
Border Array on Bounded Alphabet

1

Jean-Pierre Duval

2

, Thierry Leroq

2

, Arnaud Lefebvre

3

2

LIFAR { ABISS, Universit�e de Rouen, 76821 Mont-Saint-Aignan Cedex, Frane

3

UMR 6037 { ABISS, Universit�e de Rouen, 76821 Mont-Saint-Aignan Cedex, Frane

e-mail:

Jean-Pierre.Duval

Thierry.Leroq

Arnaud.Lefebvre

9

=

;

�univ-rouen.fr

Abstrat. In this artile we present an on-line linear time algorithm, to hek

if an integer array f is a border array of some string x built on a bounded size

alphabet, whih is simplest that the one given in [2℄. Furthermore if f is a

border array we are able to build, on-line and in linear time, a string x on a

minimal size alphabet for whih f is the border array.

Key words: String algorithms, border array

1 Introdution

A border u of a string x is a pre�x and a suÆx of x suh that u 6= x. The omputation

of the borders of eah pre�x of a string x is strongly related to the string mathing

problem: given a string x, �nd the �rst or, more generally, all its ourrenes in a

longest string y. The border array of x is better known as the \failure funtion"

introdued in [4℄ (see also [1℄). Reently, in [2℄ a method is presented to hek if an

integer array f is a border array for some string x. The authors �rst give an on-line

linear time algorithm to verify if f is a border array on an unbounded size alphabet.

Then they give a more omplex algorithm that works on a bounded size alphabet.

Here we present a more simple algorithm for this ase. Furthermore if f is a border

array we are able to build, on-line and in linear time, a string x on a minimal size

alphabet for whih f is the border array. The resulting algorithm is elegant and

integrates three parts: the heking on an unbounded alphabet, the heking on a

bounded size alphabet and the design of the orresponding string if f is a border

array. The �rst two parts an work independently.

The remaining of this artile is organized as follows. The next setion introdues

basi notions and notations on strings and results from [2℄. Setion 3 presents our

new algorithm together with its orretness proof. Finally we give our onlusions in

Set. 4.

2 Bakground and basi string de�nitions

A string is a sequene of zero or more symbols from an alphabet �; the string with

zero symbols is denoted by ". The set of all strings over the alphabet � is denoted

1

This work was partially supported by a NATO grant PST.CLG.977017.

28

Border Array on Bounded Alphabet

by �

�

. We onsider an alphabet of size s; for 1 � i � s, �[i℄ denotes the i-th symbol

of �. A string x of length n is represented by x[1::n℄, where x[i℄ 2 � for 1 � i � n.

A string u is a pre�x of x if x = uw for w 2 �

�

. Similarly, u is a suÆx of x if x = wu

for w 2 �

�

. A string u is a border of x if u is a pre�x and a suÆx of x and u 6= x.

Let f [1::n℄ be an integer array suh that f [i℄ < i for 1 � i � n. For 1 � i � n, we

de�ne f

1

[i℄ = f [i℄ and for f [i℄ > 0, f

`

[i℄ = f [f

`�1

[i℄℄. We use the following notations:

� L(f; i� 1) = (f [i� 1℄; f

2

[i� 1℄; : : : ; f

m

[i� 1℄ = 0);

� C(f; i) = (1 + f [i� 1℄; 1 + f

2

[i� 1℄; : : : ; 1 + f

m

[i� 1℄) where f

m

[i� 1℄ = 0.

Note that L(f; 1) = (0) and that C(f; 1) is not de�ned.

A border u of x[1::i℄ with i > 0 has one of the two following forms:

� u = ";

� u = x[1::j℄x[j +1℄ with j +1 < i and where x[1::j℄ is a border of x[1::i� 1℄ and

x[i℄ = x[j + 1℄.

For 1 � i � n we denote by �

x

[i℄ the length of the longest border of x[1::i℄. The

array �

x

[1::n℄ is said to be the border array of the string x.

The lengths of the di�erent borders of x[1::i � 1℄ are given by the dereasing

sequene

L(�

x

; i� 1) = (�

x

[i� 1℄; �

2

x

[i� 1℄; : : : ; �

m

x

[i� 1℄)

where �

m

x

[i� 1℄ = 0 i.e. it is the length of the longest border �

x

[i� 1℄ followed by the

lengths of the borders of this longest border L(�

x

; �

x

[i� 1℄).

For i � 2, we say that an integer j+1 is andidate to be the length of the longest

border of x[1::i℄ if x[1::j℄ is a border of x[1::i � 1℄. In other words, for i � 2, saying

that j + 1 is andidate means that j 2 L(�

x

; i � 1). The dereasing sequene of

andidates for the length of the longest border of x[1::i℄ is

C(�

x

; i) = (1 + �

x

[i� 1℄; 1 + �

2

x

[i� 1℄; : : : ; 1 + �

m

x

[i� 1℄)

where �

m

x

[i� 1℄ = 0.

We say that an array f [1::n℄ is a valid border array, or simply that it is valid if

and only if it is the border array of at least one string x of length n.

The longest border of x[1℄ is neessarily the empty word, thus �

x

[1℄ = 0. The

length �

x

[i℄ of the longest border of x[1::i℄, if it is not empty, is taken among the

andidates C(�

x

; i). Thus we have a �rst neessary ondition for an array f [1::n℄ to

be valid:

NC

1

: f [1℄ = 0 and for 2 � i � n; f [i℄ 2 f0g+ C(f; i) :

If x[1::i℄ has the empty word for only border then we have �

x

[i℄ = 0.

If x[1::i℄ has a non-empty border, the length of the longest border veri�es

� �

x

[i℄ = maxfj + 1 j j 2 L(�

x

; i� 1) and x[i℄ = x[j + 1℄g, or equivalently

� �

x

[i℄ = maxfj + 1 j j + 1 2 C(�

x

; i) and x[i℄ = x[j + 1℄g.

29

Proeedings of the Prague Stringology Conferene '02

The length j + 1 of the longest border of x[1::i℄ is the �rst andidate in the list

C(�

x

; i) for whih x[j+1℄ = x[i℄ if it exists, otherwise the longest border has length 0.

This is the basis of the omputation of the funtion �

x

known as a \failure funtion"

given in [4℄.

Saying that j+1 is the largest andidate for whih x[j+1℄ = x[i℄ implies that this

is not true for any andidate j

0

+ 1 larger than j + 1, whih imposes that x[1::j + 1℄

annot be a border of x[1::j

0

+ 1℄ for a andidate j

0

+ 1 larger than j + 1. In other

words, �

x

[j

0

+ 1℄ is di�erent from j + 1 for any andidate j

0

+ 1 larger than j + 1.

This is thus a seond neessary ondition for an array f to be valid:

NC

2

: for i � 2 and for every j

0

+ 1 2 C(f; i) with j

0

+ 1 > f [i℄

we have f [j

0

+ 1℄ 6= f [i℄ :

Theorem 2.2 in [2℄ states that onditions NC

1

and NC

2

form a suÆient ondition for

f to be a valid border array. The authors give, for any valid array f , thus satisfying

onditions NC

1

and NC

2

, the omputation of a string x suh that f = �

x

, without any

restrition on the alphabet size. They give a simple linear time algorithm (Theorem

2.3) to test if an array f satis�es onditions NC

1

and NC

2

, on a unbounded size

alphabet. They give a more omplex algorithm in the ase of a bounded size alphabet.

Here we present a more simple algorithm whih determines in linear time, for a given

array f [1::n℄, for i from 1 to n, the minimum size of an alphabet neessary to build

a string x[1::i℄ whih border array is f [1::i℄.

3 New algorithm

We propose, in this setion, a linear time algorithm, whih determines, for an array

f [1::n℄ and an alphabet size s given as input:

1 { validity: if f [1::n℄ is a valid border array for at least one string z[1::n℄. This

point is essentially the same as in [2℄;

2 { alphabet: up to whih index it is possible to build a string whih border array

is f using an alphabet of size s;

3 { string: a string x, on a minimal size alphabet, whih border array is f .

Point 1 is independent from the other two points. Point 2 an work without the

other two points, in partiular when one assumes that the array f is valid and does

not want to build a orresponding string. Point 3 uses point 2.

The algorithm BABA (for Border Array on Bounded Alphabet) is given �gure 1.

We now state our main result.

Theorem 1 When applied to an integer array f [1::n℄ and an alphabet size s:

� The algorithm BABA runs in time �(n).

� If the array f given as input of the algorithm BABA is a valid border array at

index i � 1 but not at index i, the algorithm stops and returns \f invalid at

index i". The lines falphabetg and fstringg an be deleted without hanging

this result.

30

Border Array on Bounded Alphabet

Figure 1: Algorithm BABA

� If there exists a string for whih f [1::i� 1℄ is the border array and there is none

at index i with an alphabet of size s, the algorithm BABA stops and returns \s

exeeded at index i". Lines fstringg an be deleted without hanging this result.

If the array f is valid, lines fvalidityg an also be deleted.

� As long as f [i::1℄ is valid, the algorithm BABA builds a string x[1::i℄ on a

minimal size alphabet for the border array f [1::i℄. Lines fvalidityg an be

deleted without hanging the onstrution of the string. It is lear that if f is

invalid, it is not the border array of the string whih is built by the algorithm.

Before giving the proof of the previous theorem we �rst give a de�nition and

establish some intermediate results.

De�nition 1 Given a string x[1::n℄ and its border array �

x

, we denote by A(x; i)

the set of symbols that extend the pre�x x[1::i � 1℄ and its borders, in x: A(x; i) =

fx[i℄g [fx[j + 1℄ j j + 1 2 C(�

x

; i)g.

Figure 2 gives a desription of L(�

x

; i� 1), C(�

x

; i) and A(x; i).

Lemma 1 For every string x[1::i℄ we have

1. fx[j + 1℄ j j + 1 2 C(�

x

; i)g = A(x; �

x

[i℄ + 1) ;

2. If �

x

[i℄ 6= 0 then x[i℄ = x[�

x

[i℄℄, �

x

[i℄ 2 C(�

x

; i) and A(x; i) = A(x; �

x

[i�1℄+1).

3. If �

x

[i℄ = 0 then �

x

[i℄ 62 C(�

x

; i) and A(x; i) = fx[i℄g [A(x; �

x

[i� 1℄ + 1).

Proof:

1. Immediate;

31

Proeedings of the Prague Stringology Conferene '02

Figure 2: If for 1 � ` � 4, j

`

= �

`

x

[i � 1℄, j

4

= �

4

x

[i � 1℄ = 0, i

`

= 1 + �

`

[i � 1℄, then

L(�

x

; i � 1) = (j

1

; j

2

; j

3

; j

4

= 0), C(�

x

; i) = (i

1

; i

2

; i

3

; i

4

= 1) and A(x; i) is the set

whih is omposed of the gray symbols.

2. If �

x

[i℄ 6= 0 then �

x

[i℄ is a andidate of C(�

x

; i). Conerning the index of the

longest border we have x[i℄ = x[�

x

[i℄℄, �

x

[i℄ is a andidate in C(�

x

; i), x[i℄ is in

A(x; �

x

[i� 1℄ + 1);

3. �

x

[i℄ = 0 implies that there exists no andidate j + 1 2 C(�

x

; i) suh that

x[i℄ = x[j + 1℄.

2

Corollary 1 Let x[1::n℄ be a string and k[1::n℄ the array omputed by the algorithm

BABA with the input f = �

x

ignoring the fvalidityg and fstringg lines. Then, for

1 � i � n we have k[i℄ = ardA(x; i).

Proof: The proof of the orollary immediately follows from the algorithm BABA and

properties 2 and 3 of lemma 1. 2

Corollary 2 For every string x whih border array is f , the minimal ardinality of an

alphabet neessary to build eah pre�x x[1::i℄ is greater or equal to maxfk[1℄; k[2℄; : : :,

k[i℄g where k[1::n℄ is the array omputed by the algorithm BABA with the input f =

�

x

, ignoring lines fvalidityg and fstringg.

Proof: All the symbols of A(x; j) for 1 � j � i are symbols of the string x[1::i℄. Thus

the ardinality is greater or equal to the ardinality of eah A(x; j). 2

Proposition 1 Assume that array f [1::n℄ is valid. The string x build by the algo-

rithm BABA satis�es the following properties:

1. For 1 � i � n, �

x[1::i℄

= f [1::i℄ and A(x; i) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g;

2. The ardinality of the alphabet for eah pre�x x[1::i℄ is equal to

maxfk[1℄; k[2℄; : : : ; k[i℄g;

32

Border Array on Bounded Alphabet

3. The border array �

x

of the string x is equal to f .

Proof:

� We show the point 1 by indution on i. For i = 1: f [1℄ = 0, �

x[1::1℄

= f [1::1℄

and A(x; 1) = fx[1℄g = f�[1℄g. The property holds at index 1.

Assume that the property holds up to index i�1, then we have A(x; f [i�1℄+1) =

f�[1℄; �[2℄; : : : ; �[k[f [i� 1℄+ 1℄℄g (sine f [i� 1℄ < i� 1 thus f [i� 1℄+ 1 � i� 1)

and �

x[1::i�1℄

= f [1::i� 1℄.

If f [i℄ 6= 0 then sine f [1::i� 1℄ = �

x[1::i�1℄

and f satis�es onditions NC

1

and

NC

2

at index i, f [i℄ is the largest andidate j of C(f; i) suh that x[j℄ = x[f [i℄℄.

Thus, by setting x[i℄ x[f [i℄℄ we get �

x

[i℄ = f [i℄, k[i℄ = k[f [i � 1℄ + 1℄ and

A(x; i) = A(x; f [i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g.

If f [i℄ = 0 then k[i℄ = 1 + k[f [i � 1℄ + 1℄ and x[i℄ �[k[i℄℄ does not belong to

A(x; f [i� 1℄ + 1) thus �

x

[i℄ = 0, A(x; �

x

[i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[f [i�

1℄ + 1℄℄g, A(x; i) = f�[k[i℄℄g [A(x; �

x

[i� 1℄ + 1) = f�[1℄; �[2℄; : : : ; �[k[i℄℄g.

The property holds for i in both ases.

� Properties 2 and 3 are immediate onsequenes of property 1.

2

Proposition 2 Let f [1::n℄ be an integer array.

1. The algorithm BABA returns \f invalid at index i" if and only if f [1::i� 1℄ is

valid and f [1::i℄ is not;

2. The array f [1::i � 1℄ is the border array of the string x[1::i � 1℄ whih is built

by the algorithm BABA.

Proof: From proposition 1, as long as f [1::i℄ is valid, it is the border array of the

string x[1::i℄ whih is built by the algorithm BABA whih establishes the point 2.

If the algorithm BABA stops at index i = 1 and returns \f invalid at index 1", it

means that f [1℄ 6= 0 thus f [1::i℄ is invalid (note that this ase annot happen if the

ondition f [i℄ < i is ful�lled).

Now assume that at the beginning of iteration i we have: z[1::i � 1℄ is a string

whih border array is f [1::i� 1℄ and z an be extended with a symbol z[i℄ for whih

�

z

[i℄ = f [i℄.

We have z[i℄ = z[f [i℄℄, and �

z

[i℄ = f [i℄ is the largest andidate j

0

+ 1 2 C(�

z

; i) =

(1 + �

z

[i� 1℄; 1 + �

2

z

[i� 1℄; : : : ; 1 + �

m

z

[i� 1℄), suh that z[j

0

+ 1℄ = z[i℄ thus it is the

largest for whih z[j

0

+ 1℄ = z[f [j℄℄.

The three lines fvalidityg of the algorithm BABA reviews in dereasing order

the andidates j + 1 of C(�

z

; i).

� If the algorithm exits the while loop with j + 1 > f [i℄ and f [j + 1℄ = f [i℄, it

means that j + 1 is a andidate larger that f [i℄ for whih �

z

[j + 1℄ = f [i℄ thus

z[j + 1℄ = z[f [i℄℄ whih ontradits the fat that j

0

+ 1 is the largest andidate

suh that z[j

0

+ 1℄ = z[f [i℄℄. This ontradits the assumption that the string

z[1::i� 1℄ an be extended and that f [1::i℄ is valid.

33

Proeedings of the Prague Stringology Conferene '02

� If the algorithm exits the while loop with j+1 < f [i℄, it means that no andidate

j

0

+ 1 equal to f [i℄ were found. This ontradits the fat that f [i℄ = �

z

[i℄ and

that f [1::i℄ is valid.

In both ases, no string z[1::i� 1℄, whih border array is f [1::i� 1℄, an be extended,

then the algorithm returns \f invalid at index i".

If f [1::i℄ is valid then the algorithm does not stop at this index.

Assume now that at the beginning of iteration i we have: z[1::i � 1℄ is a string

whih border array is f [1::i� 1℄ and the while loop exits at index i with j +1 = f [i℄.

Let us set z[i℄ = z[f [i℄℄. Then f [i℄ = j + 1 is a andidate of C(�

z

; i) for whih

z[j + 1℄ = z[i℄ thus z[1::j + 1℄ is a border of z[1::i℄. Assume that z[1::j + 1℄ is not

the longest border of z[1::i℄. Let j

0

+1 be the smallest andidate whih is larger than

j + 1 and suh that z[1::j

0

+ 1℄ is a border of z[1::i℄. Then z[1::j + 1℄ is the longest

border of z[1::j

0

+ 1℄ and we have f [j

0

+ 1℄ = f [i℄ whih means that the loop should

have stop with this test and with j + 1 > f [i℄. This is a ontradition.

Thus the algorithm BABA runs as long as f [1::i℄ is valid, it stops at index i and

returns \f invalid at index i" if and only if f is valid up to index i� 1 and is not at

index i. 2

The proof of Theorem 1 beomes then immediate.

Proof:[of Theorem 1℄ The point 1 (linearity of the algorithm BABA) omes from [4℄.

The other two points follow from propositions 1 and 2. 2

Figures 3 and 4 show two examples.

i 1 2 3 4 5 6 7 8 9 10 11 12 symbols andidates valid

x[i℄ a b a a b a b a a b a

f [i℄ 0 0 1 1 2 3 2 3 4 5 6 ?

k[i℄ 1 2 1 2 2 1 2 1 2 2 1

a b a a b a b 7 yes

a b a a 4 yes

a b 2 no

" a 1 no

 0 yes if s > 2

Figure 3: The array f [1::11℄ is a valid border array. The string x[1::11℄ is the smallest

string for whih f [1::11℄ is a valid border array. Then x[1::11℄ = abaababaaba has

borders abaaba, aba, a and " of respetive lengths 6, 3, 1 and 0 (L(f; 11) = (6; 3; 1; 0)).

Thus the andidates for f [12℄ are 7, 4, 2 and 1 (C(f; 12) = (7; 4; 2; 1)) together with 0

whih is always a potential andidate. The values 7 and 4 are valid andidates. The

value 2 is not valid sine f [7℄ = 2 and 1 is not valid beause f [4℄ = 1. The value 0 is a

valid andidate if s > 2 beause then k[12℄ would be equal to 1+k[f [12� 1℄+1℄ = 3.

4 Conlusions

We presented in this artile an elegant algorithm that verify, on-line and in linear time,

if an integer array f is a border array of some string on a bounded size alphabet.

34

Border Array on Bounded Alphabet

i 1 2 3 4 5 6 7 8 9 10 11 12 symbols andidates valid

x[i℄ a a b a a a a b a a

f [i℄ 0 1 0 1 2 0 1 2 3 4 5 ?

k[i℄ 1 1 2 1 1 3 1 1 2 1 1

a a b a a 6 yes

a a b 3 yes

a a 2 yes

" a 1 no

d 0 yes if s > 3

Figure 4: The array f [1::11℄ is a valid border array. The string x[1::11℄ is the smallest

string for whih f [1::11℄ is a valid border array. Then x[1::11℄ = aabaaaabaa has

borders aabaa, aa, a and " of respetive lengths 5, 2, 1 and 0 (L(f; 11) = (5; 2; 1; 0)).

Thus the andidates for f [12℄ are 6, 3, 2 and 1 (C(f; 12) = (6; 3; 2; 1)) together with

0 whih is always a potential andidate. The values 6, 3 and 2 are valid andidates.

The value 1 is not valid sine f [2℄ = 1. The value 0 is a valid andidate if s > 3

beause then k[12℄ would be equal to 1 + k[f [12� 1℄ + 1℄ = 4.

In the ase where f is a border array, we are also apable to build a string x, on a

minimal size alphabet for whih f is the border array.

After studying the ase of the \failure funtion" of the Morris and Pratt string

mathing algorithm, it is natural to ask the question if this work an be extended to

the \failure funtion" of the Knuth, Morris and Pratt string mathing algorithm [3℄.

Referenes

[1℄ A. V. Aho, J. E. Hoproft and J. D. Ullman, The design and analysis of om-

puter algorithms, Addison-Wesley, 1974.

[2℄ F. Fran�ek, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun and L. Yang,

Verifying a border array in linear time, J. Comb. Math. Comb. Comput. 42

(2002) to appear.

[3℄ D. E. Knuth, J. H. Morris, Jr and V. R. Pratt, Fast pattern mathing in strings

SIAM J. Comput. 6(1) (1977) 323{350.

[4℄ J. H. Morris, Jr and V. R. Pratt, A linear pattern-mathing algorithm, Report

40, University of California, Berkeley, 1970.

35

