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Abstrat. Brzozowski's minimization algorithm is based on two suessive de-

terminization operations. There is a paradox between its (worst ase) expo-

nential omplexity and its exeptionally good performane in pratie. Our

aim is to analyze the way the twofold determinization performs the minimiza-

tion of a deterministi automaton. We give a haraterization of the equiva-

lene lasses of A w.r.t. the set of states of the automaton omputed by the

�rst determinization. The seond determinization is expeted to ompute these

equivalene lasses. We show that it an be replaed by a spei� proedure

based on the lasses haraterization, whih leads to a more eÆient variant of

Brzozowski's algorithm.
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1 Introdution

It is well known that given a regular language L over an alphabet � there exists a

anonial deterministi automaton whih reognizes L, namely the minimal (deter-

ministi) automaton of L, whose states are the left quotients of L w.r.t. the words of

�

�

. This automaton, denoted by A

L

, is unique (up to an isomorphism) and it has a

minimal number of states [13℄. Moreover, it an be omputed from any determinis-

ti automaton reognizing L by merging states whih have idential right languages.

There exist numerous algorithms to minimize a deterministi automaton. Watson

published a taxonomy on this topi [18℄.

Among the various possible onstrutions, Brzozowski's minimization algorithm [3℄

is of a spei� interest, regarding to several riteria whih are disussed below. Let us

�rst reall how it works. Let A be a (non neessarily deterministi) automaton, d(A)

be the subset automaton of A and r(A) be the reverse automaton of A. Brzozowski's

algorithm is based on the following theorem:

A

L

= d(r(d(r(A))))

This is a deep result sine it relates DFA minimization to a basi operation, the de-

terminization one. Let us mention that it has been generalized by Mohri to the ase of
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bideterminizable transduers de�ned on the tropial semiring [12℄. Brzozowski's the-

orem is also a fundamental tool for the omputation of the nondeterministi minimal

automata of a regular language. Let us ite the implementation [6℄ of the anoni-

al automaton C

L

de�ned by Carrez [4, 1℄ and the onstrution of the fundamental

automaton F

L

by Matz and Pottho� [11℄.

We are here espeially interested by algorithmi and omplexity features. Watson

used the fat that Brzozowski's algorithm an take a nondeterministi automaton

as input to design an algorithm whih diretly onstruts a minimal deterministi

automaton from a regular expression [19℄. Sine our aim is to study the way Br-

zozowski's algorithm performs a minimization, we will essentially onsider the ase

when the initial automaton is a deterministi one. The paradox is the following: sine

Brzozowski's algorithm performs two determinizations, its (worst ase) omplexity is

exponential w.r.t. the number of states of the initial automaton; nevertheless, as

reported by Watson [18℄, Brzozowski's algorithm has proved to be exeptionally good

in pratie, usually out-performing Hoproft's algorithm [7℄ signi�antly. Let us add

that the average omplexity of the algorithm has been proved to be exponential for

group automata, although they likely are a favourable ase sine they are both de-

terministi and odeterministi [14℄.

Our ontribution is the following. Let A be a deterministi automaton. We give a

haraterization of the equivalene lasses of A w.r.t. the set of states of dr(A), that

is after the �rst determinization. The seond determinization is expeted to ompute

these equivalene lasses. We show it an be replaed by a spei� proedure based

on the lasses haraterization, whih leads to a more eÆient variant of Brzozowski's

algorithm.

Next setion realls some useful notations and de�nitions of automata theory.

Setion 3 is espeially devoted to determinization and minimization operations. Se-

tion 4 presents Brzozowski's minimization algorithm and its proof. Setion 5 provides

an original analysis of the algorithm and the variant it leads to.

2 Preliminaries

Let us �rst review basi notions and terminology onerning �nite automata and

regular languages. For further details, lassial books [2, 8℄ or handbooks [20℄ are

exellent referenes.

Let � be a non-empty �nite set of symbols, alled the alphabet. Symbols are

denoted by x

1

; x

2

; : : : ; x

m

. A word u over � is a �nite sequene (y

1

; y

2

; :::; y

n

) of

symbols, usually written y

1

y

2

:::y

n

. The length of a word u, denoted juj is the number

of symbols in u. The empty word denoted by " has a zero length. If u = y

1

y

2

:::y

n

and

v = z

1

z

2

:::z

p

are two words over �, their onatenation u �v, usually written uv, is the

word y

1

y

2

:::y

n

z

1

z

2

:::z

p

. The set of all the words over � is denoted �

�

. A language over

� is a subset of �

�

. The operations of union, onatenation and star over the subsets

of �

�

are alled regular operations. The regular languages over � are the languages

obtained from the �nite subsets of �

�

by using a �nite number of regular operations.

A (�nite) automaton is a 5-tupleM = (Q;�; Æ; I; F ) where Q is a (�nite) set of

states, � is a �nite alphabet, I � Q is the set of initial states, F � Q is the set of

�nal states, and Æ is the transition funtion. The automatonM is deterministi (M

is a DFA) if and only if jIj = 1 and Æ is a mapping from Q� � to Q. OtherwiseM
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is a NFA and Æ is a mapping from Q � � to 2

Q

. The automaton M is omplete if

and only if Æ is a full mapping. A path ofM is a sequene (q

i

; a

i

; q

i+1

), i = 1; : : : ; n,

of onseutive edges. Its label is the word w = a

1

a

2

: : : a

n

. A word w = a

1

a

2

: : : a

n

is reognized by the automaton M if there is a path with label w suh that q

1

2 I

and q

n+1

2 F . The language L(M) reognized by the automaton M is the set of

words whih it reognizes. Two automata M and M

0

are equivalent if and only if

they reognize the same language. A state is aessible (resp. oaessible) if and

only if there is a path from an initial state to this state (resp. from this state to a

�nal state). An automaton is trim if and only if all its states are both aessible and

oaessible.

Kleene's theorem [10℄ states that a language is regular if and only if it is reognized

by a �nite automaton.

Let q be a state ofA = (Q;�; Æ; i; F ). The right language of q is the language L

A

d

(q)

(written L

d

(q) if not ambiguous) reognized by the automaton A

d

(q) = (Q;�; Æ; q; F )

obtained from A by making q the unique initial state. The left language of q is

the language L

A

g

(q) (written L

g

(q) if not ambiguous) reognized by the automaton

A

g

(q) = (Q;�; Æ; i; q) obtained from A by making q the unique �nal state. We will

use the following proposition:

Proposition 1 An automaton is deterministi if and only if the left languages of its

states are pairwise disjoint.

The reverse r(u) of the word u is de�ned as follows: r(") = " and, if u = u

1

u

2

:::u

p

,

then r(u) = v

1

v

2

:::v

p

, with v

i

= u

p�i+1

, for all i from 1 to p. The reverse of the

language L is the language r(L) = fu j r(u) 2 Lg. The reverse of the automaton

A = (Q;�; Æ; I; F ) is the automaton r(A) = (Q;�; r(Æ); F; I), obtained from A by

swapping the role of initial and �nal states and by reversing the transitions.

We will use the following propositions, where A is a trim automaton:

Proposition 2 If A reognizes the language L then r(A) reognizes the language

r(L).

Proposition 3 If the left (resp. right) language of the state q in A is L

g

(q) (resp.

L

d

(q)), then its left (resp. right) language in r(A) is L

d

(q) (resp. L

g

(q)).

3 Determinization and minimization operations

3.1 Determinization

De�nition 1 Let A = (Q;�; Æ; I; F ) be a NFA. The subset-automaton of A is the

automaton d(A) = (Q

0

;�; Æ

0

; fi

0

g; F

0

) de�ned as follows [8, 20℄:

� Set of states: A deterministi state is a set of nondeterministi states; for all

q

0

in Q

0

, we have q

0

� Q.

� Initial state: The initial state in d(A) is the set I of initial states in A.
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� Set of transitions: Let q

0

be a deterministi state and a be a symbol in �. If the

transition from q

0

on symbol a is de�ned, then, by onstrution, its target is the

state Æ

0

(q

0

; a) suh that:

Æ

0

(q

0

; a) =

[

q2q

0

Æ(q; a): (3)

� Set of �nal states: A deterministi state is �nal if and only if it ontains at

least one �nal nondeterministi state: q

0

2 F

0

, q

0

\ F 6= ;.

We will use the following proposition:

Proposition 4 The right language of a state q

0

of d(A) is equal to the union of the

right languages of the states q of A belonging to the subset q

0

.

Let n (resp. n') be the number of states in A (resp. in d(A)). As stated by Rabin

and Sott [16℄, the upper bound n

0

� 2

n

�1 an be reahed. Moreover, the automaton

d(A) an be omputed with the following omplexity [15, 5℄: O(

p

n2

2n

) when using

lists, and O(n

2

(logn)2

n

) when using balaned searh trees.

3.2 Minimization

The (left) quotient of a regular language L w.r.t. a word u of �

�

is the language

u

�1

L = fv 2 X

�

j uv 2 Lg. The minimal automaton A

L

of a regular language L is

de�ned as follows:

� the set of states is the set of quotients of L,

� the initial state is L,

� the �nal states are the quotients whih ontain the empty word,

� the transition funtion is suh that Æ(u

�1

L; x) = (ux)

�1

L.

The automaton A

L

is unique up to an isomorphism and it has a minimal number of

states [13℄. We will use the following proposition:

Proposition 5 A (deterministi, omplete, aessible) automaton is minimal if and

only if the right languages of its states are all di�erent.

The automaton A

L

an be omputed from any deterministi automaton reogniz-

ing L by merging states whih are equivalent w.r.t. Nerode equivalene:

s � t, [s � u 2 F , t � u 2 F , 8u 2 �

�

℄

Computing Nerode equivalene an be realized with a O(n

2

) omplexity [13℄.

Using the notion of oarsest partition leads to a omplexity of O(nlog(n)) [7℄.
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4 Brzozowski's minimization algorithm

Let A be an automaton. Let d(A) (resp. r(A)) be the subset automaton (resp. the

reverse automaton) of A. We will write dr(A) for d(r(A)), rdr(A) for r(d(r(A))) and

drdr(A) for d(r(d(r(A)))).

Brzozowski's algorithm is based on the following theorem [3℄:

Theorem 1 (Brzozowski, 1962) Given a (non neessarily deterministi) automaton

A reognizing a regular language L, the minimal deterministi automaton A

L

of L

an be omputed by the formula:

A

L

= drdr(A)

Proof. The proof is based on Propositions (1){(5). By onstrution, the automaton

drdr(A) is deterministi, omplete and aessible. From Proposition (2) it reognizes

the language L. Let us show that the right languages of drdr(A) are all distint. From

Proposition (1) the left languages of dr(A) are pairwise disjoint. From Proposition

(3) the right languages of rdr(A) are the left languages of dr(A). Therefore they are

pairwise disjoint. From Proposition (4) a right language of drdr(A) is a union of right

languages of rdr(A). Sine the right languages of rdr(A) are pairwise disjoint, the

right languages of drdr(A) are all distint. Thus, by Proposition (5) the automaton

drdr(A) is minimal.

5 Analysis of Brzozowski's algorithm

5.1 Split and join for minimizing

Let A be an automaton whih reognizes a regular language L. We study the trans-

formation of the sequene S

d

= (L

A

d

(q))

q2Q

of the right languages of the states of A,

when the twofold determinization is performed:

S

d

!

rdr

S

1

d

!

drdr

S

2

d

Notie that sine the languages of S

1

d

are pairwise disjoint and the languages of S

2

d

are all distint, S

1

d

and S

2

d

are sets. Let us remind that the right language of a state

is a (left) quotient of L if A is deterministi and a subset of the intersetion of some

(left) quotients of L ifA is nondeterministi. The �rst determinization splits the right

languages of A into disjoint piees, whereas the seond one joins the piees in order to

reombine the set of (left) quotients of L. The e�et of the twofold determinization

is illustrated by the Example 1. This example is intentionally simple: the initial

automaton is deterministi and even minimal.

Example 1

Let q

1

and q

2

be two states of A. We suppose that there exist three distint words,

u, v and w suh that: L

A

d

(q

1

) = fu; vg, L

A

d

(q

2

) = fv; wg, fq j u 2 L

A

d

(q)g = fq

1

g,

fq j w 2 L

A

d

(q)g = fq

2

g and fq j v 2 L

A

d

(q)g = fq

1

; q

2

g. We suppose that there exist
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two distint words, s and t suh that: L

A

g

(q

1

) = fsg, L

A

g

(q

2

) = ftg, fq j s 2 L

A

g

(q)g =

fq

1

g and fq j t 2 L

A

g

(q)g = fq

2

g.

The determinization of r(A) produes the three states q

0

1

, q

0

2

and q

0

3

of dr(A) suh

that: q

0

1

= fq

1

g, q

0

2

= fq

2

g and q

0

3

= fq

1

; q

2

g. The right languages of q

0

1

, q

0

2

and q

0

3

in

rdr(A) are pairwise disjoint (they are respetively equal to fug, fwg and fvg).

The e�et of the �rst determinization is that the two right languages fu; vg and

fv; wg of A have been split into three right languages in rdr(A): fug, fwg and fvg.

Notie that the left languages of q

0

1

, q

0

2

and q

0

3

in rdr(A) are respetively equal to

fsg, ftg and fs; tg and thus all distint. This is due to the fat that A is deterministi

(see Proposition (6)).

The determinization of rdr(A) produes the two states q

00

1

and q

00

2

of drdr(A) suh

that: q

00

1

= fq

0

1

; q

0

3

g and q

00

2

= fq

0

2

; q

0

3

g. The right languages of q

00

1

and q

00

2

in drdr(A)

are distint (they are respetively equal to fu; vg and fv; wg).

The e�et of the seond determinization is that the three right languages fug, fwg

and fvg of rdr(A) have been joined into two right languages in drdr(A): fu; vg and

fv; wg.

5.2 The deterministi ase

Brzozowski's algorithm an be applied to a nondeterministi automaton. Here we

fous on the ase when A is deterministi. Proposition (6) is due to Brzozowski [3℄.

Proposition (7) and Corollary (1) are very likely not original. These propositions are

gathered in this setion for sake of ompleteness.

Proposition 6 If A is deterministi, then dr(A) is the minimal automaton of r(L).

Proof. Sine A is deterministi, its left languages are pairwise disjoint, and so are

the right languages of r(A). The right languages of dr(A), whih are unions of right

languages of r(A), are therefore all distint.

Proposition 7 If A is deterministi, then a state of rdr(A) is a union of Nerode

equivalene lasses of the automaton A.

Proof. The transition funtion of r(A) is denoted by Æ

r

. Let q

1

and q

2

be two states

of A = (Q;�; Æ; i; F ). We have:

q

1

� q

2

, [L

A

d

(q

1

) = L

A

d

(q

2

), L

r(A)

g

(q

1

) = L

r(A)

g

(q

2

)℄

Let q

0

be a state of dr(A). By onstrution, there exists a word u of �

�

suh that

q

0

= Æ

r

(F; u). We have: q 2 Æ

r

(F; u) , u 2 L

r(A)

g

(q). Therefore, q

1

and q

2

are

equivalent if and only if they are suh that: q

1

2 Æ

r

(F; u) , q

2

2 Æ

r

(F; u). Thus, a

state of rdr(A) is a union of equivalene lasses of states in A.

Corollary 1 Let A be a deterministi automaton reognizing a regular language L.

Let n be the number of states of A. Let r be the number of (left) quotients of L. Then

the deterministi omplexity of r(A) is 2

r

� 2

n

.
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The following proposition leads to a haraterization of the equivalene lasses of

A. It says that two states p and q of A are equivalent if and only if they belong to

the same states of dr(A). This property an be seen as a orollary of Proposition (8).

Proposition 8 Let p and q be two states of A. It holds:

p � q , [p 2 P , q 2 P , 8P 2 Q

dr(A)

℄

Proof. We have: p � q , [u 2 L

d

(p) , u 2 L

d

(q), 8u 2 �

�

℄. Moreover L

d

(p) =

S

p2P

r(L

g

(P )), with P 2 Q

dr(A)

. Hene the result.

6 A variant of Brzozowski's minimization algorithm

We still assume that A is deterministi. We show that the Proposition (8) leads

to an original omputation of the equivalene lasses of the states of A after the

determinization of r(A) is ahieved. On the one hand this result allows us to have

a better understanding of how Brzozowski's algorithm performs the minimization:

the seond determinization atually is a state-equivalene-based proedure. On the

other hand it yields a variant of Brzozowski's minimization algorithm, where the

seond determinization is replaed by a more eÆient omputation of the equivalene

lasses.

The Algorithm 1 omputes the equivalene lasses of A. The partition of Q

initially ontains two sets: Q � F and F . At eah step of the algorithm, a set Y of

1. Begin

2. Partition fQ� F; Fg

3. Waiting  fFg

4. While Waiting 6= ; do begin

5. X  First(Waiting)

6. Waiting  Waiting � fXg

7. Proessed Proessed [ fXg

8. for all a 2 � do begin

9. Z  Æ

r

(X; a); if Z 62 Proessed then Waiting  Waiting [ Z

10. end

11. for all Y 2 Partition do begin

12. K  X \ Y

13. if K 6= ; then Partition Partition [K

14. if X 6� Y then Partition Partition [ (X �K)

15. if Y 6� Xthen Partition Partition [ (Y �K)

16. end

17. end

18. end

Algorithm 1: Algorithm to extrat equivalene lasses of A.
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the urrent partition ontains possibly equivalent states, in the sense that so far they

belong to the same states of dr(A). Every time a new state X of dr(A) is proessed,

it is heked w.r.t. every set of the partition in order to detet sets ontaining non-

equivalent states of A. The omplexity of the Algorithm 1 is exponential sine it

ontains the determinization of r(A). However it is likely more eÆient to extrat

equivalene lasses on the y than performing a seond determinization.

7 Conlusion

Brzozowski's minimization algorithm is both simple and mysterious. It is based on two

basi and easily understandable operations. However the behaviour of the algorithm

is not so obvious. Its average omplexity and experimental performane are still

unknown or unexplained. This short analysis is intended to ontribute to a better

understanding of how this algorithm performs the minimization. In partiular it

shows that the plae of Brzozowski's algorithm, in a taxonomy suh as Watson's one,

is among minimization algorithms based on the omputation of a state equivalene.
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