Shinohara,

Masayuki Takeda, Shunsuke Inenaga, and Setsuo Arikawa

Department of Informatis, Kyushu University 33, Fukuoka 812-8581, Japan

e-mail: fbaba, ayumi, takeda, s-ine, arikawag�i.kyushu-u.a.jp

Abstrat. Atallah et al. [ACD01℄ introdued a randomized algorithm for string

mathing with mismathes, whih utilized fast Fourier transformation (FFT)

to ompute onvolution. It estimates the sore vetor of mathes between text

string and a pattern string, i.e. the vetor obtained when the pattern is slid

along the text, and the number of mathes is ounted for eah position. In this

paper, we simplify the algorithm and give an exat analysis of the variane of

the estimator.

Key words: Pattern mathing, mismath, FFT, onvolution, randomized al-

gorithm

1 Introdution

Let T = t

1

; : : : ; t

n

be a text string and P = p

1

; : : : ; p

m

be a pattern string over

an alphabet �. String mathing problem is to �nd all ourrenes of the pattern

P in the text T . Approximate string mathing problem is to �nd all ourrenes

of small variations of the original pattern P in the text T . Substitution, inser-

tion, and deletion operations are often allowed to introdue the variations. In this

paper, we allow the substitution operation only. The derived problem is usually

alled string mathing with mismathes. It is essentially to ompute the sore ve-

tor C(T; P ) = (

1

; : : : ; 

n�m+1

) between T and P , where eah 

i

ounts the number

of mathes between the substring t

i

; : : : ; t

i+m�1

of the text T and the pattern P .

If 

i

= m, the pattern exatly ours at position i in the text. Fig. 1 shows an

example of the sore vetor. A reasonable amount of e�ort has been paid for this

problem [Abr87, BYG92, BYP96, FP74, Kar93℄. Refer the textbooks [CR94, Gus97℄

to know the history and various results.

Reently, Atallah et al. [ACD01℄ introdued a randomized algorithm of Monte-

Carlo type whih returns an estimation of the sore vetor C(T; P ). The estimation

is performed by averaging independent equally distributed estimates. Let k be the

number of ramdomly sampled estimations, then the time omplexity is O(kn logm)

by utilizing a fast Fourier transformation (FFT). They showed that the expeted

value of the estimation is equal to the sore vetor, and that the variane is bounded

by (m� 

i

)

2

=k.

In this paper, we give a slight simpli�ation of their algorithm. Moreover, we

analyze the variane of the estimator exatly.

9
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i 1 2 3 4 5 6 7 8 9 10

text a  b a b b a   b

pattern a b b a 

a b b a 

a b b a 

a b b a 

a b b a 

a b b a 



i

3 1 1 5 2 0

Figure 1: Sore vetor between the text ababbab and the pattern abba.

2 Preliminaries

Let N be the set of non-negative integers. Let � be a �nite alphabet. An element of

�

�

is alled a string. The length of a string w is denoted by jwj. The empty string is

denoted by ", that is, j"j = 0. We denote the ardinality of a set S by jSj or #S.

We de�ne a funtion Æ from �� � to f0; 1g by

Æ(a; b) =

�

1 if a = b,

0 if a 6= b.

For a text string T = t

1

t

2

: : : t

n

and a pattern string P = p

1

p

2

: : : p

m

, the sore

vetor of mathes between T and P is de�ned as C(T; P ) = (

1

; 

2

; : : : ; 

n�m+1

), where



i

=

P

m

j=1

Æ(t

i+j�1

; p

j

). That is, 

i

is the number of mathes between the text and

the pattern when the �rst letter of the pattern in positioned in front of the ith letter

of the string.

3 Deterministi Algorithm

In this setion, we introdue a deterministi algorithm to ompute the sore vetor

for given text T and pattern P . Although it might not be pratial for large alphabet,

it will be a base for the randomized algorithm explored in the next setion.

3.1 Binary Alphabet Case

We �rst onsider a binary alphabet � = fa; bg. We de�ne a funtion  : �! f�1; 1g

by  (a) = 1 and  (b) = �1. By using  , we onvert the strings T and P into the

sequenes of integers as follows.

 (T ) =  (t

1

);  (t

2

); : : : : : : : : : ;  (t

n

);

 (P ) =  (p

1

);  (p

2

); : : : ;  (p

m

):

Let A

 

(T; P ) = (a

 

1

; a

 

2

; : : : ; a

 

n�m+1

) where a

 

i

=

m

X

j=1

 (t

i+j�1

) �  (p

j

).

10
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Lemma 1 For any 1 � i � n�m + 1, 

i

= (a

 

i

+m)=2.

Proof. Sine 

i

= #fj j t

i+j�1

= p

j

; 1 � j � mg, we have a

 

i

= #fj j t

i+j�1

=

p

j

; 1 � j � mg �#fj j t

i+j�1

6= p

j

; 1 � j � mg = 

i

� (m � 

i

) = 2

i

�m. Thus



i

= (a

 

i

+m)=2. 2

The above lemma implies that we have only to ompute A

 

(T; P ) to get the sore

vetor C(T; P ). Sine the sequene A

 

(T; P ) is the onvolution of  (T ) with the

reverse of  (P ), we an alulate all the a

i

's simultaneously by the use of fast Fourier

transform (FFT) in O(n logm) time as follows. As is stated in [ACD01℄, we addition-

ally apply the standard tehnique [CR94℄ of partitioning the text into overlapping

hunks of size (1 + �)m eah, and then proessing eah hunk separately. Proessing

one hunk gives us �m omponents of C. Sine we have n=(�m) hunks and eah

hunk an be omputed in O((1 + �)m log((1 + �)m)) by FFT, the total time om-

plexity is

n

�m

�O((1 + �)m log((1 + �)m)) = O

�

(1+�)

�

n log((1 + �)m)

�

= O(n logm)

by hoosing � = O(m).

Theorem 1 For a binary alphabet, the sore vetor C an be exatly omputed in

O(n logm) time.

3.2 General Case

We now onsider general ase j�j > 2. Let 	

�

be the set of all mappings from � to

f�1; 1g. Remark that j	

�

j = 2

j�j

. We abbreviate 	

�

with 	 when � is lear from

the ontext. The next lemma is obvious.

Lemma 2 For any  2 	

�

and any a; b 2 �,

 (a) �  (b) =

�

1 if  (a) =  (b),

-1 if  (a) 6=  (b).

Lemma 3 For any a; b 2 �,

1

j	j

X

 2	

 (a) �  (b) = Æ(a; b):

Proof. In ase of a = b, then  (a) =  (b) for any  2 	. Therefore  (a) �  (b) = 1

for any  by Lemma 2, and the sum

P

 2	

 (a) �  (b) equals to the ardinality of 	.

Thus, the left side of the equation is unity.

To prove the lemma in ase of a 6= b, we show a more general proposition:

X

 2	

 (d

1

) � � � � �  (d

n

) �  (b) = 0 if d

1

6= b; � � � ; d

n

6= b (n � 0):

By the assumption that b is distint from d

1

; � � � ; d

n

,

X

 2	

 (d

1

) � � � � �  (d

n

) �  (b)

=

X

 (b)=1; 2	

 (d

1

) � � � � �  (d

n

) � 1 +

X

 (b)=�1; 2	

 (d

1

) � � � � �  (d

n

) � (�1)

= 0:

Thus, by the proposition for n = 1, the left side of the equation is zero. 2

11
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Theorem 2 For any 1 � i � m� n+ 1,



i

=

1

j	j

X

 2	

a

 

i

: (1)

Proof. By the de�nition of a

 

i

and Lemma 3, the right side of the equation an be

hanged as follows.

1

j	j

X

 2	

a

 

i

=

1

j	j

X

 2	

m

X

j=1

 (t

i+j�1

) �  (p

j

)

=

m

X

j=1

1

j	j

X

 2	

 (t

i+j�1

) �  (p

j

)

=

m

X

j=1

Æ(t

i+j�1

; p

j

):

Sine the last formula is the de�nition of 

i

, the theorem is proved. 2

Theorem 3 C(T; P ) an be exatly omputed in O(2

j�j

n logm) time.

Proof. By Theorem 2 

i

is the mean of a

 

i

for every  2 	

�

, therefore C(T; P )

is obtained by omputing all A

 

(T; P ). Sine eah A

 

(T; P ) an be omputed in

O(n logm) time, we an alulate C(T; P ) in O(2

j�j

n logm) time. 2

We note that if the alphabet � is in�nite, by splitting the text in hunks of length

O(m) to be dealt with independently ensures it will work with an alphabet size O(m),

so that C(T; P ) an be exatly omputed in O(2

O(m)

n logm).

4 Randomized Algorithm

A shortoming of the deterministi algorithm in the last setion is that the running

time is exponential with respet to the size of alphabet. It is not pratial for large

alphabet. In this setion, we propose a randomized algorithm whih was inspired by

Atallah et al. [ACD01℄.

Let us notied that Theorem 2 an be interpreted as follows. Eah 

i

is the

mean of random variable X

i

=

P

m

j=1

 (t

i+j�1

) �  (p

j

), assuming that  is drawn

uniformly randomly from 	. The observation leads us to the following randomized

algorithm. Instead of omputing all vetors A

 

(T; P ) = (a

 

1

; a

 

2

; : : : ; a

 

n�m+1

) where

a

 

i

=

P

m

j=1

 (t

i+j�1

) �  (p

j

) to average them, we ompute only k samples of them

for randomly hosen  

1

; : : : ;  

k

2 	. Sine the expeted value of X

i

equals to 

i

, it

will give a good estimation for large enough k. We will give a formal proof of it, and

exatly analyze the variane of X

i

in the sequel. Fig. 2 illustrates the ore part of the

algorithm for the basi ase n = (1 + �)m.

We now analyze the mean and the variane of the estimator ̂

i

. Sine all the

random variable ̂

i

are de�ned in a similar way, we generially onsider the random

variable

ŝ =

1

k

k

X

`=1

m

X

j=1

 (t

j

) �  (p

j

)

12
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Proedure EstimateSore

Input: a text T = t

1

: : : t

(1+�)m

and a pattern P = p

1

: : : p

m

in �

�

.

Output: an estimate for the sore vetor C(T; P ).

for ` := 1 to k do begin

randomly and uniformly selet a  

`

from 	

�

.

Let T

`

=  

`

(T ). Note that T

`

is a sequene over f�1; 1g of length (1 + �)m.

Let P

`

be the onatenation of  

`

(P ) with trailing �m zeros.

ompute the vetor C

`

as the onvolution of T

`

with the reverse of P

`

by FFT.

end

ompute the vetor

^

C =

1

k

k

X

`=1

C

`

and output it as an estimate of C(T; P ).

Figure 2: Randomized Algorithm

where the t

j

's and the p

j

's are �xed and mapping  's are independently and uniformly

seleted from 	

�

. The de�nition implies that ŝ is the mean of k random variables

whih are drawn from independent and idential distribution. The random variable

an be de�ned by

s =

m

X

j=1

 (t

j

) �  (p

j

);

and the mean E(ŝ) and variane V (ŝ) are

E(ŝ) = E(s) and V (ŝ) =

V (s)

k

:

The number  of mathes between T = t

1

: : : t

m

and P = p

1

: : : p

m

is

 =

m

X

j=1

Æ(t

j

; p

j

):

Lemma 4 The mean of ŝ is equal to .

Proof. By Lemma 3,

E(ŝ) = E(s) =

1

j	j

X

 2	

s

=

1

j	j

X

 2	

m

X

j=1

 (t

j

) �  (p

j

)

=

m

X

j=1

1

j	j

X

 2	

 (t

j

) �  (p

j

)

=

m

X

j=1

Æ(t

j

; p

j

):

Thus, the mean of ŝ is . 2

13
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In order to analyze the variane of s aurately, we introdue the following funtion

�

T;P

: � � �! N depending on text T = t

1

: : : t

m

and pattern P = p

1

: : : p

m

, whih

give a statistis of T and P .

�

T;P

(a; b) = #fj j t

j

= a and p

j

= b; 1 � j � mg

For example, let T = aaba and P = abbba. Then �

T;P

(a; b) = 2, �

T;P

(a; a) =

�

T;P

(b; b) = �

T;P

(; a) = 1, and the others are zero. We omit the subsription T; P of

�

T;P

in the sequel. In addition, we use the following expression.

�(a; b) = �(a; b) + �(b; a):

The next lemma is obvious from the de�nition.

Lemma 5

X

(a;b)2���

�(a; b) =

1

2

X

(a;b)2���

�(a; b) = m.

The next lemma gives the exat variane of ŝ, in terms of �.

Lemma 6 The variane of ŝ is

V (ŝ) =

1

k

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

:

Proof. Sine the mean of s equals to  by Lemma 4,

V (ŝ) =

1

k

V (s) =

1

k

1

j	j

X

 2	

(s� )

2

:

By the de�nition of �,

s =

X

(a;b)2���

 (a) �  (b) � �(a; b)

=

X

a=b

�(a; b) +

X

a6=b

 (a) �  (b) � �(a; b); and

 =

X

a=b

�(a; b):

Therefore,

1

j	j

X

 2	

(s� )

2

=

1

j	j

X

 2	

  

X

a=b

�(a; b) +

X

a6=b

 (a) �  (b) � �(a; b)

!

�

X

a=b

�(a; b)

!

2

=

1

j	j

X

 2	

 

X

a6=b

 (a) �  (b) � �(a; b)

!

2

=

1

j	j

X

 2	

 

X

a6=b

 (a) �  (b) � �(a; b)

! 

X

a

0

6=b

0

 (a

0

) �  (b

0

) � �(a

0

; b

0

)

!

=

1

j	j

X

 2	

X

a6=b

X

a

0

6=b

0

 (a) �  (b) � �(a; b) �  (a

0

) �  (b

0

) � �(a

0

; b

0

)

=

X

a6=b

 

�(a; b) �

X

a

0

6=b

0

�(a

0

; b

0

)

1

j	j

X

 2	

 (a) �  (b) �  (a

0

) �  (b

0

)

!

:

14
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Let us take �(a; b; a

0

; b

0

) =

1

j	j

X

 2	

 (a) �  (b) �  (a

0

) �  (b

0

), and show that

�(a; b; a

0

; b

0

) =

�

1 if either a = a

0

and b = b

0

, or a = b

0

and a

0

= b,

0 otherwise,

by the ase analysis whether there exists a distint harater from the others in

a; b; a

0

; b

0

. If there exists suh a harater, then �(a; b; a

0

; b

0

) = 0 by the proof of

Lemma 3. If there does not exist suh a harater, then we have either a = a

0

and

b = b

0

, or a = b

0

and b = a

0

by the assumption that both a 6= b and a

0

6= b

0

. Then,

by Lemma 3 and the fat that  (a)

2

= 1 for any  2 	 and any a 2 � sine

 (a) 2 f�1; 1g,

�(a; b; a

0

; b

0

) =

1

j	j

X

 2	

 (a)

2

�  (b)

2

= 1:

Thus,

V (ŝ) =

1

k

X

a6=b

�(a; b) (�(a; b) + �(b; a))

=

1

k

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

:

2

Moreover, by the de�nition of � , we have

X

a6=b

�

�(a; b)

2

+ �(a; b) � �(b; a)

�

=

1

2

X

a6=b

�

�(a; b)

2

+ 2�(a; b) � �(b; a) + �(b; a)

2

�

=

1

2

X

a6=b

(�(a; b) + �(b; a))

2

=

1

2

X

a6=b

�(a; b)

2

=

X

a<b

�(a; b)

2

:

Therefore, the variane an be exatly restated in term of � as follows, whih might

be more intuitive.

Theorem 4 The variane of ŝ is

V (ŝ) =

1

k

X

a<b

�(a; b)

2

:

Remind that �(a; b) represented the number of positions j = 1; : : : ; m in T and

P , suh that (t

j

; p

j

) is either (a; b) or (b; a). If T exatly mathes P , then V (ŝ) = 0,

whih implies that the estimation is always m, without any error. On the other hand,

sine

P

a<b

�(a; b) = m � , the variane V (ŝ) is maximized for inputs whih have

no math and are onstruted by only two haraters, for example, T = aaaaaa,

P = bbbbbb, and T = aaabba, P = bbbaab.

We now state the bound of the variane of ŝ in terms of m and , that exatly �ts

to the one proved by Atallah et al. [ACD01℄.

15
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Lemma 7 The variane of ŝ is bounded as follows.

V (ŝ) �

(m� )

2

k

:

Proof. By Lemma 5,

m�  =

X

(a;b)2���

�(a; b)�

X

a=b

�(a; b)

=

X

a6=b

�(a; b)

=

1

2

X

a6=b

�(a; b)

=

X

a<b

�(a; b):

Therefore, by Theorem 4,

(m� )

2

k

� V (ŝ) =

1

k

 

X

a<b

�(a; b)

!

2

�

1

k

X

a<b

�(a; b)

2

=

1

k

X

a<b

 

�(a; b) �

X

a

0

<b

0

�

�(a

0

; b

0

)

!

;

where

X

a

0

<b

0

�

�(a

0

; b

0

) expresses the sum of �(a

0

; b

0

) exept for the two ases a

0

= a; b

0

= b

and a

0

= b; b

0

= a. Sine �(a; b) � 0 for any a and b, the last formula is not less than

zero. 2

We now have the main theorem.

Theorem 5 Algorithm EstimateSore runs in O(kn logm) time. The mean of

the estimation equals to the sore vetor C, and the variane of eah entry is bounded

by (m� 

i

)

2

=k.

5 Conlusion

We gave a randomized algorithm for string mathing with mismathes, whih an

be regarded as a slight simpli�ation of the one due to Atallah et al. [ACD01℄. For

omparison, we give a brief desription of their algorithm. It treats the set 	

0

of all

mappings from � to f0; 1; : : : ; j�j � 1g, and the basi equation is



i

=

1

j	

0

j

X

 2	

0

m

X

j=1

!

 (t

i+j�1

)� (p

j

)

; (2)

where ! is a primitive j�jth root of unity. When j�j = 2, we know ! = �1, and that

the equation (2) diretly orresponds to the equation (1) in ours. The di�erene is

how to treat general alphabet j�j > 2. In our algorithm, the onverted sequene  (T )

16
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is simply over f�1; 1g, while in their algorithm  (T ) is over f1; !; !

2

; : : : ; !

j�j�1

g that

are omplex numbers. When omputing the onvolution by FFT, the omputation of

the former will be muh simpler (and possibly faster) than the latter. From the view

point of the preision of the numerial alulations, the former might be preferable to

the latter, although we have not yet studied expliitly. Moreover, this simpli�ation

enabled us to reah the exat estimation of the variane (Theorem 4), by fairly prim-

itive disussion. An interesting point is that the variane is still independent from

the size of alphabet, although we map � into f�1; 1g, instead of f0; 1; : : : ; j�j � 1g.

In their paper [ACD01℄, they onsidered various extensions, suh as string math-

ing with lasses, lass omponents, \never math" and \always math" symbols,

weighted ase, and higher dimension arrays. We think our simpli�ation will be

valid without any diÆulty for all those extensions, although we have not ompletely

veri�ed them yet.
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Abstrat. This paper disusses the number of legal strings of n pairs of paren-

theses as well as a struture of the set of these strings. As the number of suh

strings is known to be the Catalan number, a struture of Catalan numbers is

thereby developed. A reursive funtion is developed that ounts the set and

alulates the Catalan number. The funtion uses two parameters and is thus

a generalization of Catalan numbers.

Key words: Parenthetial strings, reursive funtions, stringology, ombina-

toris, generalized Catalan numbers.

1 Introdution

This paper onerns the problem of alulating the number of legal strings of paren-

theses that an be onstruted from n pairs of parentheses. This number is known to

be the Catalan number. There is a large literature of Catalan number interpretations

and onnetions [2, 3, 4, 5, 6, 7℄. Stanton and White have a proof of the orre-

spondene between Catalan numbers and legal parenthetial strings[7℄. The Catalan

number is de�ned as

C

n

=

�

2n

n

�

� (n+ 1):

The ordinary meaning of \legal strings" of parentheses is intended here: 1) The

strings are onventionally onstruted from left to right. 2) At any point in the

string, the number of left parentheses is equal to or greater than the number of right

parentheses. 3) all of the 2n parentheses are used.

For example, C

3

= 5; the legal strings of 3 pairs of parentheses are

( ( ( ) ) ), ( ( ) ( ) ), ( ( ) )( ), ( ) ( ( ) ), and ( ) ( ) ( ).

The paper o�ers a way to alulate Catalan numbers with a reursive funtion

and a struture of the strings and the number.
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2 Outline

Four areas emerge from onsideration of this funtion:

2.1 A Chart

This is a hart of the onstrution of the C

n

legal parenthetial strings omposed of

n pairs of parentheses. The number of suh strings is an interpretation of Catalan

numbers. The hart an be interpreted as a rooted tree. Evaluation of the funtion

ounts the leaves of the tree.

2.2 A Funtion

The funtion, denoted here by B

n;m

, uses two parameters. The n

th

Catalan number,

C

n

, is produed by B

n;0

. The domain of both parameters of B

n;m

is the non-negative

integers. In the reursive desent, m takes on values both higher and lower than n.

2.3 A Generalization

This generalization of Catalan numbers is based on the two parameters. It inludes

C

n

:

2.4 A Struture

This struture of Catalan numbers is suggested by the hart but an be expressed

algebraially.

3 Elaboration

3.1 The Chart

The idea behind the hart is simply writing the legal parenthetial expressions a-

ording to the de�nition above.

(

(

(

(

(

(

(

(

)

)

)

)

E.g. (()())

Figure 1: Forming all legal arrangements of 3 pairs of parentheses
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Consider this as a rooted tree. Eah edge represents adding a parenthesis. If there

are two edges desending from a vertex, then there is a hoie of adding a left or right

parenthesis at that point. By following all paths from the root to a leaf, all legal

expressions have been written. Note that �nal right parentheses are not needed to

ount leaves.

The steps in drawing the hart are:

1. Start at the top with n pairs of parentheses.

2. Stop if there are no more left parentheses.

3. Draw a vertial line downwards. This represents a left parenthesis and \uses"

one. If the number of left parentheses used (before this one was drawn) exeeds

the number of right ones used, draw another line from the same starting point

but to the right and then urving downwards. This represents a right parenthesis

and uses one.

4. Repeat steps 2, 3, and 4 for eah end point.

The vertex at the botton of eah line drawn represents the parenthetial string as

onstruted so far.

These onventions are somewhat arbitrary, as onventions must be, but they result

in a piture that is regular and easy to understand. The hart was helpful in de�ning

the funtion and disovering the struture.

3.2 The Funtion

B

n;m

=

8

<

:

B

n�1;m+1

+B

n;m�1

if (n > 0) ^ (m > 0)

B

n�1;m+1

if (n > 0) ^ (m = 0)

1 if (n = 0)

Eah part of the hart orresponds to a ase of the funtion. Figure 2 relates the

parts of the hart to the ases of the funtion.

Where one line descends from a vertex
B(n,m)=B(n−1,m+1)

Where two lines descend from a vertex
B(n,m)=B(n−1,m+1)+B(n,m−1)

Where no lines descend from a veretx
B(n,m)=1

Figure 2: Relationship between the hart and ases of the funtion
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(

(

(

(

(

(

(

(

)

)

)

)

 3,0

1,2

0,3

0,3

0,21,2

0,3

0,2

2,0

1,1

1,2

1,1

2,1

Figure 3: Parameters of B

3;0

at eah vertex

The parameters of the funtion B

n;m

take on di�erent values at di�erent points in

the reursive desent. Figure 3 shows the parameters at eah stage for B

3;0

.

Parameter n represents the number of left parentheses that an be used from that

point onward. Parameter m represents the number of additional right parentheses

needed to balane the number of left parentheses already used. Considered onstru-

tively, m represents the number of right parentheses that may be written at that

point. When a left parenthesis is written, n is redued and m is inreased. When a

right parenthesis is written, m is redued.

Of ourse, one the funtion is de�ned, it is freed of any neessary tie to paren-

theses.

If we say it is possible for any reursive funtion to be simple, then this funtion

is simple and perhaps more fundamental than the losed form. The losed form is

simpler to write. However, while the notation for \2n hoose n" is simple, it implies

more omplex ideas. The losed form has multipliation and division operations.

While the omparisons in the reursive funtions are obvious and expliitly shown,

there are also omparisons implied in any evaluation of the losed form.

Assuming that it is not possible to do algebra with the reursive funtion, it

seems less useful than the losed form. However, it is possible to do substitutions.

For example, B

4;1

an be restated as B

3;2

+ B

4;0

, and vie versa. Substitution ould

be used to de�ne the funtion di�erently, but the way the funtion was de�ned above

seems simple and it �ts well with the parentheses hart.

B

n;0

is far less eÆient omputationally than the losed form. This will be devel-

oped in the Appendix.

3.3 The Generalization

This funtion is a generalization of Catalan numbers. The standard Catalan number

C

n

= B

n;0

. Table 1 also inludes some of the others:

21



Proeedings of the Prague Stringology Conferene '02

M=0 1 2 3 4 5

N=0 1 1 1 1 1 1

1 1 2 3 4 5 6

2 2 5 9 14 20 27

3 5 14 28 48 75 110

4 14 42 90 165 275 429

5 42 132 297 572 1001 1638

6 132 429 1001 2002 3640 6188

7 429 1430 3432 7072 13260 23256

8 1430 4862 11934 25194 48450 87210

Table 1: Generalized Catalan Numbers B

n;m

for n 2 [0; 8℄, m 2 [0; 5℄.

3.4 The Struture

The struture an be expressed as:

C

n

= B

n�3;3

+ 2C

n�1

or as

C

n

= B

n�3;3

+ 2B

n�1;0

The hart for C

n

an be haraterized as having a left lobe and two equal right

lobes. The right lobes are equal both in struture and value. They are also eah equal

to C

n�1

in struture and value. Figures 4, 5, and 6 show the struture.

(

(

(

(

(

(

(

(

)

)

)

)

 3,0

1,2

0,3

0,3

0,21,2

0,3

0,2

2,0

1,1

1,2

1,1

2,1

Right lobe Right lobe

Left lobe

Figure 4: Struture of C

n

In Figure 5, the numeri parameters are replaed by symboli parameters in terms

of n and m. The hart \grows" from the bottom as n inreases. The three lobes will

always have the values B

n�3;3

, B

n�2;1

, and B

n�2;1

. These an be put in orrespondene

to the ways legal strings of parentheses may start: ( ( (, ( ( ), ( ) (. This is a basis

of a partition of any set of legal strings.
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Left lobe

(

(

(

(

(

(

(

(

)

)

)

)

 

Right lobe Right lobe

n,0

n−1,1

n−2,2

n−3,3 n−2,1

n−1,0

n−2,1

Figure 5: Struture of C

n

ontd.

Right lobeLeft lobe Right lobe

C

C2

3

Figure 6: Struture of C

4

or B

4;0

Figure 6 emphasizes the nested repetitions of struture. Note that C

3

(or C

n�1

)

is found twie and C

2

(or C

n�2

) is found four times.

The left lobe is di�erent. It starts out smaller than either right lobe and then

beomes larger, perhaps approahing the sum of the two right lobes as n gets large.

The value of the left lobe is B

n�3;3

. Here's a table of the �rst few values:

n 3 4 5 6 7 8

B

n�3;3

1 4 14 48 165 572

Table 2: Values of the left lobe B

n�3;3

for n 2 [3; 8℄.

These values were reognized by the On-Line Enylopedia of Integer Sequenes

as Sequene A002057, named the Fourth Convolution of Catalan Numbers [5℄. This

sequene is not pursued here.
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4 Further Work

1. What are appliations or interpretations of the generalized Catalan numbers?

2. There is doubtless something inherent in the problem that is reeted in the

struture, but it is not obvious what. The struture looks natural in terms of

the hart, but the hart is just one piture of one interpretation. Why not two

lobes? Four? Why any?

3. What is the preise behavior of the size of the left lobe?

4. Is B

n�3;3

the Fourth Convolution of Catalan numbers?

5 Conlusion

Consideration of the set of legal strings of n pairs of parentheses exposes a struture

of this set and of Catalan numbers. The rules for onstrution of legal strings of

parentheses an be reast from a general statement of priniples to partiular state-

ments of all the ases. This restatement an be expressed as a hart showing all of

the ases.

Examination of the hart shows the struture of the sets of strings. Given that

the ount of legal strings is known to be the Catalan number, the hart exposes a

simple and easily understood struture of Catalan numbers. Interpreting the hart

as a graph, a reursive funtion B

n;m

ounts the leaves of the graph (a tree) and

therefore alulates the Catalan number.

Taken together, the hart and the funtion provide a useful tool for gaining an

intuitive understanding of an important ombinatorial number. Developing the fun-

tion would be a good problem for students studying reursive funtions.

The funtion B

n;m

is interesting in its own right. First, it is remarkably sim-

ple, using only addition, subtration, and omparison. It should probably should be

onsidered more fundamental than the losed form whih additionally uses multipli-

ation, division, and fatorials. Seond, the funtion B

n;m

has two parameters and is

thus a generalization of Catalan numbers.

6 Appendix. Computational Complexity and Ef-

�ieny.

The losed form for alulating C

n

is learly more eÆient than the reursive B

n;0

.

However, examining omplexity and eÆieny an further illuminate the struture

of parenthetial strings and Catalan numbers. The omplexity of the losed form is

linear in n while that of B

n;0

is exponential.

This setion will only treat B

n;0

to failitate omparison with the losed form.

The term \C

n

" is used here to denote the number, not the method of alulating it.
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6.1 Comparison with the losed form.

Even without a preise expression for the omplexity of B

n;m

, it is possible to reason

about omplexity and do some measurements of it. The reasoning goes like this: 1)

The omplexity of B

n;0

is greater than the number C

n

. 2) C

n

is greater than the

omplexity of the losed form. 3) Therefore the omplexity of B

n;0

is greater than

that of the losed form. (It is muh greater.)

The unit ounted for the losed form is the number of multipliations. After

aneling ommon fators in the numerator and the denominator, the losed form

an be expressed as (2n)(2n � 1):::(2n � (n + 2)), alling for n � 2 multipliations,

here alled f(n).

The unit ounted for B

n;0

is the number of exeutions of the funtion. In many

arhitetures these two measures would not be ommensurate. However, the sizes of

the omplexity numbers dominate any di�erene. Using C

n

as a omplexity number,

the expression (2n)(2n� 1):::(2n� (n+ 2)) expands to a degree n� 1 polynomial in

n, here alled g(n).

It an be seen that f(n) is little-oh of g(n) sine lim

n!1

f(n)=g(n) = 0. In other

words, f(n) grows more slowly than g(n). In this ase it grows muh more slowly [8℄.

The fat that the omplexity of B

n;0

is greater than the number C

n

is lear from

the hart. The hart has C

n

leaves, eah ontributing 1 to the number of exeutions.

In addition there are many intermediate nodes above the leaves, so that the sum

of all exeutions is greater than C

n

. All this demonstrates that the omputational

omplexity of the losed form is little-oh of the omplexity of B

n;0

.

A numeri measurement of B

n;0

is shown in Table 3. (The algorithm based on

B

n;m

an be instrumented to ount exeutions by the appropriate plaement of \+1"

in the ases of the funtion.)

n 3 4 5 6 7 8

n� 2 1 2 3 4 5 6

B

n;0

13 36 106 328 1034 3485

Table 3: Complexity of the losed form vs. B

n;0

.

6.2 Complexity of di�erent implementations of B

n;m

.

6.2.1 \Bottom-up" implementation of a reursive funtion.

Due to the highly repetitive struture of B

n;m

, results toward the bottom of the hart

are realulated many times over. To justify this, onsider that the tree gets muh

wider than it is high. For example, at n = 8 the number of leaves is C

n

= 1430.

The longest path from the root to a leaf is 2n � 1. This shows that many of the

omputations are towards the bottom.

Blass and Gurevih use the term \bottom-up" to desribe the use of prealulated

results to avoid many realulations [1℄. As an example, the following fragment of

pseudo-ode expresses the B

n;m

as an algorithm. It avoids realulation of B

n;m

for

m;n 2 [0; 3℄.
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The values of T are from Table 1. Note that the ases are not disjoint. The order

of exeution resolves ambiguity.

var T = new Array ([1,1,1,1℄, [1,2,3,4℄, [2,5,9,14℄, [5,14,28,48℄);

funtion B(n,m) f

if ((n<4)&&(m<4)) return (T[n℄[m℄);

if ((n>0)&&(m>0)) return (B(n-1, m+1) + B(n, m-1));

if ((n>0)&&(m==0)) return (B(n-1, m+1));

if (n==0) return (1);

g

Table 4 shows measured omplexity for this version.

n 3 4 5 6 7 8

top-down 13 36 106 328 1054 3485

bottom-up 1 2 5 13 52 212

Table 4: Complexity of top-down vs. bottom up evaluation of B

n;0

.

6.2.2 Parallel Proessing.

The struture of B

n;m

presents both obstales and opportunities for parallelization.

The word \exeutions" will be used here the way \proesses" and \threads" are often

used.

Dividing the work.

It is easy to divide the funtion into parts to run on separate proessors. Consider

plaing a horizontal line on a drawing of the hart suh as Figure 4. Horizontal lines

an be drawn at various levels. The point at whih the new line intersets a vertial

line marks a plae where a separate proess an onsist of all the exeutions below the

intersetion. The level of the horizontal line would determine the number of parts.

This method would be suitable for a multi-proessor with few proessors.

Another approah uses the fat that the seond ase alls for two hild evaluations

of the funtion. One of these ould be sent to another proessor. This would lead to

many requests for proessors at large n.

Lateny.

Lateny is another important fator in parallelization. \Lateny" is used here to

mean the time to initiate and terminate an exeution, inluding passing parameters

and returning results. Sine the amount of proessing in the funtion is small, lateny

would be very important if the funtion were distributed over many proessors.

A Single Instrution Multiple Data (SIMD) mahine with many proessors and

low lateny would be good here. It would also take advantage of the fat that eah

exeution of the algorithm would use the same small program. However, in general

the struture of the funtion would limit its use on mahines with large numbers of

proessors unless lateny was very small.
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Inter-proess ommuniation.

Sine there would be no peer-to-peer ommuniation among exeutions, an exeution

would never be interrupted and suspended in the middle of proessing. Network

ontention and overhead would both bene�t from this harateristi of B

n;m

. Of

ourse, there is muh passing of parameters and results. This ontributes to lateny,

as developed above, and would be a signi�ant use of resoures.
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Abstrat. In this artile we present an on-line linear time algorithm, to hek

if an integer array f is a border array of some string x built on a bounded size

alphabet, whih is simplest that the one given in [2℄. Furthermore if f is a

border array we are able to build, on-line and in linear time, a string x on a

minimal size alphabet for whih f is the border array.

Key words: String algorithms, border array

1 Introdution

A border u of a string x is a pre�x and a suÆx of x suh that u 6= x. The omputation

of the borders of eah pre�x of a string x is strongly related to the string mathing

problem: given a string x, �nd the �rst or, more generally, all its ourrenes in a

longest string y. The border array of x is better known as the \failure funtion"

introdued in [4℄ (see also [1℄). Reently, in [2℄ a method is presented to hek if an

integer array f is a border array for some string x. The authors �rst give an on-line

linear time algorithm to verify if f is a border array on an unbounded size alphabet.

Then they give a more omplex algorithm that works on a bounded size alphabet.

Here we present a more simple algorithm for this ase. Furthermore if f is a border

array we are able to build, on-line and in linear time, a string x on a minimal size

alphabet for whih f is the border array. The resulting algorithm is elegant and

integrates three parts: the heking on an unbounded alphabet, the heking on a

bounded size alphabet and the design of the orresponding string if f is a border

array. The �rst two parts an work independently.

The remaining of this artile is organized as follows. The next setion introdues

basi notions and notations on strings and results from [2℄. Setion 3 presents our

new algorithm together with its orretness proof. Finally we give our onlusions in

Set. 4.

2 Bakground and basi string de�nitions

A string is a sequene of zero or more symbols from an alphabet �; the string with

zero symbols is denoted by ". The set of all strings over the alphabet � is denoted

1

This work was partially supported by a NATO grant PST.CLG.977017.
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by �

�

. We onsider an alphabet of size s; for 1 � i � s, �[i℄ denotes the i-th symbol

of �. A string x of length n is represented by x[1::n℄, where x[i℄ 2 � for 1 � i � n.

A string u is a pre�x of x if x = uw for w 2 �

�

. Similarly, u is a suÆx of x if x = wu

for w 2 �

�

. A string u is a border of x if u is a pre�x and a suÆx of x and u 6= x.

Let f [1::n℄ be an integer array suh that f [i℄ < i for 1 � i � n. For 1 � i � n, we

de�ne f

1

[i℄ = f [i℄ and for f [i℄ > 0, f

`

[i℄ = f [f

`�1

[i℄℄. We use the following notations:

� L(f; i� 1) = (f [i� 1℄; f

2

[i� 1℄; : : : ; f

m

[i� 1℄ = 0);

� C(f; i) = (1 + f [i� 1℄; 1 + f

2

[i� 1℄; : : : ; 1 + f

m

[i� 1℄) where f

m

[i� 1℄ = 0.

Note that L(f; 1) = (0) and that C(f; 1) is not de�ned.

A border u of x[1::i℄ with i > 0 has one of the two following forms:

� u = ";

� u = x[1::j℄x[j +1℄ with j +1 < i and where x[1::j℄ is a border of x[1::i� 1℄ and

x[i℄ = x[j + 1℄.

For 1 � i � n we denote by �

x

[i℄ the length of the longest border of x[1::i℄. The

array �

x

[1::n℄ is said to be the border array of the string x.

The lengths of the di�erent borders of x[1::i � 1℄ are given by the dereasing

sequene

L(�

x

; i� 1) = (�

x

[i� 1℄; �

2

x

[i� 1℄; : : : ; �

m

x

[i� 1℄)

where �

m

x

[i� 1℄ = 0 i.e. it is the length of the longest border �

x

[i� 1℄ followed by the

lengths of the borders of this longest border L(�

x

; �

x

[i� 1℄).

For i � 2, we say that an integer j+1 is andidate to be the length of the longest

border of x[1::i℄ if x[1::j℄ is a border of x[1::i � 1℄. In other words, for i � 2, saying

that j + 1 is andidate means that j 2 L(�

x

; i � 1). The dereasing sequene of

andidates for the length of the longest border of x[1::i℄ is

C(�

x

; i) = (1 + �

x

[i� 1℄; 1 + �

2

x

[i� 1℄; : : : ; 1 + �

m

x

[i� 1℄)

where �

m

x

[i� 1℄ = 0.

We say that an array f [1::n℄ is a valid border array, or simply that it is valid if

and only if it is the border array of at least one string x of length n.

The longest border of x[1℄ is neessarily the empty word, thus �

x

[1℄ = 0. The

length �

x

[i℄ of the longest border of x[1::i℄, if it is not empty, is taken among the

andidates C(�

x

; i). Thus we have a �rst neessary ondition for an array f [1::n℄ to

be valid:

NC

1

: f [1℄ = 0 and for 2 � i � n; f [i℄ 2 f0g+ C(f; i) :

If x[1::i℄ has the empty word for only border then we have �

x

[i℄ = 0.

If x[1::i℄ has a non-empty border, the length of the longest border veri�es

� �

x

[i℄ = maxfj + 1 j j 2 L(�

x

; i� 1) and x[i℄ = x[j + 1℄g, or equivalently

� �

x

[i℄ = maxfj + 1 j j + 1 2 C(�

x

; i) and x[i℄ = x[j + 1℄g.
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The length j + 1 of the longest border of x[1::i℄ is the �rst andidate in the list

C(�

x

; i) for whih x[j+1℄ = x[i℄ if it exists, otherwise the longest border has length 0.

This is the basis of the omputation of the funtion �

x

known as a \failure funtion"

given in [4℄.

Saying that j+1 is the largest andidate for whih x[j+1℄ = x[i℄ implies that this

is not true for any andidate j

0

+ 1 larger than j + 1, whih imposes that x[1::j + 1℄

annot be a border of x[1::j

0

+ 1℄ for a andidate j

0

+ 1 larger than j + 1. In other

words, �

x

[j

0

+ 1℄ is di�erent from j + 1 for any andidate j

0

+ 1 larger than j + 1.

This is thus a seond neessary ondition for an array f to be valid:

NC

2

: for i � 2 and for every j

0

+ 1 2 C(f; i) with j

0

+ 1 > f [i℄

we have f [j

0

+ 1℄ 6= f [i℄ :

Theorem 2.2 in [2℄ states that onditions NC

1

and NC

2

form a suÆient ondition for

f to be a valid border array. The authors give, for any valid array f , thus satisfying

onditions NC

1

and NC

2

, the omputation of a string x suh that f = �

x

, without any

restrition on the alphabet size. They give a simple linear time algorithm (Theorem

2.3) to test if an array f satis�es onditions NC

1

and NC

2

, on a unbounded size

alphabet. They give a more omplex algorithm in the ase of a bounded size alphabet.

Here we present a more simple algorithm whih determines in linear time, for a given

array f [1::n℄, for i from 1 to n, the minimum size of an alphabet neessary to build

a string x[1::i℄ whih border array is f [1::i℄.

3 New algorithm

We propose, in this setion, a linear time algorithm, whih determines, for an array

f [1::n℄ and an alphabet size s given as input:

1 { validity: if f [1::n℄ is a valid border array for at least one string z[1::n℄. This

point is essentially the same as in [2℄;

2 { alphabet: up to whih index it is possible to build a string whih border array

is f using an alphabet of size s;

3 { string: a string x, on a minimal size alphabet, whih border array is f .

Point 1 is independent from the other two points. Point 2 an work without the

other two points, in partiular when one assumes that the array f is valid and does

not want to build a orresponding string. Point 3 uses point 2.

The algorithm BABA (for Border Array on Bounded Alphabet) is given �gure 1.

We now state our main result.

Theorem 1 When applied to an integer array f [1::n℄ and an alphabet size s:

� The algorithm BABA runs in time �(n).

� If the array f given as input of the algorithm BABA is a valid border array at

index i � 1 but not at index i, the algorithm stops and returns \f invalid at

index i". The lines falphabetg and fstringg an be deleted without hanging

this result.
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Figure 1: Algorithm BABA

� If there exists a string for whih f [1::i� 1℄ is the border array and there is none

at index i with an alphabet of size s, the algorithm BABA stops and returns \s

exeeded at index i". Lines fstringg an be deleted without hanging this result.

If the array f is valid, lines fvalidityg an also be deleted.

� As long as f [i::1℄ is valid, the algorithm BABA builds a string x[1::i℄ on a

minimal size alphabet for the border array f [1::i℄. Lines fvalidityg an be

deleted without hanging the onstrution of the string. It is lear that if f is

invalid, it is not the border array of the string whih is built by the algorithm.

Before giving the proof of the previous theorem we �rst give a de�nition and

establish some intermediate results.

De�nition 1 Given a string x[1::n℄ and its border array �

x

, we denote by A(x; i)

the set of symbols that extend the pre�x x[1::i � 1℄ and its borders, in x: A(x; i) =

fx[i℄g [ fx[j + 1℄ j j + 1 2 C(�

x

; i)g.

Figure 2 gives a desription of L(�

x

; i� 1), C(�

x

; i) and A(x; i).

Lemma 1 For every string x[1::i℄ we have

1. fx[j + 1℄ j j + 1 2 C(�

x

; i)g = A(x; �

x

[i℄ + 1) ;

2. If �

x

[i℄ 6= 0 then x[i℄ = x[�

x

[i℄℄, �

x

[i℄ 2 C(�

x

; i) and A(x; i) = A(x; �

x

[i�1℄+1).

3. If �

x

[i℄ = 0 then �

x

[i℄ 62 C(�

x

; i) and A(x; i) = fx[i℄g [ A(x; �

x

[i� 1℄ + 1).

Proof:

1. Immediate;
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Figure 2: If for 1 � ` � 4, j

`

= �

`

x

[i � 1℄, j

4

= �

4

x

[i � 1℄ = 0, i

`

= 1 + �

`

[i � 1℄, then

L(�

x

; i � 1) = (j

1

; j

2

; j

3

; j

4

= 0), C(�

x

; i) = (i

1

; i

2

; i

3

; i

4

= 1) and A(x; i) is the set

whih is omposed of the gray symbols.

2. If �

x

[i℄ 6= 0 then �

x

[i℄ is a andidate of C(�

x

; i). Conerning the index of the

longest border we have x[i℄ = x[�

x

[i℄℄, �

x

[i℄ is a andidate in C(�

x

; i), x[i℄ is in

A(x; �

x

[i� 1℄ + 1);

3. �

x

[i℄ = 0 implies that there exists no andidate j + 1 2 C(�

x

; i) suh that

x[i℄ = x[j + 1℄.

2

Corollary 1 Let x[1::n℄ be a string and k[1::n℄ the array omputed by the algorithm

BABA with the input f = �

x

ignoring the fvalidityg and fstringg lines. Then, for

1 � i � n we have k[i℄ = ardA(x; i).

Proof: The proof of the orollary immediately follows from the algorithm BABA and

properties 2 and 3 of lemma 1. 2

Corollary 2 For every string x whih border array is f , the minimal ardinality of an

alphabet neessary to build eah pre�x x[1::i℄ is greater or equal to maxfk[1℄; k[2℄; : : :,

k[i℄g where k[1::n℄ is the array omputed by the algorithm BABA with the input f =

�

x

, ignoring lines fvalidityg and fstringg.

Proof: All the symbols of A(x; j) for 1 � j � i are symbols of the string x[1::i℄. Thus

the ardinality is greater or equal to the ardinality of eah A(x; j). 2

Proposition 1 Assume that array f [1::n℄ is valid. The string x build by the algo-

rithm BABA satis�es the following properties:

1. For 1 � i � n, �

x[1::i℄

= f [1::i℄ and A(x; i) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g;

2. The ardinality of the alphabet for eah pre�x x[1::i℄ is equal to

maxfk[1℄; k[2℄; : : : ; k[i℄g;
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3. The border array �

x

of the string x is equal to f .

Proof:

� We show the point 1 by indution on i. For i = 1: f [1℄ = 0, �

x[1::1℄

= f [1::1℄

and A(x; 1) = fx[1℄g = f�[1℄g. The property holds at index 1.

Assume that the property holds up to index i�1, then we have A(x; f [i�1℄+1) =

f�[1℄; �[2℄; : : : ; �[k[f [i� 1℄+ 1℄℄g (sine f [i� 1℄ < i� 1 thus f [i� 1℄+ 1 � i� 1)

and �

x[1::i�1℄

= f [1::i� 1℄.

If f [i℄ 6= 0 then sine f [1::i� 1℄ = �

x[1::i�1℄

and f satis�es onditions NC

1

and

NC

2

at index i, f [i℄ is the largest andidate j of C(f; i) suh that x[j℄ = x[f [i℄℄.

Thus, by setting x[i℄  x[f [i℄℄ we get �

x

[i℄ = f [i℄, k[i℄ = k[f [i � 1℄ + 1℄ and

A(x; i) = A(x; f [i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g.

If f [i℄ = 0 then k[i℄ = 1 + k[f [i � 1℄ + 1℄ and x[i℄  �[k[i℄℄ does not belong to

A(x; f [i� 1℄ + 1) thus �

x

[i℄ = 0, A(x; �

x

[i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[f [i�

1℄ + 1℄℄g, A(x; i) = f�[k[i℄℄g [ A(x; �

x

[i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g.

The property holds for i in both ases.

� Properties 2 and 3 are immediate onsequenes of property 1.

2

Proposition 2 Let f [1::n℄ be an integer array.

1. The algorithm BABA returns \f invalid at index i" if and only if f [1::i� 1℄ is

valid and f [1::i℄ is not;

2. The array f [1::i � 1℄ is the border array of the string x[1::i � 1℄ whih is built

by the algorithm BABA.

Proof: From proposition 1, as long as f [1::i℄ is valid, it is the border array of the

string x[1::i℄ whih is built by the algorithm BABA whih establishes the point 2.

If the algorithm BABA stops at index i = 1 and returns \f invalid at index 1", it

means that f [1℄ 6= 0 thus f [1::i℄ is invalid (note that this ase annot happen if the

ondition f [i℄ < i is ful�lled).

Now assume that at the beginning of iteration i we have: z[1::i � 1℄ is a string

whih border array is f [1::i� 1℄ and z an be extended with a symbol z[i℄ for whih

�

z

[i℄ = f [i℄.

We have z[i℄ = z[f [i℄℄, and �

z

[i℄ = f [i℄ is the largest andidate j

0

+ 1 2 C(�

z

; i) =

(1 + �

z

[i� 1℄; 1 + �

2

z

[i� 1℄; : : : ; 1 + �

m

z

[i� 1℄), suh that z[j

0

+ 1℄ = z[i℄ thus it is the

largest for whih z[j

0

+ 1℄ = z[f [j℄℄.

The three lines fvalidityg of the algorithm BABA reviews in dereasing order

the andidates j + 1 of C(�

z

; i).

� If the algorithm exits the while loop with j + 1 > f [i℄ and f [j + 1℄ = f [i℄, it

means that j + 1 is a andidate larger that f [i℄ for whih �

z

[j + 1℄ = f [i℄ thus

z[j + 1℄ = z[f [i℄℄ whih ontradits the fat that j

0

+ 1 is the largest andidate

suh that z[j

0

+ 1℄ = z[f [i℄℄. This ontradits the assumption that the string

z[1::i� 1℄ an be extended and that f [1::i℄ is valid.
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� If the algorithm exits the while loop with j+1 < f [i℄, it means that no andidate

j

0

+ 1 equal to f [i℄ were found. This ontradits the fat that f [i℄ = �

z

[i℄ and

that f [1::i℄ is valid.

In both ases, no string z[1::i� 1℄, whih border array is f [1::i� 1℄, an be extended,

then the algorithm returns \f invalid at index i".

If f [1::i℄ is valid then the algorithm does not stop at this index.

Assume now that at the beginning of iteration i we have: z[1::i � 1℄ is a string

whih border array is f [1::i� 1℄ and the while loop exits at index i with j +1 = f [i℄.

Let us set z[i℄ = z[f [i℄℄. Then f [i℄ = j + 1 is a andidate of C(�

z

; i) for whih

z[j + 1℄ = z[i℄ thus z[1::j + 1℄ is a border of z[1::i℄. Assume that z[1::j + 1℄ is not

the longest border of z[1::i℄. Let j

0

+1 be the smallest andidate whih is larger than

j + 1 and suh that z[1::j

0

+ 1℄ is a border of z[1::i℄. Then z[1::j + 1℄ is the longest

border of z[1::j

0

+ 1℄ and we have f [j

0

+ 1℄ = f [i℄ whih means that the loop should

have stop with this test and with j + 1 > f [i℄. This is a ontradition.

Thus the algorithm BABA runs as long as f [1::i℄ is valid, it stops at index i and

returns \f invalid at index i" if and only if f is valid up to index i� 1 and is not at

index i. 2

The proof of Theorem 1 beomes then immediate.

Proof:[of Theorem 1℄ The point 1 (linearity of the algorithm BABA) omes from [4℄.

The other two points follow from propositions 1 and 2. 2

Figures 3 and 4 show two examples.

i 1 2 3 4 5 6 7 8 9 10 11 12 symbols andidates valid

x[i℄ a b a a b a b a a b a

f [i℄ 0 0 1 1 2 3 2 3 4 5 6 ?

k[i℄ 1 2 1 2 2 1 2 1 2 2 1

a b a a b a b 7 yes

a b a a 4 yes

a b 2 no

" a 1 no

 0 yes if s > 2

Figure 3: The array f [1::11℄ is a valid border array. The string x[1::11℄ is the smallest

string for whih f [1::11℄ is a valid border array. Then x[1::11℄ = abaababaaba has

borders abaaba, aba, a and " of respetive lengths 6, 3, 1 and 0 (L(f; 11) = (6; 3; 1; 0)).

Thus the andidates for f [12℄ are 7, 4, 2 and 1 (C(f; 12) = (7; 4; 2; 1)) together with 0

whih is always a potential andidate. The values 7 and 4 are valid andidates. The

value 2 is not valid sine f [7℄ = 2 and 1 is not valid beause f [4℄ = 1. The value 0 is a

valid andidate if s > 2 beause then k[12℄ would be equal to 1+k[f [12� 1℄+1℄ = 3.

4 Conlusions

We presented in this artile an elegant algorithm that verify, on-line and in linear time,

if an integer array f is a border array of some string on a bounded size alphabet.
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i 1 2 3 4 5 6 7 8 9 10 11 12 symbols andidates valid

x[i℄ a a b a a  a a b a a

f [i℄ 0 1 0 1 2 0 1 2 3 4 5 ?

k[i℄ 1 1 2 1 1 3 1 1 2 1 1

a a b a a  6 yes

a a b 3 yes

a a 2 yes

" a 1 no

d 0 yes if s > 3

Figure 4: The array f [1::11℄ is a valid border array. The string x[1::11℄ is the smallest

string for whih f [1::11℄ is a valid border array. Then x[1::11℄ = aabaaaabaa has

borders aabaa, aa, a and " of respetive lengths 5, 2, 1 and 0 (L(f; 11) = (5; 2; 1; 0)).

Thus the andidates for f [12℄ are 6, 3, 2 and 1 (C(f; 12) = (6; 3; 2; 1)) together with

0 whih is always a potential andidate. The values 6, 3 and 2 are valid andidates.

The value 1 is not valid sine f [2℄ = 1. The value 0 is a valid andidate if s > 3

beause then k[12℄ would be equal to 1 + k[f [12� 1℄ + 1℄ = 4.

In the ase where f is a border array, we are also apable to build a string x, on a

minimal size alphabet for whih f is the border array.

After studying the ase of the \failure funtion" of the Morris and Pratt string

mathing algorithm, it is natural to ask the question if this work an be extended to

the \failure funtion" of the Knuth, Morris and Pratt string mathing algorithm [3℄.
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Abstrat. The spae requirement of Crohemore's repetitions algorithm is

generally estimated to be about 20MN bytes of memory, where N is the length

of the input string and M the number of bytes required to store the integer

N . The same algorithm an also be used in other ontexts, for instane to

ompute the suÆx tree of the input string in O(N logN) time for the purpose

of data ompression. In suh ontexts the large spae requirement of the algo-

rithm is a signi�ant drawbak. There are of ourse several newer spae-eÆient

algorithms with the same time omplexity that an ompute suÆx trees or ar-

rays. However, in atual implementations, these algorithms may not be faster

than Crohemore's. Therefore, we onsider it interesting enough to desribe a

new approah based on the same mathematial priniples and observations that

were put forth in Crohemore's original paper, but whose spae requirement is

10MN bytes. Additional advantages of the approah are the ease with whih

it an be implemented in C/C++ (as we have done) and the apparent speed of

suh an implementation in omparison to other implementations of the original

algorithm.

1 Introdution

Crohemore's algorithm [C81℄ omputes all the repetitions in a �nite string x of length

N in O(N logN) time. The algorithm in fat omputes rather more and an be used,

for instane, to ompute the suÆx tree of x, hene possibly as a tool for expressing x

in a ompressed form. In suh ontexts the spae requirement beomes as important

as the time omplexity. It appears that known implementations of Crohemore's algo-

rithm require at least 20MN bytes of memory for the task of re�ning the equivalene

lasses alone, where M is the number of bytes required to store the integer N .

Here we present a di�erent implementation based on the mathematial properties

and observations of [C81℄ and thus having the same time omplexity O(N logN) as

the original algorithm. However, the new data strutures used for the representation

1

Supported in part by grants from the Natural Sienes & Engineering Researh Counil of

Canada.
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of lasses and for the exeution of the re�nement proess allow the spae requirement

to be substantially redued.

There are several newer spae-eÆient algorithms to ompute suÆx trees or arrays

(notably [U92℄, [MM93℄) of the same worst-ase omplexity as Crohemore's. The

motivation for our investigation of a spae-eÆient implementation of the lassial

Crohemore's algorithm that may be ompetetive with these newer algorithms stems

from the fat that the atual implementations of these algorithms may not in fat be

any faster.

A large memory saving omes from the fat that our algorithm requires storage

for only N lasses at any given time, rather than 2N as in the original algorithm.

This alone brings the spae requirement down to 15MN . Of ourse there is some

extra proessing related to this redution in spae, but it does not a�et the time

omplexity, and in fat it appears that in pratie our implementation runs a good

deal faster than the standard implementation proposed in [C81℄. A further 5MN

spae redution is ahieved by smart utilization of the spae:

� allowing spae to be shared by data strutures, as in memory multiplexing |

for example, if a queue empties faster than a stak grows, then they an share

the same memory segment;

� spreading one data struture aross several others, as in memory virtualization.

Taken together, these \triks" bring the spae requirement down to 10MN .

Additional advantages of this approah are the ease with whih it an be imple-

mented in C/C++ (as we have done) and, as remarked above, its apparent speed in

omparison to other implementations of the original algorithm.

In this paper we do not due to spae limitations provide any detailed omputer

instrutions, but we try to give a high-level desription of our approah, so that the

reader an understand how the spae savings are ahieved.

In our disussion below we assume that the reader is familiar with both

Crohemore's algorithm and its mathematial foundation. We make the usual as-

sumption required for Crohemore's algorithm that the alphabet is ordered; therefore

we are able to assume further that the lasses orresponding to the �rst level (p = 1)

an be omputed in O(N logN) time.

For better omprehension, we present the algorithm in two stages. The �rst stage,

FSX15 (with spae requirement 15MN bytes), exhibits all important proedural and

ontrol aspets of our algorithm without the ompliations of memory multiplex-

ing and virtualization. Then the seond stage, FSX10, inorporates the hanges

required by memory multiplexing and virtualization to redue the spae requirement

to 10MN . Finally, we present some rough results of omputer runs that ompare the

time and spae requirements of our approah with those of a standard implementation

of Crohemore's algorithm.

2 Data Strutures for FSX15

Reall that for eah p = 1; 2; : : :, Crohemore's algorithm ats on a given string x =

x[1::N ℄ to ompute equivalene lasses fi

1

; i

2

; : : : ; i

r

g, where for every 1 � j < h � r,

x[i

j

::i

j

+p�1℄ = x[i

h

::i

h

+p�1℄:
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The positions i

j

in eah lass are maintained in inreasing sequene: i

j

< i

j+1

,

1 � j < r. At eah step of the algorithm, eah lass C

p

that is not a singleton

is deomposed into a family of sublasses C

p+1;s

; of these sublasses, the one of

largest ardinality is alled big, the others are small. A straightforward approah to

this deomposition would require order N

2

time in the worst ase, but Crohemore's

algorithm redues this time requirement by arrying out the deomposition from p

to p+1 only with respet to the small lasses identi�ed at step p. Sine eah posi-

tion an belong to a small lass only O(logN) times, it follows that the total time

requirement is O(N logN). As remarked in the introdution, we may assume that

the lasses orresponding to p = 1 have initially been omputed in O(N logN) time.

Note that the version of Crohemore's algorithm disussed here does not expliitly

ompute repetitions; we will be interested only in reduing eah of the equivalene

lasses to a singleton.

We will use an integer array of size N to represent the lasses omputed at step

p. We have several requirements:

� we need to keep the elements of the lasses in asending order;

� we need an eÆient way to delete any element (so that we need to represent

eah lass as a doubly-linked list);

� we need an eÆient way to insert a new element at the end of a lass (and hene

we need a link to the last element of the lass);

� we need eÆient aess to the size of a lass;

� we need eÆient aess to a lass (and hene we need a link to the �rst element

of the lass);

� last but not least, we need an eÆient way to determine to whih lass a given

element belongs.

To satisfy all these requirements, we use six integer arrays of size N :

� CNext[1..N℄ emulates forward links in the doubly-linked list. Thus CNext[i℄ =

j > i means that j is the next element (position) in the lass that i belongs to.

If there is no position j > i in the lass, then CNext[i℄ = null.

� CPrev[1..N℄ emulates bakward links in the doubly-linked list. Thus CPrev[i℄=

j < i means that j is the previous element (position) in the lass that i belongs

to. If there is no position j < i in the lass, then CPrev[i℄ = null.

� CMember[1..N℄ keeps trak of membership. Thus CMember[i℄ = k means that

element i belongs to the lass with index k (i 2 

k

), while CMember[i℄ = null

means that at this moment i is not member of any lass.

� CStart[1..N℄ keeps links to the starting (smallest) element in eah lass.

Thus CStart[k℄ = i means that the lass 

k

starts with the element i, while

CStart[k℄ = null means that at this moment the lass 

k

is empty.
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� CEnd[1..N℄ keeps links to the �nal (largest) element in eah lass. Thus

CEnd[k℄ = i means that the lass 

k

ends with the element i; the value of

CEnd[k℄ is meaningful only when CStart[k℄ 6= null.

� CSize[1..N℄ reords the size of eah lass. Thus CSize[k℄ = r means that

the lass 

k

ontains r elements; the value of CSize[k℄ is meaningful only when

CStart[k℄ 6= null.

Suppose that there exists a lass 

3

= f4; 5; 8; 12g, indiating that the substrings

of length 3 beginning at positions 4; 5; 8; 12 of x are all equal. Then 

3

would be

represented as follows:

CNext[4℄ = 5; CNext[5℄ = 8; CNext[8℄ = 12; CNext[12℄ = null;

CPrev[12℄ = 8; CPrev[8℄ = 5; CPrev[5℄ = 4; CPrev[4℄ = null;

CMember[4℄ = CMember[5℄ = CMember[8℄ = CMember[12℄ = 3;

CStart[3℄ = 4; CEnd[3℄ = 12; CSize[3℄ = 4:

We need to trak the empty lasses, and for that we need a simple integer stak

of size N , CEmptyStak, that holds the indexes of the empty (and hene available)

lasses. This stak, as well as all other list strutures used by Crohemore's algorithm,

is implemented as an array that requires MN bytes of storage. Suh an approah

saves time by allowing all spae alloation to take plae only one, as part of program

initialization. We introdue two operations on the stak, CEmptyStakPop() that

removes the top element from the stak and returns it, andCEmptyStakPush(i)

that inserts the element i at the top of the stak.

We shall proess lasses from one re�nement level p to the next level p+1 by

moving the elements from one lass to another, one element at a time. We view the

lasses as permanent ontainers and distribute the elements among them, so that at

any given moment we need at most N lasses. This means that the on�guration

of lasses at level p is destroyed the moment we move a single element. But, as we

shall see, we do not really need to keep the old level intat if we preserve an essential

\snapshot" of it before we start tinkering with it.

What we need to know about level p will be preserved in two queues, SElQueue

and SCQueue. SElQueue ontains all the elements in small lasses in level p, organized

so that the elements from the same small lass are grouped together in the queue and

stored in asending order. SCQueue ontains the �rst element from eah small lass,

thus enabling us to identify in SElQueue the start of eah new lass. Therefore, when

these queues are reated, we must be areful to proess the small lasses of level p in

the same order for both of them. For instane, if level p had three small lasses,



3

= f2; 4; 5; 8g; 

0

= f3; 6; 7; 11g; 

5

= f12; 15g;

SElQueue ould ontain 2; 4; 5; 8; 3; 6; 7; 11; 12; 15 in that order, while the orrespond-

ing SCQueue would ontain 2; 3; 12. The order of the lasses (

3

followed by 

0

followed

by 

5

) is not important; what is important that the same order is used in order to

reate SElQueue and SCQueue. After the two queues have been reated, we do not

need level p any more and we an start modifying it. Of ourse we suppose that we

have available the usual queue operations:
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� SElQueueHead() (remove the �rst element from the queue and return it);

� SElQueueInsert(i) (insert the element i at the end of the queue);

� SElQueueInit() (initialize the queue to empty).

Analogous operations are available also for SCQueue.

When re�ning lass 

k

in level p using an element i from lass 

k

0

, we might need

to move element i�1 from 

k

to a new or an existing lass. To manage this proessing,

we keep an auxiliary array of size N , Refine[1..N℄. Initially, when we start using the

lass 

k

0

for re�nement, all entries in Refine[ ℄ are null. If a new lass 

h

is reated

in level p+1 by moving i�1 out of lass 

k

and into 

h

as its �rst element, we set

Refine[k℄ h. If later on we move another element from 

k

as a result of re�nement

by the same lass 

k

0

, we use the value Refine[k℄ to tell us where to move it to. This

requires that when we start re�ning by a new lass, we have to restore Refine[ ℄ to

its original null state. Sine we annot a�ord to traverse the whole array Refine[ ℄

without destroying the O(N logN) time omplexity, we need to store a reord of

whih positions in Refine[ ℄ were previously given a non-null value. For this we

make use of a simple stak, RefStak: every assignment to Refine[k℄ auses the

index k to be pushed onto the stak RefStak. As before, we assume that we have

available the usual stak operations RefStakPop() and RefStakPush(i).

Sine after ompleting the re�nement of the lasses in level p, we must determine

the small lasses in level p+1, we therefore need to maintain throughout the re�nement

proess ertain families of lasses (to be more preise, families of lass indexes). As

noted above, a family onsists of the lasses in level p + 1 that were formed by

re�nement of the same lass in level p. A family may or may not inlude the original

lass from level p itself (it may ompletely disappear if we remove all its elements

during the re�nement). We need an eÆient way to insert a new lass in a family

(the order is not important), an eÆient way to delete a lass from a family, and

�nally an eÆient way to determine to what family (if any) a lass belongs. These

failities an be made available by representing the families as doubly-linked lists

implemented using arrays, just as we did previously with the lasses themselves. In

this ase, however, the Size[ ℄ and End[ ℄ arrays are not required, so we an get

by with only four arrays, as follows:

� FNext[1..N℄ emulates the forward links (as in CNext[ ℄).

� FPrev[1..N℄ emulates the bakward links (as in CPrev[ ℄).

� FMember[1..N℄ keeps trak of membership (as in CMember[ ℄). Whenever

FMember[i℄ = null, it means that 

i

is not a member of any family.

� FStart[1..N℄ gives the �rst lass in eah family (as in CStart[ ℄).

Note that lasses in families do not need to be maintained in numerial order, as was

true earlier of positions in lasses.

To summarize, in order to implement Crohemore's algorithm, it is suÆient to

alloate 15 arrays, eah of whih provides storage spae for exatly N integers of

length M , thus altogether 15MN bytes of storage: CNext, CPrev, CMember, CStart,

CEnd, CSize, CEmptyStak, SElQueue, SCQueue, RefStak, Refine, FStart, FNext,

FPrev, and FMember.
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3 Data Strutures for FSX10

As the �rst step in reduing the spae omplexity further, we are going to eliminate

the CSize[ ℄ and CEnd[ ℄ arrays. For the very �rst element, say s, in a lass,

CPrev[s℄= null, while for the very last element, say e, CNext[e℄= null. But we

have another way to disern the beginning of the lass (CStart[ ℄), so that CPrev[ ℄

beomes superuous. Thus we an store CPrev[s℄ e, a diret link to the end of the

lass. This yields an eÆient means to disern the end of the lass, and so we an

store in CNext[e℄ the size of the lass. Hene CPrev[CStart[j℄℄ takes on the role

of CEnd[j℄, while CNext[CPrev[CStart[j℄℄℄ takes on the role of CSize[j℄. This is

straightforward and the ode need only be slightly modi�ed to aommodate it. All

we have to do is make sure that when inserting or deleting an element in or from a

lass, we update properly the end link and the size. When traversing a lass, we have

to make sure that we properly reognize the end (we annot rely on the null value

to stop us as in FSX15). We have in fat \virtualized" the memory for CEnd[ ℄ and

CSize[ ℄, and so redued the spae omplexity to 13MN .

When we take an element from SElQueue and use it for the purpose of re�nement,

at most one new lass is reated and thus at most one loation of Refine[ ℄ is

updated. This simple observation allows RefStak and SElQueue to share the same

memory segment, as long as we make sure that RefStak grows from left to right,

while the queue is always right justi�ed in the memory segment. The hanges in

the ode required to aommodate this are not very great | all we have to do is to

determine before �lling SElQueue what position we have to start with. In essene,

we have \multiplexed" the same memory segment and brought the spae omplexity

down to 12MN .

The number of elements in SCQueue is the same as the number of small lasses,

whih is less than or equal to the number of non-empty lasses; thus the size of

SCQueue plus the size of CEmptyStak at any given moment is at most N . This simple

observation allows CEmptyStak and SCQueue to share the same memory segment, as

long as we make sure that CEmptyStak is growing from left to right, while the queue

is always right justi�ed in the memory segment. Again, as above, the hanges in the

ode required to aommodate this are not major. We again have \multiplexed" the

same memory segment and brought the spae omplexity down to 11MN .

The �nal memory saving omes from the fat that FPrev[ ℄ for the very �rst

lass in a family and FNext[ ℄ for the very last lass in the same family are set to

null and hene redundant for the same reasons as desribed above for CPrev[ ℄ and

CNext[ ℄. We an thus \virtualize" the memory for the array Refine[ ℄. We will

have to index it in reverse and we will use all the unused slots in FStart[ ℄ (i.e. slots

with indexes > FStartTop) as well as the unneessary FNext[ ℄ slots. The formula

is rather simple. Instead of storing r in Refine[i℄, we will use

SetRe�ne(i,r)

j N-(i+1)

if FStartTop = null OR j > FStartTop then

FStart[j℄ r

else

FNext[FPrev[FStart[j℄℄℄ r

end SetRe�ne

and instead of fething a value from Refine[i℄ we will use
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integer GetRe�ne(i)

j N-(i+1)

if FStartTop = null OR j > FStartTop then

return FStart[j℄

else

return FNext[FPrev[FStart[j℄℄℄

end GetRe�ne

The modi�ation of the ode is more omplex in this ase, sine we have to trak the

ends of the family lists as we do for lass lists; more importantly, when a new family

is reated, we have to save the Refine[ ℄ value stored in that so-far-unused slot k

that now is going to be oupied by the start link of the family list, and store k at

the end of the list instead. This \virtualization" of the memory for Refine[ ℄ brings

the spae omplexity down to the �nal value of 10MN .

4 Informative Experimental Results

To estimate the e�et of our spae redution on time requirement, we have imple-

mented two versions of Crohemore's algorithm:

� a na��ve array-based version, FSX20, that exeutes Crohemore's algorithm using

20 arrays eah of length N words:

� a version of FSX10 that requires 10 arrays eah of length N words.

Thus both of these implementations are word-based: assuming a word-length of 32

bits, the value of M is atually �xed at 4.

We expet that FSX20 will exeute Crohemore's algorithm about as fast as it

an be exeuted, but at the ost of requiring exatly 20N words of storage. A version

that implemented standard list-proessing tehniques rather than arrays to handle the

queues, staks and lists required by Crohemore's algorithm would generally require

less storage: 11N words for arrays plus a variable amount up to 13N for the list

strutures. However, as a result of the time required for dynami spae alloation,

suh a version would ertainly run several times slower than FSX20.

We must remark at this point that the experiments performed have only an in-

formative value, for we onduted them without ontrolling many aspets depending

on the platform (as memory ahing, virtual memory system paging et.), nor did we

perform a proper statistial evaluation to ontrol for other fators not depending on

the platform (load on the mahine, implementation biases et.) Thus, we really do

not laim any signi�ant onlusions for the atual algorithms whose implementations

were tested.

We have run FSX20 and FSX10 against a variety of long strings (up to 3.8 million

bytes): long Fibonai strings, �les from the Calgary orpus, and others. The results

indiate that FSX10 seems to require 20-30% more time than FSX20, in most ases

a small prie to pay for a 52% redution in spae.
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Abstrat. The edit distane between strings A and B is de�ned as the min-

imum number of edit operations needed in onverting A into B or vie versa.

The Levenshtein edit distane allows three types of operations: an insertion,

a deletion or a substitution of a harater. The Damerau edit distane allows

the previous three plus in addition a transposition between two adjaent hara-

ters. To our best knowledge the best urrent pratial algorithms for omputing

these edit distanes run in time O(dm) and O(�+ dm=wen), where d is the edit

distane between the two strings, m and n are their lengths (m � n), w is the

omputer word size and � is the size of the alphabet. In this paper we present an

algorithm that runs in time O(� + dd=wem). The struture of the algorithm is

suh, that in pratie it is mostly suitable for testing whether the edit distane

between two strings is within some pre-determined error threshold. We also

present some initial test results with thresholded edit distane omputation. In

them our algorithm works faster than the original algorithm of Myers.

Key words: Levenshtein edit distane, Damerau edit distane, bit-parallelism,

approximate string mathing

1 Introdution

The desire to measure the similarity between two strings may arise in many appli-

ations, like for example omputational biology and spelling orretion. A ommon

way to ahieve this is to ompute the edit distane between the strings. Throughout

the paper we will assume that A is a string of length m and B is a string of length n,

and that m � n. The edit distane ed(A;B) between strings A and B is de�ned as

the minimum number of edit operations needed in onverting A into B or vie versa.

In this paper we onentrate on two typial edit distanes: the Levenshtein edit dis-

tane [Lev66℄ and the Damerau edit distane [Dam64℄. The Levenshtein edit distane

allows three edit operations, whih are inserting, deleting or substituting a harater

(Figures 1a, 1b and 1). In addition to these three, the Damerau edit distane al-

lows also transposing two permanently adjaent haraters (Figure 1d). When edit

1

This work was supported by the Aademy of Finland and Tampere Graduate Shool in Infor-

mation Siene and Engineering
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distane is used, strings A and B are deemed similar i� their edit distane is small

enough, that is i� ed(A;B) � k, where k is some pre-determined error threshold. A

related problem is that of approximate string mathing, whih is typially de�ned as

follows: let pat be a string of length m and text a (muh longer) string of length n.

The task of approximate string mathing is then to �nd all suh indies j, for whih

exists suh h � 0 that ed(pat; text[j � h::j℄) � k.

The oldest, but most exible in terms of permitting di�erent edit operations

and/or edit operation osts, algorithms for omputing edit distane (for example

[WF74℄) are based on dynami programming and run in time O(mn). Ukkonen

[Ukk85a℄ has later proposed two O(dm) methods, and Myers [Mye86℄ an O(n + d

2

)

method. The latter is based on using a suÆx tree and is not viewed as being prati-

al (e.g. [Ste94℄). With fairly little modi�ations these methods an also be used in

omputing the Damerau edit distane without a�eting the asymptoti run times.

The methodology of using so-alled \bit-parallelism" in developing fast and pra-

tial algorithms has reently beome popular in the �eld of string mathing. Wu and

Manber [WM92℄ presented an O(ddm=wen) bit-parallel algorithm for Levenshtein edit

distane -based approximate string mathing, and in [Nav01℄ it was modi�ed to om-

pute both Levenshtein and Damerau edit distane. The run time remained the same.

Then Baeza-Yates and Navarro presented a method, whih enables an O(ddm=wen)

algorithm for the Levenshtein edit distane. Currently this algorithm has not been

extended for the Damerau edit distane. Finally Myers [Mye99℄ has presented an

O(dm=wen) algorithm for approximate string mathing under the Levenshtein edit

distane. In [Hyy01℄ the algorithm was extended for omputing the Damerau edit

distane.

In this paper we will present an initial study on ombining one of the O(dm)

edit distane algorithms of Ukkonen [Ukk85a℄ with the bit-parallel algorithm of My-

ers [Mye99℄ to obtain a faster algorithm. We begin by reviewing these underlying

algorithms in the next setion.

2 Preliminaries

In the following disussion let A be a string of length m and B a string of length

n. We also use the notation A[u℄ to denote the uth harater of A and the notation

A[u::v℄ to denote the substring of A, whih begins from its uth harater and ends

at its vth harater. The supersript R denotes the reverse string: for example if A

= \ABC", then A

R

= \CBA". For bit operations we use the following notation: '&'

denotes bitwise\and", 'j' denotes bitwise \or", '^' denotes bitwise \xor", '�' denotes

bit omplementation, and '<<' and '>>' denote shifting the bit-vetor left and right,

respetively, using zero �lling in both diretions. We refer to the ith bit of the bit

vetor V as V [i℄. Bit-positions are assumed to grow from right to left, and we use

supersript to denote bit-repetition. As en example let V = 1001110 be a bit vetor.

Then V [1℄ = V [5℄ = V [6℄ = 0, V [2℄ = V [3℄ = V [4℄ = V [7℄ = 1, and we ould also

write V = 10

2

1

3

0.
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A B C A B C A B C A B C

A B D C A C A D C A C B

a) b) c) d) 

Figure 1: Four di�erent edit operations. Figure a) shows inserting harater 'D'

between the last two haraters of the string \ABC", whih results in the string

\ABCD". Figure b) shows deleting the harater \B", whih results in the string

\AC". Figure ) shows substituting the harater 'B' with the harater 'D', whih

results in the string \ADC". Figure d) shows transposing the haraters 'B' and

'C', whih results in the string \ACB". Transposition is allowed only between suh

haraters that were adjaent already in the original string.

2.1 Dynami programming

Computing edit distane is a problem that seems to be most naturally solved with

dynami programming. The value ed(A;B) an be omputed by �lling an (m+ 1)�

(n + 1) dynami programming matrix D, in whih the ell D[i; j℄ ontains the value

ed(A[1::i℄; B[1::j℄). The following well-known Reurrene 1 gives the rule for �lling

D when the Levenshtein edit distane is used.

Reurrene 1

D[i; 0℄ = i; D[0; j℄ = j:

D[i; j℄ =

�

D[i� 1; j � 1℄, if A[i℄ = B[j℄:

1 + min(D[i� 1; j � 1℄; D[i� 1; j℄; D[i; j � 1℄), if A[i℄ 6= B[j℄:

The reurrene allows the ells with i > 0 and j > 0 to be �lled in any suh order,

that the ell values D[i�1; j℄, D[i�1; j�1℄ and D[i; j�1℄ are known at the time the

ell D[i; j℄ is �lled. A ommon way is to use olumn-wise �lling, where eah olumn

is �lled from top to bottom (Figure 2). The Damerau edit distane an be omputed

otherwise identially as the Levenshtein edit distane, but using Reurrene 2 [Hyy01℄

instead in �lling the dynami programming matrix.

Reurrene 2

D[i; 0℄ = i; D[0; j℄ = j:

D[i; j℄ =

8

>

>

<

>

>

:

D[i� 1; j � 1℄, if A[i℄ = B[j℄:

D[i� 1; j � 1℄, if A[i� 1::i℄ = B

R

[j � 1::j℄

and D[i� 1; j � 1℄ > D[i� 2; j � 2℄:

1 + min(D[i� 1; j � 1℄; D[i� 1; j℄; D[i; j � 1℄), otherwise:

As the basi dynami programming sheme �lls (m + 1)(n + 1) ells and �lling eah

ell takes a onstant number of operations, the algorithm has a run time O(nm).

The following two properties hold in the dynami programming matrix [Ukk85a,

Ukk85b℄:

-The diagonal property:
D[i; j℄�D[i� 1; j � 1℄ = 0 or 1:

-The adjaeny property: D[i; j℄�D[i; j � 1℄ = �1; 0; or 1, and

D[i; j℄D[i� 1; j℄ = �1; 0; or 1:

Even though these rules were initially presented with the Levenshtein edit distane,

they an easily be seen to apply also with the Damerau edit distane.
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T C T T G A A G G T C A

0 1 2 3 4 5 6 7 8 9 10 11 12

A 1

T 2

C 3

A 4

G 5

C 6

C 7

T 8

Figure 2: An example of the olumn-wise �lling order for the dynami programming

table of strings \ATCAGCCT" and \TCTTGAAGGTCA".

2.2 Using bit-parallelism

Myers [Mye99℄ presented an O(dm=wen) algorithm for approximate string mathing

under the Levenshtein edit distane. Later in [Hyy01℄ the algorithm was slightly mod-

i�ed and extended for the Damerau edit distane. Originally these algorithms were

designed for approximate string mathing, but they an easily be modi�ed to ompute

edit distane. The algorithms proess the jth olumn of the dynami programming

matrix in O(dm=we) time by using bit-parallelism. This is done by using delta en-

oding in the matrix: instead of expliitly omputing the values D[i; j℄ for i = 1::m

and j = 1::n, the following length-m binary valued delta vetors are omputed for

j = 1::n:

-The vertial positive delta vetor: V P

j

[i℄ = 1 i� D[i; j℄�D[i� 1; j℄ = 1:

-The vertial negative delta vetor: V N

j

[i℄ = 1 i� D[i; j℄�D[i� 1; j℄ = �1:

-The horizontal positive delta vetor: HP

j

[i℄ = 1 i� D[i; j℄�D[i; j � 1℄ = 1:

-The horizontal negative delta vetor: HN

j

[i℄ = 1 i� D[i; j℄�D[i; j � 1℄ = �1:

When the values for these delta vetors are known for the (j � 1)th olumn, they

an be omputed for the jth olumn in an eÆient manner when the following math

vetor is available for eah harater �.

-The math vetor PM

�

: PM

�

[i℄ = 1 i� A[i℄ = �:

For simpliity we use the notion PM

j

= PM

B[j℄

for the rest of the paper. It is

straightforward to ompute the pattern math vetors in O(� + m) time. In the

following we assume that these vetors have already been omputed and are readily

available.

The delta vetors enable the value ed(A;B[1::j℄) to be expliitly alulated for

j = 1; 2; : : : ; n: ed(A;B[1::j℄) = ed(A;B[1::j�1℄)+1 i� HP

j

[m℄ = 1, ed(A;B[1::j℄) =

ed(A;B[1::j�1℄)�1 i�HN

j

[m℄ = 1, and ed(A;B[1::j℄) = ed(A;B[1::j�1℄) otherwise.

Thus after all n olumns are proessed, the value ed(A;B[1::n℄) = ed(A;B) is known.

Figures 3 and 4 show the algorithms based on [Hyy01℄ for omputing the jth olumn

when m � w, that is, when eah vetor an be represented by a single bit-vetor.

Both algorithms are modi�ed to ompute edit distane. The algorithm in Figure 3 is

for the Levenshtein edit distane, and the algorithm in Figure 4 is for the Damerau

edit distane. Both algorithms involve a onstant number of operations, and thus
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ompute the delta vetors for the jth olumn in O(1) time. In this paper we do not

separately disuss the ase m > w. As eah required operation for a length-m bit

vetor an be simulated in O(dm=we) time using dm=we length-w bit vetors, the

general runtime of the algorithms is O(dm=we) for eah olumn. This results in a

total time of O(dm=wen) over all n olumns in omputing ed(A;B).

Computing the jth olumn (Levenshtein distane)
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Figure 3: Computation of the jth olumn using a modi�ation of the D0

j

-based

version of the algorithm of Myers (for the ase m � w).

Computing the jth olumn (Damerau distane)
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m�1

6= 0 Then D[m; j℄ D[m; j℄ � 1

7. V P

j

 (HN

j

<< 1) j � (D0

j

j (HP

j

<< 1)) j 1

8. V N  D0

j

& (HP

j

<< 1)

Figure 4: Computation of the jth olumn using a modi�ation of the D0

j

-based

version of the algorithm of Myers with transposition (for the ase m � w).

2.3 Filling only a neessary portion of the matrix

Ukkonen [Ukk85a℄ presented a method to try to ut down the area of the dynami

programming matrix that is �lled. By a q-diagonal we refer to the diagonal, whih

onsists of the ells D[i; j℄ for whih j � i = q. From the diagonal and adjaeny

properties Ukkonen onluded that if ed(A;B) � t and m � n, then it is suÆient to

�ll only the ells in the diagonals �b(t� n+m)=2;�b(t� n+m)=2+ 1; : : : ; b(t+

n � m)=2 of the dynami programming matrix. All the other ell values an be

assumed to have an in�nite value without a�eting orret omputation of the value

D[m;n℄ = ed(A;B). He used this rule by beginning with t = (n�m) + 1 and �lling
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the above-mentioned diagonal interval of the dynami programming matrix. If the

result is D[m;n℄ > t, t is doubled. Eventually D[m;n℄ � t, and in this ase it is

known that D[m;n℄ = ed(A;B). The run time of this proedure is dominated by the

omputation involving the last value of t. As this value is < 2 � ed(A;B) and with

eah value of t the omputation takes O(t�min(m;n)) time, the overall run time is

O(ed(A;B)�min(m;n)).

In addition Ukkonen proposed a dynami "uto�" method to improve the pratial

performane of the diagonal restrition method. Assume that olumn-wise order is

used in �lling the ells D[i; j℄ inside the required diagonals �b(t� n+m)=2;�b(t�

n+m)=2+ 1; : : : ; b(t+ n�m)=2. Let r

u

hold the diagonal number of the upmost

and r

l

the diagonal number of the lowest ell that was deemed to have to be �lled in

the jth olumn. Then due to the diagonal property we an try to shrink the diagonal

region by derementing r

u

as long as D[r

u

; j℄ > t and inrementing r

l

as long as

D[r

l

; j℄ > t. Then at the (j+1)th olumn it is enough to �ll the ells in the diagonals

r

l

: : : r

u

. If r

l

> r

u

the diagonal region vanishes and it is known that ed(A;B) > t.

This method of "guessing" a starting limit t for the edit distane and then doubling

it if neessary is not really pratial for atual edit distane omputation. Even

though the asymptoti run time is good, it involves large onstant fator whenever

ed(A;B) is large. But the method works well in pratie in thresholded edit distane

omputation, as then one an immediately set t = k and only a single pass is needed.

3 Our Method

In this setion we present a bit-parallel version of the diagonal restrition sheme of

Ukkonen, whih was briey disussed in Setion 2. In the following we onentrate

on the ase where the omputer word size w is large enough to over the required

diagonal region. Let l

v

denote the length of the delta vetors. Then our assumption

means that w � l

v

= min(m; b(t � n +m)=2 + b(t + n �m)=2 + 1). Note that in

this ase eah of the pattern math vetors PM

�

may have to be enoded with more

than one bit vetor: If m > w, then PM

�

onsists of dm=we bit vetors.

3.1 Diagonal tiling

The basi idea is to mimi the diagonal restrition method of Ukkonen by tiling the

vertial delta vetors diagonally instead of horizontally (Figure 5a). We ahieve this

by modifying slightly the way the vertial delta vetors V P

j

and V N

j

are used: Before

proessing the jth olumn the vertial vetors V P

j�1

and V N

j�1

are shifted one step

up (to the right in terms of the bit vetor) (Figure 5b). When the vertial vetors are

shifted up, their new lowest bit-values V P

j

[l

v

℄ and V N

j

[l

v

℄ are not expliitly known.

This turns out not to be a problem. From the diagonal and adjaeny properties we

an see that the only situation whih ould be troublesome is if we would inorretly

have a value V N

j

[l

v

℄ = 1. This is impossible, beause it an happen only if D0

j

has

an \extra" set bit at position l

v

+1 and HP

j

[l

v

℄ = 1, and these two onditions annot

simultaneously be true.

In addition to the obvious way of �rst omputing V P

j

and V N

j

in normal fashion

and then shifting them up (to the right) when proessing the (j + 1)th olumn, we

propose also a seond option. It an be seen that essentially the same shifting e�et
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j -1 j j -1 j j -1 j

Figure 5: a) Horizontal tiling (left) and diagonal tiling (right). b) The �gure shows

how the diagonal step aligns the (j � 1)th olumn vetor one step above the jth

olumn vetor. ) The digure depits in gray the region of diagonals, whih are �lled

aording to Ukkonen's rule. The ells on the lower boundary are in darker tone.

an be ahieved already when the vetors V P

j

and V N

j

are omputed by making the

following hanges on the last two lines of the algorithms in Figures 3 and 4:

-The diagonal zero delta vetor D0

j

is shifted one step to the right on the

seond last line.

-The left shifts of the horizontal delta vetors are removed.

-The OR-operation of V P

j

with 1 is removed.

This seond alternative uses less bit operations, but the hoie between the two may

depend on other pratial issues. For example if several bit vetors have to be used

in enoding D0

j

, the olumn-wise top-to-bottom order may make it more diÆult to

shift D0

j

up than shifting both V P

j

and V N

j

down.

We also modify the way some ell values are expliitly maintained. We hoose

to alulate the values along the lower boundary of the �lled area of the dynami

programming matrix (Figure 5). For two diagonally onseutive ells D[i� 1; j � 1℄

and D[i; j℄ along the diagonal part of the boundary this means setting D[i; j℄ =

D[i�1; j�1℄ if D0

j

[l

v

℄ = 1, and D[i; j℄ = D[i�1; j�1℄+1 otherwise. The horizontal

part of the boundary is handled in similar fashion as in the original algorithm of Myers:

For horizontally onseutive ells D[i; j � 1℄ and D[i; j℄ along the horizontal part of

the boundary we set D[i; j℄ = D[i; j � 1℄ + 1 if HP

j

[l

v

℄ = 1; D[i; j℄ = D[i; j � 1℄� 1

if HN

j

[l

v

℄ = 1, and D[i; j℄ = D[i; j � 1℄ otherwise. Here we assume that the vetor

length l

v

is appropriately deremented as the diagonally shifted vetors would start

to protrude below the lower boundary.

Another neessary modi�ation is in the way the pattern math vetor PM

j

is

used. Sine we are gradually moving the delta vetors down, the math vetor has to

be aligned orretly. This is easily ahieved in O(1) time by shifting and OR-ing the

orresponding at most two math vetors.

The last neessary modi�ations onern the �rst line of the algorithm for the

Damerau edit distane in Figure 4. First of all the diagonal delta vetor D0

j

is

shifted down (left), whih is not neessary when the vetors are tiled diagonally.

Beause of similar reason the vetor PM

j�1

has to be shifted one step up (to the

right). This means that also the value PM

j�1

[l

v

+ 1℄ will have to be present in the

math vetor PM

j�1

. We do not deal with this separately, but assume for now on

that l

v

+1 � w when dealing with the Damerau edit distane. Another option would

be to set the last bit separately, whih an be done in O(1) time.

Figures 6 and 7 show the algorithms for omputing the vetors at the jth olumn
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when diagonal tiling is used. We do not show separate versions for the di�erent ases

of updating the ell value at the lower boundary. It is done using one of the previously

mentioned ways of using D0

j

(diagonal stage) or HP

j

and HN

j

(horizontal stage).

When l

v

� w, eah olumn of the dynami programming matrix is omputed in

O(1) time, whih results in the total time being O(� + n) inluding also time for

preproessing the pattern math vetors. In the general ase, in whih l

v

> w, eah

length-l

v

vetor an be simulated by using dl

v

=we length-w vetors. This an be done

in O(dl

v

=we) time per operation, and therefore the algorithm has in general a run

time O(�+ dl

v

=wen), whih is O(�+ ed(A;B)�n) as l

v

= O(ed(A;B)). The slightly

more favourable time omplexity of O(� + ed(A;B)�m) in the general ase an be

ahieved by simply reversing the roles of the strings A and B: We still have that

l

v

= O(ed(A;B)), but now there is m olumns instead of n. In this ase the ost of

preproessing the math vetors is O(� + n), but the above omplexities hold sine

n = O(ed(A;B)�m) when n > m.

Computing the jth olumn in diagonal tiling (Levenshtein distane)

1. Build the orret math vetor into PM

j

2. D0

j

 (((PM

j

& V P

j�1

) + V P

j�1

) ^ V P

j�1

) j PM

j

j V N

j�1

3. HP

j

 V N

j�1

j � (D0

j

j V P

j�1

)

4. HN

j

 D0

j

& V P

j�1

5. Update the appropriate ell value at the lower boundary.

6. V P

j

 HN

j

j � ((D0

j

>> 1) j HP

j

)

7. V N  (D0

j

>> 1) & HP

j

Figure 6: Computation of the jth olumn with the Levenshtein edit distane and

diagonal tiling (for the ase l

v

� w).

Computing the jth olumn in diagonal tiling (Damerau distane)

1. Build the orret math vetor into PM

j

2. D0

j

 (� D0

j�1

) & (PM

j

<< 1) & (PM

j�1

>> 1)

3. D0

j

 D0

j

j (((PM

j

& V P

j�1

) + V P

j�1

) ^ V P
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j V N

j�1
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 V N

j�1

j � (D0

j

j V P

j�1

)

5. HN

j

 D0

j

& V P

j�1

6. Update the appropriate ell value at the lower boundary.

7. V P

j

 HN

j

j � ((D0

j

>> 1) j HP

j

)

8. V N  (D0

j

>> 1) & HP

j

Figure 7: Computation of the jth olumn with the Damerau edit distane and diag-

onal tiling (for the ase l

v

� w).
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4 Test Results

In this setion we present initial test results for our algorithm in the ase of omputing

the Levenshtein edit distane. We onentrate only on the ase where one wants to

hek whether the edit distane between two strings A and B is below some pre-

determined error-threshold k. This is beause the priniple of the algorithm makes it

in pratie most suitable for this type of use. Therefore all tested algorithms used a

sheme similar to the uto� method briey disussed in the end of Setion 2.3. As a

baseline we also show the runtime of using the O(dm=wen) bit-parallel algorithm of

Myers.

The test onsisted of repeatedly seleting two substrings in pseudo-random fashion

from the DNA-sequene of the baker's yeast, and then testing whether their Leven-

shtein edit distane is at most k. The omputer used in the tests was a 600Mhz

Pentium 3 with 256MB RAM and running Mirosoft Windows 2000. The ode was

programmed in C and ompiled with Mirosoft Visual C++ 6.0 with full optimization.

The tested algorithms were:

MYERS: The algorithm of Myers [Mye99℄ (Setion 2.2) modi�ed to ompute edit

distane. The run time of the algorithm does not depend on the number of

errors allowed. The underlying implementation is from the original author.

MYERS(uto�): The algorithm of Myers using uto� modi�ed to ompute edit

distane. The underlying implementation (inluding the uto�-mehanism) is

from the original author.

UKKA(uto�): The method of Ukkonen based on �lling only a restrited region

of diagonals in the dynami programming matrix and using the uto� method

(Setion 2.3).

UKKB(uto�): . The method of Ukkonen [Ukk85a℄ based on omputing the values

in the dynami programming matrix in inreasing order. That is, the method

�rst �lls in the ells that get a value 0, then the ells that get a value 1, and so

on until the ell D[m;n℄ gets a value.

OURS(uto�): Our method of ombining the diagonal restrition sheme of Ukko-

nen with the bit-parallel algorithm of Myers (Setion 3). We implemented a

similar uto� method as was used by Hyyr�o and Navarro with edit distane

omputation in their version of the ABNDM algorithm [HN02℄.

The results ase shown in Figure 8. We tested sequene pairs with lengths 100,

1000 and 10000, and error thresholds of 10%, 20% and 50% of the sequene length

(for example k = 100, 200 and 500 for the sequene length m = n = 1000). It an

be seen that in the ase of k = 10 and m = 100 UKKB(uto�) is the fastest, but in

all other tested ases our method beomes the fastest, being 8%-38% faster than the

original uto� method of Myers that is modi�ed to ompute edit distane. The good

performane of UKKB(uto�) with a low value of k is not surprising as its expeted

run time has been shown to be O(m+ k

2

). [Mye86℄.
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m = n = 100 m = n = 1000 m = n = 10000

error limit (%) 10 20 50 10 20 50 10 20 50

UKKA(uto�) 1,92 5,93 32,6 13,5 52,7 322 13,1 54,9 351

UKKB(uto�) 1,23 3,02 14,9 6,17 22,9 139 5,57 22,4 146

MYERS(uto�) 2,46 3,23 4,07 2,47 4,48 15,9 0,71 2,35 13,4

OURS(uto�) 2,27 2,47 3,32 1,96 3,08 10,5 0,48 1,47 9,03

MYERS 4,24 17,0 14,5

Figure 8: The results (in seonds) for thresholded edit distane omputation between

pairs of randomly hosen DNA-sequenes from the genome of the baker's yeast. The

error threshold is shown as the perentage of the pattern length (tested pattern pairs

had equal length). The number of proessed sequene pairs was 100000 for m = n =

100, 10000 for m = n = 1000, and 100 for m = n = 10000.

Conlusions and further onsiderations

In this paper we disussed how bit-parallelism and a diagonal restrition sheme

an be ombined to ahieve an algorithm for omputing edit distane, whih has an

asymtoti run time of O(� + dd=wem). In pratie the algorithm is mostly suitable

for heking whether ed(A;B) � k, where k is a pre-determined error threshold.

In this task the initial tests showed our algorithm to be ompetitive against other

tested algorithms [Ukk85a, Mye99℄, whih have run times O(dm) and O(�+mn=w),

respetively.

During the preparation of this artile we notied that there seems to be a lak of

omprehensive experimental omparison of the relative performane between di�erent

algorithms for omputing edit distane. Thus we are planning to �ll this gap in the

near future by omposing a fairly omprehensive survey on algorithms for omput-

ing edit distane. The survey will also inlude a more omprehensive test with our

algorithm.

We would also like to point out that the algorithm pseudoodes we have shown

have not been optimized to remain more lear. Pratial implementations ould for

example avoid shifting the same variable twie and maintain only the needed delta

vetor values in the memory (the delta vetors in the jth olumn are only needed

when proessing the (j + 1)th olumn).
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Abstrat. Here, we have designed and implemented algorithms for string

mathing with gaps for musial melodi reognition on polyphoni musi using

bit-wise operations. Musi analysts are often onerned with �nding ourrenes

of patterns (motifs), or repetitions of the same pattern, possibly with variations,

in a sore. An important example of exibility required in sore searhing arises

from the nature of polyphoni musi. Within a ertain time span eah of the

simultaneously-performed voies in a musial omposition does not, typially,

ontain the same number of notes. So `melodi events' ourring in one voie

may be separated from their neighbours in a sore by intervening events in

other voies. Sine we annot generally rely on voie information being present

in the sore we need to allow for temporal `gaps' between events in the mathed

pattern.

Key words: exat string mathing, approximate string mathing, gaps, pat-

tern reognition, omputer-assisted musi analysis, bit-wise operation

1 Introdution

This paper fouses on a set of string pattern-mathing problems that arise in musial

analysis, and espeially in musial information retrieval. Musi analysts are often

onerned with �nding ourrenes of patterns, or repetitions of the same pattern,

possibly with variations, in a sore, while omputer sientists often have to perform

similar tasks on strings (sequenes of symbols from an alphabet). Many objets an

be viewed as strings: a text �le, for instane, is a sequene of haraters from the

ASCII alphabet; a DNA ode is a sequene of haraters from the alphabet A,C,G,T

(representing the base proteins whih onstitute DNA). Similarly, a musial sore an

y
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be viewed (at one level) as a string: at a very rudimentary level, the alphabet ould

simply be the set of notes in the hromati or diatoni notation, or the set of intervals

that appear between notes (e.g. pith may be represented as MIDI numbers and pith

intervals as number of semitones).

Monophoni musi (that is, musi in whih a single note only sounds at any

given time) lends itself well to a one-dimensional string mathing approah, and

eÆient mathing algorithms for single-line melody-retrieval have been applied with

some suess. The polyphoni situation (where several voies or instruments may

be performing together, and any number of notes may be sounding at any given

time) is more omplex, however, beause of the temporal interation between non-

simultaneous events in di�erent voies. Where full knowledge about the voiing of the

musi data (in both the searh-pattern and the target) is available, mathing ould be

done by suessive searhes on eah voie in turn. In many musi-retrieval or analysis

appliations, espeially where the data has been prepared by enoding a printed sore

in onventional musial notation, this is possible. But in the general ase the data is

likely to be imperfetly-spei�ed in terms of its voiing, typially depending on how

it is obtained: from audio, for example, even given perfet note-extration, voiing

information is likely to be derivable only approximately, if at all. Therefore, we need

to allow for temporal gaps between musial events in the mathed pattern.

When we onsider the approximate version of this problem we do not require a

perfet mathing but a mathing that is good enough to satisfy ertain riteria. The

problem of �nding substrings of a text similar to a given pattern has been extensively

studied in reent years beause it has a variety of appliations inluding �le om-

parison, spelling orretion, information retrieval, searhing for similarities among

biosequenes and omputerized musi analysis. One of the most ommon variants of

the approximate string mathing problem is that of �nding substrings that math the

pattern with at most k-di�erenes. In this ase, k de�nes the approximation extent of

the mathing (the edit distane with respet to the three edit operations { mismath,

insert, delete). There is another type of approximate mathing; Æ-approximate math-

ing. It is well known that a musial sore an be represented as a string. This an be

aomplished by de�ning the alphabet to be the set of notes in the hromati or dia-

toni notation or the set of intervals that appear between notes. These algorithms an

be easily used in the analysis of musial works in order to disover similarities between

di�erent musial entities that may lead to establishing a \harateristi signature"

[CIR98℄.

In addition, eÆient algorithms for omputing approximate mathing and repeti-

tions of substrings are also used in moleular biology [FLSS93, KMGL88, MJ93℄ and

partiularly in DNA sequening by hybridization, reonstrution of DNA sequenes

from known DNA fragments, in human organ and bone marrow transplantation as

well as the determination of evolutionary trees among distint speies.

Beause exat mathing may not help us to �nd ourrenes of a partiular melody

in a musial work due to the transformation of the partiular melody throughout the

whole musial work we are ompelled to use approximate mathing that an absorb,

to some extent, this transformation and report the ourrenes of this melody. The

transformation in di�erent ourrenes of a partiular melody throughout a musial

play is translated into errors of di�erent ourrenes of a substring with respet to

an initial pattern. Quantity Æ de�nes the error margins of suh an approximation.
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In [CCIMP99℄, algorithms Shift-And and Shift-Plus were presented as eÆient

solutions to �nd all Æ-ourrenes of a given pattern in a text. The Shift-And algorithm

is based on the onstant time omputation of di�erent states for eah symbol in

the text by using bitwise tehniques. Therefore, the overall omplexity is linear

to the size of the text. In [IK02℄, approximate distributed mathing problem for

polyphoni musi is solved in linear time. We must also mention that it is possible to

adapt eÆient exat pattern mathing algorithms to this kind of approximation. For

example, in [CILP01℄ adaptations of the Tuned-Boyer-Moore [HS91℄ and the Skip-

Searh [CLP98℄ algorithm were presented.

The organization of the paper is as follows. Some de�nitions are given in setion 2.

In setion 3, Æ-ourrene with �-bounded gaps for monophoni musi is onsidered.

In setion 4 we onsider the problem of omputing exat mathing with �-bounded

gaps for polyphoni musi. Finally, we give some onlusions and future work in

setion 5.

2 De�nitions

Let � be an alphabet. A string is de�ned as a sequene of zero or more symbols from

�. The empty string, that is the string with zero symbols, is denoted by ". The set of

all strings over an alphabet � is denoted as �

�

. A string x of length n is represented

by the sequene x

1

; x

2

; : : : ; x

n

, where x

i

2 � for 1 � i � n. We all w a substring of

string x if x is of the form uwv for u; v 2 �

�

. We also say that substring w ours

at position juj+ 1 of string x. The starting position of w in x is the position juj+ 1

while position juj+ jwj is said to be the end position of w in x. A string w is a pre�x

of x if x is of the form wu and is a suÆx if x is of the form uw.

We de�ne as the onatenation of two strings x and y the string xy. The on-

atenations of k opies of a string x is denoted by x

k

. Note that self-onatenations

an result in strings of exponential size. For two strings x = x

1

; x

2

; : : : ; x

n

and

y = y

1

; y

2

; : : : ; y

m

suh that x

n�i+1

; : : : ; x

n

= y

1

: : : y

i

for some i � 1, the string

x

1

; : : : ; x

n

; y

i

; : : : ; y

m

is the superposition of x and y. In this ase we say that x and

y overlap.

At this point, we are going to give formally the notion of error introdued in

approximate string mathing. Assume that Æ and  are integers. Two symbols a, b of

alphabet � are said to be Æ-approximate, denoted as a =

Æ

b, if and only if ja� bj � Æ.

We say that two strings x, y are Æ-approximate, denoted as x

Æ

= y if and only if

jxj = jyj and x =

Æ

y.

Two strings x, y are said to be -approximate, denoted as x =



y , if and only

if jxj = jyj and

P

jxj

i=1

jx

i

� y

i

j < . Furthermore, we say that two strings x, y are

(Æ; )-approximate if both onditions are satis�ed.

The error in the �rst ase (Æ-approximate) is de�ned loally for eah symbol in a

string. In the seond ase (-approximate) the error is de�ned in a more global sense

and allows us to distribute the error on the symbols unevenly.
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3 Æ-ourrene with �-bounded gaps for monopho-

ni musi

The problem of omputing Æ-ourrene with �-bounded gaps is formally de�ned as

follows: given a string t = t

1

; : : : ; t

n

, a pattern p = p

1

; : : : ; p

m

and integers �, Æ,

hek whether there is a Æ-ourrene of p in t with gaps whose sizes are bounded by

onstant � (Fig. 1).

The basi idea of the algorithm desribed in [CIPR00℄ is the omputation of

ontinuously inreasing pre�xes of pattern p in text t so that �nally we ompute

the Æ-ourrene of the whole pattern p. That is, the algorithm is an inremental

proedure that is based on dynami programming. The algorithm is shown in Fig. 2.

Figure 1: Æ-ourrene with �-bounded gaps for Æ = 1; � = 2

begin

D[0℄[0℄ 1;

for i 1 to m do D[i℄[0℄ 0;

for j  1 to n do D[0℄[j℄ j;

for i 1 to m do

for j  1 to n do

if p[i℄ =

Æ

t[j℄ and j �D[i� 1℄[j � 1℄ � � + 1 and D[i� 1℄[j � 1℄ > 0

then D[i℄[j℄ j;

elseif p[i℄ 6=

Æ

t[j℄ and j �D[i℄[j � 1℄ < � + 1 then D[i℄[j℄ D[i℄[j � 1℄;

else D[i℄[j℄ 0;

for j  0 to n do

if D[m℄[j℄ > 0 then OUTPUT(j);

end

Figure 2: Algorithm for Æ-ourrene with �-bounded gaps

This algorithm will be adapted to the problem of �nding a singular pattern in a

singular text (monophoni musi) without any major modi�ations. Fig. 3 shows 2

bars from Mihael Niman's piee and a melody whih listeners an easily ognize.

If we set the value � = 3 (3 gaps allowed), the algorithm an �nd this melody

in the sore, while we have to set a large number of k (at least k = 12) to �nd it

using k-di�erene approximate mathing algorithms. The time omplexity of this

algorithm is O(nm), where n is the number of the musial events in the sore, whih

is equivalent to the number of notes in the sore sine this is monophoni musi, and

m is the length of the pattern. The running time is shown in Fig. 4.
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Figure 3: 2 bars from Mihael Niman's piee and its melody. If � � 3, this melody

will be found.

Figure 4: Running time of the algorithm \Æ-ourrene with �-bounded gaps for

monophoni musi". Using a SUN Ultra Enterprise 300MHz running Solaris Unix.

4 Exat mathing with �-bounded gaps for poly-

phoni musi

We need to modify the algorithm in order to solve the problem in polyphoni musi.

Here, we will work on exat mathing with �-bounded gaps for polyphoni musi, and

Æ-ourrene will not be onsidered, as the adjaent pith does not neessarily mean

the most relevant note for a melody. Also, we will suppress the MIDI pith numbers

by dividing by 12 in order to �nd otave-displaed mathes as well. Therefore, `C' is

`1', `C#' and `Db' are `2', `D' is `3', and so on, and the size of alphabet j�j will be

12.

We are going to use bit arrays and bit-wise operations to deal with several voies

at one. Let Tx[i℄ (1 � i � m, m is the length of a pattern) be a bit array of

size j�j for the position i of the pattern, and Ty[j℄ (1 � j � n, n is the number of

musial events in a plural text) be a bit array of size j�j for the j-th musial event

of the plural text. If x[i℄ ontains a note `8', then the 8th position of Tx[i℄ will be 0,

otherwise 1, where 0 represents `math' and 1 represents `mismath'. Similarly, if y[j℄

ontains notes `3', `4' and `9', then the 3rd and 4th and 9th position of Ty[j℄ will be

0, otherwise 1. These bit arrays will be used in the searhing phase to hek whether

there is a math or not.

Fig. 5 shows the modi�ed algorithm and the overall time omplexity is O(N+nm),

where N is the total number of notes in the sore, and n is the number of the musial

events, and m is the length of the pattern, and Fig. 6 shows its running time. Fig. 7
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Preproessing

begin

for j  1 to m do Tx[j℄ 2

�

� 1� 2

x[j℄

;

for i 1 to n do

Ty[i℄ 2

�

� 1;

for eah suppressed pith p in y[i℄ do Ty[i℄ Ty[i℄ & (2

�

� 1� 2

p

);

end

Searhing

begin

D[0℄[0℄ 1;

for i 1 to m do D[i℄[0℄ 0;

for j  1 to n do D[0℄[j℄ j;

for i 1 to m do

for j  1 to n do

if (Tx[i℄ j Ty[j℄) = Tx[i℄ and j �D[i� 1℄[j � 1℄ � �+ 1

and D[i� 1℄[j � 1℄ > 0 then D[i℄[j℄ j;

elseif (Tx[i℄ j Ty[j℄) 6= Tx[i℄ and j �D[i℄[j � 1℄ < �+ 1

then D[i℄[j℄ D[i℄[j � 1℄;

else D[i℄[j℄ 0;

for j  0 to n do

if D[m℄[j℄ > 0 then OUTPUT(j);

end

Figure 5: Modi�ed algorithm for polyphoni musi

and Fig. 9 show examples of the preproessing phase for 1 bar from Mozart's piano

sonata and Debussy's Clair de Lune, respetively, and Fig. 8 and Fig. 10 show their

searhing phases.

Figure 6: Running time of the modi�ed algorithm for polyphoni musi (N = 4n).

Using a SUN Ultra Enterprise 300MHz running Solaris Unix.

5 Conlusion and further work

Approximate (Æ-ourrene) string mathing with gaps for monophoni musi is solved

in O(nm) time, where n is the number of musial events (whih is equivalent to the

number of notes in a sore for monophoni musi), and m is the length of a pattern.

Exat string mathing with gaps for polyphoni musi (a plural text and a singular
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Figure 7: Preproessing phase for 1 bar from a Mozart's piano sonata and a pattern.

(N = 11; n = 8; m = 3)

Figure 8: Searhing phase using bit-wise operations for 1 bar from the Mozart's piano

sonata and the patten. (� = 3)
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Figure 9: Preproessing phase for 1 bar from Clair de Lune and a pattern. (N =

30; n = 18; m = 4)

Figure 10: Searhing phase using bit-wise operations for 1 bar from Clair de Lune

and the patten. (� = 1)
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pattern) is solved in O(N + nm) time, where N is the total number of notes in a

sore, and n is the number of musial events (n � N), and m is the length of a

pattern. Using the same tehnique, exat string mathing problem for a plural text

and a plural pattern will be solved in O(N +M + nm) time, where M is the total

number of notes in the plural pattern. However, we have not solved approximate

string mathing with gaps for polyphoni musi, beause \small Æ" does not really

mean \more relevant" in musi. In this partiular sense, k-di�erene algorithms ould

be more useful, although it is inevitable to have large k and many false mathes. We

need to design an eÆient algorithm for this problem.
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Abstrat. We desribe algorithms for omputing typial regularities in strings

x = x[1::n℄ that ontain don't are symbols. For suh strings on alphabet �, an

O(n log n log j�j) worst-ase time algorithm for omputing the period is known,

but the algorithm is impratial due to a large onstant of proportionality. We

present instead two simple pratial algorithms that ompute all the periods

of every pre�x of x; our algorithms require quadrati worst-ase time but only

linear time in the average ase. We then show how our algorithms an be used

to ompute other string regularities, spei�ally the overs of both ordinary and

irular strings.

Key words: string algorithm, regularities, don't are, period, border, over.

1 Introdution

Regularities in strings arise in many areas of siene: ombinatoris, oding and au-

tomata theory, moleular biology, formal language theory, system theory, et. | they

thus form the subjet of extensive mathematial studies (see e.g. [L83℄,[P93℄,[P90℄).

Perhaps the most onspiuous regularities in strings are those that manifest them-

selves in the form of repeated subpatterns. A typial regularity, the period u of the

string x, grasps the repetitiveness of x, sine x is a pre�x of a string onstruted by

y
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z

Supported by EPSRC studentship.
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onatenations of u. Here we onsider regularity problems that arise from having

\don't are" symbols in the string. In partiular we study string problems foused

on �nding the repetitive strutures in DNA strings x.

In this paper we also onsider a kind of generalized period alled a over; that is, a

proper substring u of x (if it exists) suh that x an be formed by onatenating and

overlapping ourrenes of u. In the omputation of overs, two main problems have

been onsidered in the literature: the shortest-over problem (omputing the shortest

over of a given string of length n), and the all-overs problem (omputing all the ov-

ers of a given string). Apostolio, Farah and Iliopoulos [AFI91℄ introdued the notion

of overs and gave a linear-time algorithm for the shortest-over problem. Breslauer

[B92℄ presented a linear-time on-line algorithm for the same problem. Moore and

Smyth [MS95℄ presented a linear-time algorithm for the all-overs problem. Finally,

Li and Smyth [LS02℄ invented the over array and desribed an on-line linear-time

algorithm that solves both the shortest-over and all-overs problems for every pre�x

of x. In parallel omputation, Breslauer [B94℄ gave an optimal O(�(n) log logn)-time

algorithm for the shortest over, where �(n) is the inverse Akermann funtion; Il-

iopoulos and Park [IP94℄ gave an optimal O(log logn)-time (thus work-time optimal)

algorithm for the same problem.

The idea of a over has been extended. Iliopoulos, Moore and Park [IMP96℄

introdued the notion of seeds and gave anO(n logn)-time algorithm for omputing all

the seeds of a given string of length n. For the same problem Ben-Amram, Berkman,

Iliopoulos and Park [BBIP94℄ presented a parallel algorithm that requires O(logn)

time and O(n logn) work. Apostolio and Ehrenfeuht [AE93℄ onsidered yet another

problem related to overs.

An interesting extension of string-mathing problems with pratial appliations

in the area of DNA sequenes results from the introdution of \don't are" symbols.

A don't are symbol � has the property of mathing with any symbol in the given

alphabet. For example the string p = AC � C� mathes the pattern q = A � DCT .

Exat string mathing with \don't are" symbols was studied by Fisher and Pa-

terson [FP74℄. They developed an O(n logm log j�j) time algorithm for �nding a

pattern of length m in a text of size n over the alphabet � [ f�g. Their method

is based on the theoretially fast omputation method of onvolutions, but it is not

eÆient in pratie. Pinter developed a linear time algorithm for a speial ase [P85℄,

while Abrahamson generalized Fisher and Paterson's algorithm, using a divide-and-

onquer approah that runs in time O(n

p

m logm) [A87℄. See also [LV89℄.

In this paper we desribe two fast, pratial algorithms for omputing all the

periods of every pre�x of a given string x[1::n℄ that ontains \don't are" symbols.

We prove that the expeted running time of these algorithms is linear, though they

have quadrati worst-ase time omplexity for pathologial inputs. Then we show

how our algorithms an be used to eÆiently ompute overs of strings with don't

ares, both ordinary and irular. The motivation for the above problems omes from

many appliations to the analysis of DNA sequenes that reveal naturally ourring

repeated segments within nuleotide sequenes. These segments an be onatenated

only (periodi) or both onatenated and overlapping (overable).
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2 Bakground

A string is a sequene of zero or more symbols drawn from an alphabet �. The set

of all nonempty strings over the alphabet � is denoted by �

+

. A string x of length n

is represented by x[1::n℄ = x[1℄x[2℄ � � �x[n℄, where x[i℄ 2 � for 1 � i � n, and n = jxj

is the length of x. The empty string is the empty sequene (of zero length) and is

denoted by "; we write �

�

= �

+

[f"g The string xy is a onatenation of two strings

x and y. The onatenation of k opies of x is denoted by x

k

and is alled the k

th

power of x.

A string w is a substring of x if x = uwv for u; v 2 �

�

. A string w is a pre�x of x

if x = wu for u 2 �

�

, a proper pre�x if u 2 �

+

. Similarly, w is a suÆx of x if x = uw

for u 2 �

�

. A string u that is both a proper pre�x and a suÆx of x is alled a border

of x.

If x has a nonempty border, it is alled periodi. Otherwise, x is is said to be

primitive. The empty string is a trivial border of x. Let u denote a border of x of

length ` where 1 � ` � n � 1; then p = n � ` is alled a period of x. Clearly, p is

a period of x if x

i

= x

i+p

whenever 1 � i; i + p � n. Another equivalent de�nition

may be given as: p is a period of x if and only if x[1::p℄ = x[n� p+ 1::n℄. The latter

de�nition shows that eah word x has a minimum period alled the period of x. For

example, the string x = ababab has two borders u

1

= ab and u

2

= abab; thus x has

two periods 4 and 2, where 2 is the period of x.

A substring u is said to be a over of a given string x if every position of x lies

within an ourrene of a string u within x. If, in addition, juj < jxj, we all u a

proper over of x. For example, x is always a over of x. and u = aba is a proper

over of x = abaababa.

An array �[1::n℄ is alled the border array of x[1::n℄, where for i = 1; 2; : : : ; n, �[i℄

gives the length of the longest border of x[1::i℄. Furthermore, sine every border of a

border of x is itself a border of x, � atually desribes all the borders of every pre�x

of x. The border array an be omputed in linear time using the lassial failure

funtion algorithm [AHU74℄.

Reently Li and Smyth [LS02℄ disovered the over array [1::n℄, where [i℄ gives

the length of the longest over of x[1::i℄. The over array similarly enapsulates all

the overs of every pre�x of x and an also be omputed in linear time.

This paper deals with strings that an ontain ourrenes of the don't are sym-

bol, denoted by \�". This symbol mathes any other symbol of the alphabet. Two

symbols a and b math (a � b) if they are equal, or if one of them is a don't are

symbol. Notie that the relation � is not transitive (a � �; � � b; a � b).

3 Computing the Failure Funtion

A theoretial O(n logn log j�j) time algorithm for omputing the period of a given

string x that ontains don't are symbols an be ahieved by using a \onvolution"

proedure [FP74℄ between two strings x and X. Assuming that x is the given string

(of length n), we reate a string X by adding n don't are symbols, thus doubling

the length of x. We ompute the onvolution of x and X by shifting x to the right

by one harater. The produt u of the onvolution is the period of the string x (for
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further information see [FP74℄). This algorithm is impratial as it has a very large

onstant hidden in its asymptoti time omplexity.

In this setion we present two fast and pratial algorithms for omputing the

border array �[1 : : : n℄ of a given string x that ontains don't are symbols.

As noted earlier, the standard failure funtion method, based on the fat that

\a border of a border of a string x is neessarily a border of x", annot be used to

alulate the border array of a string ontaining don't are symbols. This follows

from the nontransitivity of the � relation. For example, if x = a � �a, then we have

u

l

= a � � � u

r

= �a;

where u

l

and u

r

are respetively the left and right borders of x of length 3; note that

v

l

= a� � �� is a border of u

l

, but a� 6= a, whih means that v

l

is not a border of

u

r

, hene not of x.

Despite the fat that we annot make use of the standard failure funtion method,

it is quite easy to notie that there is no nonempty border b of x[1::i+ 1℄ that is not

equal to some b

0

x[i+1℄, where b

0

is a border of x[1 : : : i℄. Moreover, let the borders of

x[1::i℄ be

�

1

[i℄; �

2

[i℄ : : : �

k

[i℄

where �

1

[i℄ is the the length of the border of x[1 : : : i℄ (the longest border) and �

k

[i℄ = 0

is the length of the empty border .Then eah border of x[1 : : : i+1℄ is equal to either

�

j

[i℄ + 1 for some 1 � j � k or 0.

The above states the rule used by algorithm FAILURE-FUNCTION-1() to alu-

late the value of the border array of a given string x that ontains don't are symbols.

FAILURE-FUNCTION-1(x)

1 S  ; S is a singly-linked list of nonzero border lengths

2 �[1℄ 0

3 For i 1 To n� 1 Do

4 For eah b 2 S Do

5 If x[i + 1℄ � x[b + 1℄ Then

6 replae urrent(S; b + 1)

7 Else delete urrent(S)

8 If x[i℄ � x[1℄ Then add after urrent(S,1)

9 If S 6= ; Then �[i+ 1℄ top(S)

10 Else �[i+ 1℄ 0

END FAILURE-FUNCTION-1

Figure 1: FAILURE-FUNCTION-1 algorithm.

The algorithm maintains a list S of all possible nonzero border lengths. At the

beginning of iteration i, S ontains all possible nonzero border lengths of x[: : : i℄. The

algorithm tries to extend eah possible border b in S by omparing the value of x[i+1℄

and the value of x[b + 1℄. If the two values are equal or one of them is a don't are

symbol, the value b in S is replaed by b + 1. Otherwise, b is deleted from the list.

If x[i + 1℄ is equal to x[1℄ or �, a border of length 1 has to be added to S. Finally,
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eah iteration i terminates by assigning the value at the top of the list S that is the

length of the longest border of x[1 : : : i+1℄ to �[i+1℄. If the list S is empty, then the

length of the longest border is 0 (�[i + 1℄ = 0). Note that at this stage , S ontains

the lengths of all possible nonzero borders of x[1 : : : i + 1℄ in desending order.

Eah position i suh that x[i℄ = x[1℄ or � is a andidate to start a new border.

Hene Algorithm FAILURE-FUNCTION-2() tries to speed up the omputation of the

failure funtion by a simple linear preproessing of the input string x. For eah posi-

tion i we ount the previous ourrenes of x[1℄'s and �'s. And we introdue a pointer

that points to the previous ourrene. The algorithm then modi�es the standard

failure funtion method to alulate the border array �. FAILURE-FUNCTION-2

starts by setting the value of �[0℄ to -1, a onvention whih is ompatible with the

algorithm. Then n � 1 iterations follow. In eah iteration i, the algorithm tries to

extend the urrent border b by omparing the value of x[i+1℄ and the value of x[b+1℄

where b is the length of the border of x[1 : : : i℄. If the two values are equal or one of

them is a don't are symbol, the value of �[i℄ is set to b+1. Otherwise, the algorithm

tries to follow the basi failure funtion method by trying to extend the border of

the urrent border. More work needs to be done in eah attempt to ensure the right

answer:

� The algorithm has to eliminate the possibility of having a border whose length

is greater than that of the border of the border. That is, having

x[1 : : : i� j + 2℄ � x[j : : : i+ 1℄

for some j suh that �[b℄ < i� j + 1 < b. The algorithm uses the preproessed

informations to �nd eah position j suh that x[j℄ = x[1℄ or �. Clearly, the

number and the positions of the j's an be alulated in onstant time. The

algorithm examines eah j in asending order to �nd the �rst j that satis�es

the above ondition. If suh a j exists, then the iteration ends by assigning

i� j + 2 to �[i + 1℄.

� Reall that the nontransitivity of the � relation means that the statement \the

border of the border is a border" may not be true. Observe that nontransitivity

an our only if a don't are symbol was part of the omparison. Then only

in suh ases does the algorithm need to rehek the positions that ould ause

a nontransitivity. That is, if x[i + 1℄ � x[�[b℄℄, then the algorithm still needs

to hek all the solid haraters in the right border; that have been ompared

with the don't are symbol during the alulation; against the oresponding

haraters in the left border. These positions are marked during the alulations

and stored in a speial stak S. Positions are popped from and pushed onto S

depending on the length of the urrent border.

For example, let x = a � �abdab � aba and the value of the border array be as

follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x[i℄ a � �  a b  d a b  � a b  a

�[i℄ 0 1 2 3 3 2 3 0 1 2 3 4 5 6 7 5

At step 7 (i = 7) we had failed to extend the urrent border after omparing x[4℄ = `'

with x[8℄ = `d'. At the same time we ould not �nd any j that satis�es the �rst
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FAILURE-FUNCTION-2(x)

1 �[0℄ �1

2 For i 0 To n� 1 Do

3 b �[i℄

4 If x(i + 1) � x(b + 1) Then �[i+ 1℄ b+ 1

5 Else

6 While b � 0 And [x(i + 1) 6= x(b + 1) Or hek stak fail()℄ Do

7 For eah j suh that �[b℄ < i� j + 1 < b And x[j℄ � x[1℄ Do

8 If x[j::i + 1℄ � x[1::i� j + 2℄ Then

9 b i� j + 2

10 Quit The While Loop

11 b �[b℄

12 �[i+ 1℄ b

END FAILURE-FUNCTION-2

Figure 2: FAILURE-FUNCTION-2 algorithm.

ondition. So we tried to extend the border of the border whih equals 3 (�[7℄ = 3).

Sine x[8℄ 6= x[4℄, we tried to extend the border of the border of the border whih

equals 2 (�[3℄ = 2). Although x[8℄ � x[3℄, we still need to hek aording to the

algorithm the value at position 1 with the orresponding value at position 6. Sine

they are not equal, the value of �[8℄ an not be 3 and so we have to arry on . Note

that the value 1 had been inserted into the stak after omparing the `�' at position

2 with the `a' at position 1 at step 1.

At step 15, where x[16℄ 6= x[8℄, we had failed again to extend the urrent border.

Aording to the algorithm we have to eliminate the possibility of having a longer

border than the border of the border; that is, �nding j that satis�es the �rst ondition.

In our example, we found j = 12. Note that

�[b℄ = 3 < i� j + 1 = 15� 12 + 1 = 4 < b = 7

and x[12℄ = �. After �nding j we need to ompare x[12 : : : 16℄ with x[1 : : : 5℄. Sine

they are equal the value of �[16℄ beomes 5.

4 Expeted Running Time Analysis

Here we will show that the expeted number of borders of a string is bounded by

a onstant. We suppose that the alphabet � onsists of ordinary letters 1 : : : � � 1

together with the don't are symbol �. First we onsider the probability of two

symbols of a string being equal. Equality ours in the following ases:

Symbol Equal to Number of ases

� � 2 f1; : : : ; �� 1g �� 1

� 2 f�; 1; : : : ; �� 1g � �

� 2 f1; : : : ; �� 1g � 2 f1; : : : ; �� 1g �� 1
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Thus the total number of equality ases is 3�� 2 and the number of overall ases

is �

2

. Therefore the probability of two symbols of a string being equal is

3�� 2

�

2

Now let onsider the probability of string x having a border of length k. One an see

P [x

1

: : : x

k

= x

n�k�1

: : : x

n

℄ = P [x

1

= x

n�k�1

℄ : : : P [x

k

= x

n

℄ =

�

3�� 2

�

2

�

k

From this it follows that the expeted number of borders is

�

n�1

k=1

�

3�� 2

�

2

�

k

< 3:5

The algorithm, at iteration i, performs k

i

steps, where k

i

is the number of the borders

of x[1::i℄. Thus the overall expeted time omplexity is

�

n�1

k=1

k

i

:

Sine the expeted value of eah k

i

is bounded by 3.5, therefore the expeted time of

the two border algorithms is O(n).

5 Experimental Results

Using random strings over various alphabet sizes (with the � symbol treated as

an additional random letter), we ran FAILURE-FUNCTION-1() and FAILURE-

FUNCTION-2(). The running time was alulated for eah exeution. We used

a SUN Ultra Enterprise 300MHz running Solaris Unix. The reported times are the

alulation time in seonds, measured by alling the a lok() routine (Figures 3

and 4).

Figure 3: Timing urves for the FAILURE-FUNCTION-1 Proedure.

In general, it seems that the heuristi employed in FAILURE-FUNCTION-2 is

e�etive for random strings on small alphabets (therefore ontaining a high proportion
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Figure 4: Timing urves for the FAILURE-FUNCTION-2 Proedure.

FIND-COVERS(x)

1 Compute borders B = fb

1

; : : : ; b

k

g of x in asending order of length

2 For eah adjaent pair of borders, b

i

and b

i+1

, Do

3 If b

i

overs b

i+1

Then hek whether it overs x

4 Else i i + 1

END FIND-COVERS

Figure 5: FIND-COVERS algorithm.

of don't are symbols), but makes little di�erene for larger alphabets that have a

orrespondingly low proportion of don't ares.

Note that our experiments on�rm Setion 4's theoretial result that the expeted

ase bahaviour of the algorithms is linear in string length.

6 Computing the Covers

In this setion we present an algorithm for omputing all the overs of a given string

x, bearing in mind that we allow possible overlaps. This means that in the example

p = AC �ACA�AA�ACA, the pattern q = ACA is an overlapping over of the string

p. The algorithm we present onsists of 2 stages. The �rst stage is a preproessing

phase where we ompute the borders of the given string x. Suppose we �nd the

following nonempty borders b

1

; b

2

; : : : ; b

k

, listed in asending order.

In the seond stage we perform the following hek: for two borders b

i

and b

i+1

, if

b

i

overs b

i+1

we hek whether b

i

also overs string x. If not we ontinue this proess

for the rest of the adjaent pairs of borders.

In order to preompute the borders we use Algorithm ALL-BORDERS(). Using

the previously omputed borders, the proedure that �nds the overs of a given string

x is as follows:
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Theorem 6.1 Given a string x that ontains don't are symbols, we an �nd a longest

over u of x in linear expeted time.

7 Computing the Covers of Cirular DNA Strings

In some omputational biology appliations (for example, DNA sequening by hy-

bridization), it is onvenient to regard the DNA sequene as a irular string (Fig. 6).

Given a irular DNA string and a window that limits the region of DNA that we are

able to study, the omputation of overs in the sequene beomes a diÆult task. In

that ase the omputation of seeds (see [BBIP94℄) does not work and we need a new

approah.

Bearing in mind the sheme of a irular DNA string and the algorithms for the

omputation of the failure funtion that we have already desribed, it is easy to see

that the omputation of the overs in a irular DNA sequene an be easily solved

using the failure funtion tehnique. More preisely the problem of the omputation

of overs an be solved if we ompute the failure funtion two times, one forward

and one bakward.

Figure 6: A irular string x and three substrings S1, S2, S3, as seen from a window

of four haraters length.

Conlusions

We have presented two linear expeted-time algorithms for omputing all the borders

(hene all the periods) of a given string ontaining don't are symbols. We have then

shown how to apply the border alulation to ompute the overs of ordinary and

irular strings, also ontaining don't are symbols.

An open problem is the alulation of every border of every pre�x of x inO(n logn)

worst-ase time.
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Abstrat. String mathing is ritial in information retrieval sine in many

ases information is stored and manipulated as strings. Construting and uti-

lizing suitable data strutures for text strings, we an solve the string mathing

problem eÆiently. Suh strutures are alled index strutures. The suÆx tree is

ertainly the most widely-known and extensively-studied struture of this kind.

In this paper, we present a linear-time algorithm for bidiretional onstrution

of suÆx trees.

1 Introdution

Pattern mathing on strings is of entral importane to Theoretial Computer Siene.

The pattern mathing problem is to examine whether a given pattern string pmathes

a text string w. This problem an be solved in O(jpj) time, by using a suitable index

struture.

The most basi index struture seems to be the suÆx trie, by whose nodes all

substrings of a given string w are reognized. Probably the struture is the easiest to

understand, but its only, however biggest drawbak is that its spae requirement is

O(jwj

2

).

This fat led the introdution of more spae-eonomial (O(jwj)-spaed) strutures

suh as the suÆx tree [23, 19, 22, 12℄, the direted ayli word graph (DAWG) [3,

7, 2℄, the ompat direted ayli word graph (CDAWG) [4, 9, 15, 13, 16℄, the suÆx

array [18℄, and some other variants. Among those, suÆx trees are possibly most

widely-known and extensively-studied [8, 12℄, perhaps beause there are a `myriad' [1℄

of appliations for them.

Constrution of suÆx trees has been onsidered in various ontexts: Weiner [23℄

invented the �rst algorithm that onstruts suÆx trees in linear time; MCreight [19℄

proposed a more spae-eonomial algorithm than Weiner's; Chen and Seiferas [6℄

showed an eÆient modi�ation of Weiner's algorithm; Ukkonen [22℄ introdued an

on-line algorithm to onstrut suÆx trees, whih Giegerih and Kurtz [11℄ regarded

as \the most elegant"; Farah [10℄ onsidered optimal onstrution of suÆx trees

with large alphabets; Breslauer [5℄ gave a linear-time algorithm for building the suÆx

tree of a given trie that stores a set of strings; Inenaga et al. [14℄ presented an on-

line algorithm that simultaneously onstruts both the suÆx tree of a string and the

DAWG of the reversed string.

In this paper we explore bidiretional onstrution of suÆx trees. Namely, the

algorithm we propose allows us to update the suÆx tree of a string w to the suÆx

tree of a string xwy, where x; y are any strings. We also show that our algorithm

runs in linear time and spae with respet to the length of a given string.
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Some related work an be seen in literature: Stoye [20, 21℄ invented variant of suÆx

trees, alled aÆx trees. He proposed an algorithm for bidiretional onstrution of

aÆx trees, and Maa� [17℄ improved the time omplexity of the algorithm to O(jwj).

2 SuÆx Trees

Let � be a �nite alphabet. An element of �

�

is alled a string. Strings x, y, and z

are said to be a pre�x, fator, and suÆx of string w = xyz, respetively. The sets of

pre�xes, fators, and suÆxes of a string w are denoted by Pre�x (w), Fator(w), and

SuÆx (w), respetively. The length of a string w is denoted by jwj. The empty string

is denoted by ", that is, j"j = 0. Let �

+

= �

�

� f"g. The i-th harater of a string

w is denoted by w[i℄ for 1� i� jwj. Let S � �

�

. The ardinality of S is denoted by

jSj. For any string u 2 �

�

, Su

�1

= fx j xu 2 Sg.

Let w 2 �

�

. We de�ne an equivalene relation �

L

w

on �

�

by

x �

L

w

y , Pre�x(w)x

�1

= Pre�x (w)y

�1

:

The equivalene lass of a string x 2 �

�

with respet to �

L

w

is denoted by [x℄

L

w

. Note

that all strings not belonging to Fator(w) form one equivalene lass under �

L

w

.

This equivalene lass is alled the degenerate lass. All other lasses are said to be

non-degenerate.

Proposition 1 ([14℄) Let w 2 �

�

and x; y 2 Fator(w). If x �

L

w

y, then either x is

a pre�x of y, or vie versa.

Proof. By the de�nition of �

L

w

, we have Pre�x (w)x

�1

= Pre�x (w)y

�1

. There are

three ases to onsider:

(1) When jxj = jyj. Obviously, x = y in this ase. Thus x 2 Pre�x (y) and

y 2 Pre�x (x ).

(2) When jxj > jyj. Let u be an arbitrary string in Pre�x (w). Assume u = sx with

s 2 �

�

. Then s 2 Pre�x(w)x

�1

, whih results in s 2 Pre�x(w)y

�1

. Hene,

there must exist a string v 2 Pre�x(w) suh that v = sy. By the assumption

that jxj > jyj, we have juj > jvj. From the fat that both u and v are in

Pre�x (w), it is derived that v 2 Pre�x(u). Consequently, y 2 Pre�x (x ).

(3) When jxj < jyj. By a similar argument to the one in Case (2), we have x 2

Pre�x (y).

2

For any string x 2 Fator(w), the longest member in [x℄

L

w

is denoted by

w

�!

x .

Proposition 2 ([14℄) Let w 2 �

�

. For any x 2 Fator(w), there uniquely exists a

string � 2 �

�

suh that

w

�!

x = x�.
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Proof. Let

w

�!

x= x� with � 2 �

�

. For the ontrary, assume there exists a string

� 2 �

�

suh that

w

�!

x = x� and � 6= �. By Proposition 1, either x� 2 Pre�x(x�) or

x� 2 Pre�x (x�) must stand, sine x� �

L

w

x�. However, neither of them atually

holds sine j�j = j�j and � 6= �, whih yields a ontradition. Hene, � is the only

string satisfying

w

�!

x= x�. 2

Proposition 3 Let w 2 �

�

and x 2 Fator(w). Assume

w

�!

x= x. Then, for any

y 2 SuÆx (x ),

w

�!

y = y.

Proof. Assume ontrarily that there uniquely exists a string � 2 �

+

suh that

w

�!

y = y�.

Sine y 2 SuÆx (x ), x is always followed by � in w. It implies that Pre�x (w)x

�1

=

Pre�x(w)(x�)

�1

, and therefore we have x �

L

w

x�. That j�j > 0 means that

w

�!

x is not

the longest in [x℄

L

w

; a ontradition. Hene,

w

�!

y = y. 2

Proposition 4 Let w 2 �

�

. For any string x 2 SuÆx (w),

w

�!

x= x.

Proof. Let y 2 �

�

be an arbitrary string suh that x �

L

w

y and x 6= y. Then, we have

Pre�x(w)x

�1

= Pre�x (w)y

�1

. Beause x 2 SuÆx (w), y 2 Pre�x(x )� fxg and thus

jxj > jyj. Hene,

w

�!

x= x. 2

The number of strings in Fator(w) is O(jwj

2

). For example, onsider string a

n

b

n

.

However, for any string w 2 �

�

, the number of strings x suh that x =

w

�!

x is O(jwj).

The following lemma gives a tighter upperbound.

Lemma 1 ([3, 4℄) Assume that jwj > 1. The number of the non-degenerate equiva-

lene lasses in �

L

w

is at most 2jwj � 1.

In the following, we de�ne the suÆx tree of a string w 2 �

�

, denoted by STree(w),

on the basis of the above-mentioned equivalene lasses. We de�ne it as an edge-

labeled tree (V;E) with E � V � �

+

� V where the seond omponent of eah

edge represents its label. We also give a de�nition of the suÆx links, kinds of failure

funtions, frequently utilized for time-eÆient onstrution of suÆx trees [23, 19, 22℄.

De�nition 1 STree(w) is the tree (V;E) suh that

V = f

w

�!

x j x 2 Fator(w)g;

E = f(

w

�!

x ; a�;

w

�!

xa) j x; xa 2 Fator(w), a 2 �, � 2 �

�

,

w

�!

xa= xa�, and

w

�!

x 6=

w

�!

xag;

and its suÆx links are the set

F = f(

w

�!

ax;

w

�!

x ) j x; xa 2 Fator(w); a 2 � ; and

w

�!

ax= a�

w

�!

x g:

The node

w

�!

" = " is alled the root node of STree(w). When a node

w

�!

x is of out-degree

zero, it is said to be a leaf node. Eah leaf node orresponds to a string in SuÆx(w).

If x 2 Fator(w) satis�es x =

w

�!

x , x is said to be represented on expliit node

w

�!

x .

If x 6=

w

�!

x , x is said to be on an impliit node. STree(oo) and STree(ooa) are

displayed in Figure 1.

It derives from Lemma 1 that:
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Figure 1: STree(oo) on the left, and STree(ooa) on the right. Solid arrows

represent edges, while dotted arrows denote suÆx links.

Theorem 1 ([19℄) Let w 2 �

�

. Let STree(w) = (V ;E ). Assume jwj > 1. Then

jV j � 2jwj � 1 and jEj � 2jwj � 2.

Weiner's algorithm [23℄ and MCreight's algorithm [19℄ onstrut the suÆx tree de-

�ned above, STree(w). On the other hand, Ukkonen's algorithm onstruts a slightly

di�erent version, whih is suitable for his algorithm.

As a preliminary to de�ne the modi�ed suÆx tree, we �rstly introdue a relation

X

w

over �

�

suh that

X

w

= f(x; xa) j x 2 Fator(w) and a 2 � is unique suh that xa 2 Fator(w)g:

Let �

0

L

w

be the equivalene losure of X

w

, i.e., the smallest superset of X

w

that is

symmetri, reexive, and transitive.

Proposition 5 ([14℄) For any string w 2 �

�

, �

L

w

is a re�nement of �

0

L

w

.

Proof. Let x; y be any strings in Fator(w) and assume x �

L

w

y. Aording to

Proposition 1, we �rstly assume that x 2 Pre�x (y). It follows from Proposition 2

that there uniquely exist strings �; � 2 �

�

suh that

w

�!

x = x� and

w

�!

y = y�. Note that

� 2 SuÆx (�). Let  2 �

�

be the string satisfying � = �. Then  is the sole string

suh that x = y. By the de�nition of �

0

L

w

, we have x �

0

L

w

y. A similar argument

holds in ase that y 2 Pre�x (x ). 2

Corollary 1 ([14℄) For any string w 2 �

�

, every equivalene lass under �

0

L

w

is a

union of one or more equivalene lasses under �

L

w

.

For a string x 2 Fator(w), the longest string in the equivalene lass with respet

to x under �

0

L

w

is denoted by

w

=)

x

.

The next proposition orresponds to Proposition 3

Proposition 6 Let w 2 �

�

and x 2 Fator(w)� SuÆx (w). Assume

w

=)

x

= x. Then,

for any y 2 SuÆx(x ),

w

=)

y

= y.

78



Bidiretional Constrution of SuÆx Trees

Proof. Sine

w

=)

x

= x and x =2 SuÆx(w), there are at least two haraters a; b 2 � suh

that xa; xb 2 Fator(w) and a 6= b. Sine y 2 SuÆx (x ), y is also followed by both a

and b in the string w. Thus

w

=)

y

= y. 2

Remark that the preondition of the above proposition slightly di�ers from that of

Proposition 3. Namely, when x is a suÆx of w, this proposition does not always hold.

From here on, we explore some relationship between

w

�!

(�) and

w

=)

(�).

Lemma 2 ([14℄) Let w 2 �

�

. For any string x 2 Fator(w),

w

�!

x is a pre�x of

w

=)

x

.

If

w

�!

x 6=

w

=)

x

, then

w

�!

x 2 SuÆx(w).

Proof. We an prove that

w

�!

x 2 Pre�x (

w

=)

x

) by Proposition 1 and Corollary 1. Now

suppose

w

�!

x 6=

w

=)

x

. Let

w

�!

x= x� with � 2 �

+

. Supposing

w

=)

x

= x� with � 2 �

+

, we

have � 2 Pre�x (�). Let � = � with  2 �

�

. By the assumption

w

�!

x 6=

w

=)

x

, we have

x� 6�

L

w

x�, although  is the sole string that follows x� in w sine

w

=)

x

= x�. Therefore,

x must be a suÆx of w, whih is followed by no harater. 2

For example, onsider string w = oo. Then,

w

�!

o= o but

w

=)

o= oo, where o is a

suÆx of oo.

Lemma 3 Let w 2 �

�

and x 2 SuÆx (w). If x =2 Pre�x (y) for any string y 2

Fator(w)� fxg, then

w

�!

x=

w

=)

x

.

Proof. The preondition implies that there is no harater a 2 � satisfying xa 2

Fator(w). Thus we have

w

=)

x

= x. On the other hand, we obtain

w

�!

x= x by Proposi-

tion 4, beause x 2 SuÆx (w). Hene

w

�!

x=

w

=)

x

. 2

Lemma 4 Let w 2 �

�

with jwj = n. Assume that the last harater w[n℄ is unique

in w, that is, w[n℄ 6= w[i℄ for any 1 � i � n� 1. Then, for any string x 2 Fator(w),

w

�!

x=

w

=)

x

.

Proof. By the ontraposition of the seond statement of Lemma 2, if x =2 SuÆx(w),

then

w

�!

x =

w

=)

x

. Beause of the unique harater w[n℄, any suÆx z of w satis�es the

preondition of Lemma 3, and thus

w

�!

z =

w

=)

z

. 2

We are now ready to de�ne STree

0

(w), whih is a modi�ed version of STree(w).

De�nition 2 STree

0

(w) is the tree (V;E) suh that

V = f

w

=)

x

j x 2 Fator(w)g;

E = f(

w

=)

x

; a�;

w

=)

xa) j x; xa 2 Fator(w), a 2 �, � 2 �

�

,

w

=)

xa= xa�, and

w

=)

x

6=

w

=)

xag;

and its suÆx links are the set

F = f(

w

=)

ax;

w

=)

x

) j x; xa 2 Fator(w); a 2 � ; and

w

=)

ax= a�

w

=)

x

g:
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Remark that STree

0

(w) an be obtained by replaing

w

�!

(�) in STree(w) with

w

=)

(�).

We have the next lemma deriving from Lemma 4.

Lemma 5 Let w 2 �

�

with jwj = n. Assume that the last harater w[n℄ is unique

in w, that is, w[n℄ 6= w[i℄ for any 1 � i � n� 1. Then, STree(w) = STree

0

(w).

For omparing STree(w) and STree

0

(w), see Figure 1 and Figure 2. As shown in

Proposition 3, any suÆxes of a string represented by an expliit node are also expliit.

Figure 2: STree

0

(oo) on the left, and STree

0

(ooa) on the right. Solid arrows

represent the edges, while dotted arrows denote suÆx links.

Aording to Lemma 5, using a delimiter $ that ours nowhere in w, we have

STree(w$) = STree

0

(w$) for any w 2 �

�

.

3 Bidiretional Constrution of SuÆx Trees

3.1 Right Extension

Assume that we have STree

0

(w) with some w 2 �

�

. Now we onsider updating it into

STree

0

(wa) with a 2 �, by inserting the suÆxes of wa into STree

0

(w). Ukkonen [22℄

ahieved the following result.

Theorem 2 ([22℄) For any a 2 � and w 2 �

�

, STree

0

(w) an be updated to

STree

0

(wa) in amortized onstant time.

Here we only reall essene of Ukkonen's algorithm together with some supporting

lemmas and propositions.

Let y be the longest string in Fator(w)\SuÆx (wa). Then y is alled the longest

repeated suÆx of wa and denoted by LRS (wa). Sine every string x 2 SuÆx(y)

belongs to Fator(w), we do not need to newly insert any x into STree

0

(w).

Lemma 6 Let a 2 � and w 2 �

�

. Let y = LRS (w). For any string x 2 SuÆx (w)�

SuÆx (y),

wa

=)

x

=

w

=)

x

�a.
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Proof. Sine y = LRS (w), any string x 2 SuÆx (w)� SuÆx (y) appears only one in

w as a suÆx of w, and is therefore

w

=)

x

= x. Also, x is followed only by a in wa, and

thus

wa

=)

x

= xa. 2

This lemma implies that a leaf node of STree

0

(w) is also a leaf node in STree

0

(wa).

Thus we need no expliit maintenane for leaf nodes. Namely, we an insert all strings

of SuÆx (w)� SuÆx (y) into STree

0

(w) automatially (for more detail, see [22℄).

Proposition 7 Let a 2 � and w 2 �

�

. Let y = LRS (w) and z = LRS (wa). For

any string x 2 SuÆx(y)� SuÆx (z )a

�1

,

wa

=)

x

= x.

Proof. Firstly, we onsider the empty string ". It always belongs to SuÆx (y) �

SuÆx (z )a

�1

, sine " 2 SuÆx (y) and " =2 SuÆx (z )a

�1

. It is now obvious that

wa

=)

"

= ".

Now we onsider other strings. That xa =2 SuÆx (z ) implies the existene of b 2 �

suh that xb 2 Fator(w) and b 6= a. Therefore, we have

wa

=)

x

= x. 2

We start from the loation orresponding to LRS (w) and onvert STree

0

(w) to

STree

0

(wa), while reating new expliit nodes if neessary to insert new suÆxes into

STree

0

(w), aording to the above proposition. Now the next question is how to

detet the loations where new expliit nodes should be reated.

We here de�ne the eliminator � for any harater a 2 � by

a� = �a = "

and j�j = �1. Moreover, we de�ne that � 2 Pre�x (") and � 2 SuÆx ("), but � =2

Pre�x(x ) and � =2 SuÆx (x ) for any x 2 �

+

. The symbol � orresponds to the

auxiliary node ? introdued by Ukkonen [22℄. Owing to the introdution of �, we

an establish the following lemma.

Lemma 7 Let a 2 � and w 2 �

�

. Let y = LRS (w) and z = LRS (wa). Let

x 2 SuÆx (y) � SuÆx (z )a

�1

. Suppose t is the longest string in Pre�x (x ) suh that

w

=)

t

= t. Let x

0

= SuÆx (x ) with jx

0

j+1 = jxj and t

0

= SuÆx (t) with jt

0

j+1 = jtj. For

string � 2 �

�

suh that t� = x, t

0

� = x

0

.

Notie that we an reah string x

0

via the suÆx link of the node for t in STree

0

(w)

and along the path spelling out � from the node for t

0

(reall De�nition 2). Moreover,

Proposition 6 guarantees that t

0

is an expliit node in STree

0

(w). Ukkonen proved

that x

0

an be found in amortized onstant time by using the suÆx link of node

w

=)

t

.

3.2 Left Extension

Weiner [23℄ proposed an algorithm to onstrut STree(aw) by updating STree(w)

with a 2 � in amortized onstant time. On the other hand, this setion is devoted to

the exposition of the onversion from STree

0

(w) to STree

0

(aw). In so doing, we insert

pre�xes of aw into STree

0

(w).
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Lemma 8 Let a 2 � and w 2 �

�

. For any string x 2 Fator(w) � Pre�x(aw),

w

=)

x

=

aw

=)

x

.

Proof. Let b be the unique harater that follows x in w. (When

w

=)

x

= x, then b = ".)

Sine x =2 Pre�x (aw), there is no new ourrene of x in aw. Therefore, b is also the

only harater following x in aw. Hene

w

=)

x

=

aw

=)

x

. 2

The above lemma ensures that any impliit node of STree

0

(w) does not beome ex-

pliit in STree

0

(aw) if it is not assoiated with any pre�x of aw.

Now we turn our attention to the strings in Pre�x (aw). Let x be the longest

string in set Fator(w) \ Pre�x(aw). Then x is alled the longest repeated pre�x of

aw and denoted by LRP(aw). Sine all pre�xes of x belong to Fator(w), we need

not newly insert any of them into STree

0

(w).

Proposition 8 Let a 2 � and w 2 �

�

. Let x = LRP(aw) and y = LRS (w). If

x =2 SuÆx (w)� SuÆx (y), then

aw

=)

x

= x. Otherwise,

aw

=)

x

= aw.

Proof. We �rst onsider the ase that x =2 SuÆx (w) � SuÆx (y). Reall that x is

the longest string in Fator(w) \ Pre�x (aw). Moreover, x =2 SuÆx (w) � SuÆx (y).

Hene, there exist two haraters b;  2 � suh that xb; x 2 Fator(aw) and b 6= .

Thus we have

aw

=)

x

= x.

Now we onsider the seond ase, x 2 SuÆx (w)� SuÆx (y). Here, x ours only

one in w as its suÆx. Thus

w

=)

x

= x. On the other hand, by the de�nition of LRP(aw),

we obtain x 2 Pre�x (aw)�fawg. Therefore, there uniquely exists a harater d 2 �

whih follows x in aw. Hene we have

aw

=)

x

= aw. 2

The above proposition implies that if LRP(aw) is not on a leaf node in STree

0

(w), it

is represented by an expliit node in STree

0

(aw), and otherwise it beomes impliit

in STree

0

(aw). We stress that this haraterizes a di�erene between STree

0

(w) and

STree(w). More onretely, Weiner's original algorithm onstruts STree(aw) on the

basis of the next proposition.

Proposition 9 For any a 2 � and w 2 �

�

, if x = LRP(aw), then

aw

�!

x = x.

Now the next question is how to loate LRP(aw) in STree

0

(w). Our idea is similar

to Weiner's strategy for onstruting STree(w) [23℄. Let y be the longest element in

set Pre�x(w) [ f�g suh that ay 2 Fator(w). Then y is alled the base of aw

and denoted by Base(aw). On the other hand, let z be the longest element in set

Pre�x (w) [ f�g suh that

w

=)

az= az. Then z is alled the bridge of aw and denoted by

Bridge(aw).

Lemma 9 ([23℄) Let a 2 � and w 2 �

�

. If y = Base(aw), then ay = LRP(aw).

Proof. Assume ontrarily that y

0

is the string suh that ay

0

= LRP(aw) and jy

0

j > jyj.

By the de�nition of LRP(aw), we have ay

0

2 Pre�x (aw), whih yields y

0

2 Pre�x (w).

It, however, ontradits the preondition that y = Base(aw) sine jy

0

j > jyj. 2
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Aording to the above lemma, we an utilize Base(aw) for �nding LRP(aw) in

STree

0

(w).

Lemma 10 Let a 2 � and w 2 �

�

. If x = LRP(w), y = Base(aw) and z =

Bridge(aw), then y 2 Pre�x(x ) and z 2 Pre�x(y).

Proof. By Lemma 9 we have ay = LRP(aw). It is easy to see that jLRP(w)j+ 1 �

jLRP(aw)j, whih implies jxj � jyj. Sine x; y 2 Pre�x(w), we obtain y 2 Pre�x (x ).

It an be readily shown that az 2 Pre�x(ay), sine ay = LRP(aw). Thus we have

z 2 Pre�x (y). 2

The above lemma ensures that we an �nd both Base(aw) and Bridge(aw) by going

up along the path from the node of LRP(w) in STree

0

(w).

Lemma 11 Let a 2 � and w 2 �

�

. Let y = Base(aw) and z = Bridge(aw). Assume

 2 �

�

is the string satisfying z = y. Then, az = LRP(aw).

Proof. By Lemma 9 and Lemma 10. 2

Aording to the above lemma, we an loate LRP(aw) in STree

0

(w) by going down

from the node

w

=)

az . The only thing not lari�ed yet is how to move from node

w

=)

z

to

node

w

=)

az . If we maintain the set F

0

below, we an detet LRP(aw) in onstant time,

where

F

0

= f(

w

=)

x

; a;

w

=)

ax) j x; ax 2 Fator(w); a 2 � ; and

w

=)

ax= a�

w

=)

x

g:

Comparing F

0

and F in De�nition 2, one an see that F

0

is the set of the labeled

reversed suÆx links of STree

0

(w).

We now have the following theorem.

Theorem 3 For any a 2 � and w 2 �

�

, STree

0

(w) an be updated to STree

0

(aw) in

amortized onstant time.

3.3 Mutual Inuenes

Here, we onsider mutual inuenes between Left Extension and Right Extension.

The next lemma shows what happens to LRP(w) when STree

0

(w) is updated to

STree

0

(wa).

Lemma 12 Let a 2 � and w 2 �

�

. Assume LRP(w) = LRS (w). Let x = LRS (w).

If xa 2 Pre�x(w), then LRP(wa) = xa.

Proof. Sine xa 2 Pre�x (w), LRS (wa) = xa. Thus xa = LRP(wa). 2

This lemma shows when and where LRP(wa) moves from the loation of LRP(w)

aording to the harater a newly added to the right of w. Examining the preondi-

tion, \if xa 2 Pre�x(w)", is feasible in O(j�j) time, whih regarded as O(1) if � is a

�xed alphabet.

The following lemma stands in ontrast to Lemma 12.
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Lemma 13 Let a 2 � and w 2 �

�

. Assume LRP(w) = LRS (w). Let x = LRP(w).

If ax 2 SuÆx (w), then LRS (aw) = ax .

This lemma shows when and where LRS (aw) moves from the loation of LRS (w)

aording to the harater a newly added to the left of w. Examining the preondition,

\if ax 2 SuÆx (w)", is also feasible in O(j�j) time, and moving from the loation of

LRS (w) to that of LRS (aw) an be done in onstant time by the use of the labeled

reversed suÆx link of LRP(w).

As a result of disussion, we �nally obtain the following:

Theorem 4 For any string w 2 �

�

, STree

0

(w) an be onstruted in bidiretional

manner and in O(jwj) time.

A bidiretional onstrution of STree

0

(w) with w = ooon is displayed in Fig-

ure 3.

4 Conluding Remarks

We introdued an algorithm for bidiretional onstrution of suÆx trees, whih per-

forms in linear time. It should be noted that the proposed algorithm an onstrut

an index of w

rev

at the same time, where w

rev

is the reversal of a given string w.

In [14℄, we improved Ukkonen's algorithm so as to onstrut not only STree

0

(w) but

also DAWG(w

rev

) in right-to-left on-line manner. The algorithm of this paper leads

bidiretional onstrution of STree

0

(w) and DAWG(w

rev

), although theoretial details

are omitted in this draft.
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Figure 3: A bidiretional onstrution of STree

0

(w) with w = ababa. Solid arrows

represent edges while dotted arrows denote labeled reversed suÆx links. On Right

Extension, labeled reversed suÆx links are used for the reversed diretion, that is,

as \normal" suÆx links. In eah phase, a gray triangle (star, respetively) indiates

the loation of the longest repeated pre�x (suÆx, respetively). The newly added

harater is underlined in eah phase. When STree

0

(ab) is updated to STree

0

(bab),

the node for string b beomes impliit (Proposition 8). Due to the onversion of

STree

0

(bab) into STree

0

(abab), LRP(abab) moves via the labeled reversed suÆx link,

and LRS (abab) also moves to the same position aording to Lemma 13. Then,

the suÆx tree is updated to STree

0

(ababa) where LRS (ababa) moves while spelling

out the new harater a along the edge. Note that LRP(ababa) also moves due to

Lemma 12. Sine the preondition of Lemma 12 is not satis�ed in the string ababa,

LRP(ababa) does not move in STree

0

(ababa). For smart onstrution, we also

maintain the labeled reversed suÆx link of the longest repeated suÆx even if it is not

on an expliit node (see STree

0

(bab), for instane). This labeled reversed suÆx link

is the only suÆx link that would be \modi�ed" after it is reated. For example, the

labeled reversed suÆx link of the node for string a in STree

0

(a) is deleted in STree

0

(ab)

sine it no longer satis�es the de�nition of labeled reversed suÆx links. On the other

hand, that of the node for string ab in STree

0

(abab) still exists in STree

0

(ababa) as

that of the node for string aba.
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Abstrat. In this paper we introdue an idea of image reognition using on-

ventional (single-dimensional) �nite automata. This approah ould be an el-

egant alternative to ompliated solutions based on two-dimensional languages

and two-dimensional automata. In onsequene, this method ould be generally

extended to the ontext of higher-dimensional languages beyond the sope of

image reognition.

1 Introdution

Image reognition reently beame an objet of interest for theory of automata. The

piture, a retangular raster, an be onsidered as a sentene of a two-dimensional

language where the pixels of piture are haraters of a �nite alphabet.

It is obvious that sentenes of two or more-dimensional language annot be re-

ognized by \onventional" automata. Conventional automaton takes the haraters

from the input one by one as they appear in a single-dimension sentene. On the

other side, two-dimensional sentene proessing (e.g. piture) is not so unambiguous,

there exist four diretions in whih the sentene an be proessed in eah step { left,

right, upwards, downwards. There were several two-dimensional automata designed,

e.g. 4-way �nite-state automata [BH67℄.

Our solution tries to exploit the existing well-established area of \onventional"

automata together with the transformation of the two-dimensional language into a

single-dimensional one. The transformation of a piture (or two-dimensional sen-

tene) onsists of spae linearization. This means that the pixels of a piture are

linearly ordered and the resultant ordering along with the original piture de�ne the

appropriate single-dimensional sentene. The linear order is performed using a spae

�lling urve. In this paper we propose ertain urves whih were proved to be the

good spae-desribing urves in many appliations (espeially in data storage and

retrieval). However, the quality of the urves may di�er in our ase and therefore we

refer to [SKS02℄ where we disuss some general properties of spae �lling urves.

One we have hosen the urve for language desription we must onstrut an

automaton that reognizes a given piture in its \at shape". However, none of the

spae �lling urves desribe the spae (and piture) perfetly, some distortion of the

piture reognition must be taken into aount. This seeming drawbak an turn over
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to an advantage if we realize that the measure of reognition distortion may represent

similarity of the reognized piture to the prospetive pattern.

Automaton onstrution for reognition of the linearized piture is based on the

Levenshtein DFA where the Levenshtein metri (edit distane) serves as the measure

for the allowed piture distortion.

2 Two-dimensional Languages

Informally, a two-dimensional string is alled a piture and is de�ned as a retangular

array of symbols taken from �nite alphabet �. A two-dimensional language (e.g.

piture language) is then a set of pitures.

A generalization of formal languages to two dimensions is possible in di�erent

ways, and several formal models to reognize or generate two-dimensional objets

have been proposed in the literature (see [KM1, KM2, LMN98℄). These approahes

were initially motivated by problems arising in the framework of pattern reognition

and image proessing.

De�nition [RS97℄ A two-dimensional string (e.g. piture) over � is a two-

dimensional retangular array of elements from �. The set of all two-dimensional

strings over � is denoted as �

��

. A two-dimensional language over � is a subset of

�

��

.

Given a piture p 2 �

��

, l

1

(p) denotes the number of rows and l

2

(p) denotes the

number of olumns of p.

The pair (l

1

(p); l

2

(p)) is alled the size of the piture p. The set of all pitures over �

of size (m;n), with m;n > 0 will be indiated as �

m�n

. Furthermore, if 1 � i � l

1

(p)

and 1 � j � l

2

(p), then p(i; j) (or equivalently p

i;j

) denotes the symbol in piture p

on oordinates (i; j).

Two-dimensional languages, or piture languages, are an interesting generalization

of the standard languages of omputer siene. Rather than one-dimensional strings,

we onsider two-dimensional arrays of symbols over a �nite alphabet. These arrays

an then be aepted or rejeted by various types of automata. The introdution of

two-dimensional automata brought a new sort of automata on the stage, with its own

huge theoretial bakground.

3 Another Approah

Our approah is to reuse the existing traditional (single-dimensional) automata (lan-

guages respetively) and simplify the automaton onstrution problem. The most

important thing is to transform the two-dimensional language (pitures) into one-

dimensional strings. This an be done using spae �lling urves. The onseutive

automaton onstrution depends on the properties of spae �lling urve we have ho-

sen.
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3.1 Spae Filling Curves

We want to transform the two-dimensional string over � into the one-dimensional

string over �. The two-dimensional string over � is a two-dimensional retangle array

of elements of �. We an look at the array as a two dimensional spae 
 = D

1

�D

2

,

where the ardinality of domain D

1

(jD

1

j) is equal to the rows ount of the array and

jD

2

j is equal to the olumns ount. The tuple (point) with oordinates (olumn; row)

within the spae will have a value in �.

Many spae �lling urves have been developed, for example C-urve, Z-urve or

Hilbert urve ([Ma99℄). For deeper aquaintane with the topi of general spae �lling

urves we refer to the omprehensive monography by Hans Sagan [Sa94℄.

The usage of the urves isn't in two-dimensional spae only, but the urves �ll any

vetor spae with arbitrary dimension. It is possible to use the urves for transforma-

tion of the n-dimensional string over � into the one-dimensional string over �. We

an see C-urve, Hilbert urve, and Z-urve �lling the two dimensional spae 8� 8 in

Figure 1.

Figure 1: The spae �lling urves. a) C-urve, b) Hilbert urve, and ) Z-urve.

We an onsider several urves, but it is onvenient to hoose the urve that

is highly self-similar ([Ma99℄, [SKS02℄) { informally, it means that points that are

geometrially lose, would have to lie lose on the urve. For example, the Z-urve is

used for indexing of multidimensional data with UB-trees ([Ba97℄). In the following

setion we will desribe the Z-urve as an example of spae �lling urve.

3.2 Z-address

De�nition 1 (Z-address)

Let 
 be an n-dimensional spae. For tuple O 2 
 with n attributes and binary

representation attribute value A

i

= A

i;s�1

A

i;s�2

: : : A

i;0

, where 1 � i � n. Then

Z(O) =

s�1

X

j=0

n

X

i=1

A

i;j

2

jn+i�1

is the Z-address funtion for spae 
.
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The attributes of tuple de�ne the oordinates of point representing tuple in the

spae 
. If we are alulating the Z-address for all points of n-dimensional spae 


and order the points aording their Z-address value, we get the Z-urve �lling the

entire spae 
 (see Figure 2a). For alulation of tuple Z-address exists algorithm

with linear omplexity - so alled bit interleaving algorithm (see bellow).

Figure 2: a) The two-dimensional spae (image) 8 � 8 �lled by Z-urve. b) Piture

in image interleaved by the Z-urve.

Z-address alulation example

We see the alulation of Z-address aording bit interleaving algorithm for point

(6,13) in two-dimensional spae in Figure 3. Numbers 6 and 13 have the binary

form 0110 and 1101 respetively. We obtain the oordinate values as four plaes bit

strings. Maximal values for four plaes binary number is 16. The domains D

i

of both

attribute are sets f0,1, : : :, 14,15g, point lies in two-dimensional spae 16� 16. The

result point Z-address is then 10110110 (182 deimal).

1

1 1 0 1 0 1 1 0

a)

1 1 0 1 0 1 1 0

1 0

b)

1 1 0 1 0 1 1 0

1 0 1

c)

1

1

0 1 0 1 1 0

1 0 1 1

d)

1

1

1

0 1 0 1 1 0

1 0 1 1 0

e)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1

f)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1 1

g)

1 1

1

0 1 0 1 1 0

1 0 1 1 0 1 1 0

h)

1

Figure 3: The Z-address alulation aording to bit interleaving algorithm for point

(6; 13) in two-dimensional spae 16� 16.
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It is possible to go through the entire spae passing upon Z-urve. We interleave a

piture (the two-dimensional string) over � by Z-urve and we reognize the piture

by the \lassial" one-dimensional �nite automata (e.g. see Figure 2b). The automata

onstrution of the piture reognition is outlined in the next setion.

3.3 Automaton Constrution

The automaton will reognize a square piture of size x � y within an image of a

greater size (see Figure 2b).

Constrution

The automaton type is well-known NDFA for mathing patterns with k di�erenes

{ in other words, it is an automaton for approximate string mathing using Leven-

shtein metri. The onstrution takes as a parameter the pattern sentene (piture

to be reognized) and a Levenshtein distane threshold whih de�nes the maximal

tolerane value of the above mentioned piture distortion. For detailed information

on onstrution of the Levenshtein automata see [Ho96℄.

The Levenshtein distane threshold is omputed as the minimal distane of the

pattern piture to an input piture when the orret input is still reognizable. More

learly, the orret input piture may appear on any position in the image and the

automaton must reognize the piture on this position. However, the threshold value

may ause that they an be reognized also inorret pitures. This impreise be-

haviour ould serve as a similarity reognition beause the reognized piture is always

within the Levenshtein distane threshold whih guarantees only a limited number of

di�erenes between the pattern piture and the input piture. Pitures that are lose

(in terms of Levenshtein distane) ould be onsidered as similar to eah other.

In following we will fous on measuring of the pattern piture and input piture

using Levenshtein metri.

3.3.1 What is the Levenshtein Distane?

Levenshtein distane (LD) is a measure of the similarity between two strings, whih

we will refer to as the soure string (s) and the target string (t). The distane is the

number of deletions, insertions, or substitutions required to transform s into t. For

example,

If s is "test" and t is "test", then LD(s,t) = 0, beause no transformations are

needed. The strings are already idential.

If s is "test" and t is "tent", then LD(s,t) = 1, beause one substitution (hange

\s" to \n") is suÆient to transform s into t. The greater the Levenshtein distane,

the more di�erent the strings are.

Levenshtein distane is named after the Russian sientist Vladimir Levenshtein,

who devised the algorithm in 1965 [Le66℄. If you an't spell or pronoune Levenshtein,

the metri is also sometimes alled edit distane.

The Levenshtein distane algorithm (based on dynami programming) has been

used in:

� Spell heking

� Speeh reognition
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� DNA analysis

� Plagiarism detetion

The Algorithm { step desription

1. Set n to be the length of s.

Set m to be the length of t.

If n = 0, return m and exit.

If m = 0, return n and exit.

Construt a matrix ontaining 0 : : :m rows and 0 : : : n olumns.

2. Initialize the �rst row to 0 : : : n.

Initialize the �rst olumn to 0 : : :m.

3. Examine eah harater of s (i from 1 to n).

4. Examine eah harater of t (j from 1 to m).

5. If s[i℄ equals t[j℄, the ost is 0.

If s[i℄ doesn't equal t[j℄, the ost is 1.

6. Set ell d[i,j℄ of the matrix equal to the minimum of: a. The ell immediately

above plus 1: d[i� 1; j℄ + 1.

b. The ell immediately to the left plus 1: d[i; j � 1℄ + 1.

. The ell diagonally above and to the left plus the ost: d[i� 1; j � 1℄ + ost.

7. After the iteration steps (3, 4, 5, 6) are omplete, the distane is found in ell

d[n;m℄.

3.4 Examples

As we have said earlier, the Levenshtein threshold value is omputed as a maximum

distane of the pattern piture and the orret input piture on any position in the

image being reognized. In Figure 4 are depited three examples of pitures (sized

3� 3) in images (sized 8� 8) and its distanes to pattern pitures.

Note that the pixel values are haraters from a �nite alphabet. The numbers

next to the pixels are the harater identi�ers. The gaps denoting those pixels of

image that are not pixels of the piture are represented with appropriate haraters

but in our examples, for simpliity and larity, the gap is represented with a speial

harater that is not ontained in the alphabet �. This speial harater ensures the

worst mathing ase, thus the real distane omputations will be always smaller or

equal.

3.5 Extension to Multidimensional Languages

Beause the spae �lling urve remains single-dimensional even for multidimensional

spaes, we an extend the sope of two-dimensional languages to the multidimen-

sional languages without the need of hanging the automaton onstrution. Then,

multidimensional sentenes an be onstruted simply by extending the language with

additional oordinates.
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Figure 4: Measuring the Levenshtein distane on pitures.

In general, we an say that the impreision aused by the Levenshtein distane

threshold will inrease with inreasing dimension. This fat arises from the behaviour

of the spae �lling urves in high-dimensional vetor spaes. The other fator is the

relation of sentene size to spae size. The longer sentenes and smaller sentene/spae

size ratio, the lower impreision.

4 Conlusions

In this paper we have proposed an alternative solution of image reognition and even

multidimensional language reognition. This method is based on spae �lling urves

and Levenshtein automaton onstrution. The interesting property of this approah

is an ability of similarity reognition.
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Abstrat. Brzozowski's minimization algorithm is based on two suessive de-

terminization operations. There is a paradox between its (worst ase) expo-

nential omplexity and its exeptionally good performane in pratie. Our

aim is to analyze the way the twofold determinization performs the minimiza-

tion of a deterministi automaton. We give a haraterization of the equiva-

lene lasses of A w.r.t. the set of states of the automaton omputed by the

�rst determinization. The seond determinization is expeted to ompute these

equivalene lasses. We show that it an be replaed by a spei� proedure

based on the lasses haraterization, whih leads to a more eÆient variant of

Brzozowski's algorithm.

Key words: Finite automata, DFA minimization, Brzozowski's algorithm.

1 Introdution

It is well known that given a regular language L over an alphabet � there exists a

anonial deterministi automaton whih reognizes L, namely the minimal (deter-

ministi) automaton of L, whose states are the left quotients of L w.r.t. the words of

�

�

. This automaton, denoted by A

L

, is unique (up to an isomorphism) and it has a

minimal number of states [13℄. Moreover, it an be omputed from any determinis-

ti automaton reognizing L by merging states whih have idential right languages.

There exist numerous algorithms to minimize a deterministi automaton. Watson

published a taxonomy on this topi [18℄.

Among the various possible onstrutions, Brzozowski's minimization algorithm [3℄

is of a spei� interest, regarding to several riteria whih are disussed below. Let us

�rst reall how it works. Let A be a (non neessarily deterministi) automaton, d(A)

be the subset automaton of A and r(A) be the reverse automaton of A. Brzozowski's

algorithm is based on the following theorem:

A

L

= d(r(d(r(A))))

This is a deep result sine it relates DFA minimization to a basi operation, the de-

terminization one. Let us mention that it has been generalized by Mohri to the ase of

96



Split and join for minimizing: Brzozowski's algorithm

bideterminizable transduers de�ned on the tropial semiring [12℄. Brzozowski's the-

orem is also a fundamental tool for the omputation of the nondeterministi minimal

automata of a regular language. Let us ite the implementation [6℄ of the anoni-

al automaton C

L

de�ned by Carrez [4, 1℄ and the onstrution of the fundamental

automaton F

L

by Matz and Pottho� [11℄.

We are here espeially interested by algorithmi and omplexity features. Watson

used the fat that Brzozowski's algorithm an take a nondeterministi automaton

as input to design an algorithm whih diretly onstruts a minimal deterministi

automaton from a regular expression [19℄. Sine our aim is to study the way Br-

zozowski's algorithm performs a minimization, we will essentially onsider the ase

when the initial automaton is a deterministi one. The paradox is the following: sine

Brzozowski's algorithm performs two determinizations, its (worst ase) omplexity is

exponential w.r.t. the number of states of the initial automaton; nevertheless, as

reported by Watson [18℄, Brzozowski's algorithm has proved to be exeptionally good

in pratie, usually out-performing Hoproft's algorithm [7℄ signi�antly. Let us add

that the average omplexity of the algorithm has been proved to be exponential for

group automata, although they likely are a favourable ase sine they are both de-

terministi and odeterministi [14℄.

Our ontribution is the following. Let A be a deterministi automaton. We give a

haraterization of the equivalene lasses of A w.r.t. the set of states of dr(A), that

is after the �rst determinization. The seond determinization is expeted to ompute

these equivalene lasses. We show it an be replaed by a spei� proedure based

on the lasses haraterization, whih leads to a more eÆient variant of Brzozowski's

algorithm.

Next setion realls some useful notations and de�nitions of automata theory.

Setion 3 is espeially devoted to determinization and minimization operations. Se-

tion 4 presents Brzozowski's minimization algorithm and its proof. Setion 5 provides

an original analysis of the algorithm and the variant it leads to.

2 Preliminaries

Let us �rst review basi notions and terminology onerning �nite automata and

regular languages. For further details, lassial books [2, 8℄ or handbooks [20℄ are

exellent referenes.

Let � be a non-empty �nite set of symbols, alled the alphabet. Symbols are

denoted by x

1

; x

2

; : : : ; x

m

. A word u over � is a �nite sequene (y

1

; y

2

; :::; y

n

) of

symbols, usually written y

1

y

2

:::y

n

. The length of a word u, denoted juj is the number

of symbols in u. The empty word denoted by " has a zero length. If u = y

1

y

2

:::y

n

and

v = z

1

z

2

:::z

p

are two words over �, their onatenation u �v, usually written uv, is the

word y

1

y

2

:::y

n

z

1

z

2

:::z

p

. The set of all the words over � is denoted �

�

. A language over

� is a subset of �

�

. The operations of union, onatenation and star over the subsets

of �

�

are alled regular operations. The regular languages over � are the languages

obtained from the �nite subsets of �

�

by using a �nite number of regular operations.

A (�nite) automaton is a 5-tupleM = (Q;�; Æ; I; F ) where Q is a (�nite) set of

states, � is a �nite alphabet, I � Q is the set of initial states, F � Q is the set of

�nal states, and Æ is the transition funtion. The automatonM is deterministi (M

is a DFA) if and only if jIj = 1 and Æ is a mapping from Q� � to Q. OtherwiseM
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is a NFA and Æ is a mapping from Q � � to 2

Q

. The automaton M is omplete if

and only if Æ is a full mapping. A path ofM is a sequene (q

i

; a

i

; q

i+1

), i = 1; : : : ; n,

of onseutive edges. Its label is the word w = a

1

a

2

: : : a

n

. A word w = a

1

a

2

: : : a

n

is reognized by the automaton M if there is a path with label w suh that q

1

2 I

and q

n+1

2 F . The language L(M) reognized by the automaton M is the set of

words whih it reognizes. Two automata M and M

0

are equivalent if and only if

they reognize the same language. A state is aessible (resp. oaessible) if and

only if there is a path from an initial state to this state (resp. from this state to a

�nal state). An automaton is trim if and only if all its states are both aessible and

oaessible.

Kleene's theorem [10℄ states that a language is regular if and only if it is reognized

by a �nite automaton.

Let q be a state ofA = (Q;�; Æ; i; F ). The right language of q is the language L

A

d

(q)

(written L

d

(q) if not ambiguous) reognized by the automaton A

d

(q) = (Q;�; Æ; q; F )

obtained from A by making q the unique initial state. The left language of q is

the language L

A

g

(q) (written L

g

(q) if not ambiguous) reognized by the automaton

A

g

(q) = (Q;�; Æ; i; q) obtained from A by making q the unique �nal state. We will

use the following proposition:

Proposition 1 An automaton is deterministi if and only if the left languages of its

states are pairwise disjoint.

The reverse r(u) of the word u is de�ned as follows: r(") = " and, if u = u

1

u

2

:::u

p

,

then r(u) = v

1

v

2

:::v

p

, with v

i

= u

p�i+1

, for all i from 1 to p. The reverse of the

language L is the language r(L) = fu j r(u) 2 Lg. The reverse of the automaton

A = (Q;�; Æ; I; F ) is the automaton r(A) = (Q;�; r(Æ); F; I), obtained from A by

swapping the role of initial and �nal states and by reversing the transitions.

We will use the following propositions, where A is a trim automaton:

Proposition 2 If A reognizes the language L then r(A) reognizes the language

r(L).

Proposition 3 If the left (resp. right) language of the state q in A is L

g

(q) (resp.

L

d

(q)), then its left (resp. right) language in r(A) is L

d

(q) (resp. L

g

(q)).

3 Determinization and minimization operations

3.1 Determinization

De�nition 1 Let A = (Q;�; Æ; I; F ) be a NFA. The subset-automaton of A is the

automaton d(A) = (Q

0

;�; Æ

0

; fi

0

g; F

0

) de�ned as follows [8, 20℄:

� Set of states: A deterministi state is a set of nondeterministi states; for all

q

0

in Q

0

, we have q

0

� Q.

� Initial state: The initial state in d(A) is the set I of initial states in A.
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� Set of transitions: Let q

0

be a deterministi state and a be a symbol in �. If the

transition from q

0

on symbol a is de�ned, then, by onstrution, its target is the

state Æ

0

(q

0

; a) suh that:

Æ

0

(q

0

; a) =

[

q2q

0

Æ(q; a): (3)

� Set of �nal states: A deterministi state is �nal if and only if it ontains at

least one �nal nondeterministi state: q

0

2 F

0

, q

0

\ F 6= ;.

We will use the following proposition:

Proposition 4 The right language of a state q

0

of d(A) is equal to the union of the

right languages of the states q of A belonging to the subset q

0

.

Let n (resp. n') be the number of states in A (resp. in d(A)). As stated by Rabin

and Sott [16℄, the upper bound n

0

� 2

n

�1 an be reahed. Moreover, the automaton

d(A) an be omputed with the following omplexity [15, 5℄: O(

p

n2

2n

) when using

lists, and O(n

2

(logn)2

n

) when using balaned searh trees.

3.2 Minimization

The (left) quotient of a regular language L w.r.t. a word u of �

�

is the language

u

�1

L = fv 2 X

�

j uv 2 Lg. The minimal automaton A

L

of a regular language L is

de�ned as follows:

� the set of states is the set of quotients of L,

� the initial state is L,

� the �nal states are the quotients whih ontain the empty word,

� the transition funtion is suh that Æ(u

�1

L; x) = (ux)

�1

L.

The automaton A

L

is unique up to an isomorphism and it has a minimal number of

states [13℄. We will use the following proposition:

Proposition 5 A (deterministi, omplete, aessible) automaton is minimal if and

only if the right languages of its states are all di�erent.

The automaton A

L

an be omputed from any deterministi automaton reogniz-

ing L by merging states whih are equivalent w.r.t. Nerode equivalene:

s � t, [s � u 2 F , t � u 2 F , 8u 2 �

�

℄

Computing Nerode equivalene an be realized with a O(n

2

) omplexity [13℄.

Using the notion of oarsest partition leads to a omplexity of O(nlog(n)) [7℄.
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4 Brzozowski's minimization algorithm

Let A be an automaton. Let d(A) (resp. r(A)) be the subset automaton (resp. the

reverse automaton) of A. We will write dr(A) for d(r(A)), rdr(A) for r(d(r(A))) and

drdr(A) for d(r(d(r(A)))).

Brzozowski's algorithm is based on the following theorem [3℄:

Theorem 1 (Brzozowski, 1962) Given a (non neessarily deterministi) automaton

A reognizing a regular language L, the minimal deterministi automaton A

L

of L

an be omputed by the formula:

A

L

= drdr(A)

Proof. The proof is based on Propositions (1){(5). By onstrution, the automaton

drdr(A) is deterministi, omplete and aessible. From Proposition (2) it reognizes

the language L. Let us show that the right languages of drdr(A) are all distint. From

Proposition (1) the left languages of dr(A) are pairwise disjoint. From Proposition

(3) the right languages of rdr(A) are the left languages of dr(A). Therefore they are

pairwise disjoint. From Proposition (4) a right language of drdr(A) is a union of right

languages of rdr(A). Sine the right languages of rdr(A) are pairwise disjoint, the

right languages of drdr(A) are all distint. Thus, by Proposition (5) the automaton

drdr(A) is minimal.

5 Analysis of Brzozowski's algorithm

5.1 Split and join for minimizing

Let A be an automaton whih reognizes a regular language L. We study the trans-

formation of the sequene S

d

= (L

A

d

(q))

q2Q

of the right languages of the states of A,

when the twofold determinization is performed:

S

d

!

rdr

S

1

d

!

drdr

S

2

d

Notie that sine the languages of S

1

d

are pairwise disjoint and the languages of S

2

d

are all distint, S

1

d

and S

2

d

are sets. Let us remind that the right language of a state

is a (left) quotient of L if A is deterministi and a subset of the intersetion of some

(left) quotients of L ifA is nondeterministi. The �rst determinization splits the right

languages of A into disjoint piees, whereas the seond one joins the piees in order to

reombine the set of (left) quotients of L. The e�et of the twofold determinization

is illustrated by the Example 1. This example is intentionally simple: the initial

automaton is deterministi and even minimal.

Example 1

Let q

1

and q

2

be two states of A. We suppose that there exist three distint words,

u, v and w suh that: L

A

d

(q

1

) = fu; vg, L

A

d

(q

2

) = fv; wg, fq j u 2 L

A

d

(q)g = fq

1

g,

fq j w 2 L

A

d

(q)g = fq

2

g and fq j v 2 L

A

d

(q)g = fq

1

; q

2

g. We suppose that there exist
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two distint words, s and t suh that: L

A

g

(q

1

) = fsg, L

A

g

(q

2

) = ftg, fq j s 2 L

A

g

(q)g =

fq

1

g and fq j t 2 L

A

g

(q)g = fq

2

g.

The determinization of r(A) produes the three states q

0

1

, q

0

2

and q

0

3

of dr(A) suh

that: q

0

1

= fq

1

g, q

0

2

= fq

2

g and q

0

3

= fq

1

; q

2

g. The right languages of q

0

1

, q

0

2

and q

0

3

in

rdr(A) are pairwise disjoint (they are respetively equal to fug, fwg and fvg).

The e�et of the �rst determinization is that the two right languages fu; vg and

fv; wg of A have been split into three right languages in rdr(A): fug, fwg and fvg.

Notie that the left languages of q

0

1

, q

0

2

and q

0

3

in rdr(A) are respetively equal to

fsg, ftg and fs; tg and thus all distint. This is due to the fat that A is deterministi

(see Proposition (6)).

The determinization of rdr(A) produes the two states q

00

1

and q

00

2

of drdr(A) suh

that: q

00

1

= fq

0

1

; q

0

3

g and q

00

2

= fq

0

2

; q

0

3

g. The right languages of q

00

1

and q

00

2

in drdr(A)

are distint (they are respetively equal to fu; vg and fv; wg).

The e�et of the seond determinization is that the three right languages fug, fwg

and fvg of rdr(A) have been joined into two right languages in drdr(A): fu; vg and

fv; wg.

5.2 The deterministi ase

Brzozowski's algorithm an be applied to a nondeterministi automaton. Here we

fous on the ase when A is deterministi. Proposition (6) is due to Brzozowski [3℄.

Proposition (7) and Corollary (1) are very likely not original. These propositions are

gathered in this setion for sake of ompleteness.

Proposition 6 If A is deterministi, then dr(A) is the minimal automaton of r(L).

Proof. Sine A is deterministi, its left languages are pairwise disjoint, and so are

the right languages of r(A). The right languages of dr(A), whih are unions of right

languages of r(A), are therefore all distint.

Proposition 7 If A is deterministi, then a state of rdr(A) is a union of Nerode

equivalene lasses of the automaton A.

Proof. The transition funtion of r(A) is denoted by Æ

r

. Let q

1

and q

2

be two states

of A = (Q;�; Æ; i; F ). We have:

q

1

� q

2

, [L

A

d

(q

1

) = L

A

d

(q

2

), L

r(A)

g

(q

1

) = L

r(A)

g

(q

2

)℄

Let q

0

be a state of dr(A). By onstrution, there exists a word u of �

�

suh that

q

0

= Æ

r

(F; u). We have: q 2 Æ

r

(F; u) , u 2 L

r(A)

g

(q). Therefore, q

1

and q

2

are

equivalent if and only if they are suh that: q

1

2 Æ

r

(F; u) , q

2

2 Æ

r

(F; u). Thus, a

state of rdr(A) is a union of equivalene lasses of states in A.

Corollary 1 Let A be a deterministi automaton reognizing a regular language L.

Let n be the number of states of A. Let r be the number of (left) quotients of L. Then

the deterministi omplexity of r(A) is 2

r

� 2

n

.
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The following proposition leads to a haraterization of the equivalene lasses of

A. It says that two states p and q of A are equivalent if and only if they belong to

the same states of dr(A). This property an be seen as a orollary of Proposition (8).

Proposition 8 Let p and q be two states of A. It holds:

p � q , [p 2 P , q 2 P , 8P 2 Q

dr(A)

℄

Proof. We have: p � q , [u 2 L

d

(p) , u 2 L

d

(q), 8u 2 �

�

℄. Moreover L

d

(p) =

S

p2P

r(L

g

(P )), with P 2 Q

dr(A)

. Hene the result.

6 A variant of Brzozowski's minimization algorithm

We still assume that A is deterministi. We show that the Proposition (8) leads

to an original omputation of the equivalene lasses of the states of A after the

determinization of r(A) is ahieved. On the one hand this result allows us to have

a better understanding of how Brzozowski's algorithm performs the minimization:

the seond determinization atually is a state-equivalene-based proedure. On the

other hand it yields a variant of Brzozowski's minimization algorithm, where the

seond determinization is replaed by a more eÆient omputation of the equivalene

lasses.

The Algorithm 1 omputes the equivalene lasses of A. The partition of Q

initially ontains two sets: Q � F and F . At eah step of the algorithm, a set Y of

1. Begin

2. Partition fQ� F; Fg

3. Waiting  fFg

4. While Waiting 6= ; do begin

5. X  First(Waiting)

6. Waiting  Waiting � fXg

7. Proessed Proessed [ fXg

8. for all a 2 � do begin

9. Z  Æ

r

(X; a); if Z 62 Proessed then Waiting  Waiting [ Z

10. end

11. for all Y 2 Partition do begin

12. K  X \ Y

13. if K 6= ; then Partition Partition [K

14. if X 6� Y then Partition Partition [ (X �K)

15. if Y 6� Xthen Partition Partition [ (Y �K)

16. end

17. end

18. end

Algorithm 1: Algorithm to extrat equivalene lasses of A.
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the urrent partition ontains possibly equivalent states, in the sense that so far they

belong to the same states of dr(A). Every time a new state X of dr(A) is proessed,

it is heked w.r.t. every set of the partition in order to detet sets ontaining non-

equivalent states of A. The omplexity of the Algorithm 1 is exponential sine it

ontains the determinization of r(A). However it is likely more eÆient to extrat

equivalene lasses on the y than performing a seond determinization.

7 Conlusion

Brzozowski's minimization algorithm is both simple and mysterious. It is based on two

basi and easily understandable operations. However the behaviour of the algorithm

is not so obvious. Its average omplexity and experimental performane are still

unknown or unexplained. This short analysis is intended to ontribute to a better

understanding of how this algorithm performs the minimization. In partiular it

shows that the plae of Brzozowski's algorithm, in a taxonomy suh as Watson's one,

is among minimization algorithms based on the omputation of a state equivalene.
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