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Abstrat. This paper disusses the number of legal strings of n pairs of paren-

theses as well as a struture of the set of these strings. As the number of suh

strings is known to be the Catalan number, a struture of Catalan numbers is

thereby developed. A reursive funtion is developed that ounts the set and

alulates the Catalan number. The funtion uses two parameters and is thus

a generalization of Catalan numbers.
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1 Introdution

This paper onerns the problem of alulating the number of legal strings of paren-

theses that an be onstruted from n pairs of parentheses. This number is known to

be the Catalan number. There is a large literature of Catalan number interpretations

and onnetions [2, 3, 4, 5, 6, 7℄. Stanton and White have a proof of the orre-

spondene between Catalan numbers and legal parenthetial strings[7℄. The Catalan

number is de�ned as

C

n

=

�

2n

n

�

� (n+ 1):

The ordinary meaning of \legal strings" of parentheses is intended here: 1) The

strings are onventionally onstruted from left to right. 2) At any point in the

string, the number of left parentheses is equal to or greater than the number of right

parentheses. 3) all of the 2n parentheses are used.

For example, C

3

= 5; the legal strings of 3 pairs of parentheses are

( ( ( ) ) ), ( ( ) ( ) ), ( ( ) )( ), ( ) ( ( ) ), and ( ) ( ) ( ).

The paper o�ers a way to alulate Catalan numbers with a reursive funtion

and a struture of the strings and the number.
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2 Outline

Four areas emerge from onsideration of this funtion:

2.1 A Chart

This is a hart of the onstrution of the C

n

legal parenthetial strings omposed of

n pairs of parentheses. The number of suh strings is an interpretation of Catalan

numbers. The hart an be interpreted as a rooted tree. Evaluation of the funtion

ounts the leaves of the tree.

2.2 A Funtion

The funtion, denoted here by B

n;m

, uses two parameters. The n

th

Catalan number,

C

n

, is produed by B

n;0

. The domain of both parameters of B

n;m

is the non-negative

integers. In the reursive desent, m takes on values both higher and lower than n.

2.3 A Generalization

This generalization of Catalan numbers is based on the two parameters. It inludes

C

n

:

2.4 A Struture

This struture of Catalan numbers is suggested by the hart but an be expressed

algebraially.

3 Elaboration

3.1 The Chart

The idea behind the hart is simply writing the legal parenthetial expressions a-

ording to the de�nition above.

(

(

(

(

(

(

(

(

)

)

)

)

E.g. (()())

Figure 1: Forming all legal arrangements of 3 pairs of parentheses
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Consider this as a rooted tree. Eah edge represents adding a parenthesis. If there

are two edges desending from a vertex, then there is a hoie of adding a left or right

parenthesis at that point. By following all paths from the root to a leaf, all legal

expressions have been written. Note that �nal right parentheses are not needed to

ount leaves.

The steps in drawing the hart are:

1. Start at the top with n pairs of parentheses.

2. Stop if there are no more left parentheses.

3. Draw a vertial line downwards. This represents a left parenthesis and \uses"

one. If the number of left parentheses used (before this one was drawn) exeeds

the number of right ones used, draw another line from the same starting point

but to the right and then urving downwards. This represents a right parenthesis

and uses one.

4. Repeat steps 2, 3, and 4 for eah end point.

The vertex at the botton of eah line drawn represents the parenthetial string as

onstruted so far.

These onventions are somewhat arbitrary, as onventions must be, but they result

in a piture that is regular and easy to understand. The hart was helpful in de�ning

the funtion and disovering the struture.

3.2 The Funtion

B

n;m

=

8

<

:

B

n�1;m+1

+B

n;m�1

if (n > 0) ^ (m > 0)

B

n�1;m+1

if (n > 0) ^ (m = 0)

1 if (n = 0)

Eah part of the hart orresponds to a ase of the funtion. Figure 2 relates the

parts of the hart to the ases of the funtion.

Where one line descends from a vertex
B(n,m)=B(n−1,m+1)

Where two lines descend from a vertex
B(n,m)=B(n−1,m+1)+B(n,m−1)

Where no lines descend from a veretx
B(n,m)=1

Figure 2: Relationship between the hart and ases of the funtion
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(
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(

(

(

(

(

(

)

)

)

)
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Figure 3: Parameters of B

3;0

at eah vertex

The parameters of the funtion B

n;m

take on di�erent values at di�erent points in

the reursive desent. Figure 3 shows the parameters at eah stage for B

3;0

.

Parameter n represents the number of left parentheses that an be used from that

point onward. Parameter m represents the number of additional right parentheses

needed to balane the number of left parentheses already used. Considered onstru-

tively, m represents the number of right parentheses that may be written at that

point. When a left parenthesis is written, n is redued and m is inreased. When a

right parenthesis is written, m is redued.

Of ourse, one the funtion is de�ned, it is freed of any neessary tie to paren-

theses.

If we say it is possible for any reursive funtion to be simple, then this funtion

is simple and perhaps more fundamental than the losed form. The losed form is

simpler to write. However, while the notation for \2n hoose n" is simple, it implies

more omplex ideas. The losed form has multipliation and division operations.

While the omparisons in the reursive funtions are obvious and expliitly shown,

there are also omparisons implied in any evaluation of the losed form.

Assuming that it is not possible to do algebra with the reursive funtion, it

seems less useful than the losed form. However, it is possible to do substitutions.

For example, B

4;1

an be restated as B

3;2

+ B

4;0

, and vie versa. Substitution ould

be used to de�ne the funtion di�erently, but the way the funtion was de�ned above

seems simple and it �ts well with the parentheses hart.

B

n;0

is far less eÆient omputationally than the losed form. This will be devel-

oped in the Appendix.

3.3 The Generalization

This funtion is a generalization of Catalan numbers. The standard Catalan number

C

n

= B

n;0

. Table 1 also inludes some of the others:
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M=0 1 2 3 4 5

N=0 1 1 1 1 1 1

1 1 2 3 4 5 6

2 2 5 9 14 20 27

3 5 14 28 48 75 110

4 14 42 90 165 275 429

5 42 132 297 572 1001 1638

6 132 429 1001 2002 3640 6188

7 429 1430 3432 7072 13260 23256

8 1430 4862 11934 25194 48450 87210

Table 1: Generalized Catalan Numbers B

n;m

for n 2 [0; 8℄, m 2 [0; 5℄.

3.4 The Struture

The struture an be expressed as:

C

n

= B

n�3;3

+ 2C

n�1

or as

C

n

= B

n�3;3

+ 2B

n�1;0

The hart for C

n

an be haraterized as having a left lobe and two equal right

lobes. The right lobes are equal both in struture and value. They are also eah equal

to C

n�1

in struture and value. Figures 4, 5, and 6 show the struture.

(

(

(

(

(

(

(

(

)

)

)

)

 3,0

1,2

0,3

0,3

0,21,2

0,3

0,2

2,0

1,1

1,2

1,1

2,1

Right lobe Right lobe

Left lobe

Figure 4: Struture of C

n

In Figure 5, the numeri parameters are replaed by symboli parameters in terms

of n and m. The hart \grows" from the bottom as n inreases. The three lobes will

always have the values B

n�3;3

, B

n�2;1

, and B

n�2;1

. These an be put in orrespondene

to the ways legal strings of parentheses may start: ( ( (, ( ( ), ( ) (. This is a basis

of a partition of any set of legal strings.
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Left lobe
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(

(
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(

(

(

(

)

)

)

)

 

Right lobe Right lobe

n,0
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n−2,2
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Figure 5: Struture of C

n

ontd.

Right lobeLeft lobe Right lobe

C

C2

3

Figure 6: Struture of C

4

or B

4;0

Figure 6 emphasizes the nested repetitions of struture. Note that C

3

(or C

n�1

)

is found twie and C

2

(or C

n�2

) is found four times.

The left lobe is di�erent. It starts out smaller than either right lobe and then

beomes larger, perhaps approahing the sum of the two right lobes as n gets large.

The value of the left lobe is B

n�3;3

. Here's a table of the �rst few values:

n 3 4 5 6 7 8

B

n�3;3

1 4 14 48 165 572

Table 2: Values of the left lobe B

n�3;3

for n 2 [3; 8℄.

These values were reognized by the On-Line Enylopedia of Integer Sequenes

as Sequene A002057, named the Fourth Convolution of Catalan Numbers [5℄. This

sequene is not pursued here.
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4 Further Work

1. What are appliations or interpretations of the generalized Catalan numbers?

2. There is doubtless something inherent in the problem that is reeted in the

struture, but it is not obvious what. The struture looks natural in terms of

the hart, but the hart is just one piture of one interpretation. Why not two

lobes? Four? Why any?

3. What is the preise behavior of the size of the left lobe?

4. Is B

n�3;3

the Fourth Convolution of Catalan numbers?

5 Conlusion

Consideration of the set of legal strings of n pairs of parentheses exposes a struture

of this set and of Catalan numbers. The rules for onstrution of legal strings of

parentheses an be reast from a general statement of priniples to partiular state-

ments of all the ases. This restatement an be expressed as a hart showing all of

the ases.

Examination of the hart shows the struture of the sets of strings. Given that

the ount of legal strings is known to be the Catalan number, the hart exposes a

simple and easily understood struture of Catalan numbers. Interpreting the hart

as a graph, a reursive funtion B

n;m

ounts the leaves of the graph (a tree) and

therefore alulates the Catalan number.

Taken together, the hart and the funtion provide a useful tool for gaining an

intuitive understanding of an important ombinatorial number. Developing the fun-

tion would be a good problem for students studying reursive funtions.

The funtion B

n;m

is interesting in its own right. First, it is remarkably sim-

ple, using only addition, subtration, and omparison. It should probably should be

onsidered more fundamental than the losed form whih additionally uses multipli-

ation, division, and fatorials. Seond, the funtion B

n;m

has two parameters and is

thus a generalization of Catalan numbers.

6 Appendix. Computational Complexity and Ef-

�ieny.

The losed form for alulating C

n

is learly more eÆient than the reursive B

n;0

.

However, examining omplexity and eÆieny an further illuminate the struture

of parenthetial strings and Catalan numbers. The omplexity of the losed form is

linear in n while that of B

n;0

is exponential.

This setion will only treat B

n;0

to failitate omparison with the losed form.

The term \C

n

" is used here to denote the number, not the method of alulating it.
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6.1 Comparison with the losed form.

Even without a preise expression for the omplexity of B

n;m

, it is possible to reason

about omplexity and do some measurements of it. The reasoning goes like this: 1)

The omplexity of B

n;0

is greater than the number C

n

. 2) C

n

is greater than the

omplexity of the losed form. 3) Therefore the omplexity of B

n;0

is greater than

that of the losed form. (It is muh greater.)

The unit ounted for the losed form is the number of multipliations. After

aneling ommon fators in the numerator and the denominator, the losed form

an be expressed as (2n)(2n � 1):::(2n � (n + 2)), alling for n � 2 multipliations,

here alled f(n).

The unit ounted for B

n;0

is the number of exeutions of the funtion. In many

arhitetures these two measures would not be ommensurate. However, the sizes of

the omplexity numbers dominate any di�erene. Using C

n

as a omplexity number,

the expression (2n)(2n� 1):::(2n� (n+ 2)) expands to a degree n� 1 polynomial in

n, here alled g(n).

It an be seen that f(n) is little-oh of g(n) sine lim

n!1

f(n)=g(n) = 0. In other

words, f(n) grows more slowly than g(n). In this ase it grows muh more slowly [8℄.

The fat that the omplexity of B

n;0

is greater than the number C

n

is lear from

the hart. The hart has C

n

leaves, eah ontributing 1 to the number of exeutions.

In addition there are many intermediate nodes above the leaves, so that the sum

of all exeutions is greater than C

n

. All this demonstrates that the omputational

omplexity of the losed form is little-oh of the omplexity of B

n;0

.

A numeri measurement of B

n;0

is shown in Table 3. (The algorithm based on

B

n;m

an be instrumented to ount exeutions by the appropriate plaement of \+1"

in the ases of the funtion.)

n 3 4 5 6 7 8

n� 2 1 2 3 4 5 6

B

n;0

13 36 106 328 1034 3485

Table 3: Complexity of the losed form vs. B

n;0

.

6.2 Complexity of di�erent implementations of B

n;m

.

6.2.1 \Bottom-up" implementation of a reursive funtion.

Due to the highly repetitive struture of B

n;m

, results toward the bottom of the hart

are realulated many times over. To justify this, onsider that the tree gets muh

wider than it is high. For example, at n = 8 the number of leaves is C

n

= 1430.

The longest path from the root to a leaf is 2n � 1. This shows that many of the

omputations are towards the bottom.

Blass and Gurevih use the term \bottom-up" to desribe the use of prealulated

results to avoid many realulations [1℄. As an example, the following fragment of

pseudo-ode expresses the B

n;m

as an algorithm. It avoids realulation of B

n;m

for

m;n 2 [0; 3℄.
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The values of T are from Table 1. Note that the ases are not disjoint. The order

of exeution resolves ambiguity.

var T = new Array ([1,1,1,1℄, [1,2,3,4℄, [2,5,9,14℄, [5,14,28,48℄);

funtion B(n,m) f

if ((n<4)&&(m<4)) return (T[n℄[m℄);

if ((n>0)&&(m>0)) return (B(n-1, m+1) + B(n, m-1));

if ((n>0)&&(m==0)) return (B(n-1, m+1));

if (n==0) return (1);

g

Table 4 shows measured omplexity for this version.

n 3 4 5 6 7 8

top-down 13 36 106 328 1054 3485

bottom-up 1 2 5 13 52 212

Table 4: Complexity of top-down vs. bottom up evaluation of B

n;0

.

6.2.2 Parallel Proessing.

The struture of B

n;m

presents both obstales and opportunities for parallelization.

The word \exeutions" will be used here the way \proesses" and \threads" are often

used.

Dividing the work.

It is easy to divide the funtion into parts to run on separate proessors. Consider

plaing a horizontal line on a drawing of the hart suh as Figure 4. Horizontal lines

an be drawn at various levels. The point at whih the new line intersets a vertial

line marks a plae where a separate proess an onsist of all the exeutions below the

intersetion. The level of the horizontal line would determine the number of parts.

This method would be suitable for a multi-proessor with few proessors.

Another approah uses the fat that the seond ase alls for two hild evaluations

of the funtion. One of these ould be sent to another proessor. This would lead to

many requests for proessors at large n.

Lateny.

Lateny is another important fator in parallelization. \Lateny" is used here to

mean the time to initiate and terminate an exeution, inluding passing parameters

and returning results. Sine the amount of proessing in the funtion is small, lateny

would be very important if the funtion were distributed over many proessors.

A Single Instrution Multiple Data (SIMD) mahine with many proessors and

low lateny would be good here. It would also take advantage of the fat that eah

exeution of the algorithm would use the same small program. However, in general

the struture of the funtion would limit its use on mahines with large numbers of

proessors unless lateny was very small.
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Inter-proess ommuniation.

Sine there would be no peer-to-peer ommuniation among exeutions, an exeution

would never be interrupted and suspended in the middle of proessing. Network

ontention and overhead would both bene�t from this harateristi of B

n;m

. Of

ourse, there is muh passing of parameters and results. This ontributes to lateny,

as developed above, and would be a signi�ant use of resoures.
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