Forward-Fast-Search: Another Fast Variant of the
Boyer-Moore String Matching Algorithm

Domenico Cantone and Simone Faro
Dipartimento di Matematica e Informatica, Universita di Catania, Italy

e-mail: {cantone, faro}@dmi.unict.it

Abstract. We present a variation of the Fast-Search string matching algorithm,
a recent member of the large family of Boyer-Moore-like algorithms, and we com-
pare it with some of the most effective string matching algorithms, such as Hor-
spool, Quick Search, Tuned Boyer-Moore, Reverse Factor, Berry-Ravindran, and
Fast-Search itself. All algorithms are compared in terms of run-time efficiency,
number of text character inspections, and number of character comparisons.

It turns out that our new proposed variant, though not linear, achieves very
good results especially in the case of very short patterns or small alphabets.

Keywords: string matching, experimental algorithms, text processing.

1 Introduction

Given a text T and a pattern P over some alphabet Y, the string matching prob-
lem consists in finding all occurrences of the pattern P in the text 7. It is a very
extensively studied problem in computer science, mainly due to its direct applica-
tions to such diverse areas as text, image and signal processing, speech analysis and
recognition, information retrieval, computational biology and chemistry, etc.

Several string matching algorithms have been proposed over the years. The Boyer-
Moore algorithm [BM77| deserves a special mention, since it has been particularly
successful and has inspired much work. It is based upon three simple ideas: right-to-
left scanning, bad character heuristics, and good suffix heuristics. We will review it
at length in Section 2.1.

Many subsequent algorithms have been based on variations on how to apply the
two mentioned heuristics. For instance, the Fast-Search algorithm, recently introduced
by the authors [CF03], requires that the bad character heuristics is used only if the
mismatching character is the last character of the pattern, otherwise the good suffix
heuristics is to be used.

In this paper, we present a variation of the Fast-Search algorithm in which the good
suffix heuristics uses also a look-ahead character to determine larger advancements.
We also propose a practical algorithm to precompute the table encoding such an
extended good suffix rule.

Before entering into details, we need a bit of notations and terminology. A string
P is represented as a finite array P[0..m — 1], with m > 0. In such a case we say

10

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

that P has length m and write length(P) = m. In particular, for m = 0 we obtain
the empty string, also denoted by £. By P[i] we denote the (i 4+ 1)-st character of P,
for 0 < i < length(P). Likewise, by PJi..j] we denote the substring of P contained
between the (i + 1)-st and the (j + 1)-st characters of P, for 0 < i < j < length(P).
Moreover, for any i, j € Z, we put

Pli..j] € ifie>7
“J7\ Plmax(i,0), min(j, length(P) — 1)] otherwise.

For any two strings P and P’, we write P’ 7 P to indicate that P’ is a suffix of P, i.e.,
P’ = PJi..length(P) — 1], for some 0 < i < length(P). Similarly, we write P' T P to
indicate that P’ is a prefix of P, i.e., P' = P[0..1 — 1], for some 0 < i < length(P).
In addition, we write P.P’ to denote the concatenation of P and P’.

Let T" be a text of length n and let P be a pattern of length m. When the character
P[0] is aligned with the character T'[s] of the text, so that the character P[i] is aligned
with the character T'[s + i|, for i = 0,...,m — 1, we say that the pattern P has shift
s in T. In this case the substring T'[s.. s +m — 1] is called the current window of the
text. If T'[s..s+m—1] = P, we say that the shift s is valid. Thus the string matching
problem can be rephrased as the problem of finding all valid shifts of a pattern P
relative to a text T

Most string matching algorithms have the following general structure. First, dur-
ing a preprocessing phase, they calculate useful mappings, in the form of tables,
which later are accessed to determine nontrivial shift advancements. Next, start-
ing with shift s = 0, they look for all valid shifts, by executing a matching phase,
which determines whether the shift s is valid and computes a positive shift increment
As. Such increment As is used to produce the new shift s + As to be fed to the
subsequent matching phase. Observe that for the correctness of the algorithm it is
plainly necessary that each shift increment As computed is safe, namely the interval
{s+1,...,s4+ As — 1} contains no valid shifts.

For instance, in the case of the naive string matching algorithm, there is no pre-
processing phase and the matching phase always returns a unitary shift increment,
i.e., all possible shifts are actually processed.

The paper is organized as follows. In Section 2 we survey some of the most effective
string matching algorithms. Next, in Section 3, we introduce a new variant of the Fast-
Search algorithm. Experimental data obtained by running under various conditions
all the algorithms reviewed are presented and compared in Section 4. Finally, we
draw our conclusions in Section 5.

2 Some Very Fast String Matching Algorithms

In this section we briefly review the Boyer-Moore algorithm and some of its most effi-
cient variants that have been proposed over the years. In particular, we present the
Horspool [Hor80|, Tuned Boyer-Moore [HS91|, Quick-Search [Sun90|, Berry-Ravindran
[BR99|, and the Fast-Search [CF03] algorithms.

We also review the Reverse Factor algorithm [CCG194]|, which is based on the
smallest suffix automaton of the reverse pattern.

11

Proceedings of the Prague Stringology Conference 03

2.1 The Boyer-Moore Algorithm

The Boyer-Moore algorithm [BM77| is the progenitor of several algorithmic variants
which aim at computing close to optimal shift increments very efficiently. Specifically,
the Boyer-Moore algorithm checks whether s is a valid shift by scanning the pattern P
from right to left and, at the end of the matching phase, computes the shift increment
as the maximum value suggested by the good suffiz rule and the bad character rule
below, using the functions gsp and bep respectively, provided that both of them are
applicable.

If the first mismatch occurs at position ¢ of the pattern P, the good suffix rule
suggests to align the substring T[s+i+1...s + m — 1] = Pli + 1...m — 1] with
its rightmost occurrence in P preceded by a character different from P[i]. If such an
occurrence does not exist, the good suffix rule suggests a shift increment which allows
to match the longest suffix of T[s +i+1...s+m — 1] with a prefix of P.

More formally, if the first mismatch occurs at position ¢ of the pattern P, the good
suffix rule states that the shift can be safely incremented by gsp(i+1) positions, where

gsp(j) =pge min{0 <k <m | Pj—k.m—-k—123P
and (k<j—1—Plj—1]#Plj—-1-k])},

for j =0,1,...,m. (The situation in which an occurrence of the pattern P is found
can be regarded as a mismatch at position —1.)

The bad character rule states that if ¢ = T[s + i] # P[i] is the first mismatching
character, while scanning P and T from right to left with shift s, then P can be safely
shifted in such a way that its rightmost occurrence of ¢, if present, is aligned with
position (s+:) in 7. In the case in which ¢ does not occur in P, then P can be safely
shifted just past position (s 4 4) in T. More formally, the shift increment suggested
by the bad character rule is given by the expression (i — bep(T[s +i])), where

bep(c) =p max({0 < k <m| Plk] =c} U {-1}) ,

for ¢ € ¥, and where we recall that ¥ is the alphabet of the pattern P and text
T. Notice that there are situations in which the shift increment given by the bad
character rule can be negative.

It turns out that the functions gsp and bcp can be computed during the pre-
processing phase in time O(m) and O(m + |X|), respectively, and that the overall
worst-case running time of the Boyer-Moore algorithm, as described above, is linear
(cf. [GO8O]).

2.2 The Horspool Algorithm

Horspool suggested a simplification of the original Boyer-Moore algorithm, defining a
new variant which, though quadratic, performed better in practical cases (cf. [Hor80]).
He just dropped the good suffix rule and proposed to compute the shift advancement
in such a way that the rightmost character T[s + m — 1] is aligned with its rightmost
occurrence on P[0..m — 2], if present; otherwise the pattern is advanced just past
the window. This corresponds to advance the shift by hbep(T[s +m — 1)) positions,
where
hbcp(c) =p, min({1 <k <m|Pm—1—k]=c}U{m}) .

12

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

The resulting algorithm performs well in practice and can be immediately translated
into programming code (see Baeza-Yates and Régnier [BYR92] for a simple imple-
mentation in the C programming language).

2.3 The Tuned Boyer-Moore Algorithm

The Tuned Boyer-Moore algorithm [HS91| can be seen as an efficient implementation
of the Horspool algorithm. Again, let P be a pattern of length m. Each iteration
of the Tuned Boyer-Moore algorithm can be divided into two phases: last character
localization and matching phase. The first phase searches for a match of P[m — 1], by
applying rounds of three blind shifts (based on the classical bad character rule) until
needed. The matching phase tries then to match the rest of the pattern P[0..m — 2]
with the corresponding characters of the text, proceeding from right to left. At
the end of the matching phase, the shift advancement is computed according to the
Horspool bad character rule. Moreover, to begin with, the algorithm adds m copies
of P[m — 1] at the end of the text, as a sentinel, to compute the last shifts correctly.

The fact that the blind shifts require no comparison is at the heart of the very
good practical behavior of the Tuned Boyer-Moore, despite its quadratic worst-case
time complexity (cf. [Lec00]).

2.4 The Quick-Search Algorithm

The Quick-Search algorithm, presented in [Sun90|, uses a modification of the original
heuristics of the Boyer-Moore algorithm, much along the same lines of the Horspool
algorithm. Specifically, it is based on the following observation: when a mismatch
character is encountered, the pattern is always shifted to the right by at least one
character, but never by more than m characters. Thus, the character T[s + m] is
always involved in testing for the next alignment. So, one can apply the bad character
rule to T'[s + m], rather than to the mismatching character, obtaining larger shift
advancements. This corresponds to advance the shift by ¢bcp(T'[s + m]) positions,
where
gbep(c) =p, min({0 <k <m|Pm—kl=c}U{m+1}) .

Experimental tests have shown that that the Quick-Search algorithm is very fast
especially for short patterns (cf. [Lec00]).

2.5 The Berry-Ravindran Algorithm

The Berry-Ravindran algorithm [BR99| extends the Quick-Search algorithm in that
its bad character rule uses the two characters T'[s + m] and T'[s + m + 1] rather than
just the last character T'[s + m] of the window, where m is the size of the pattern P.
Thus, at the end of each matching phase with shift s, the Berry-Ravindran algorithm
advances the pattern so that the substring of the text T[s +m .. s+ m + 1] is aligned
with its rightmost occurrence in P.

The precomputation of the table used by the bad character rule requires O(|%2]?)-
space and O(m + |X|?)-time complexity, where ¥ is the alphabet of the text and
pattern. Experimental results [BR99| show that the Berry-Ravindran algorithm is
fast in practice and performs a low number of text/pattern character comparisons.

13

Proceedings of the Prague Stringology Conference 03

2.6 The Fast-Search Algorithm

Again, let P be a pattern of length m and let T" be a text of length n over a finite alpha-
bet ¥. The main observation upon which the Fast-Search algorithm [CF03] is based
is the following: the Horspool bad character rule leads to larger shift increments than
the good suffix rule if and only if a mismatch occurs immediately, while comparing
the pattern P with the window T'[s .. s+m —1], namely when P[m—1] # T[s+m—1],
where 0 < s < m — n is a shift.

In agreement with the above observation, the Fast-Search algorithm computes its
shift increments by applying the Horspool bad character rule only if a mismatch
occurs during the first character comparison. Otherwise it uses the good suffix rule.

Notice that hbcp(a) = bep(a), whenever a # P[m — 1], so that to compute the
shift advancement one can use the traditional bad character rule, bcp, rather then
the Horspool bad character rule, hbcp.

A more effective implementation of the Fast-Search algorithm is obtained along
the same lines of the Tuned Boyer-Moore algorithm: the bad character rule can be
iterated until the last character P[m — 1] of the pattern is matched correctly against
the text. At this point it is known that T'[s+m—1] = P[m—1], so that the subsequent
matching phase can start with the (m — 2)-nd character of the pattern. At the end
of the matching phase the algorithm uses the good suffix rule for shifting.

As in the case of the Tuned Boyer-Moore algorithm, the Fast-Search algorithm
benefits from the introduction of an external sentinel, which allows to compute cor-
rectly the last shifts with no extra checks.

Experimental results [CF03| show that the Fast-Search algorithm obtains the best
run-time performances in most cases and, sporadically, it is second only to the Tuned
Boyer-Moore algorithm. Concerning the number of text character inspections, it turns
out that the Fast-Search algorithm is quite close to the Reverse Factor algorithm,
which generally shows the best behavior. We notice, though, that in the case of very
short patterns the Fast-Search algorithm reaches the lowest number of text character
accesses.

2.7 The Reverse Factor Algorithm

Unlike the variants of the Boyer-Moore algorithm summarized above, the Reverse
Factor algorithm computes shifts which match prefixes of the pattern, rather than
suffixes. This is made possible by the smallest suffix automaton of the reverse of the
pattern P, which is a deterministic finite automaton S(P) whose accepted language
is the set of suffixes of P (for a complete description see [CCGT94]).

The Reverse Factor algorithm has a quadratic worst-case time complexity, but it
is very fast in practice (cf. [Lec00]). Moreover, it has been shown that on the average
it inspects O(nlog(m)/m) text characters, reaching the best bound shown by Yao in
[YaoT79).

3 The Forward-Fast-Search Algorithm

In this section we present a new efficient variant of the Boyer-Moore algorithm ob-
tained by modifying the Fast-Search algorithm presented in Section 2.6.

14

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

The new algorithmic variant, that we call Forward-Fast-Search, mantains the same
structure of the Fast-Search algorithm, but is based upon a modified version of the
good suffix rule, called forward good suffiz rule, which uses a look-ahead character to
determine larger shift advancements.

The forward good suffix requires a precomputed table of size (m - |3]), where m
is the length of the pattern and X is the alphabet of the text and pattern.

Concerning the running time, the forward good suffix rule can be precomputed by
|| iterations of the standard linear precomputation of the Boyer-Moore good suffix
rule, yielding a O(m - |¥|) time complexity. Nevertheless, we propose an alternative,
more direct approach which behaves very well in practice, though it requires O(m -
max(m, |X|)) time in the worst case.

3.1 Strengthening the Good Suffix Rule

3.1.1 The Backward Good Suffix Rule

A first natural way to strengthen the good suffix rule, which yields the backward good
suffiz rule, can be obtained by merging it with the bad character rule as follows.
As usual, let us assume that we are comparing a pattern P of length m with the
window T'[s..s +m — 1] at shift s of a given text T, scanning it from right to left.
If the first mismatch occurs at position i of the pattern P, ie. Pli+1..m — 1] =
Tls+i+1..s+m — 1] and P[i] # T[s + i], then the backward good suffix rule
proposes to align the substring T[s + i+ 1 .. s +m — 1] with its rightmost occurrence
in P preceded by the backward character T'[s + i]. If such an occurrence does not
exist, the backward good suffix rule proposes a shift increment which allows to match
the longest suffix of T'[s + i+ 1..s + m — 1] with a prefix of P. More formally, this
corresponds to increment the shift s by §sp(i + 1, T[s + i]), where

G5p(j,0) =pe minf0 <k <m | Plj—k..m—k—13P
and (k<j—-1—=P[j—-1]=0¢)},
for j=0,1,...,mand c € X.

3.1.2 The Forward Good Suffix Rule

As observed by Sunday [Sun90|, after a matching phase with shift s, the forward
character T[s+m] is always involved in the subsequent matching phase. Thus, another
possible variant of the good suffix rule, which we call forward good suffiz rule, consists
in matching the forward character T'[s + m], rather than the mismatched character
T|[s + i]. More precisely, if as above the first mismatch occurs at position 7 of the
pattern P, the forward good suffix rule suggests to align the substring T'[s+i+1..s+
m] with its rightmost occurrence in P preceded by a character different from P[i].
If such an occurrence does not exist, the forward good suffix rule proposes a shift
increment which allows to match the longest suffix of T[s+i+1.. s+m] with a prefix
of P. This corresponds to advance the shift s by ﬁp(i +1,T[s+m]) positions, where

9ép(j.0) =p, min({0<k<m | Pli—k.m—-k—123P
and (k<j—1— P[j—1]#P[j —1—k])
and Plm — k] =c} U {m+1}) ,
for j=0,1,...,mand c € X.

15

Proceedings of the Prague Stringology Conference 03

3.1.3 Comparing the Good Suffix Rule with its Variants

We computed the average shift advancement suggested by the good suffix rule and
its backward and forward variants on four Rando problems, for o = 2,4, 8,20, with
pattern lengths 2, 4,6, 8,10, 20, 40, 80, and 160, where a Rando problem consists in
searching, for each assigned value of the pattern length, a set of 200 random patterns
over an alphabet ¥ of size ¢ in a 20Mb random text over the same alphabet .

Experimental results, presented in the tables below, show that the forward and
backward good suffix rules propose on the average much larger shift advancements
than the standard good suffix rule (up to 400% better). In addition, the forward
good suffix rule shows always a slightly better behavior than the backward one, which
becomes more sensible in the case of very small alphabets. This is partly due to the
fact that the forward character is always used by the forward good suffix rule to
compute shift advancements, whereas there are cases in which the backward good
suffix rule does not exploit the backward character.

2 2 4 6 8 10 20 40 80 160

1.540 2.762 3.869 4.765 5.468 8464 12.254 16.137 21.807
1.540 2.762 3.869 4.765 5.468 8464 12.254 16.137 21.807
2.269 3.642 5.026 6.310 7.394 12.21 18.200 25.586 34.798

£

93

gs

=4 2 4 6 8 10 20 40 80 160
gs 1.750 3.062 4334 5.196 6.079 8.697 12.382 16.857 22.645
g%s’ 1.750 3.540 5170 6.691 8.097 13.62 21.604 30.540 42.891
g5
£
93
gs

2.687 4.407 6.114 7.696 9.245 15.55 25.149 36.584 51.398

8 2 4 6 8 10 20 40 80 160

1.880 3.453 4.833 5.399 6.656 10.05 13.613 19.510 25.807
1.880 3.857 5.692 7.441 9.294 17.63 31.570 51.010 75.734
2.860 4.775 6.671 8.399 10.24 18.72 33.225 54.825 81.334

=20 2 4 6 8 10 20 40 80 160
gs 1.930 3.714 5238 6.684 8512 12.81 19.078 25.169 33.975
g%s 1.930 3.956 5.892 7.919 9.867 19.47 38.167 72950 136.45
g_>.9 2.946 4.929 6.896 8.868 10.85 20.44 39.206 74.084 138.22

Average advancements for some Rando problems

3.1.4 Implementing the Forward Good Suffix Rule

Given a pattern P of length m over an alphabet X, we have plainly

.)
gSP(jac) :.QSP.C(]))

for 7 =0,1,...,m and ¢ € X, where P.c is the string obtained by concatenating the
character ¢ at the end of P. Thus, a natural way to compute the forward good suffix
function ﬁp consists in computing the standard good suffix functions gsp,., for all
¢ € ¥, by means of the O(m) tricky algorithm firstly given in [KMP77] and then
corrected in [Rit80).

Such a procedure is asymptotically optimal, as it has O(m - |X|) space and time
complexity.

In Figure 1 we propose an alternative procedure to compute the forward good
suffix function which, despite its O(m - max(m,|X|)) worst-case time complexity,
turns out to be very efficient in practice, even for large values of m.

16

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

precompute-forward-good-suffix(P)

Initialization:

1. m = length(P)

2. for i =0 to m do

3. for cc ¥ do

4, g8li,d=m+1

5. for:=0tom —1do

6. nextli) =i —1

Computation:

7. for slen =0 tom —1 do

8 last =m — 1

9. i = next[last]

10. while 7 > 0 do

11. if g&[m — slen, Pli+1]] > m —1 — i then

12. if (i — slen <0 or

13 (i — slen > 0 and P[i — slen] # P[m — 1 — slen])) then
14. ﬁ[m—slen,P[i—i—l]] =m-1—1
15. if (i — slen > 0 and P[i — slen| = Pllast — slen]) or
16. (i — slen < 0) then

17. next|last] =i

18. last =1

19. i = next|i]

20. if g4[m — slen, P0]] > m then

21. g&[m — slen, P[0]] = m
22. next|last] = —1
23. return ¢s

Figure 1: The function for computing forward good suffixes

After an initialization phase which takes O(m - |X|) space and time complexity,
the precompute-forward-good-suffix procedure carries out m iterations of its main for-
loop, starting at line 7. During the k-th iteration, for £ = 1,2,...,m, it computes
the sequence Si(P) of all occurrences in P of the suffix P[m — k.. m — 1] of length £,
implicitly represented by means of the array next:

Sc(P) = (Pnextim —1] —k+1..nextjm —1]] ,
Plnest@[m — 1] — k + 1 .. next®[m — 1]],

(1)

Plnext™[m — 1] — k + 1. nextt[m — 1]]) ,

where 7y, is such that nezt™+"[m —1] = —1. For that purpose, lines 15-18 implement
the recurrence

S(P)=(Plj—k+1.j]|Pj—k+2.j] €S8 1(P)and P[j —k+1] = Plm — k]),

where Sy(P) is also formally given by (1), thanks to the way the array next is ini-
tialized in lines 5-6. Moreover, during the k-th iteration of the for-loop, for each

17

Proceedings of the Prague Stringology Conference 03

P[j — k +1..j] € 8x(P), the procedure updates, if necessary, the value gé(m — k —
1, P[j + 1]) by setting it to (m — 1 — j) (lines 11-14).

Plainly, the procedure in Figure 1 requires O(m - |X|) space. To compute its
time complexity, it is enough to observe that the k-th execution of the while-
loop in lines 10-19, for & = 1,2,...,m, takes O(|Sx_1(P)|) time, giving a total
of O(X7,"|S;(P)) = O(m?) time in the worst case. This leads to an overall
O(m - max(m, |X|)) worst-case time complexity, taking into account also the initizial-
ization phase.

Experimental results show that the sum ¥75" |S;(P)| has on the average an al-
most linear behavior. For instance, the following tables report the average of the
sum 37" |S;(P)| computed for 100,000 random patterns of size m over an alphabet
of size o, for 0 = 2,4,8,20 and m = 2,4,6,8, 10, 20, 40,80, 160. The tests relative
to a natural language buffer NI have been computed by randomly selecting 100, 000
substrings for each given pattern length over the 3.13Mb file obtained by discarding
the nonalphabetic characters from the WinEdt spelling dictionary.

m 2 4 6 8 10 20 40 80 160

m? (worst case) 4 16 36 64 100 400 1600 6400 25600
Average for o =2 | 2.50 7.38 13.07 19.01 25.02 55.09 114.89 234.98 474.57
Average foro =4 | 2.24 546 876 12.10 15.45 32.09 65.34 132.06 264.98
Average for o =8 | 2.12 4.67 723 9.81 1240 25.24 50.93 102.45 204.98
Average for 0 = 20 | 2.04 4.25 6.46 8.68 10.89 21.96 44.00 88.21 176.63

Average on NL 2.04 423 6.47 884 11.99 28.57 57.97 111.61 208.00

For the same set of random tests, we also computed the total time taken to con-
struct the forward good suffix function ﬁ, using the two implementations described
earlier, namely the one which has a O(m - |X|) worst-case time and space complexity
and the procedure precompute-forward-good-suffix. Such implementations are denoted
respectively “gé (I)” and “g& (II)” in the tables below, where experimental results are
expressed in hundredths of seconds.

=2 2 4 6 8 10 20 40 80 160
(1) 58.1 60.1 63.1 66.1 68.1 81.1 103.2 149.2 239.3
(IT) 3.0 6.0 11.0 15.1 18.0 37.0 74.1 145.3 2884

oc=4 2 4 6 8 10 20 40 80 160
g_§ (I | 113.2 117.1 121.2 1242 128.2 1422 1742 2354 357.5
g_>s (I1) | 3.0 6.0 10.0 13.0 16.0 33.1 64.1 126.2 250.3

o=28 2 4 6 8 10 20 40 80 160
g_>s (I) | 225.3 2304 237.3 2404 2433 268.4 3134 401.6 577.9
ﬁ (I1) | 4.0 7.0 11.0 14.0 19.0 36.1 72.1 141.2 2894

o=20 2 4 6 8 10 20 40 80 160
g_§ (I) | 558.8 573.9 580.8 589.8 5989 642.9 733.1 905.3 1250.8
gs (1) | 5.0 11.0 16.0 20.1 26.0 50.1 98.1 195.3 394.6

NL 2 4 6 8 10 20 40 80 160
ﬁ (I) | 553.8 565.8 573.8 583.8 592.8 636.9 725.0 895.3 1238.8
ﬁ (Ify | 5.0 10.0 16.0 19.0 23.1 48.1 95.1 189.3 379.5

18

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

Forward-Fast-Search(P, T')

1. n = length(T')

2. m = length(P)

3. T'=T.Plm—1]"

4. bc = precompute-bad-character(P)

5. ﬁ = precompute-forward-good-suffix(P)
7. s=10

8. while bc[T'[s +m — 1]] > 0 do

9. s=s+bc[T'[s + m — 1]]

10. while s <n —m do

11. j=m—2

12. while j > 0 and P[j] = T"[s + j] do
13. j=j—1

14. if 7 <0 then

15. print(s)

16. s=s+g5[j+1,T[s +m]|
17. while bc[T"'[s + m — 1]] > 0 do
18. s =5+ bcT'[s +m — 1]]

Figure 2: The Forward-Fast-Search algorithm

The analysis of the above experimental results show that for alphabets of size at least
4 the procedure precompute-forward-good-suffix is on the average always faster than
the implementation of the forward good suffix function described at the beginning
the present section.

3.2 Building up the Forward-Fast-Search Algorithm

The implementation of the Forward-Fast-Search algorithm can be obtained along the
same lines of the Fast-Search and the Tuned Boyer-Moore algorithms.

In the first phase, called character localization phase, the algorithm iterates the
bad character rule until the last character P[m —1] of the pattern is matched correctly
against the text. More precisely, starting from a shift position s, if we denote by j;
the total shift advancement after the i-th iteration of the bad character rule, then we
have the following recurrence:

Ji = jic1 +bep(T[s + jioy +m —1]) .

Therefore, the bad character rule is applied & times in a row, where £ = min{i | T'[s+
Ji +m — 1] = P[m — 1]}, with an overall shift advancement of jj.

At this point we have that T'[s + j, +m — 1] = P[m — 1], so that the subsequent
matching phase can test for an occurrence of the pattern by comparing only the
remaining (m — 1) characters of the pattern. At the end of the matching phase the
algorithm applies the forward good suffix rule instead of the traditional good suffix
rule.

As in the case of the Fast-Search and Tuned Boyer-Moore algorithms, the Forward-
Fast-Search algorithm benefits from the introduction of an external sentinel: since the

19

Proceedings of the Prague Stringology Conference 03

forward good suffix rule looks at the character T[s+m)] just after the current window,
m + 1 copies of the character P[m — 1] are added at the end of the text 7', obtaining
a new text T' = T.P[m — 1]™*!. This allows to compute correctly the last shifts with
no extra checks. Plainly, all the valid shifts of P in T are the valid shifts s of P in T"
such that s < n — m, where, as usual, n and m denote respectively the lengths of T’
and P. The code of the Forward-Fast-Search algorithm is presented in Figure 2.

4 Experimental Results

We present next experimental data which allow to compare the following string match-
ing algorithms under various conditions: Horspool (HOR), Quick-Search (QS), Barry-
Ravidran (BR), Tuned Boyer-Moore (TBM), Reverse Factor (RF), Fast-Search (FS),
and Forward-Fast-Search (FFS).

We have chosen to compare the algorithms in terms of running time, number of
text character inspections, and number of character comparisons.

All algorithms have been implemented in the C programming language and were
used to search for the same strings in large fixed text buffers on a PC with AMD
Athlon processor of 1.19GHz. In particular, the algorithms have been tested on four
Rando problems, for o = 2,4, 8,20, and on a natural language text buffer NL with
patterns of length m = 2,4, 6,8, 10, 20, 40, 80, and 160.

We recall that each Rando problem consists in searching a set of 200 random
patterns of a given length in a 20Mb random text over a common alphabet of size o.

The tests on the natural language text buffer NL have been performed on a 3.13Mb
file obtained by discarding the nonalphabetic characters from the WinEdt spelling
dictionary. For each pattern length m, we have selected 200 random substrings of
length m in the file which subsequently have been searched for in the same file.

4.1 Running Times

Experimental results show that the Forward-Fast-Search algorithm obtains the best
run-time performance in most cases and, sporadically, it is second only to the Fast-
Search algorithm, in the case of natural language texts and long patterns, and to the
Berry-Ravidran algorithm, in the case of large alphabets and patterns.

In the following tables, running times are expressed in hundredths of seconds.

o= 2 4 6 8 10 20 40 80 160
HOR | 42.01 44.18 42.86 42.02 46.57 40.24 39.51 38.83 39.95
QS 34.33 4112 3835 39.30 4280 3742 36.77 36.42 36.54
BR 44.84 49.36 4442 4348 4769 40.66 40.70 40.74 40.54
TBM | 33.96 36.54 36.88 36.65 40.53 3598 36.05 3554 36.30
RF 249.2 200.0 1459 1142 107.3 57.95 36.84 2795 22.36
FS 41.79 3536 28.72 2532 26.15 2040 1840 1799 17.31
FFS | 31.08 28.87 25.28 22.37 23.15 18.05 16.78 16.62 15.82

Running times for a Rand2 problem

20

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

oc=4 2 4 6 8 10 20 40 80 160
HOR | 34.66 25.57 22.05 20.76 20.27 19.68 20.05 19.54 20.20
QS 26.49 22,10 19.87 19.35 1898 1858 19.05 18.73 19.04
BR 32.20 25.68 22.08 20.31 19.24 1729 16.66 16.36 16.51
TBM | 25.53 20.68 19.15 18.85 1876 1850 18.81 18.38 18.78
RF 156.1 98.60 74.84 62.28 53.79 34.73 2426 20.34 16.67
FS 28.60 20.58 1891 1826 17.8 17.22 16.53 16.18 15.82
FFS | 24.87 20.06 18.35 17.65 17.22 16.23 15.61 15.33 14.40

Running times for a Rand4 problem

o=28 2 4 6 8 10 20 40 80 160
HOR | 27.71 20.19 1840 1743 16.84 15.70 1556 15.62 15.71
QS 2091 18.27 1717 16.59 16.25 1536 15.22 15.23 15.35
BR 25.19 20.55 1877 1774 17.02 1533 14.55 14.55 13.96
TBM | 21.09 17.78 16.78 16.77 16.22 15.14 15.11 15.05 15.18
RF 114.8 70.75 5497 46.27 40.62 27.26 20.58 18.17 15.01
FS 20.66 17.75 16.75 16.41 16.01 15.02 14.89 14.80 14.81
FFS | 20.20 17.58 16.60 16.17 15.82 14.87 14.54 14.52 13.92

Running times for a Rand8 problem

o =20 2 4 6 8 10 20 40 80 160
HOR | 23.45 18.17 16.58 16.21 15.89 1521 1490 14.84 14.98
QS 18.67 16.84 15.78 15.69 1549 1498 14.74 1473 14.79
BR 21.83 1888 17.32 16.89 16.47 1547 1490 14.42 12.60
TBM | 18.76 16.78 15.64 15.44 1539 14.85 14.82 14.65 14.65
RF 9244 54.83 41.67 35.57 31.61 23.12 19.25 17.69 14.72
FS 19.11 16.59 15.57 1549 15.24 14.81 14.66 14.65 14.58
FFS 18.76 16.51 15.51 15.44 15.24 14.83 14.64 14.65 14.35

Running times for a Rand20 problem

NL 2 4 6 8 10 20 40 80 160
HOR | 340 265 245 236 236 222 215 211 1.98
QS 2.73 242 235 2.24 220 2.14 2.09 2.09 201
BR 3.28 287 266 259 247 233 225 221 195
TBM | 2.77 239 227 225 218 219 209 212 193
RF 13.94 833 648 546 4.87 335 279 268 4.67
FS 2.79 245 2.22 2.24 219 2.14 2.06 2.09 1.91
FFS | 2.70 2.35 226 226 2.18 215 213 211 224

Running times for a natural language problem

4.2 Average Number of Text Character Inspections

For each test, the average number of character inspections has been obtained by
taking the total number of times a text character is accessed, either to perform a
comparison with a pattern character, or to perform a shift, or to compute a transition
in an automaton, and dividing it by the length of the text buffer.

It turns out that the Forward-Fast-Search algorithm is always very close the best
results which are generally obtained by the Fast-Search algorithm, for short patterns,
and by Reverse-Factor algorithm, for long patterns. We notice, however, that the
Forward-Fast-Search algorithm obtains in most cases the second best result and is
better than Reverse-Factor, for short patterns, and Fast-Search, for long patterns.

21

Proceedings of the Prague Stringology Conference 03

o=2 2 4 6 8 10 20 40 80 160
HOR | 1.00 1.15 1.26 126 128 1.24 127 123 1.27
QS 1.54 167 163 167 164 161 165 1.61 1.60
BR 1.28 125 120 120 119 1.19 119 1.18 1.16
TBM | 1.23 135 146 146 147 143 146 142 1.46
RF 143 1.06 .799 .615 .519 .294 .169 .096 .054
FS 1.00 .929 806 .698 .632 460 .348 .270 .213
FFS 1.15 993 833 .703 .621 410 .289 .210 .161

oc=4 2 4 6 8 10 20 40 80 160
HOR | .714 510 435 404 392 373 389 .365 .392
QS 1.03 817 700 .675 .645 .610 .650 622 .633
BR 949 713 569 488 429 307 264 244 251
TBM | .841 .591 .504 .468 .454 432 450 422 .446
RF 886 .528 .387 .316 .264 .154 .089 .051 .028
FS 714 489 398 356 .330 .273 .239 200 .177
FFS 768 526 418 367 .330 241 182 .136 .105

oc=28 2 4 6 8 10 20 40 80 160
HOR | .600 .350 .263 .222 .198 .158 .153 .149 .152
QS 842 575 456 393 358 291 282 278 277
BR 844 582 443 360 .305 179 109 072 .057
TBM | .663 .386 .291 .245 218 .174 .168 .164 .167
RF 674 381 278 .225 .191 .112 .063 .036 .020
FS .600 .348 .260 .217 .193 150 .137 126 .117
FFS 627 368 274 227 .201 .146 .117 .093 .075

o =20 2 4 6 8 10 20 40 80 160
HOR | .538 .285 .199 .157 132 .083 .061 .054 .053
QS 734 463 346 282 .242 157 118 104 .104
BR 787 528 0 397 318 266 146 .078 .042 .023
TBM | .563 .297 .208 .164 .137 .086 .063 .056 .056
RF .b65 302 214 170 143 084 .049 .027 .014
FS .538 .284 .198 .156 .131 .082 .060 .053 .052
FFS 550 293 205 161 135 .082 .060 .049 .043

NL 2 4 6 8 10 20 40 80 160
HOR | .550 .300 .211 .171 .144 .091 .059 .042 .032
QS 759 489 375 309 261 175 125 .086 .066
BR 795 538 411 335 278 155 .085 .050 .028
TBM | .584 318 .226 .182 .153 .096 .062 .044 .034
RF H88 321 231 185 153 .084 .045 .024 .013
FS 550 .299 .211 .171 .143 .087 .055 .038 .027
FFS D65 312 220 180 .152 .088 .054 .036 .026

Average number of text character inspections for some Rando problems and for
a natural language problem

4.3 Average Number of Comparisons

For each test, the average number of character comparisons has been obtained by
taking the total number of times a text character is compared with a character in the
pattern and dividing it by the total number of characters in the text buffer.

It turns out that the Forward-Fast-Search algorithm achieves the best results in
most cases. Sporadically our algorithm is second only to the Berry-Ravindran al-
gorithm which obtains very good results for short patterns and small alphabets.
Moreover we observe that Tuned Boyer-Moore, Fast-Search and Forward-Fast-Search

22

Forward-Fast-Search: Another Fast Variant of the Boyer-Moore String Matching Algorithm

algorithms perform a very low number of characters comparisons in the case of large
alphabets.

oc=2 2 4 6 8 10 20 40 80 160
HOR | 1.000 1.159 1.260 1.269 1.281 1.244 1.272 1.235 1.270
QS 9588 1.109 1.088 1.119 1.095 1.073 1.104 1.079 1.080
BR .2631 .3766 .3916 .3989 .3962 .3973 .3969 .3940 .3893
TBM | .3333 .6044 .6995 .7154 .7249 7082 .7215 .7024 .7205
FS 3333 4767 4466 3925 3573 2609 1967 .1530 .1248
FFS 3076 4224 3875 .3324 .2962 .1964 .1377 .1003 .0766

oc=4 2 4 6 8 10 20 40 80 160
HOR | .7143 5100 .4356 .4041 .3922 .3732 3890 .3652 .3928
QS 6053 4864 4109 .3908 3716 .3491 3719 .3556 .3742
BR 2747 2353 1898 11628 1432 .1025 .0883 .0813 .0837
TBM | .1429 .1445 .1264 .1175 .1140 .1085 .1131 .1062 .1141
FS 1429 1373 1141 1024 .0949 .0784 .0690 .0577 .0526
FFS | .1323 .1272 .1041 .0913 .0822 .0601 .0454 .0341 .0263

o=28 2 4 6 8 10 20 40 80 160
HOR | .6000 .3501 .2639 .2222 .1985 .1586 .1531 .1490 .1522
QS 4631 3189 2505 .2139 1943 1559 1504 .1487 1524
BR 2711 1940 1479 1202 1018 .0598 .0364 .0243 .0190
TBM | .0667 .0482 .0365 .0307 .0274 .0219 .0212 .0206 .0210
FS 0667 .0477 .0359 .0300 .0267 .0207 .0190 .0175 .0167
FFS | .0634 .0459 .0345 .0287 .0252 .0184 .0148 .0117 .0095

o=20 2 4 6 8 10 20 40 80 160
HOR | .5385 .2844 .1991 .1569 .1316 .0828 .0608 .0541 .0537
QS 3837 2427 1805 .1476 .1263 .0817 .0607 .0538 .0534
BR 2608 1760 .1323 .1061 .0887 .0490 .0263 .0141 .0079
TBM | .0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0028
FS 0256 .0149 .0104 .0082 .0069 .0043 .0032 .0028 .0027
FFS .0251 .0147 .0103 .0081 .0068 .0042 .0030 .0025 .0022

NL 2 4 6 8 10 20 40 80 160
HOR 5501 3000 2117 1716 1445 .0913 .0595 .0420 .0329
QS 4031 2605 .2002 .1646 .1393 .0914 .0654 .0455 .0364
BR 2599 1794 1371 1118 0927 .0519 .0286 .0168 .0094
TBM | .0345 .0245 .0171 .0142 .0123 .0089 .0061 .0046 .0042
FS .0345 .0245 .0171 .0141 .0121 .0066 .0043 .0030 .0025
FFS .0333 .0244 .0168 .0153 .0140 .0058 .0032 .0020 .0014

Average number of comparisons for some Rando problems and for a natural language problem

5 Conclusion

We presented a new efficient variant of the Boyer-Moore string matching algorithm,
named Forward-Fast-Search. As its progenitor Fast-Search, the Forward-Fast-Search
algorithm applies repeatedly the bad character rule until the last character of the
pattern is matched correctly and then it begins to match the pattern against the
text from right to left. At the end of each matching phase, it computes the shift
advancement as a function of the matched suffix of the pattern and the first character
of the text past the current window (forward good suffix rule).

It turns out that, despite the O(m - |X|)-space and O(m - max(m, |X]|))-time com-
plexity required in the worst case to precompute the forward good suffix function, the

23

Proceedings of the Prague Stringology Conference 03

Forward-Fast-Search algorithm is very fast in practice and compares well with other
fast variants of the Boyer-Moore algorithm.

We plan to evaluate theoretically the average time complexity of the Forward-Fast-
Search algorithm, and to adapt it to scanning strategies depending on the character

frequencies.

References

[BM77] R.S. Boyer and J. S. Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762-772, 1977.

[BR99| T. Berry and S. Ravindran. A fast string matching algorithm and experi-
mental results. Proc. of the Prague Stringology Club Workshop 99 Czech
Technical University, Prague, Czech Republic, Collaborative Report DC—
99-05, pp. 1628, 1999.

[BYR92|] R. A. Baeza-Yates and M. Régnier. Average running time of the Boyer-
Moore-Horspool algorithm. Theor. Comput. Sei., 92(1):19-31, 1992.

[CF03] D. Cantone and S. Faro. Fast-Search: a new variant of the Boyer-Moore
string matching algorithm. In K. Jansen et al. (Eds.), Proc. of WEA 20083,
LNCS 2647, pp. 47-58, 2003.

[CCGT94] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string matching al-
gorithms. Algorithmica, 12(4/5):247-267, 1994.

[GO80] L. J. Guibas and A. M. Odiyzko. A new proof of the linearity of the
Boyer-Moore string searching algorithm. STAM J. Comput., 9(4):672-682,
1980.

[Hor80] R. N. Horspool. Practical fast searching in strings. Softw. Pract. Exp.,
10(6):501-506, 1980.

[HS91] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp.,
21(11):1221-1248, 1991.

[KMP77] D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6:323-350, 1977.

[Lec00] T. Lecroq. New experimental results on exact string-matching. Rapport
LIFAR 2000.03, Université de Rouen, France, 2000.

[Rit80] W. Rytter. A correct preprocessing algorithm for Boyer-Moore string
searching. STAM J. Comput., 9:509-512, 1980.

[Sun90] D. M. Sunday. A very fast substring search algorithm. Commun. ACM,
33(8):132-142, 1990.

[Yao79] A. C. Yao. The complexity of pattern matching for a random string. STAM

J. Comput., 8(3):368-387, 1979.

24

