
Forward-Fast-Sear
h: Another Fast Variant of the

Boyer-Moore String Mat
hing Algorithm

Domeni
o Cantone and Simone Faro

Dipartimento di Matemati
a e Informati
a, Università di Catania, Italy

e-mail: {
antone, faro}�dmi.uni
t.it

Abstra
t. We present a variation of the Fast-Sear
h string mat
hing algorithm,

a re
ent member of the large family of Boyer-Moore-like algorithms, and we 
om-

pare it with some of the most e�e
tive string mat
hing algorithms, su
h as Hor-

spool, Qui
k Sear
h, Tuned Boyer-Moore, Reverse Fa
tor, Berry-Ravindran, and

Fast-Sear
h itself. All algorithms are 
ompared in terms of run-time e�
ien
y,

number of text 
hara
ter inspe
tions, and number of 
hara
ter 
omparisons.

It turns out that our new proposed variant, though not linear, a
hieves very

good results espe
ially in the 
ase of very short patterns or small alphabets.

Keywords: string mat
hing, experimental algorithms, text pro
essing.

1 Introdu
tion

Given a text T and a pattern P over some alphabet �, the string mat
hing prob-

lem 
onsists in �nding all o

urren
es of the pattern P in the text T . It is a very

extensively studied problem in 
omputer s
ien
e, mainly due to its dire
t appli
a-

tions to su
h diverse areas as text, image and signal pro
essing, spee
h analysis and

re
ognition, information retrieval, 
omputational biology and 
hemistry, et
.

Several string mat
hing algorithms have been proposed over the years. The Boyer-

Moore algorithm [BM77℄ deserves a spe
ial mention, sin
e it has been parti
ularly

su

essful and has inspired mu
h work. It is based upon three simple ideas: right-to-

left s
anning, bad 
hara
ter heuristi
s, and good su�x heuristi
s. We will review it

at length in Se
tion 2.1.

Many subsequent algorithms have been based on variations on how to apply the

two mentioned heuristi
s. For instan
e, the Fast-Sear
h algorithm, re
ently introdu
ed

by the authors [CF03℄, requires that the bad 
hara
ter heuristi
s is used only if the

mismat
hing 
hara
ter is the last 
hara
ter of the pattern, otherwise the good su�x

heuristi
s is to be used.

In this paper, we present a variation of the Fast-Sear
h algorithm in whi
h the good

su�x heuristi
s uses also a look-ahead 
hara
ter to determine larger advan
ements.

We also propose a pra
ti
al algorithm to pre
ompute the table en
oding su
h an

extended good su�x rule.

Before entering into details, we need a bit of notations and terminology. A string

P is represented as a �nite array P [0 :: m � 1℄, with m � 0. In su
h a 
ase we say

10



Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

that P has length m and write length(P ) = m. In parti
ular, for m = 0 we obtain

the empty string, also denoted by ". By P [i℄ we denote the (i+ 1)-st 
hara
ter of P ,

for 0 � i < length(P ). Likewise, by P [i :: j℄ we denote the substring of P 
ontained

between the (i + 1)-st and the (j + 1)-st 
hara
ters of P , for 0 � i � j < length(P ).

Moreover, for any i; j 2 Z, we put

P [i :: j℄ =

(

" if i > j

P [max(i; 0);min(j; length(P )� 1)℄ otherwise:

For any two strings P and P

0

, we write P

0

= P to indi
ate that P

0

is a su�x of P , i.e.,

P

0

= P [i :: length(P )� 1℄, for some 0 � i < length(P ). Similarly, we write P

0

< P to

indi
ate that P

0

is a pre�x of P , i.e., P

0

= P [0 :: i� 1℄, for some 0 � i � length(P ).

In addition, we write P:P

0

to denote the 
on
atenation of P and P

0

.

Let T be a text of length n and let P be a pattern of lengthm. When the 
hara
ter

P [0℄ is aligned with the 
hara
ter T [s℄ of the text, so that the 
hara
ter P [i℄ is aligned

with the 
hara
ter T [s+ i℄, for i = 0; : : : ; m� 1, we say that the pattern P has shift

s in T . In this 
ase the substring T [s :: s+m� 1℄ is 
alled the 
urrent window of the

text. If T [s :: s+m�1℄ = P , we say that the shift s is valid. Thus the string mat
hing

problem 
an be rephrased as the problem of �nding all valid shifts of a pattern P

relative to a text T .

Most string mat
hing algorithms have the following general stru
ture. First, dur-

ing a prepro
essing phase, they 
al
ulate useful mappings, in the form of tables,

whi
h later are a

essed to determine nontrivial shift advan
ements. Next, start-

ing with shift s = 0, they look for all valid shifts, by exe
uting a mat
hing phase,

whi
h determines whether the shift s is valid and 
omputes a positive shift in
rement

�s. Su
h in
rement �s is used to produ
e the new shift s + �s to be fed to the

subsequent mat
hing phase. Observe that for the 
orre
tness of the algorithm it is

plainly ne
essary that ea
h shift in
rement �s 
omputed is safe, namely the interval

fs+ 1; : : : ; s+�s� 1g 
ontains no valid shifts.

For instan
e, in the 
ase of the naive string mat
hing algorithm, there is no pre-

pro
essing phase and the mat
hing phase always returns a unitary shift in
rement,

i.e., all possible shifts are a
tually pro
essed.

The paper is organized as follows. In Se
tion 2 we survey some of the most e�e
tive

string mat
hing algorithms. Next, in Se
tion 3, we introdu
e a new variant of the Fast-

Sear
h algorithm. Experimental data obtained by running under various 
onditions

all the algorithms reviewed are presented and 
ompared in Se
tion 4. Finally, we

draw our 
on
lusions in Se
tion 5.

2 Some Very Fast String Mat
hing Algorithms

In this se
tion we brie�y review the Boyer-Moore algorithm and some of its most e�-


ient variants that have been proposed over the years. In parti
ular, we present the

Horspool [Hor80℄, Tuned Boyer-Moore[HS91℄, Qui
k-Sear
h[Sun90℄, Berry-Ravindran

[BR99℄, and the Fast-Sear
h [CF03℄ algorithms.

We also review the Reverse Fa
tor algorithm [CCG

+

94℄, whi
h is based on the

smallest su�x automaton of the reverse pattern.

11



Pro
eedings of the Prague Stringology Conferen
e '03

2.1 The Boyer-Moore Algorithm

The Boyer-Moore algorithm [BM77℄ is the progenitor of several algorithmi
 variants

whi
h aim at 
omputing 
lose to optimal shift in
rements very e�
iently. Spe
i�
ally,

the Boyer-Moore algorithm 
he
ks whether s is a valid shift by s
anning the pattern P

from right to left and, at the end of the mat
hing phase, 
omputes the shift in
rement

as the maximum value suggested by the good su�x rule and the bad 
hara
ter rule

below, using the fun
tions gs

P

and b


P

respe
tively, provided that both of them are

appli
able.

If the �rst mismat
h o

urs at position i of the pattern P , the good su�x rule

suggests to align the substring T [s + i + 1 : : : s + m � 1℄ = P [i + 1 : : :m � 1℄ with

its rightmost o

urren
e in P pre
eded by a 
hara
ter di�erent from P [i℄. If su
h an

o

urren
e does not exist, the good su�x rule suggests a shift in
rement whi
h allows

to mat
h the longest su�x of T [s+ i+ 1 : : : s+m� 1℄ with a pre�x of P .

More formally, if the �rst mismat
h o

urs at position i of the pattern P , the good

su�x rule states that the shift 
an be safely in
remented by gs

P

(i+1) positions, where

gs

P

(j) =

Def

minf0 < k � m j P [j � k ::m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ 6= P [j � 1� k℄)g ;

for j = 0; 1; : : : ; m. (The situation in whi
h an o

urren
e of the pattern P is found


an be regarded as a mismat
h at position �1.)

The bad 
hara
ter rule states that if 
 = T [s + i℄ 6= P [i℄ is the �rst mismat
hing


hara
ter, while s
anning P and T from right to left with shift s, then P 
an be safely

shifted in su
h a way that its rightmost o

urren
e of 
, if present, is aligned with

position (s+ i) in T . In the 
ase in whi
h 
 does not o

ur in P , then P 
an be safely

shifted just past position (s + i) in T . More formally, the shift in
rement suggested

by the bad 
hara
ter rule is given by the expression (i� b


P

(T [s+ i℄)), where

b


P

(
) =

Def

max(f0 � k < m j P [k℄ = 
g [ f�1g) ;

for 
 2 �, and where we re
all that � is the alphabet of the pattern P and text

T . Noti
e that there are situations in whi
h the shift in
rement given by the bad


hara
ter rule 
an be negative.

It turns out that the fun
tions gs

P

and b


P


an be 
omputed during the pre-

pro
essing phase in time O(m) and O(m + j�j), respe
tively, and that the overall

worst-
ase running time of the Boyer-Moore algorithm, as des
ribed above, is linear

(
f. [GO80℄).

2.2 The Horspool Algorithm

Horspool suggested a simpli�
ation of the original Boyer-Moore algorithm, de�ning a

new variant whi
h, though quadrati
, performed better in pra
ti
al 
ases (
f. [Hor80℄).

He just dropped the good su�x rule and proposed to 
ompute the shift advan
ement

in su
h a way that the rightmost 
hara
ter T [s+m� 1℄ is aligned with its rightmost

o

urren
e on P [0 :: m � 2℄, if present; otherwise the pattern is advan
ed just past

the window. This 
orresponds to advan
e the shift by hb


P

(T [s+m� 1℄) positions,

where

hb


P

(
) =

Def

min(f1 � k < m j P [m� 1� k℄ = 
g [ fmg) :

12



Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

The resulting algorithm performs well in pra
ti
e and 
an be immediately translated

into programming 
ode (see Baeza-Yates and Régnier [BYR92℄ for a simple imple-

mentation in the C programming language).

2.3 The Tuned Boyer-Moore Algorithm

The Tuned Boyer-Moore algorithm [HS91℄ 
an be seen as an e�
ient implementation

of the Horspool algorithm. Again, let P be a pattern of length m. Ea
h iteration

of the Tuned Boyer-Moore algorithm 
an be divided into two phases: last 
hara
ter

lo
alization and mat
hing phase. The �rst phase sear
hes for a mat
h of P [m�1℄, by

applying rounds of three blind shifts (based on the 
lassi
al bad 
hara
ter rule) until

needed. The mat
hing phase tries then to mat
h the rest of the pattern P [0 :: m� 2℄

with the 
orresponding 
hara
ters of the text, pro
eeding from right to left. At

the end of the mat
hing phase, the shift advan
ement is 
omputed a

ording to the

Horspool bad 
hara
ter rule. Moreover, to begin with, the algorithm adds m 
opies

of P [m� 1℄ at the end of the text, as a sentinel, to 
ompute the last shifts 
orre
tly.

The fa
t that the blind shifts require no 
omparison is at the heart of the very

good pra
ti
al behavior of the Tuned Boyer-Moore, despite its quadrati
 worst-
ase

time 
omplexity (
f. [Le
00℄).

2.4 The Qui
k-Sear
h Algorithm

The Qui
k-Sear
h algorithm, presented in [Sun90℄, uses a modi�
ation of the original

heuristi
s of the Boyer-Moore algorithm, mu
h along the same lines of the Horspool

algorithm. Spe
i�
ally, it is based on the following observation: when a mismat
h


hara
ter is en
ountered, the pattern is always shifted to the right by at least one


hara
ter, but never by more than m 
hara
ters. Thus, the 
hara
ter T [s + m℄ is

always involved in testing for the next alignment. So, one 
an apply the bad 
hara
ter

rule to T [s + m℄, rather than to the mismat
hing 
hara
ter, obtaining larger shift

advan
ements. This 
orresponds to advan
e the shift by qb


P

(T [s + m℄) positions,

where

qb


P

(
) =

Def

min(f0 < k � m j P [m� k℄ = 
g [ fm+ 1g) :

Experimental tests have shown that that the Qui
k-Sear
h algorithm is very fast

espe
ially for short patterns (
f. [Le
00℄).

2.5 The Berry-Ravindran Algorithm

The Berry-Ravindran algorithm [BR99℄ extends the Qui
k-Sear
h algorithm in that

its bad 
hara
ter rule uses the two 
hara
ters T [s+m℄ and T [s+m+ 1℄ rather than

just the last 
hara
ter T [s+m℄ of the window, where m is the size of the pattern P .

Thus, at the end of ea
h mat
hing phase with shift s, the Berry-Ravindran algorithm

advan
es the pattern so that the substring of the text T [s+m :: s+m+1℄ is aligned

with its rightmost o

urren
e in P .

The pre
omputation of the table used by the bad 
hara
ter rule requires O(j�j

2

)-

spa
e and O(m + j�j

2

)-time 
omplexity, where � is the alphabet of the text and

pattern. Experimental results [BR99℄ show that the Berry-Ravindran algorithm is

fast in pra
ti
e and performs a low number of text/pattern 
hara
ter 
omparisons.

13



Pro
eedings of the Prague Stringology Conferen
e '03

2.6 The Fast-Sear
h Algorithm

Again, let P be a pattern of lengthm and let T be a text of length n over a �nite alpha-

bet �. The main observation upon whi
h the Fast-Sear
h algorithm [CF03℄ is based

is the following: the Horspool bad 
hara
ter rule leads to larger shift in
rements than

the good su�x rule if and only if a mismat
h o

urs immediately, while 
omparing

the pattern P with the window T [s :: s+m�1℄, namely when P [m�1℄ 6= T [s+m�1℄,

where 0 � s � m� n is a shift.

In agreement with the above observation, the Fast-Sear
h algorithm 
omputes its

shift in
rements by applying the Horspool bad 
hara
ter rule only if a mismat
h

o

urs during the �rst 
hara
ter 
omparison. Otherwise it uses the good su�x rule.

Noti
e that hb


P

(a) = b


P

(a), whenever a 6= P [m � 1℄, so that to 
ompute the

shift advan
ement one 
an use the traditional bad 
hara
ter rule, b


P

, rather then

the Horspool bad 
hara
ter rule, hb


P

.

A more e�e
tive implementation of the Fast-Sear
h algorithm is obtained along

the same lines of the Tuned Boyer-Moore algorithm: the bad 
hara
ter rule 
an be

iterated until the last 
hara
ter P [m� 1℄ of the pattern is mat
hed 
orre
tly against

the text. At this point it is known that T [s+m�1℄ = P [m�1℄, so that the subsequent

mat
hing phase 
an start with the (m � 2)-nd 
hara
ter of the pattern. At the end

of the mat
hing phase the algorithm uses the good su�x rule for shifting.

As in the 
ase of the Tuned Boyer-Moore algorithm, the Fast-Sear
h algorithm

bene�ts from the introdu
tion of an external sentinel, whi
h allows to 
ompute 
or-

re
tly the last shifts with no extra 
he
ks.

Experimental results [CF03℄ show that the Fast-Sear
h algorithm obtains the best

run-time performan
es in most 
ases and, sporadi
ally, it is se
ond only to the Tuned

Boyer-Moore algorithm. Con
erning the number of text 
hara
ter inspe
tions, it turns

out that the Fast-Sear
h algorithm is quite 
lose to the Reverse Fa
tor algorithm,

whi
h generally shows the best behavior. We noti
e, though, that in the 
ase of very

short patterns the Fast-Sear
h algorithm rea
hes the lowest number of text 
hara
ter

a

esses.

2.7 The Reverse Fa
tor Algorithm

Unlike the variants of the Boyer-Moore algorithm summarized above, the Reverse

Fa
tor algorithm 
omputes shifts whi
h mat
h pre�xes of the pattern, rather than

su�xes. This is made possible by the smallest su�x automaton of the reverse of the

pattern P , whi
h is a deterministi
 �nite automaton S(P ) whose a

epted language

is the set of su�xes of P (for a 
omplete des
ription see [CCG

+

94℄).

The Reverse Fa
tor algorithm has a quadrati
 worst-
ase time 
omplexity, but it

is very fast in pra
ti
e (
f. [Le
00℄). Moreover, it has been shown that on the average

it inspe
ts O(n log(m)=m) text 
hara
ters, rea
hing the best bound shown by Yao in

[Yao79℄.

3 The Forward-Fast-Sear
h Algorithm

In this se
tion we present a new e�
ient variant of the Boyer-Moore algorithm ob-

tained by modifying the Fast-Sear
h algorithm presented in Se
tion 2.6.

14



Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

The new algorithmi
 variant, that we 
all Forward-Fast-Sear
h, mantains the same

stru
ture of the Fast-Sear
h algorithm, but is based upon a modi�ed version of the

good su�x rule, 
alled forward good su�x rule, whi
h uses a look-ahead 
hara
ter to

determine larger shift advan
ements.

The forward good su�x requires a pre
omputed table of size (m � j�j), where m

is the length of the pattern and � is the alphabet of the text and pattern.

Con
erning the running time, the forward good su�x rule 
an be pre
omputed by

j�j iterations of the standard linear pre
omputation of the Boyer-Moore good su�x

rule, yielding a O(m � j�j) time 
omplexity. Nevertheless, we propose an alternative,

more dire
t approa
h whi
h behaves very well in pra
ti
e, though it requires O(m �

max(m; j�j)) time in the worst 
ase.

3.1 Strengthening the Good Su�x Rule

3.1.1 The Ba
kward Good Su�x Rule

A �rst natural way to strengthen the good su�x rule, whi
h yields the ba
kward good

su�x rule, 
an be obtained by merging it with the bad 
hara
ter rule as follows.

As usual, let us assume that we are 
omparing a pattern P of length m with the

window T [s :: s +m � 1℄ at shift s of a given text T , s
anning it from right to left.

If the �rst mismat
h o

urs at position i of the pattern P , i.e. P [i + 1 :: m � 1℄ =

T [s + i + 1 :: s + m � 1℄ and P [i℄ 6= T [s + i℄, then the ba
kward good su�x rule

proposes to align the substring T [s+ i+ 1 :: s+m� 1℄ with its rightmost o

urren
e

in P pre
eded by the ba
kward 
hara
ter T [s + i℄. If su
h an o

urren
e does not

exist, the ba
kward good su�x rule proposes a shift in
rement whi
h allows to mat
h

the longest su�x of T [s + i + 1 :: s +m � 1℄ with a pre�x of P . More formally, this


orresponds to in
rement the shift s by

 �

gs

P

(i + 1; T [s+ i℄), where

 �

gs

P

(j; 
) =

Def

minf0 < k � m j P [j � k : : :m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ = 
)g ;

for j = 0; 1; : : : ; m and 
 2 �.

3.1.2 The Forward Good Su�x Rule

As observed by Sunday [Sun90℄, after a mat
hing phase with shift s, the forward


hara
ter T [s+m℄ is always involved in the subsequent mat
hing phase. Thus, another

possible variant of the good su�x rule, whi
h we 
all forward good su�x rule, 
onsists

in mat
hing the forward 
hara
ter T [s +m℄, rather than the mismat
hed 
hara
ter

T [s + i℄. More pre
isely, if as above the �rst mismat
h o

urs at position i of the

pattern P , the forward good su�x rule suggests to align the substring T [s+ i+1 :: s+

m℄ with its rightmost o

urren
e in P pre
eded by a 
hara
ter di�erent from P [i℄.

If su
h an o

urren
e does not exist, the forward good su�x rule proposes a shift

in
rement whi
h allows to mat
h the longest su�x of T [s+ i+1 :: s+m℄ with a pre�x

of P . This 
orresponds to advan
e the shift s by

�!

gs

P

(i+1; T [s+m℄) positions, where

�!

gs

P

(j; 
) =

Def

min(f0 < k � m j P [j � k ::m� k � 1℄ = P

and (k � j � 1! P [j � 1℄ 6= P [j � 1� k℄)

and P [m� k℄ = 
g [ fm+ 1g) ;

for j = 0; 1; : : : ; m and 
 2 �.

15



Pro
eedings of the Prague Stringology Conferen
e '03

3.1.3 Comparing the Good Su�x Rule with its Variants

We 
omputed the average shift advan
ement suggested by the good su�x rule and

its ba
kward and forward variants on four Rand� problems, for � = 2; 4; 8; 20, with

pattern lengths 2; 4; 6; 8; 10; 20; 40; 80, and 160, where a Rand� problem 
onsists in

sear
hing, for ea
h assigned value of the pattern length, a set of 200 random patterns

over an alphabet � of size � in a 20Mb random text over the same alphabet �.

Experimental results, presented in the tables below, show that the forward and

ba
kward good su�x rules propose on the average mu
h larger shift advan
ements

than the standard good su�x rule (up to 400% better). In addition, the forward

good su�x rule shows always a slightly better behavior than the ba
kward one, whi
h

be
omes more sensible in the 
ase of very small alphabets. This is partly due to the

fa
t that the forward 
hara
ter is always used by the forward good su�x rule to


ompute shift advan
ements, whereas there are 
ases in whi
h the ba
kward good

su�x rule does not exploit the ba
kward 
hara
ter.

� = 2 2 4 6 8 10 20 40 80 160

gs 1.540 2.762 3.869 4.765 5.468 8.464 12.254 16.137 21.807

 �

gs 1.540 2.762 3.869 4.765 5.468 8.464 12.254 16.137 21.807

�!

gs 2.269 3.642 5.026 6.310 7.394 12.21 18.200 25.586 34.798

� = 4 2 4 6 8 10 20 40 80 160

gs 1.750 3.062 4.334 5.196 6.079 8.697 12.382 16.857 22.645

 �

gs 1.750 3.540 5.170 6.691 8.097 13.62 21.604 30.540 42.891

�!

gs 2.687 4.407 6.114 7.696 9.245 15.55 25.149 36.584 51.398

� = 8 2 4 6 8 10 20 40 80 160

gs 1.880 3.453 4.833 5.399 6.656 10.05 13.613 19.510 25.807

 �

gs 1.880 3.857 5.692 7.441 9.294 17.63 31.570 51.010 75.734

�!

gs 2.860 4.775 6.671 8.399 10.24 18.72 33.225 54.825 81.334

� = 20 2 4 6 8 10 20 40 80 160

gs 1.930 3.714 5.238 6.684 8.512 12.81 19.078 25.169 33.975

 �

gs 1.930 3.956 5.892 7.919 9.867 19.47 38.167 72.950 136.45

�!

gs 2.946 4.929 6.896 8.868 10.85 20.44 39.206 74.084 138.22

Average advan
ements for some Rand� problems

3.1.4 Implementing the Forward Good Su�x Rule

Given a pattern P of length m over an alphabet �, we have plainly

�!

gs

P

(j; 
) = gs

P:


(j) ;

for j = 0; 1; : : : ; m and 
 2 �, where P:
 is the string obtained by 
on
atenating the


hara
ter 
 at the end of P . Thus, a natural way to 
ompute the forward good su�x

fun
tion

�!

gs

P


onsists in 
omputing the standard good su�x fun
tions gs

P:


, for all


 2 �, by means of the O(m) tri
ky algorithm �rstly given in [KMP77℄ and then


orre
ted in [Rit80℄.

Su
h a pro
edure is asymptoti
ally optimal, as it has O(m � j�j) spa
e and time


omplexity.

In Figure 1 we propose an alternative pro
edure to 
ompute the forward good

su�x fun
tion whi
h, despite its O(m � max(m; j�j)) worst-
ase time 
omplexity,

turns out to be very e�
ient in pra
ti
e, even for large values of m.

16



Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

pre
ompute-forward-good-su�x(P )

Initialization:

1. m = length(P )

2. for i = 0 to m do

3. for 
 2 � do

4.

�!

gs[i; 
℄ = m+ 1

5. for i = 0 to m� 1 do

6. next [i℄ = i� 1

Computation:

7. for slen = 0 to m� 1 do

8. last = m� 1

9. i = next [last ℄

10. while i � 0 do

11. if

�!

gs[m� slen; P [i+ 1℄℄ > m� 1� i then

12. if (i� slen < 0 or

13 (i� slen � 0 and P [i� slen℄ 6= P [m� 1� slen℄)) then

14.

�!

gs[m� slen; P [i+ 1℄℄ = m� 1� i

15. if (i� slen � 0 and P [i� slen℄ = P [last � slen℄) or

16. (i� slen < 0) then

17. next [last ℄ = i

18. last = i

19. i = next [i℄

20. if

�!

gs[m� slen; P [0℄℄ > m then

21.

�!

gs[m� slen; P [0℄℄ = m

22. next [last ℄ = �1

23. return

�!

gs

Figure 1: The fun
tion for 
omputing forward good su�xes

After an initialization phase whi
h takes O(m � j�j) spa
e and time 
omplexity,

the pre
ompute-forward-good-su�x pro
edure 
arries out m iterations of its main for-

loop, starting at line 7. During the k-th iteration, for k = 1; 2; : : : ; m, it 
omputes

the sequen
e S

k

(P ) of all o

urren
es in P of the su�x P [m� k ::m� 1℄ of length k,

impli
itly represented by means of the array next :

S

k

(P ) = h P [next [m� 1℄� k + 1 :: next [m� 1℄℄ ;

P [next

(2)

[m� 1℄� k + 1 :: next

(2)

[m� 1℄℄;

: : : : : :

P [next

(r

k

)

[m� 1℄� k + 1 :: next

(r

k

)

[m� 1℄℄ i ;

(1)

where r

k

is su
h that next

(r

k

+1)

[m�1℄ = �1. For that purpose, lines 15-18 implement

the re
urren
e

S

k

(P ) = hP [j � k + 1 :: j℄ jP [j � k + 2 :: j℄ 2 S

k�1

(P ) and P [j � k + 1℄ = P [m� k℄i ;

where S

0

(P ) is also formally given by (1), thanks to the way the array next is ini-

tialized in lines 5-6. Moreover, during the k-th iteration of the for-loop, for ea
h

17



Pro
eedings of the Prague Stringology Conferen
e '03

P [j � k + 1 :: j℄ 2 S

k

(P ), the pro
edure updates, if ne
essary, the value

�!

gs(m � k �

1; P [j + 1℄) by setting it to (m� 1� j) (lines 11-14).

Plainly, the pro
edure in Figure 1 requires O(m � j�j) spa
e. To 
ompute its

time 
omplexity, it is enough to observe that the k-th exe
ution of the while-

loop in lines 10-19, for k = 1; 2; : : : ; m, takes O(jS

k�1

(P )j) time, giving a total

of O(

P

m�1

j=0

jS

j

(P )j) = O(m

2

) time in the worst 
ase. This leads to an overall

O(m �max(m; j�j)) worst-
ase time 
omplexity, taking into a

ount also the initizial-

ization phase.

Experimental results show that the sum

P

m�1

j=0

jS

j

(P )j has on the average an al-

most linear behavior. For instan
e, the following tables report the average of the

sum

P

m�1

j=0

jS

j

(P )j 
omputed for 100; 000 random patterns of size m over an alphabet

of size �, for � = 2; 4; 8; 20 and m = 2; 4; 6; 8; 10; 20; 40; 80; 160. The tests relative

to a natural language bu�er NL have been 
omputed by randomly sele
ting 100; 000

substrings for ea
h given pattern length over the 3.13Mb �le obtained by dis
arding

the nonalphabeti
 
hara
ters from the WinEdt spelling di
tionary.

m 2 4 6 8 10 20 40 80 160

m

2

(worst 
ase) 4 16 36 64 100 400 1600 6400 25600

Average for � = 2 2.50 7.38 13.07 19.01 25.02 55.09 114.89 234.98 474.57

Average for � = 4 2.24 5.46 8.76 12.10 15.45 32.09 65.34 132.06 264.98

Average for � = 8 2.12 4.67 7.23 9.81 12.40 25.24 50.93 102.45 204.98

Average for � = 20 2.04 4.25 6.46 8.68 10.89 21.96 44.00 88.21 176.63

Average on NL 2.04 4.23 6.47 8.84 11.99 28.57 57.97 111.61 208.00

For the same set of random tests, we also 
omputed the total time taken to 
on-

stru
t the forward good su�x fun
tion

�!

gs, using the two implementations des
ribed

earlier, namely the one whi
h has a O(m � j�j) worst-
ase time and spa
e 
omplexity

and the pro
edure pre
ompute-forward-good-su�x. Su
h implementations are denoted

respe
tively �

�!

gs (I)� and �

�!

gs (II)� in the tables below, where experimental results are

expressed in hundredths of se
onds.

� = 2 2 4 6 8 10 20 40 80 160

�!

gs (I) 58.1 60.1 63.1 66.1 68.1 81.1 103.2 149.2 239.3

�!

gs (II) 3.0 6.0 11.0 15.1 18.0 37.0 74.1 145.3 288.4

� = 4 2 4 6 8 10 20 40 80 160

�!

gs (I) 113.2 117.1 121.2 124.2 128.2 142.2 174.2 235.4 357.5

�!

gs (II) 3.0 6.0 10.0 13.0 16.0 33.1 64.1 126.2 250.3

� = 8 2 4 6 8 10 20 40 80 160

�!

gs (I) 225.3 230.4 237.3 240.4 243.3 268.4 313.4 401.6 577.9

�!

gs (II) 4.0 7.0 11.0 14.0 19.0 36.1 72.1 141.2 289.4

� = 20 2 4 6 8 10 20 40 80 160

�!

gs (I) 558.8 573.9 580.8 589.8 598.9 642.9 733.1 905.3 1250.8

�!

gs (II) 5.0 11.0 16.0 20.1 26.0 50.1 98.1 195.3 394.6

NL 2 4 6 8 10 20 40 80 160

�!

gs (I) 553.8 565.8 573.8 583.8 592.8 636.9 725.0 895.3 1238.8

�!

gs (II) 5.0 10.0 16.0 19.0 23.1 48.1 95.1 189.3 379.5

18



Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

Forward-Fast-Sear
h(P , T )

1. n = length(T )

2. m = length(P )

3. T

0

= T:P [m� 1℄

m+1

4. b
 = pre
ompute-bad-
hara
ter(P )

5.

�!

gs = pre
ompute-forward-good-su�x(P )

7. s = 0

8. while b
[T

0

[s +m� 1℄℄ > 0 do

9. s = s+ b
[T

0

[s+m� 1℄℄

10. while s � n�m do

11. j = m� 2

12. while j � 0 and P [j℄ = T

0

[s+ j℄ do

13. j = j � 1

14. if j < 0 then

15. print(s)

16. s = s+

�!

gs[j + 1; T [s+m℄℄

17. while b
[T

0

[s+m� 1℄℄ > 0 do

18. s = s+ b
[T

0

[s+m� 1℄℄

Figure 2: The Forward-Fast-Sear
h algorithm

The analysis of the above experimental results show that for alphabets of size at least

4 the pro
edure pre
ompute-forward-good-su�x is on the average always faster than

the implementation of the forward good su�x fun
tion des
ribed at the beginning

the present se
tion.

3.2 Building up the Forward-Fast-Sear
h Algorithm

The implementation of the Forward-Fast-Sear
h algorithm 
an be obtained along the

same lines of the Fast-Sear
h and the Tuned Boyer-Moore algorithms.

In the �rst phase, 
alled 
hara
ter lo
alization phase, the algorithm iterates the

bad 
hara
ter rule until the last 
hara
ter P [m�1℄ of the pattern is mat
hed 
orre
tly

against the text. More pre
isely, starting from a shift position s, if we denote by j

i

the total shift advan
ement after the i-th iteration of the bad 
hara
ter rule, then we

have the following re
urren
e:

j

i

= j

i�1

+ b


P

(T [s+ j

i�1

+m� 1℄) :

Therefore, the bad 
hara
ter rule is applied k times in a row, where k = minfi j T [s+

j

i

+m� 1℄ = P [m� 1℄g, with an overall shift advan
ement of j

k

.

At this point we have that T [s+ j

k

+m� 1℄ = P [m� 1℄, so that the subsequent

mat
hing phase 
an test for an o

urren
e of the pattern by 
omparing only the

remaining (m � 1) 
hara
ters of the pattern. At the end of the mat
hing phase the

algorithm applies the forward good su�x rule instead of the traditional good su�x

rule.

As in the 
ase of the Fast-Sear
h and Tuned Boyer-Moore algorithms, the Forward-

Fast-Sear
h algorithm bene�ts from the introdu
tion of an external sentinel: sin
e the

19



Pro
eedings of the Prague Stringology Conferen
e '03

forward good su�x rule looks at the 
hara
ter T [s+m℄ just after the 
urrent window,

m+ 1 
opies of the 
hara
ter P [m� 1℄ are added at the end of the text T , obtaining

a new text T

0

= T:P [m� 1℄

m+1

. This allows to 
ompute 
orre
tly the last shifts with

no extra 
he
ks. Plainly, all the valid shifts of P in T are the valid shifts s of P in T

0

su
h that s � n�m, where, as usual, n and m denote respe
tively the lengths of T

and P . The 
ode of the Forward-Fast-Sear
h algorithm is presented in Figure 2.

4 Experimental Results

We present next experimental data whi
h allow to 
ompare the following string mat
h-

ing algorithms under various 
onditions: Horspool (HOR), Qui
k-Sear
h (QS), Barry-

Ravidran (BR), Tuned Boyer-Moore (TBM), Reverse Fa
tor (RF), Fast-Sear
h (FS),

and Forward-Fast-Sear
h (FFS).

We have 
hosen to 
ompare the algorithms in terms of running time, number of

text 
hara
ter inspe
tions, and number of 
hara
ter 
omparisons.

All algorithms have been implemented in the C programming language and were

used to sear
h for the same strings in large �xed text bu�ers on a PC with AMD

Athlon pro
essor of 1.19GHz. In parti
ular, the algorithms have been tested on four

Rand� problems, for � = 2; 4; 8; 20, and on a natural language text bu�er NL with

patterns of length m = 2; 4; 6; 8; 10; 20; 40; 80, and 160.

We re
all that ea
h Rand� problem 
onsists in sear
hing a set of 200 random

patterns of a given length in a 20Mb random text over a 
ommon alphabet of size �.

The tests on the natural language text bu�er NL have been performed on a 3.13Mb

�le obtained by dis
arding the nonalphabeti
 
hara
ters from the WinEdt spelling

di
tionary. For ea
h pattern length m, we have sele
ted 200 random substrings of

length m in the �le whi
h subsequently have been sear
hed for in the same �le.

4.1 Running Times

Experimental results show that the Forward-Fast-Sear
h algorithm obtains the best

run-time performan
e in most 
ases and, sporadi
ally, it is se
ond only to the Fast-

Sear
h algorithm, in the 
ase of natural language texts and long patterns, and to the

Berry-Ravidran algorithm, in the 
ase of large alphabets and patterns.

In the following tables, running times are expressed in hundredths of se
onds.

� = 2 2 4 6 8 10 20 40 80 160

HOR 42.01 44.18 42.86 42.02 46.57 40.24 39.51 38.83 39.95

QS 34.33 41.12 38.35 39.30 42.80 37.42 36.77 36.42 36.54

BR 44.84 49.36 44.42 43.48 47.69 40.66 40.70 40.74 40.54

TBM 33.96 36.54 36.88 36.65 40.53 35.98 36.05 35.54 36.30

RF 249.2 200.0 145.9 114.2 107.3 57.95 36.84 27.95 22.36

FS 41.79 35.36 28.72 25.32 26.15 20.40 18.40 17.99 17.31

FFS 31.08 28.87 25.28 22.37 23.15 18.05 16.78 16.62 15.82

Running times for a Rand2 problem

20



Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

� = 4 2 4 6 8 10 20 40 80 160

HOR 34.66 25.57 22.05 20.76 20.27 19.68 20.05 19.54 20.20

QS 26.49 22.10 19.87 19.35 18.98 18.58 19.05 18.73 19.04

BR 32.20 25.68 22.08 20.31 19.24 17.29 16.66 16.36 16.51

TBM 25.53 20.68 19.15 18.85 18.76 18.50 18.81 18.38 18.78

RF 156.1 98.60 74.84 62.28 53.79 34.73 24.26 20.34 16.67

FS 28.60 20.58 18.91 18.26 17.86 17.22 16.53 16.18 15.82

FFS 24.87 20.06 18.35 17.65 17.22 16.23 15.61 15.33 14.40

Running times for a Rand4 problem

� = 8 2 4 6 8 10 20 40 80 160

HOR 27.71 20.19 18.40 17.43 16.84 15.70 15.56 15.62 15.71

QS 20.91 18.27 17.17 16.59 16.25 15.36 15.22 15.23 15.35

BR 25.19 20.55 18.77 17.74 17.02 15.33 14.55 14.55 13.96

TBM 21.09 17.78 16.78 16.77 16.22 15.14 15.11 15.05 15.18

RF 114.8 70.75 54.97 46.27 40.62 27.26 20.58 18.17 15.01

FS 20.66 17.75 16.75 16.41 16.01 15.02 14.89 14.80 14.81

FFS 20.20 17.58 16.60 16.17 15.82 14.87 14.54 14.52 13.92

Running times for a Rand8 problem

� = 20 2 4 6 8 10 20 40 80 160

HOR 23.45 18.17 16.58 16.21 15.89 15.21 14.90 14.84 14.98

QS 18.67 16.84 15.78 15.69 15.49 14.98 14.74 14.73 14.79

BR 21.83 18.88 17.32 16.89 16.47 15.47 14.90 14.42 12.60

TBM 18.76 16.78 15.64 15.44 15.39 14.85 14.82 14.65 14.65

RF 92.44 54.83 41.67 35.57 31.61 23.12 19.25 17.69 14.72

FS 19.11 16.59 15.57 15.49 15.24 14.81 14.66 14.65 14.58

FFS 18.76 16.51 15.51 15.44 15.24 14.83 14.64 14.65 14.35

Running times for a Rand20 problem

NL 2 4 6 8 10 20 40 80 160

HOR 3.40 2.65 2.45 2.36 2.36 2.22 2.15 2.11 1.98

QS 2.73 2.42 2.35 2.24 2.20 2.14 2.09 2.09 2.01

BR 3.28 2.87 2.66 2.59 2.47 2.33 2.25 2.21 1.95

TBM 2.77 2.39 2.27 2.25 2.18 2.19 2.09 2.12 1.93

RF 13.94 8.33 6.48 5.46 4.87 3.35 2.79 2.68 4.67

FS 2.79 2.45 2.22 2.24 2.19 2.14 2.06 2.09 1.91

FFS 2.70 2.35 2.26 2.26 2.18 2.15 2.13 2.11 2.24

Running times for a natural language problem

4.2 Average Number of Text Chara
ter Inspe
tions

For ea
h test, the average number of 
hara
ter inspe
tions has been obtained by

taking the total number of times a text 
hara
ter is a

essed, either to perform a


omparison with a pattern 
hara
ter, or to perform a shift, or to 
ompute a transition

in an automaton, and dividing it by the length of the text bu�er.

It turns out that the Forward-Fast-Sear
h algorithm is always very 
lose the best

results whi
h are generally obtained by the Fast-Sear
h algorithm, for short patterns,

and by Reverse-Fa
tor algorithm, for long patterns. We noti
e, however, that the

Forward-Fast-Sear
h algorithm obtains in most 
ases the se
ond best result and is

better than Reverse-Fa
tor, for short patterns, and Fast-Sear
h, for long patterns.

21



Pro
eedings of the Prague Stringology Conferen
e '03

� = 2 2 4 6 8 10 20 40 80 160

HOR 1.00 1.15 1.26 1.26 1.28 1.24 1.27 1.23 1.27

QS 1.54 1.67 1.63 1.67 1.64 1.61 1.65 1.61 1.60

BR 1.28 1.25 1.20 1.20 1.19 1.19 1.19 1.18 1.16

TBM 1.23 1.35 1.46 1.46 1.47 1.43 1.46 1.42 1.46

RF 1.43 1.06 .799 .615 .519 .294 .169 .096 .054

FS 1.00 .929 .806 .698 .632 .460 .348 .270 .213

FFS 1.15 .993 .833 .703 .621 .410 .289 .210 .161

� = 4 2 4 6 8 10 20 40 80 160

HOR .714 .510 .435 .404 .392 .373 .389 .365 .392

QS 1.03 .817 .700 .675 .645 .610 .650 .622 .633

BR .949 .713 .569 .488 .429 .307 .264 .244 .251

TBM .841 .591 .504 .468 .454 .432 .450 .422 .446

RF .886 .528 .387 .316 .264 .154 .089 .051 .028

FS .714 .489 .398 .356 .330 .273 .239 .200 .177

FFS .768 .526 .418 .367 .330 .241 .182 .136 .105

� = 8 2 4 6 8 10 20 40 80 160

HOR .600 .350 .263 .222 .198 .158 .153 .149 .152

QS .842 .575 .456 .393 .358 .291 .282 .278 .277

BR .844 .582 .443 .360 .305 .179 .109 .072 .057

TBM .663 .386 .291 .245 .218 .174 .168 .164 .167

RF .674 .381 .278 .225 .191 .112 .063 .036 .020

FS .600 .348 .260 .217 .193 .150 .137 .126 .117

FFS .627 .368 .274 .227 .201 .146 .117 .093 .075

� = 20 2 4 6 8 10 20 40 80 160

HOR .538 .285 .199 .157 .132 .083 .061 .054 .053

QS .734 .463 .346 .282 .242 .157 .118 .104 .104

BR .787 .528 .397 .318 .266 .146 .078 .042 .023

TBM .563 .297 .208 .164 .137 .086 .063 .056 .056

RF .565 .302 .214 .170 .143 .084 .049 .027 .014

FS .538 .284 .198 .156 .131 .082 .060 .053 .052

FFS .550 .293 .205 .161 .135 .082 .060 .049 .043

NL 2 4 6 8 10 20 40 80 160

HOR .550 .300 .211 .171 .144 .091 .059 .042 .032

QS .759 .489 .375 .309 .261 .175 .125 .086 .066

BR .795 .538 .411 .335 .278 .155 .085 .050 .028

TBM .584 .318 .226 .182 .153 .096 .062 .044 .034

RF .588 .321 .231 .185 .153 .084 .045 .024 .013

FS .550 .299 .211 .171 .143 .087 .055 .038 .027

FFS .565 .312 .220 .180 .152 .088 .054 .036 .026

Average number of text 
hara
ter inspe
tions for some Rand� problems and for

a natural language problem

4.3 Average Number of Comparisons

For ea
h test, the average number of 
hara
ter 
omparisons has been obtained by

taking the total number of times a text 
hara
ter is 
ompared with a 
hara
ter in the

pattern and dividing it by the total number of 
hara
ters in the text bu�er.

It turns out that the Forward-Fast-Sear
h algorithm a
hieves the best results in

most 
ases. Sporadi
ally our algorithm is se
ond only to the Berry-Ravindran al-

gorithm whi
h obtains very good results for short patterns and small alphabets.

Moreover we observe that Tuned Boyer-Moore, Fast-Sear
h and Forward-Fast-Sear
h

22



Forward-Fast-Sear
h: Another Fast Variant of the Boyer-Moore String Mat
hing Algorithm

algorithms perform a very low number of 
hara
ters 
omparisons in the 
ase of large

alphabets.

� = 2 2 4 6 8 10 20 40 80 160

HOR 1.000 1.159 1.260 1.269 1.281 1.244 1.272 1.235 1.270

QS .9588 1.109 1.088 1.119 1.095 1.073 1.104 1.079 1.080

BR .2631 .3766 .3916 .3989 .3962 .3973 .3969 .3940 .3893

TBM .3333 .6044 .6995 .7154 .7249 .7082 .7215 .7024 .7205

FS .3333 .4767 .4466 .3925 .3573 .2609 .1967 .1530 .1248

FFS .3076 .4224 .3875 .3324 .2962 .1964 .1377 .1003 .0766

� = 4 2 4 6 8 10 20 40 80 160

HOR .7143 .5100 .4356 .4041 .3922 .3732 .3890 .3652 .3928

QS .6053 .4864 .4109 .3908 .3716 .3491 .3719 .3556 .3742

BR .2747 .2353 .1898 .1628 .1432 .1025 .0883 .0813 .0837

TBM .1429 .1445 .1264 .1175 .1140 .1085 .1131 .1062 .1141

FS .1429 .1373 .1141 .1024 .0949 .0784 .0690 .0577 .0526

FFS .1323 .1272 .1041 .0913 .0822 .0601 .0454 .0341 .0263

� = 8 2 4 6 8 10 20 40 80 160

HOR .6000 .3501 .2639 .2222 .1985 .1586 .1531 .1490 .1522

QS .4631 .3189 .2505 .2139 .1943 .1559 .1504 .1487 .1524

BR .2711 .1940 .1479 .1202 .1018 .0598 .0364 .0243 .0190

TBM .0667 .0482 .0365 .0307 .0274 .0219 .0212 .0206 .0210

FS .0667 .0477 .0359 .0300 .0267 .0207 .0190 .0175 .0167

FFS .0634 .0459 .0345 .0287 .0252 .0184 .0148 .0117 .0095

� = 20 2 4 6 8 10 20 40 80 160

HOR .5385 .2844 .1991 .1569 .1316 .0828 .0608 .0541 .0537

QS .3837 .2427 .1805 .1476 .1263 .0817 .0607 .0538 .0534

BR .2608 .1760 .1323 .1061 .0887 .0490 .0263 .0141 .0079

TBM .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0028

FS .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0027

FFS .0251 .0147 .0103 .0081 .0068 .0042 .0030 .0025 .0022

NL 2 4 6 8 10 20 40 80 160

HOR .5501 .3000 .2117 .1716 .1445 .0913 .0595 .0420 .0329

QS .4031 .2605 .2002 .1646 .1393 .0914 .0654 .0455 .0364

BR .2599 .1794 .1371 .1118 .0927 .0519 .0286 .0168 .0094

TBM .0345 .0245 .0171 .0142 .0123 .0089 .0061 .0046 .0042

FS .0345 .0245 .0171 .0141 .0121 .0066 .0043 .0030 .0025

FFS .0333 .0244 .0168 .0153 .0140 .0058 .0032 .0020 .0014

Average number of 
omparisons for some Rand� problems and for a natural language problem

5 Con
lusion

We presented a new e�
ient variant of the Boyer-Moore string mat
hing algorithm,

named Forward-Fast-Sear
h. As its progenitor Fast-Sear
h, the Forward-Fast-Sear
h

algorithm applies repeatedly the bad 
hara
ter rule until the last 
hara
ter of the

pattern is mat
hed 
orre
tly and then it begins to mat
h the pattern against the

text from right to left. At the end of ea
h mat
hing phase, it 
omputes the shift

advan
ement as a fun
tion of the mat
hed su�x of the pattern and the �rst 
hara
ter

of the text past the 
urrent window (forward good su�x rule).

It turns out that, despite the O(m � j�j)-spa
e and O(m �max(m; j�j))-time 
om-

plexity required in the worst 
ase to pre
ompute the forward good su�x fun
tion, the

23



Pro
eedings of the Prague Stringology Conferen
e '03

Forward-Fast-Sear
h algorithm is very fast in pra
ti
e and 
ompares well with other

fast variants of the Boyer-Moore algorithm.

We plan to evaluate theoreti
ally the average time 
omplexity of the Forward-Fast-

Sear
h algorithm, and to adapt it to s
anning strategies depending on the 
hara
ter

frequen
ies.

Referen
es

[BM77℄ R. S. Boyer and J. S. Moore. A fast string sear
hing algorithm. Commun.

ACM, 20(10):762�772, 1977.

[BR99℄ T. Berry and S. Ravindran. A fast string mat
hing algorithm and experi-

mental results. Pro
. of the Prague Stringology Club Workshop '99 Cze
h

Te
hni
al University, Prague, Cze
h Republi
, Collaborative Report DC�

99�05, pp. 16�28, 1999.

[BYR92℄ R. A. Baeza-Yates and M. Régnier. Average running time of the Boyer-

Moore-Horspool algorithm. Theor. Comput. S
i., 92(1):19�31, 1992.

[CF03℄ D. Cantone and S. Faro. Fast-Sear
h: a new variant of the Boyer-Moore

string mat
hing algorithm. In K. Jansen et al. (Eds.), Pro
. of WEA 2003,

LNCS 2647, pp. 47�58, 2003.

[CCG

+

94℄ M. Cro
hemore, A. Czumaj, L. G�asienie
, S. Jarominek, T. Le
roq,

W. Plandowski, and W. Rytter. Speeding up two string mat
hing al-

gorithms. Algorithmi
a, 12(4/5):247�267, 1994.

[GO80℄ L. J. Guibas and A. M. Odiyzko. A new proof of the linearity of the

Boyer-Moore string sear
hing algorithm. SIAM J. Comput., 9(4):672�682,

1980.

[Hor80℄ R. N. Horspool. Pra
ti
al fast sear
hing in strings. Softw. Pra
t. Exp.,

10(6):501�506, 1980.

[HS91℄ A. Hume and D. M. Sunday. Fast string sear
hing. Softw. Pra
t. Exp.,

21(11):1221�1248, 1991.

[KMP77℄ D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern mat
hing in

strings. SIAM J. Comput., 6:323-350, 1977.

[Le
00℄ T. Le
roq. New experimental results on exa
t string-mat
hing. Rapport

LIFAR 2000.03, Université de Rouen, Fran
e, 2000.

[Rit80℄ W. Rytter. A 
orre
t prepro
essing algorithm for Boyer-Moore string

sear
hing. SIAM J. Comput., 9:509-512, 1980.

[Sun90℄ D. M. Sunday. A very fast substring sear
h algorithm. Commun. ACM,

33(8):132�142, 1990.

[Yao79℄ A. C. Yao. The 
omplexity of pattern mat
hing for a random string. SIAM

J. Comput., 8(3):368�387, 1979.

24


