
Operation L-INSERT on Fator Automaton

�

Bo°ivoj Melihar and Milan �imánek

Department of Computer Siene & Engineering

Faulty of Eletrial Engineering

Czeh Tehnial University Prague

e-mail: melihar�fel.vut.z, simanek�fel.vut.z

Abstrat. The fator automaton is used for time-optimal searhing for sub-

strings in text. In general, if the text is hanged the new fator automaton has

to be onstruted. When the text hange is simple enough we an hange the

original fator automaton to re�et the hanges of the text and save the time of

the new fator automaton onstrution.

This paper deals with operation L-INSERT and desribes the algorithm modi-

fying the fator automaton when a new symbol is prepended to the text. This

algorithm an be also used for on-line bakward onstrution of fator automa-

ton.

Keywords: fator automaton, DAWG, operation on fator automaton, on-

strution of fator automaton, �nite automaton.

1 Introdution

The fator automaton is a �nite automaton aepting the set of all fators (substrings)

of the given text (string) T . The fator automaton an be onstruted for arbitrary

text by one of the ommon onstrution algorithms. The time omplexity of the

onstrution is linear to the size of the text T , while pattern mathing for pattern P

is linear to the size of the pattern P and is independent of the size of text T . So, in

the most ommon ase the fator automaton is one onstruted and many time used

for pattern mathing. However, when we hange the text T the fator automaton

must be dropped and new fator automaton has to be onstruted.

If the hanges in the text are simple enough then we an �nd an algorithm mod-

ifying the original fator automaton aording text T . The time omplexity of this

algorithm is often better then the omplete onstrution of the new fator automaton

for the hanged text.

A nie example of suh algorithm is the APPEND algorithm desribed in [1, Chap-

ter 6.3℄, whih an modify given fator automaton when a new symbol is appended to

the text T . The authors use this algorithm as a part of their on-line fator automa-

ton onstrution algorithm for text T = t

1

t

2

� � � t

n

: they start with one-node fator

�

This researh has been partialy supported by the Ministry of Eduation, Youth, and Sports

of the Czeh Republi under researh program No. J04/98:212300014 (Researh in the area of

information tehnologies and ummuniations) and by Grant Ageny of Czeh Republi grant No.

201/01/1433.

111

Proeedings of the Prague Stringology Conferene '03

automaton for empty text " and ompute suessively fator automata for texts t

1

,

t

1

t

2

, t

1

t

2

t

3

, � � �, t

1

t

2

� � � t

n

.

Another known fator automaton modifying algorithm is the L-DELETE algo-

rithm [2℄. It an make desired hanges to the fator automaton when the text T is

redued by deleting the leftmost symbol. The L-DELETE algorithm an be used in

onjuntion with the APPEND algorithm to implement fast substring mathing in

sliding window data ompression method.

This paper desribes an L-INSERT algorithm modifying the fator automaton

when the text T is prepended by a new symbol. Like the APPEND algorithm,

this algorithm an also be used for the onstrution of the fator automaton. The

well-known onstrution using operation APPEND reates the fator automaton by

appending symbols of the text T from left to right. On the ontrary, the onstrution

based on L-INSERT reates the fator automaton starting with the rightmost symbol

to the left.

2 Basi De�nitions

The fator automaton for text T is de�ned as a �nite automaton M aepting the

language L(M) = Fa(T) of all fators of T . There is an in�nite number of suh

automata, hene we selet one with very regular struture of its transition diagram

(Figure 1). All its states are both initial and �nal.

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

Figure 1: Canonial nondeterministi fator automaton (CNFA)

De�nition 2.1 � Canonial nondeterministi fator automaton (CNFA)

Canonial nondeterministi fator automaton CNFA for text T = t

1

t

2

t

3

� � � t

n

is a

nondeterministi �nite automaton M = (Q;A; Æ; I; F) whih satis�es:

1. Q = fq

0

; q

1

; q

2

; � � � q

n

g

2. 8q

i

2 Q; a 2 A : Æ(q

i

; a) =

(

fq

i+1

g 8i < n; a = t

i+1

; in other ases

3. I = Q

4. F = Q

We annot diretly use CNFA beause of a nondeterminism. Eah nondetermin-

isti �nite automaton an be transformed to deterministi one aepting the same

language. The transformation an be done by subset onstrution [3℄. We use the

variant of the transformation whih does not insert inaesible states into the resulting

DFA [4, algorithm 3.6℄ and we denote it as the standard determinization method.

The standard determinization method is based on the following state-sets on-

strution: For eah nondeterministi �nite automaton M = (Q;A; Æ; I; F) we an

112

Operation L-INSERT on Fator Automaton

�nd a deterministi �nite automaton

^

M = (

^

Q;A;

^

Æ; q̂

0

;

^

F) aepting the same lan-

guage satisfying the following onditions:

�

^

Q � P(Q) suh that

^

Q = fq̂ : q̂ = Æ

�

(I; w);w 2 A

�

g

�

^

Æ is a mapping

^

Æ :

^

Q�A 7!

^

Q

8q̂ 2 Q; a 2 A :

^

Æ(q̂; a) =

S

q2q̂

Æ(q; a),

� q̂

0

2

^

Q q̂

0

= I,

�

^

F �

^

Q

^

F = fq̂ 2

^

Q : q̂ \ F 6= ;g.

We use the hat aent to denote deterministi automaton, its states and transition

funtion. States of CDFA are sets of CNFA. Note, that that CDFA ontains only

reahable states.

De�nition 2.2 � Canonial deterministi fator automaton (CDFA)

Canonial deterministi fator automaton CDFA for text T is a deterministi au-

tomaton given as the result of the standard determinization of the anonial nonde-

terministi fator automaton for the same text T .

The L-INSERT algorithm modifying CNFA is very simple (it just inserts a new

state and one transition). We use that algorithm and the standard determinization to

�nd L-INSERT algorithm modifying CDFA. To keep the relationship between states

of CNFA and CDFA automata we use several adjaent data strutures.

3 Adjaent Data Strutures

To enable e�ient algorithm modifying CDFA we extend CDFA by following addi-

tional information:

� su�x links,

� text pointers,

� in-degree of nodes.

3.1 Su�x Links

Eah state q̂ of the CDFA represents a set of ative states of the CNFA � after

aepting any string w the ative state q̂

w

=

^

Æ

�

(q̂

0

; w) of CDFA represents a set of

ative states Q

w

= Æ

�

(I; w) of CNFA, formally q̂

w

= Q

w

.

Lemma 3.1 If two states q̂

u

; q̂

w

2

^

Q have nonempty intersetion, q̂

u

\ q̂

w

6= ;, then

one of them is a subset of the other (q̂

w

� q̂

u

).

113

Proeedings of the Prague Stringology Conferene '03

w

T = t

1

t

2

t

3

� � � t

n

n

t

n

� � �

t

i+1

i

t

i

i-1

t

i�1

� � �

t

2

1

t

1

0

Figure 2: If state q̂

w

=

^

Æ

�

(q̂

0

; w) ontains a state q

i

then string w ends at position i

Proof:

If both two states q̂

u

and q̂

w

ontain state q

i

then both represent the CNFA

ative state q

i

. Beause of very regular struture of CNFA the state q

i

beomes ative only if the aepted string is a fator of the text T ending

at position i (see Figure 2). It means that both strings u and w (leading

to states q̂

u

and q̂

w

) are fators of the text T ending on the same position

i. Therefore one of them must be a su�x of the other (Figure 3). Let

u

w

n

t

n

� � �

t

i+1

i

t

i

i-1

t

i�1

� � �

t

2

1

t

1

0

Figure 3: Strings u and w end in the same position.

u be a su�x of w. The state q̂

w

represents states q̂

w

= fq

j

1

; q

j

2

; q

j

3

; � � �g

where j

k

are ending positions of all ourrenes of the string w in the text.

The string u is a su�x of w so that it ours at least on the same ending

positions, therefore q̂

w

� q̂

u

(Figure 4).

uuuu

www

T = t

1

t

2

t

3

� � � t

n

Figure 4: String u ends at least on the same ending positions as string w.

From the lemma above, any pair of CDFA states ontaining any ommon CNFA

state q

i

are ordered by set inlusion. Therefore all CDFA states representing any

CNFA state q

i

reate ordered set (hain of states). The initial state q̂

0

= I = Q =

fq

0

; q

1

; � � � q

n

g ontaining all CNFA states is a superset of any set of CNFA states and

it is the biggest set of any hain of sets. We an say that all states of CDFA are

114

Operation L-INSERT on Fator Automaton

ordered in a rooted tree with the root q̂

0

. The ommon name for suh tree is su�x

tree.

CNFA:

4

a

3

b

2

b

1

a

0

CDFA:

a

b

23

4

a

3

b

2

b

14

b

a

01234

Su�x tree:

324

2314

01234

Positions in text T :

0

a

1

b

2

b

3

a

4

state words ending pos.

q̂

fq

0

;q

1

;q

2

;q

3

;q

4

g

" 0, 1, 2, 3, 4

q̂

fq

1

;q

4

g

a 1, 4

q̂

fq

2

;q

3

g

b 2, 3

q̂

fq

2

g

ab 2

q̂

fq

3

g

bb 3

abb

q̂

fq

4

g

ba 4

bba

abba

Figure 5: An example of su�x tree for T = abba

This su�x tree (as a data struture) an be implemented by pointers from eah

state q̂ 2

^

Q to its parent p̂ in the su�x tree. We all suh pointer as su�x link and

denote p̂ = suf [q̂℄. The state suf

k

[q̂℄ means k

th

iteration of su�x link and suf

�

[q̂℄

(transitive losure) denotes a set of all iterations of su�x link of the state q̂.

suf

�

[q̂℄ = fq̂; suf [q̂℄; suf

2

[q̂℄; suf

3

[q̂℄; � � �g

Lemma 3.2 If two nonequal states p̂; q̂ 2

^

Q di�er by a one state q 2 Q i.e. p̂ = q̂[fqg

then there exists a diret su�x link between them: p̂ = suf [q̂℄.

115

Proeedings of the Prague Stringology Conferene '03

Proof:

Any two states p̂; q̂ 2

^

Q where q̂ is a proper subset of p̂ (; � q̂ � p̂) are

onneted by a su�x link i� there does not exist another state r suh that

q̂ � r̂ � p̂. As states p̂ and q̂ di�er only by one state, no suh state r̂ may

exist.

g

q

i

;

= fp̂

q

i

T = t

1

t

2

t

3

� � � t

n

w

p̂

Figure 6: The state p̂ has no inoming su�x link i� it ontain only one state

Lemma 3.3 State p̂ 2

^

Q has no inoming su�x link if and only if the set q̂ ontains

exatly one state q 2 Q.

Proof:

We divide the proof of equivalene to proofs of the both impliations. The

proof of the �rst impliation (the state p̂ has no inoming su�x link =)

the set p̂ ontains only one state) follows from this ontradition:

g

q

j

;

= fq̂

g

q

j

;

q

i

;

= fp̂

q

j

q

i

T = t

1

t

2

t

3

� � � t

n

waw

q̂p̂

Figure 7: If the state p̂ ontains two states then it has inoming su�x link.

If the set p̂ would ontain more than one state (see Figure 7) then there

would exist the longest fator w of the text T , whih would end at ending

positions represented by members of p̂. Not all ourrenes of string w are

preeded by the same symbol (beause w is the longest string with these

endings) and therefore there would exist a string aw whih is a fator of

the text T and would end at positions q̂ where q̂ � p̂. Due to this inlusion

both states p̂ and q̂ would share the same branh of su�x tree whih would

lead from q̂ to p̂. The state p̂ would have at least one inoming su�x link,

whih gives the ontradition.

116

Operation L-INSERT on Fator Automaton

The seond part, the proof of bakward impliation (the set p̂ ontains

only one state =) the state p̂ has no inoming su�x link) is trivial beause

a su�x link an lead only from a subset to a superset and a set with just

only one state has no regular subsets.

Lemma 3.4 If a state p̂ 2

^

Q has just one inoming su�x link and w is the longest

string leading to this state p̂ =

^

Æ

�

(q̂

0

; w) (see Figure 8) then

a) there are at least two ourrenes of the string w in the text T ,

b) the string w is a pre�x of the text T ,

) all ourrenes of w in T exept the very �rst one (the pre�x of T) are preeded

by the same symbol.

g

q

k

3

q

k

2

;q

k

1

;

q

i

;

= fq̂

q

i

T = t

1

t

2

t

3

� � � t

n

awawaww

q̂

Figure 8: The only one inoming su�x link leads to a state p̂.

Proof:

The proof of part a) follows from the Lemma 3.3.

There are no ouple of ourrenes of string w following two di�erent

symbols. If two strings aw and bw (where a 6= b) would our in text

T then both states q̂

aw

and q̂

bw

would be disjunt subsets of p̂ and their

su�x links would lead to state p̂. At least one ourrene of w must not

be preeded by the same symbol as others beause w is the longest string

leading to state p̂. Therefore w ours at the beginning of T and all next

ourrenes are preeded by the same symbol. w is a pre�x of T . This

proves parts b) and).

Lemma 3.5 If a su�x link suf [q̂℄ = p̂ is the only su�x link leading to state p̂ then

set p̂ is larger then q̂ by just one state q

i

(i.e. p̂ = fq

i

g [q̂).

Proof:

Let w be a string leading to the state p̂ =

^

Æ

�

(q̂

0

; w) (see Figure 8). Due to

Lemma 3.4, string w is a pre�x of the text T and all other ourrenes of

w in the text T are preeded by the same symbol a. The string aw ours

at the same ending positions as string w exept the very �rst one (w is a

pre�x of T). We an divide the set p̂ into the �rst ourrene (the state

q

i

) and the rest (ourrenes of aw): p̂ = fq

i

g[

^

Æ

�

(q̂

0

;aw). Due to Lemma

3.2 it holds p̂ = suf [

^

Æ

�

(q̂

0

;aw)℄. There is only one su�x link leading to p̂

so that states

^

Æ

�

(q̂

0

;aw) and q̂ are idential and we an write p̂ = fq

i

g[q̂.

117

Proeedings of the Prague Stringology Conferene '03

3.2 Text Pointers

Most of algorithms operating on fator automaton need to resolve whih states of

CDFA represent given state q of CNFA. Sine all relevant CDFA states ontain q they

reate a separate branh in the su�x tree. We an store only the starting state of the

branh and ontinue over the su�x tree to its root. Text pointers is a data struture

whih keeps the information about the starting state. It an be implemented as an

array TextPos[i℄ of CDFA states indexed by position i in text. In fator automata it

holds TextPos[i℄ =

^

Æ

�

(q̂

0

; t

1

t

2

� � � t

i

). An example of text pointers array for T = abba

is on Figure 9.

position 4

position 3

324

position 2

2314

position 1

01234

position 0

su�x tree

text pointers

a

b

23

4

a

3

b

2

b

14

b

a

01234

pos.4pos.3pos.2pos.1pos.0

Text positions: T =

0

a

1

b

2

b

3

a

4

text pointers table

position state

0 q̂

fq

0

;q

1

;q

2

;q

3

;q

4

g

1 q̂

fq

1

;q

4

g

2 q̂

fq

2

g

3 q̂

fq

3

g

4 q̂

fq

4

g

Figure 9: An example of the su�x tree and the automaton with text pointers for

T = abba.

Note that the number of states is often larger then the number of positions in

the text. Therefore, there exist states whih are not the value of any TextPos. An

example of that is on Figure 9. Although the state q̂

fq

2

;q

3

g

represents ending positions

2 and 3 for string b, it is neither a value of TextPos[2℄ nor TextPos[3℄. We an get

all states representing the ending position 2 by inspeting the whole branh of su�x

tree (a sequene of su�x links) from the state q̂

fq

2

g

= TextPos[2℄.

118

Operation L-INSERT on Fator Automaton

3.3 Node In-degree

We use the number of transitions leading to this state (inoming transitions) as a

referene ounter for deteting unreahable states. If the automaton has unreahable

states then one of them must have in-degree equal to zero beause the CDFA has no

loops. After its removing it holds that either another unreahable state beomes zero

in-degree or we are sure there are no unreahable states in the automaton.

3.4 Operation L-INSERT

The anonial nondeterministi fator automata (CNFA) for the texts T = t

1

t

2

t

3

� � � t

n

and aT = at

1

t

2

t

3

� � � t

n

are shown on the Figure 10.

M

T

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

M

aT

n

t

n

n-1

� � �

3

t

3

2

t

2

1

t

1

0

a

X

Figure 10: The hange in CNFA when a new symbol is prepended.

The operation L-INSERT reates a new state q

X

, whih is both initial and �nal

and a new transition from the state q

X

into the state q

0

.

The algorithm modifying CDFA follows from the relationship between nondeter-

ministi and deterministi fator automaton.

When the new initial state q

X

is reated, CDFA's initial state q̂

0

� see Figure 11

(step 1) � is hanged to the new state q̂

0

0

= q̂

0

[fq

X

g. The outgoing transitions from

this state are still the same as from q̂

0

(step 2). Now, we reate a new transition

in CNFA leading from q

X

to q

0

for symbol a. In the CDFA, we should rediret the

transition leading from q̂

0

0

labeled by a symbol a to another state whih ontains

similar set of states extended by the state q

0

, beause q

0

= Æ(q

X

; a) is the new

transition (step 3).

The algorithm is based on the reursive funtion GetExtendedState(q̂; i), whih

takes the set of states q̂ and integer i as arguments, and �nds a state q̂

0

= q̂ [fq

i

g. If

there is no suh state in the automaton, it is reated by the funtion. The value of

the funtion is the state q̂

0

(Figure 12).

Using this funtion the whole algorithm an be written in �ve steps:

1. reate a new state q̂

0

0

with the same outgoing transitions as q̂

0

,

2. get the old target of the �rst transition: q̂ =

^

Æ(q̂

0

0

; a),

3. ompute new state for that transition: q̂

0

= GetExtendedState(q̂; 0),

4. rediret the transition:

^

Æ(q̂

0

0

; a) = q̂

0

,

5. hange the initial state to q̂

0

0

.

119

Proeedings of the Prague Stringology Conferene '03

t

2

t

1

q̂

0

(step 1)

t

2

t

1

q̂

0

t

1

q̂

0

0

(step 2)

t

2

t

1

q̂

0

a

a

t

1

q̂

0

0

(step 3)

Figure 11: The hange in CDFA when symbol a is inserted.

q̂

0

q

i

T = t

1

t

2

t

3

� � � t

na

wwww

q̂

Figure 12: The state q̂

0

ontains state q

i

and all states from q̂

120

Operation L-INSERT on Fator Automaton

We assume any unreahable state is removed as soon as it looses the last inoming

transition (or the last referene).

Let us onern the funtion GetExtendedState(q̂; i). It assumes that the string

w = at

1

t

2

t

3

� � � t

i

leads to the state q̂ (i.e. q̂ =

^

Æ

�

(q̂

0

; w)). It is the shortest string

leading to this state beause the text shorter by the �rst symbol a would be a pre�x

of T an would our in advane at ending position i.

Note that the string w = at

1

t

2

t

3

� � � t

i

may not be a fator of the text T . In this

ase the state q̂ may be q̂ = fg = ;. In suh ase, the solution is a state q̂

0

= fq

i

g.

Of ourse, this state may or may not be present in the urrent automaton. We an

�nd it by inspeting the text pointer at position i. The value of TextPos[i℄ may be

the required state q̂

0

= fq

i

g or its superset. Aording to Lemma 3.3: if there is no

su�x link leading to this state then it ontains only one CNFA state fq

i

g and it is

the result value of the funtion GetExtendedState (Figure 13). If there exists a

� � �

su�x links

t

i+1

t

i

� � �

TextPos[i℄

Figure 13: The foused state has no inoming su�x links therefore it ontains only

one state q

i

su�x link leading to this state then we must reate a new state q̂

0

= fq

i

g and set its

outgoing transitions. In this ase the state q̂

0

will have only one outgoing transition

for the symbol t

i

leading to state fq

i+1

g (whih an be obtained by reursive alling

the funtion GetExtendedState(nil; i + 1)). In addition, we should set up the su�x

link of this state to lead to TextPos[i℄ and update TextPos[i℄ to new value � state

q̂

0

. (See Figure 14).

Now, we onern the ase when q̂ is an already existing state of CDFA. The

funtion GetExtendedState should loate the state representing the set q̂ [fq

i

g. If

there is no suh state, it should be reated. Due to the Lemma 3.2 if there exists

suh state it must be the target of the su�x link from state q̂. But the su�x parent

p̂ = suf(q̂) of the state q̂ may not be the required state in any ase, of ourse. We an

test it by inspeting the number of su�x links leading to it. There are two disjunt

ases:

� only one su�x link leads to state p̂,

� the state p̂ is a target of more su�x links.

At �rst we assume the su�x link from the state q̂ to the state p̂ is the only link

leading to p̂ (Figure 15). As the string w = at

1

t

2

t

3

� � � t

i

is the shortest string leading

to q̂ then the �rst su�x � string u = t

1

t

2

t

3

� � � t

i

leads to state suf(q̂) = p̂. We are

sure that string t

1

t

2

t

3

� � � t

i

ours at position i and therefore p̂ ontain the required

121

Proeedings of the Prague Stringology Conferene '03

su�x links

� � �

t

i+1

t

i

� � �

?

t

i+1

q̂

0

TextPos[i℄

Figure 14: If any su�x link leads to the state found by TextP tr[i℄ then we have

to reate a new state q̂

0

, onnet its su�x link, outgoing transition and rediret

TextP tr[i℄

g

q

k

3

q

k

2

q

k

1

q

i

= fp̂

g

q

k

3

q

k

2

q

k

1

= fq̂

q

i

0

T = t

1

t

2

t

3

� � � t

na

wwww

q̂

q̂

p̂

su�x tree

Figure 15: q̂ 7! p̂ is the only su�x link leading to p̂ therefore p̂ = q̂ [fq

i

g = p̂

0

122

Operation L-INSERT on Fator Automaton

state q̂

i

. On the other side, the state p̂ does not ontain any other state then fq

i

g or

q̂ (see Lemma 3.5) therefore state p̂ is the value of the funtion GetExtendedState .

Now, assume there exist at least two su�x links leading to the state p̂. One of

them is the link from q̂ and let another one lead from a state q̂

q

(Figure 16). The

g

q

k

3

q

k

1

q

i

= f

q̂

0

g

q

k

2

= f

q̂

q

g

q

k

3

q

k

1

= fq̂

g

q

k

3

q

k

2

q

k

1

q

i
= fp̂

q

i

T = t

1

t

2

t

3

� � � t

n

aubuauua

ww

(w)

q̂

q̂

q

q̂

q̂

0

p̂

su�x tree

Figure 16: If the state p̂ reeives more su�x links then it is unusable. A new state q̂

0

has to be reated.

sets q̂ and q̂

q

are disjunt beause they are in the di�erent branhes of the su�x tree.

The state p̂ is the superset of both sets. Therefore, the set p̂ ontains more states

then q̂ [fq

i

g and will be unusable for us. The resulting state is still not in the set of

states of the automaton and we have to reate it.

We reate a new state q̂

0

whih should represent the set q̂ [fq

i

g and therefore

it inherits the same outgoing transition as q̂. However the transition for the symbol

t

i+1

should be redireted to the state (the set of CNFA states) extended by the state

q

i+1

. We an lookup this state using the funtion GetExtendedState in reursion.

The rediretion is made by assigning

^

Æ(q̂

0

; t

i+1

) = GetExtendedState(

^

Æ(q̂; i); i + 1).

Finally, we should update su�x links. The new state q̂

0

is a subset of p̂ and a superset

of q̂ therefore we inlude it between states p̂ and q̂: suf [q̂

0

℄ = p̂ and suf [q̂℄ = q̂

0

.

Algorithm 3.1 � Operation L-INSERT using funtion GetExtendedState

Input: CDFA automaton

^

M = (

^

Q;A;

^

Æ; q̂

0

;

^

F) with su�x links, text T and

text pointers

symbol a

Output: CDFA automaton

^

M with su�x links, text T and text pointers

Loal: integer n

state p̂

state q̂

0

state q̂

0

0

state

^

t

Require:

^

M aepts fators of T = t

1

t

2

t

3

� � � t

n

Ensure:

^

M will aept fators of T = at

1

t

2

t

3

� � � t

n

1: funtion GetExtendedState(state q̂; integer i)

2: if (q̂ == nil) then

123

Proeedings of the Prague Stringology Conferene '03

3:

^

t = TextP tr[i℄

4: n = jsuf

�1

(

^

t)j { the number of su�x links inomming to

^

t }

5: if (n == 0) then

6: q̂

0

=

^

t

7: return q̂

0

8: else

9: q̂

0

=new state

10:

^

Æ(q̂

0

; a) = GetExtendedState(nil; i + 1)

11: suf [q̂

0

℄ =

^

t

12: return q̂

0

13: end if

14: else

15: p̂ = suf [q̂℄

16: n = jsuf

�1

(p̂)j

17: if (n == 1) then

18: q̂

0

= p̂

19: return q̂

0

20: else

21: q̂

0

= dupliate(q̂)

22:

^

Æ(q̂

0

; t

i+1

) = GetExtendedState(

^

Æ(q̂; t

i+1

); i+ 1)

23: suf [q̂

0

℄ = p̂

24: suf [q̂℄ = q̂

0

25: return q̂

0

26: end if

27: end if

28: endfuntion

29: q̂

0

0

= dupliate(q̂

0

)

30:

^

Æ(q̂

0

0

; a) = GetExtendedState(

^

Æ(q̂

0

; a); 0)

31: SetInitialState(q̂

0

0

)

4 E�ieny of the Algorithm

4.1 Time Complexity

The best ase from the time omplexity point of view appears when the new inserted

symbol a is equal to eah symbol in the text: T = a

n

. In suh ase, the reursive

funtion GetExtendedState is alled only one. Neither this funtion nor the main

algorithm ontain loop, therefore the time omplexity is onstant O(1) � independent

on the size of the text T .

The worst ase ours if all symbols in text T are the same but di�erent from the

new inserted symbol a: T = b

n

. In suh ase, the original automaton has n+1 states

and the new automaton will have 2n� 1 states, and so the algorithm have to reate

n � 2 states and it has asymptotially time omplexity linear O(n) with respet to

the size of the text T .

124

Operation L-INSERT on Fator Automaton

b

34

b

234

b

1234

4

b

3

b

2

b

1

b

0

b

a

X01234new CDFA:

4

b

34

b

234

b

1234

b

01234

old CDFA:

4

b

3

b

2

b

1

b

0

a

X
CNFA:

Figure 17: The worst ase

4.2 Spae Complexity

The algorithm requires extra spae for following data strutures:

� text pointers,

� su�x links,

� states,

� transitions,

� stak for reursion.

Text pointers is an array indexed by the position in text T . The size of the array is

linear to the size of text T . Text pointers are more useful for other operations with fa-

tor automata. In the ase of L-INSERT algorithm, text pointers an be substituted by

text T, beause we need suessively the values TextPos[0℄; T extPos[1℄; T extPos[2℄; :::

and TextPos[i℄ =

^

Æ(TextPos[i�1℄; t

i

) while TextPos[0℄ = q̂

0

. So that we ould om-

pute the values of TextPos during reursion of the funtion GetExtendedState.

Both su�x links and states take the same spae omplexity beause there is just

one outgoing su�x link per a state. The number of states is at most 2n (proved in

[1℄).

The number of transitions in the fator automaton is less than 3n (proved in [1℄).

The size of the stak required for the reursion is limited by the number of reursive

alls. As a new states is reated before any reursive all, the total number of reursive

alls is limited by the number of inserted states. Moreover, the reursion funtion

GetExtendedState an be transformed into an iteration loop without a need of an

extra data spae.

As the all data strutures require spae at most linear to the size of the automaton,

we an say the L-INSERT algorithm is spae-linear.

125

Proeedings of the Prague Stringology Conferene '03

5 Conlusion

This paper deals with the fator automaton and its modi�ations when the text often

hanges. We disuss several operations on the text and ite algorithms re�eting

these operations into the fator automaton. Moreover we desribe some adjaent

data strutures (su�x links and text pointers) used in algorithms modifying the fator

automaton. We present a new algorithm of operation L-INSERT. The algorithm an

e�iently modify a fator automaton when a new symbol is inserted before the �rst

symbol of the text. This algorithm an be also used for on-line bakward onstrution

of the fator automata. This means that the text grows from right to left while

onstruting the automaton. Finally, the time and spae omplexity of the L-INSERT

algorithm is also disussed.

Referenes

[1℄ M. Crohemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[2℄ M. �imánek. The fator automaton. In J. Holub and M. �imánek, editors, Pro-

eedings of the Prague Stringologi Club Workshop '98, pages 102�106, Czeh

Tehnial University, Prague, Czeh Republi, 1998. Collaborative Report DC�

98�06.

[3℄ J. E. Hoproft and J. D. Ullman. Introdution to automata, languages and om-

putations. Addison-Wesley, Reading, MA, 1979.

[4℄ J. Holub. Simulation of nondeterministi �nite automata in approximate string

and sequene mathing. Tehnial Report DC�98�04, Department of Computer

Siene and Engineering, Czeh Tehnial University, Prague, Czeh Republi,

1998.

126

