
Approximate Seeds of Strings

Manolis Christodoulakis

1

and Costas S. Iliopoulos

1

and

Kunsoo Park

2�

and Jeong Seop Sim

3

1

Department of Computer Siene,

King's College London

e-mail: {manolis, si}�ds.kl.a.uk

2

Shool of Computer Siene and Engineering,

Seoul National University

e-mail: kpark�theory.snu.a.kr

3

Eletronis and Teleommuniations Researh Institute

Daejeon 305-350, Korea

e-mail: simjs�etri.re.kr

Abstrat. In this paper we study approximate seeds of strings, that is, sub-

strings of a given string x that over (by onatenations or overlaps) a super-

string of x, under a variety of distane rules (the Hamming distane, the edit

distane, and the weighted edit distane). We solve the smallest distane ap-

proximate seed problem and the restrited smallest approximate seed problem

in polynomial time and we prove that the general smallest approximate seed

problem is NP-omplete.

Keywords: regularities, seeds, approximate seeds, Hamming distane, edit dis-

tane, weighted edit distane, penalty matrix.

1 Introdution

Finding regularities in strings is useful in a wide area of appliations whih involve

string manipulations. Moleular biology, data ompression and omputer-assisted

musi analysis are lassi examples. By regularities we mean repeated strings of an

approximate nature. Examples of regularities inlude repetitions, periods, overs and

seeds. Regularities in strings have been studied widely the last 20 years.

There are several O(n logn)-time algorithms [11, 6, 27℄ for �nding repetitions, that

is, equal adjaent substrings, in a string x, where n is the length of x. Apostolio and

Breslauer [2℄ gave an optimal O(log logn)-time parallel algorithm (i.e., total work is

O(n logn)) for �nding all the repetitions.

The preproessing of the Knuth-Morris-Pratt algorithm [22℄ �nds all periods of

x in linear time� in fat, all periods of every pre�x of x. Apostolio, Breslauer

and Galil [3℄ derived an optimal O(log logn)-time parallel algorithm for �nding all

periods.

�

Work supported by IMT 2000 Projet AB02, MOST grant M1-0309-06-0003, and Royal Soiety

grant.

25

Proeedings of the Prague Stringology Conferene '03

The fat that in pratise it was often desirable to relax the meaning of �repetition�,

has led more reently to the study of a olletion of related patterns��overs� and

�seeds�. Covers are similar to periods, but now overlaps, as well as onatenations, are

allowed. The notion of overs was introdued by Apostolio, Farah and Iliopoulos

in [5℄, where a linear-time algorithm to test superprimitivity, was given (see also

[8, 9, 18℄). Moore and Smyth [29℄ and reently Li and Smyth [25℄ gave linear time-

time algorithms for �nding all overs of a string x. In parallel omputation, Iliopoulos

and Park [19℄ obtained an optimal O(log logn) time algorithm for �nding all overs

of x. Apostolio and Ehrenfeuht [4℄ and Iliopoulos and Mouhard [17℄ onsidered

the problem of �nding maximal quasiperiodi substrings of x. A two-dimensional

variant of the overing problem was studied in [12, 15℄, and a minimum overing by

substrings of a given length in [20℄.

An extension of the notion of overs, is that of seeds; that is, overs of a superstring

of x. The notion of seeds was introdued by Iliopoulos, Moore and Park [16℄ and an

O(n logn)-time algorithm was given for omputing all seeds of x. A parallel algorithm

for �nding all seeds was presented by Berkman, Iliopoulos and Park [7℄, that requires

O(logn) time and O(n logn) work.

In appliations suh as moleular biology and omputer-assisted musi analysis,

�nding exat repetitions is not always su�ient. A more appropriate notion is that

of approximate repetitions ([10, 13℄); that is, �nding strings that are �similar� to a

given pattern, by allowing errors. In this paper, we onsider three di�erent kinds of

�similarity� (approximation): the Hamming distane, the edit distane [1, 35℄ and a

generalization of the edit distane, the weighted edit distane, where di�erent osts

are assigned to eah substitution, insertion and deletion for eah pair of symbols.

Approximate repetitions have been studied by Landau and Shmidt [24℄, who

derived an O(kn logk logn)-time algorithm for �nding approximate squares whose

edit distane is at most k in a text of length n. Shmidt also gave an O(n

2

logn)

algorithm for �nding approximate tandem or nontandem repeats in [31℄ whih uses an

arbitrary sore for similarity of repeated strings. More reently, Sim, Iliopoulos, Park

and Smyth provided polynomial time algorithms for �nding approximate periods [33℄

and, Sim, Park, Kim and Lee solved the approximate overs problem in [34℄.

In this paper, we introdue the notion of approximate seeds, an approximate

version of seeds. We solve the smallest distane approximate seed problem and the

restrited smallest approximate seed problem and we prove that the more general

smallest approximate seed problem is NP-omplete.

The paper is organized as follows. In setion 2, we present some basi de�nitions.

In setion 3, we desribe the notion of approximate seeds and we de�ne the three

problems studied in this paper. In setion 4, we present the algorithms that solve the

�rst two problems and the proof that the third problem is NP-omplete. Setion 5

ontains our onlusion.

2 Preliminaries

A string is a sequene of zero or more symbols from an alphabet �. The set of all

strings over � is denoted by �

�

. The length of a string x is denoted by jxj. The

empty string, the string of length zero, is denoted by ". The i-th symbol of a string

x is denoted by x[i℄.

26

Approximate Seeds of Strings

A string w is a substring of x if x = uwv, where u; v 2 �

�

. We denote by x[i::j℄

the substring of x that starts at position i and ends at position j. Conversely, x is

alled a superstring of w. A string w is a pre�x of x if x = wy, for y 2 �

�

. Similarly,

w is a su�x of x if x = yw, for w 2 �

�

. We all a string w a subsequene (also alled

a subword [14℄) of x (or x is a supersequene of w) if w is obtained by deleting zero or

more symbols at any positions from x. For example, ae is a subsequene of aabdef .

For a given set S of strings, a string w is alled a ommon supersequene of S if s is

a supersequene of every string in S.

The string xy is a onatenation of the strings x and y. The onatenation of k

opies of x is denoted by x

k

. For two strings x = x[1::n℄ and y = y[1::m℄ suh that

x[n � i + 1::n℄ = y[1::i℄ for some i � 1 (that is, suh that x has a su�x equal to

a pre�x of y), the string x[1::n℄y[i + 1::m℄ is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring y of x is alled a repetition in x, if x = uy

k

v, where u; y; v are

substrings of x and k � 2, jyj 6= 0. For example, if x = aababab, then a (appearing in

positions 1 and 2) and ab (appearing in positions 2, 4 and 6) are repetitions in x; in

partiular a

2

= aa is alled a square and (ab)

3

= ababab is alled a ube.

A substring w is alled a period of a string x, if x an be written as x = w

k

w

0

where k � 1 and w

0

is a pre�x of w. The shortest period of x is alled the period of

x. For example, if x = ababab, then ab, abab and the string x itself are periods

of x, while ab is the period of x.

A substring w of x is alled a over of x, if x an be onstruted by onatenating

or overlapping opies of w. We also say that w overs x. For example, if x = ababaaba,

then aba and x are overs of x. If x has a over w 6= x, x is said to be quasiperiodi;

otherwise, x is superprimitive.

A substring w of x is alled a seed of x, if w overs one superstring of x (this an

be any superstring of x, inluding x itself). For example, aba and ababa are some

seeds of x = ababaab.

We all the distane Æ(x; y) between two strings x and y, the minimum ost to

transform one string x to the other string y. There are several well known distane

funtions, desribed in the next paragraph. The speial symbol � is used to represent

the absene of a harater.

2.1 Distane funtions

The edit distane between two strings is the minimum number of edit operations

that transform one string into another. The edit operations are the insertion of an

extraneous symbol (e.g., � ! a), the deletion of a symbol (e.g., a ! �) and the

substitution of a symbol by another symbol (e.g., a ! b). Note that in the edit

distane model we only ount the number of edit operations, onsidering the ost of

eah operation equal to 1.

The Hamming distane between two strings is the minimum number of substitu-

tions (e.g., a ! b) that transform one string to the other. Note that the Hamming

distane an be de�ned only when the two strings have the same length, beause it

does not allow insertions and deletions.

We also onsider a generalized version of the edit distane model, the weighted

edit distane, where the edit operations no longer have the same osts. It makes use

27

Proeedings of the Prague Stringology Conferene '03

a b a e �

j j j

a b � d e g

Figure 1: Alignment example

of a penalty matrix, a matrix that spei�es the ost of eah substitution for eah pair

of symbols, and the insertion and deletion ost for eah harater. A penalty matrix

is a metri when it satis�es the following onditions for all a; b; 2 � [f�g:

� Æ(a; b) � 0,

� Æ(a; b) = Æ(b; a),

� Æ(a; a) = 0, and

� Æ(a;) � Æ(a; b) + Æ(b;) (triangle inequality).

The similarity between two strings an be seen by using an alignment ; that is, any

pairing of symbols subjet to the restrition that if lines were drawn between paired

symbols, as in Figure 1, the lines would not ross. The equality of the lengths an be

obtained by inserting or deleting zero or more symbols. In our example, the string

�abae� is transformed to �abdeg� by deleting, substituting and inserting a harater

at positions 3, 4 and 6, respetively. Note that this is not the only possible alignment

between the two strings.

We say that a distane funtion Æ(x; y) is a relative distane funtion if the lengths

of strings x and y are onsidered in the value of Æ(x; y); otherwise it is an absolute

distane funtion. The Hamming distane and the edit distane are examples of

absolute distane funtions. There are two ways to de�ne a relative distane between

x and y:

� First, we an �x one of the two strings and de�ne a relative distane funtion

with respet to the �xed string. The error ratio with respet to x is de�ned to

be d=jxj, where d is an absolute distane between x and y.

� Seond, we an de�ne a relative distane funtion symmetrially. The symmetri

error ratio is de�ned to be d=l, where d is an absolute distane between x and

y, and l = (jxj+ jyj)=2 [32℄. Note that we may take l = jxj+ jyj, in whih ase

everything is the same exept that the ratio is multiplied by 2.

If d is the edit distane between x and y, the error ratio with respet to x or the

symmetri error ratio is alled a relative edit distane. The weighted edit distane an

also be used as a relative distane funtion beause the penalty matrix an ontain

arbitrary osts.

3 Problem De�nitions

De�nition 1 Let x and s be strings over �

�

, Æ be a distane funtion and t be

a number. We all s a t-approximate seed of x if and only if there exist strings

s

1

; s

2

; : : : ; s

r

(s

i

6= ") suh that

28

Approximate Seeds of Strings

(i) Æ(s; s

i

) � t, for 1 � i � r, and

(ii) there exists a superstring y = uxv, juj < jsj and jvj < jsj, of x that an be

onstruted by overlapping or onatenating opies of the strings s

1

; s

2

; : : : ; s

r

.

Eah s

i

, 1 � i � r, will be alled a seed blok of x.

Note that y an be any superstring of x, inluding x itself (in whih ase, s is

an approximate over). Note, also, that there an be several versions of approximate

seeds aording to the de�nition of distane funtion Æ.

An example of an approximate seed is shown in Figure 2. For strings x =

BABACCB and s = ABAB, s is an approximate seed of x with error 1 (ham-

ming distane), beause there exist the strings s

1

= ABAB; s

2

= ABAC; s

3

=

CBAB, suh that the distane between s and eah s

i

is no more than 1, and by

onatenating or overlapping the strings s

1

; s

2

; s

3

we onstrut a superstring of x,

y = ABABACCBAB.

A B A B A C C B A B

s

1

s

2

s

3

Figure 2: Approximate Seed example.

We onsider the following three problems related to approximate seeds.

Problem 1 Smallest Distane Approximate Seed Let x be a string of length

n, s be a string of length m, and Æ be a distane funtion. Find the minimum number

t suh that s is a t-approximate seed of x.

In this problem, the string s is given a priori. Thus, it makes no di�erene whether

Æ is an absolute distane funtion or an error ratio with respet to s. If a threshold

k � jsj on the edit distane is given as input to Problem 1, the problem asks whether

s is a k-approximate seed of x or not (the k-approximate seed problem). Note that if

the edit distane is used for Æ, it is trivially true that s is an jsj-approximate seed of

x.

Problem 2 Restrited Smallest Approximate Seed Given a string x of

length n, �nd a substring s of x suh that: s is a t-approximate seed of x and there

is no substring of x that is a k-approximate seed of x for all k < t.

Sine any substring of x an be a andidate for s, the length of s is not (a priori)

�xed in this problem. Therefore, we need to use a relative distane funtion (i.e.,

an error ratio or a weighted edit distane) rather than an absolute distane funtion.

For example, if the absolute edit distane is used, every substring of x of length 1 is

a 1-approximate seed of x. Moreover, we assume that s is of length at most jxj=2,

beause, otherwise the longest proper pre�x of x (or any long pre�x of x) an easily

beome an approximate seed of x with a small distane. This assumption will be

applied to Problem 3, too.

29

Proeedings of the Prague Stringology Conferene '03

Problem 3 Smallest Approximate Seed Given a string x of length n, �nd a

string s suh that: s is a t-approximate seed of x and there is no substring of x that

is a k-approximate seed of x for all k < t.

Problem 3 is a generalization of Problem 2; s an now be any string, not neessarily

a substring of x. Obviously, this problem is harder than the previous one; we will

prove that it is NP-omplete.

4 Algorithms and NP-Completeness

4.1 Problem 1

Our algorithm for Problem 1 onsists of two steps. Let n = jxj and m = jsj.

1. Compute the distane between s and every substring of x.

We denote by w

ij

the distane between s and x[i::j℄, for 1 < i � j < n. Note

that, by de�nition of approximate seeds, x[i::n℄ an be mathed to any pre�x

of s, and x[1::j℄ an be mathed to any su�x of s (beause s has to over

any superstring of x). Thus, we denote w

in

the minimum value of the distanes

between all pre�xes of s and x[i::n℄, and w

1j

the minimum value of the distanes

between all su�xes of s and x[1::j℄.

2. Compute the minimum t suh that s is a t-approximate seed of x.

We use dynami programming to ompute t as follows. Let t

i

be the minimum

value suh that s is a t

i

-approximate seed of x[1::i℄. Let t

0

= 0. For i = 1 to n,

we ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg (1)

The value t

n

is the minimum t suh that s is a t-approximate seed of x.

To ompute the distane between two strings, x and y, in step 1, a dynami

programming table, alled the D table, of size (jxj + 1) � (jyj + 1), is used. Eah

entry D[i; j℄; 0 � i � jxj and 0 � j � jyj, stores the minimum ost of transforming

x[1::i℄ to y[1::j℄. Initially, D[0; 0℄ = 0; D[i; 0℄ = D[i� 1; 0℄ + Æ(x[i℄;�) and D[0; j℄ =

D[0; j�1℄+Æ(�; y[j℄). Then we an ompute all the entries of the D table in O(jxjjyj)

time by the following reurrene:

D[i; j℄ = min

8

>

<

>

:

D[i� 1; j℄ + Æ(x[i℄;�)

D[i; j � 1℄ + Æ(�; y[j℄)

D[i� 1; j � 1℄ + Æ(x[i℄; y[j℄)

where Æ(a; b) is the ost of substituting harater a with harater b, Æ(a;�) is the

ost of deleting a and Æ(�; a) is the ost of inserting a.

The seond step of the algorithm is omputed as shown in Figure 3. For every h,

we over x[h+1::i℄ with one opy of s, with error w

h+1;i

. What is left to be overed is

x[1::h℄. We obtain this by overing either x[1::h℄, with error t[h℄, or x[1::h + 1℄, with

error t[h+ 1℄, : : : or x[1::i� 1℄, with error t[i� 1℄, (in general x[1::j℄, with error t[j℄);

we hoose the x[1::j℄ (the shaded box) that gives the smallest error. Note that, this

box overs a superstring of x[1::j℄.

30

Approximate Seeds of Strings

x

1
i

h+ 1

n

s

j

Figure 3: The seond step of the algorithm.

Theorem 1 Problem 1 an be solved in O(mn

2

) time when a weighted edit distane

is used for Æ. If the edit or the Hamming distane is used for Æ, it an be solved in

O(mn) time.

Proof. For an arbitrary penalty matrix, step 1 takes O(mn

2

) time, sine we make a

D table of size (m+1)�(n�i+2) for eah position i of x. The fat that a superstring

of x, rather than x itself, has to be �overed� does not inrease the time omplexity,

if we use the following proedure: instead of omputing a new D-table between eah

s[1::k℄ (resp. s[k::m℄) and x[i::n℄ (resp. x[1::j℄), we just make one D-table between

s and x[i::n℄ (resp. s

R

(x[1::j℄)

R

) and take the minimum value of the last olumn of

this table.

In step 2, we an ompute the minimum t in O(n

2

) time as follows. The inner

min loop of formula (1) an be omputed in onstant time by reusing the min values

omputed in the previous round. The outer min loop is repeated i times, for 1 � i �

n, i.e., O(n

2

) repetitions.

Thus, the total time omplexity is O(mn

2

).

When the edit distane is used for the measure of similarity, this algorithm for

Problem 1 an be improved. In this ase, Æ(a; b) is always 1 if a 6= b and Æ(a; b) = 0

otherwise. Now it is not neessary to ompute the edit distanes between s and the

substrings of x whose lengths are larger than 2m beause their edit distanes with

s will exeed m. (It is trivially true that s is an m-approximate seed of x.) Step 1

now takes O(m

2

n) time sine we make a D table of size (m+ 1)� (2m+ 1) for eah

position of x. Also, step 2 an be done in O(mn) time sine we ompare O(m) values

at eah position of x. Thus, the time omplexity is redued to O(m

2

n).

However, we an do better. Step 1 an be solved in O(mn) time by the algorithm

due to Landau, Myers and Shmidt [23℄. Given two strings x and y and a forward

(resp. bakward) solution for the omparison between x and y, the algorithm in [23℄

inrementally omputes a solution for x and by (resp. yb) in O(k) time, where b is an

additional harater and k is a threshold on the edit distane. This an be done due

to the relationship between the solution for x and y and the solution for x and by.

When k = m (i.e., the threshold is not given) we an ompute all the edit distanes

between s and every substring of x whose length is at most 2m in O(mn) time using

this algorithm. Reently, Kim and Park [21℄ gave a simpler O(mn)-time algorithm

for the same problem. Therefore, we an solve Problem 1, in O(mn) time if the edit

distane is used for Æ. When the threshold k is given as input for Problem 1, it an

be solved in O(kn) time beause eah step of the above algorithm takes O(kn) time.

If we use the Hamming distane for Æ, in step 1 we onsider only the substrings

of x of length m. (Reall that the Hamming distane is de�ned only between strings

of equal length) Sine there are O(n) suh substrings, and we need O(m) time to

ompute the distane between eah substring and s, step 1 takes O(mn) time. Also,

as in the ase of the edit distane, step 2 an be done in O(mn) time (we ompare

O(m) values at eah position of x). Thus, the overall time omplexity is O(mn). �

31

Proeedings of the Prague Stringology Conferene '03

x

x

x[j::n℄

s

i

i+m-2

s = x[i::i +m� 2℄

(Previous D table)

Newly omputed

row

x

x

x[j::n℄

s

i

i+m-1

s = x[i::i +m� 1℄

(New D table)

Figure 4: Computing new D tables

4.2 Problem 2

In this problem, we are not given a string s. Any substring of x is now a andidate

for approximate seed. Let s be suh a andidate string. Reall that, sine the length

of s is not �xed in this ase, we need to use a relative distane funtion (rather than

an absolute distane funtion); that is, an error ratio, in the ase of the Hamming or

edit distane, or a weighted edit distane.

When the relative edit distane is used for the measure of similarity, Problem 2

an be solved in O(n

4

) time by our algorithm for Problem 1. If we take eah substring

of x as s and apply the O(mn) algorithm for Problem 1 (that uses the algorithm in

[23℄), it takes O(jsjn) time for eah s. Sine there are O(n

2

) substrings of x, the

overall time is O(n

4

).

For weighted edit distanes (as well as for relative edit distanes), we an solve

Problem 2 in O(n

4

) time, without using the somewhat ompliated algorithm in [23℄.

Like before, we onsider every substring of x as andidate string s, and we solve

Problem 1 for x and s. But, we do this, by proessing all the substrings of x that

start at position i, at the same time, as follows.

Let T be the minimum distane so far. Initially, T = 1. For eah i; 1 � i � n,

we proess the n� i + 1 substrings that start at position i as andidate strings. Let

m be the length of a hosen substring of x as s. Initially, m = 1.

1. Take x[i::i + m � 1℄ as s and ompute w

hj

, for all 1 � h � j � n. This

omputation an be done by making n D tables with s and eah of the n

su�xes of x. By adding just one row to eah of previous D tables (i.e., n D

tables when s = x[i::i +m� 2℄), we an ompute these new D tables in O(n

2

)

time. See Figure 4. (Note that when m = 1, we reate new D tables.)

2. Compute the minimum distane t suh that s is a t-approximate seed of x. This

step is similar to the seond step of the algorithm for Problem 1. Let t

i

be the

minimum value suh that s is a t

i

-approximate seed of x[1::i℄ and t

0

= 0. For

i = 1 to n, we ompute t

i

by the following formula:

t

i

= min

0�h<i

fmax fmin

h�j<i

ft

j

g; w

h+1;i

gg

The value t

n

is the minimum t suh that s is a t-approximate seed of x. If t

n

is

smaller than T , we update T with t

n

. If m < n� i+ 1, inrease m by 1 and go

to step 1.

When all the steps are ompleted, the �nal value of T is the minimum distane

and the substring s that is a T -approximate seed of x is an answer to Problem 2.

32

Approximate Seeds of Strings

(Note that there an be more than one substring s that are T -approximate seeds of

x).

Theorem 2 Problem 2 an be solved in O(n

4

) time when a weighted edit distane

or a relative edit distane is used for Æ. When a relative Hamming distane is used

for Æ, Problem 2 an be solved in O(n

3

) time.

Proof. For a weighted edit distane, we make n D tables in O(n

2

) time in step 1

and ompute the minimum distane in O(n

2

) time in step 2. For m = 1 to n� i+ 1,

we repeat the two steps. Therefore, it takes O(n

3

) time for eah i and the total time

omplexity of this algorithm is O(n

4

). If a relative edit distane is used, the algorithm

an be slightly simpli�ed, as in Problem 1, but it still takes O(n

4

) time.

For a relative Hamming distane, it takes O(n) time for eah andidate string and

sine there are O(n

2

) andidate strings, the total time omplexity is O(n

3

). �

4.3 Problem 3

Given a set of strings, the shortest ommon supersequene (SCS) problem is to �nd

a shortest ommon supersequene of all strings in the set. The SCS problem is NP-

omplete [26, 30℄. We will show that Problem 3 is NP-omplete by a redution from

the SCS problem. In this setion we will all Problem 3 the SAS problem (abbreviation

of the smallest approximate seed problem). The deision versions of the SCS and SAS

problems are as follows:

De�nition 2 (SCS) Given a positive integer m and a �nite set S of strings from �

�

where � is a �nite alphabet, the SCS problem is to deide if there exists a ommon

supersequene w of S suh that jwj � m.

De�nition 3 (SAS) Given a number t, a string x from (�

0

)

�

where �

0

is a �nite

alphabet, and a penalty matrix, the SAS problem is to deide if there exists a string

u suh that u is a t-approximate seed of x.

Theorem 3 The SAS problem is NP-omplete.

5 Conlusions

In this paper, we solved the smallest distane approximate seed problem, in O(mn)

time for the Hamming and edit distane and O(mn

2

) for the weighted edit distane,

and the restrited smallest approximate seed problem, in O(n

4

) time for the edit and

weighted edit distane and O(n

3

) for the Hamming distane. We also proved that the

smallest approximate seed problem is NP-omplete.

The signi�ane of our work omes from the fat that we solved the �rst two

problems for approximate seeds, with exatly the same time omplexities as those

for approximate periods [33℄ and approximate overs [34℄, despite the fat that seeds

allow overlaps, as well as onatenations, and over a superstring of a string x (rather

than overing the string x itself).

33

Proeedings of the Prague Stringology Conferene '03

Referenes

[1℄ A. Aho and T. Peterson. A minimum distane error-orreting parser for ontext-

free languages. SIAM J. Computing, 1:305�312, 1972.

[2℄ A. Apostolio and D. Breslauer. An optimalO(log logN)-time parallel algorithm

for deteting all squares in a string. SIAM Journal on Computing, 25(6):1318�

1331, 1996.

[3℄ A. Apostolio, D. Breslauer, and Z. Galil. Optimal parallel algorithms for peri-

ods, palindromes and squares. Pro. 19th Int. Colloq. Automata Languages and

Programming, 623:296�307, 1992.

[4℄ A. Apostolio and A. Ehrenfeuht. E�ient detetion of quasiperiodiities in

strings. Theoretial Computer Siene, 119(2):247�265, 1993.

[5℄ A. Apostolio, M. Farah, and C. S. Iliopoulos. Optimal superprimitivity testing

for strings. Information Proessing Letters, 39(1):17�20, 1991.

[6℄ A. Apostolio and F. P. Preparata. Optimal o�-line detetion of repetitions in a

string. Theoretial Computer Siene, 22:297�315, 1983.

[7℄ O. Berkman, C. S. Iliopoulos, and K. Park. The subtree max gap problem

with appliation to parallel string overing. Information and Computation,

123(1):127�137, 1995.

[8℄ D. Breslauer. An on-line string superprimitivity test. Information Proessing

Letters, 44(6):345�347, 1992.

[9℄ D. Breslauer. Testing string superprimitivity in parallel. Information Proessing

Letters, 49(5):235�241, 1994.

[10℄ T. Crawford, C. S. Iliopoulos, and R. Raman. String mathing tehniques for

musial similarity and melodi reognition. Computing in Musiology, 11:73�100,

1998.

[11℄ M. Crohemore. An optimal algorithm for omputing repetitions in a word.

Information Proessing Letters, 12(5):244�250, 1981.

[12℄ M. Crohemore, C. S. Iliopoulos, and M. Korda. Two-dimensional pre�x string

mathing and overing on square matries. Algorithmia, 20:353�373, 1998.

[13℄ M. Crohemore, C. S. Iliopoulos, and H. Yu. Algorithms for omputing evolu-

tionary hains in moleular and musial sequenes. In Pro. 9th Australasian

Workshop on Combinatorial Algorithms, pages 172�185, 1998.

[14℄ M. Crohemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[15℄ C. S. Iliopoulos and M. Korda. Optimal parallel superprimitivity testing on

square arrays. Parallel Proessing Letters, 6(3):299�308, 1996.

[16℄ C. S. Iliopoulos, D. Moore, and K. Park. Covering a string. Algorithmia, 16:288�

297, 1996.

34

Approximate Seeds of Strings

[17℄ C. S. Iliopoulos and L. Mouhard. An O(n logn) algorithm for omputing all

maximal quasiperiodiities in strings. In Pro. Computing: Australasian Theory

Symposium, pages 262�272. Leture Notes in Computer Siene, 1999.

[18℄ C. S. Iliopoulos and K. Park. An optimal O(log logn)-time algorithm for parallel

superprimitivity testing. J. Korea Inform. Si. So., 21:1400�1404, 1994.

[19℄ C. S. Iliopoulos and K. Park. A work-time optimal algorithm for omputing all

string overs. Theoretial Computer Siene, 164:299�310, 1996.

[20℄ C. S. Iliopoulos and W. F. Smyth. On-line algorithms for k-overing. In Pro-

eedings of the 9th Australasian Workshop On Combinatorial Algorithms, pages

97�106, Perth, WA, Australia, 1998.

[21℄ S. Kim and K. Park. A dynami edit distane table. In Pro. 11th Symp.

Combinatorial Pattern Mathing, volume 1848, pages 60�68. Springer, Berlin,

2000.

[22℄ D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern mathing in strings.

SIAM Journal on Computing, 6(1):323�350, 1977.

[23℄ G. M. Landau, E. W. Myers, and J. P. Shmidt. Inremental string omparison.

SIAM Journal on Computing, 27(2):557�582, 1998.

[24℄ G. M. Landau and J. P. Shmidt. An algorithm for approximate tandem repeats.

In Proeedings of the 4th Annual Symposium on Combinatorial Pattern Mathing,

number 684, pages 120�133, Padova, Italy, 1993. Springer-Verlag, Berlin.

[25℄ Y. Li and W. F. Smyth. An optimal on-line algorithm to ompute all the overs

of a string.

[26℄ D. Maier. The omplexity of some problems on subsequenes and supersequenes.

Journal of the ACM, 25(2):322�336, 1978.

[27℄ M. G. Main and R. J. Lorentz. An algorithm for �nding all repetitions in a

string. Journal of Algorithms, 5:422�532, 1984.

[28℄ M. Middendorf. More on the omplexity of ommon superstring and superse-

quene problems. Theoretial Computer Siene, 125(2):205�228, 1994.

[29℄ D. Moore and W. F. Smyth. A orretion to �An optimal algorithm to ompute

all the overs of a string�. Information Proessing Letters, 54(2):101�103, 1995.

[30℄ K. J. Räihä and E. Ukkonen. The shortest ommon supersequene problem

over binary alphabet is NP-omplete. Theoretial Computer Siene, 16:187�

198, 1981.

[31℄ J. P. Shmidt. All highest soring paths in weighted grid graphs and its applia-

tion to �nding all approximate repeats in strings. SIAM Journal on Computing,

27(4):972�992, 1998.

[32℄ P. H. Sellers. Pattern reognition geneti sequenes by mismath density. Bulletin

of Mathematial Biology, 46(4):501�514, 1984.

35

Proeedings of the Prague Stringology Conferene '03

[33℄ J. S. Sim, C. S. Iliopoulos, K. Park, and W. F. Smyth. Approximate periods of

strings. Theoretial Computer Siene, 262:557�568, 2001.

[34℄ J. S. Sim, K. Park, S. Kim, and J. Lee. Finding approximate overs of strings.

Journal of Korea Information Siene Soiety, 29(1):16�21, 2002.

[35℄ R. Wagner and M. Fisher. The string-to-string orretion problem. Journal of

the ACM, 21:168�173, 1974.

36

