Constructing Factor Oracles

Loek Cleophas! and Gerard Zwaan' and Bruce W. Watson'?

! Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

2 Department of Computer Science, University of Pretoria,
Pretoria 0002, South Africa
e-mail: loek@loekcleophas.com, g.zwaan@tue.nl, bruce@bruce-watson.com

Abstract. A factor oracle is a data structure for weak factor recognition. It is
an automaton built on a string p of length m that is acyclic, recognizes at least
all factors of p, has m + 1 states which are all final, and has m to 2m — 1 transi-
tions. In this paper, we give two alternative algorithms for its construction and
prove the constructed automata to be equivalent to the automata constructed
by the algorithms in [1]. Although these new O(m?) algorithms are practically
inefficient compared to the O(m) algorithm given in [1], they give more insight
into factor oracles. Our first algorithm constructs a factor oracle based on the
suffixes of p in a way that is more intuitive. Some of the crucial properties of
factor oracles, which in [1] need several lemmas to be proven, are immediately
obvious. Another important property however becomes less obvious. A second
algorithm gives a clear insight in the relationship between the trie or dawg rec-
ognizing the factors of p and the factor oracle recognizing a superset thereof.
We conjecture that an O(m) version of this trie-based algorithm exists.

Keywords: factor oracle, finite automaton, weak factor recognition, algorithm
derivation, pattern matching.

1 Introduction

A factor oracle is a data structure for weak factor recognition. It can be described
as an automaton built on a string p of length m that (a) is acyclic, (b) recognizes
at least all factors of p, (¢) has m + 1 states (which are all final), and (d) has m to
2m — 1 transitions (cf. [1]). Some example factor oracles are given in Figures 1 and 2.

Figure 1: Factor oracle for abbe (recognizing abe ¢ fact(p))

37

Proceedings of the Prague Stringology Conference 03

Figure 2: Factor oracle for abbcca (recognizing abe, abee, abeca, abea, abbea, bbea, bea &
fact(p))

Factor oracles are introduced in [1] as an alternative to the use of exact factor
recognition in many on-line keyword pattern matching algorithms. In such algorithms,
a window on a text is read backward while attempting to match a keyword factor.
When this fails, the window is shifted using the information on the longest factor
matched and the mismatching character.

Instead of an automaton recognizing exactly the set of factors of the keyword,
it is possible to use a factor oracle: although it recognizes more strings than just
the factors and thus might read backwards longer than necessary, it cannot miss any
matches. The advantage of using factor oracles is that they are easier to construct
and take less space to represent compared to the automata that were previously used
in these factor-based algorithms, such as suffix, factor and subsequence automata.
This is the result of the latter automata lacking one or more of the four essential
properties of the factor oracle.

The factor oracle is introduced in [1] by means of an O(m?) construction algorithm
that is used as its definition. Furthermore, an O(m) sequential construction algorithm
is described. It is not obvious by just considering the algorithms that it recognizes
at least all factors of p and has m to 2m — 1 transitions (i.e. that (b) and (d) hold).
For both algorithms, a number of lemmas are needed to prove this. In this paper, we
give two alternative algorithms for the construction of a factor oracle.

Our first algorithm, in Section 2, constructs a factor oracle based on the suffixes
of p. This algorithm is O(m?) and thus not of practical interest, but it is more in-
tuitive to understand and properties (b) and (d)—two important properties of factor
oracles—are immediately obvious from the algorithm. The acyclicity of the factor or-
acle however—corresponding to property (a)—is not immediately obvious. Our proof
of this property (part of Property 6) is rather involved, whereas the property is imme-
diately obvious from the algorithms in [1]. We prove that the alternative construction
algorithm and those given in [1] construct equivalent automata in Section 3.

In Section 4 we present our second algorithm, which constructs a factor oracle
from the trie recognizing the factors of p. Although this algorithm is O(m?) as well,
it gives a clear insight in the relationship between the trie and dawg recognizing the
factors of p and the factor oracle recognizing a superset thereof. In addition, we
conjecture that an O(m) trie-based algorithm exists.

Finally, Section 5 gives a summary and overview of future work.

1.1 Related Work

An earlier version of this paper appears as [3, Chapter 4|. In that thesis, some
properties of the language of a factor oracle are discussed as well. The thesis also

38

Constructing Factor Oracles

discusses pattern matching algorithms—among them those using factor oracles—and
the implementation of the factor oracle as part of the SPARE TIME pattern matching
toolkit, a revised and extended version of SPARE PARTS (]9]).

As mentioned before, factor oracles were introduced in [1| as an alternative to the
use of exact factor recognition in many on-line keyword pattern matching algorithms.
A pattern matching algorithm using the factor oracle is described in that paper as
well.

Apart from their use in pattern matching algorithms, factor oracles have been
used in a heuristic to compute repeated factors of a string [6] as well as to compress
text [7]. An improvement for those uses of factor oracles is introduced in [8] in the
form of the repeat oracle.

Related to the factor oracle, the suffiz oracle—in which only those states corre-
sponding to a suffix of p are marked final—is introduced in [1]. In [2] the factor oracle
is extended to apply to a set of strings.

1.2 Preliminaries

A string p = p1...pm of length m is a sequence of characters from an alphabet V. A
string w is a factor (vesp. prefiz, suffiz) of a string v if v = sut (resp. v = ut, v = su),
for s,t € V*. We will use pref(p), suff(p) and fact(p) for the set of prefixes, suffixes
and factors of p respectively. A prefix (resp. suffix or factor) is a proper prefix (resp.
suffix or factor) of a string p if it does not equal p. We write u <; v to denote that u
is a suffix of v, and u <, v to denote that u is a proper suffix of v.

2 Construction Based on Suffixes

Our first alternative algorithm for the construction of a factor oracle constructs a
‘skeleton’ automaton for p—recognizing pref(p)—and then constructs a path for
each of the suffixes of p in order of decreasing length, such that eventually at least
pref(suff(p)) = fact(p) is recognized. If such a suffix of p is already recognized, no
transition needs to be constructed. If on the other hand the complete suffix is not yet
recognized there is a longest prefix of such a suffix that is recognized. A transition on
the next, non-recognized symbol is then created, from the state in which this longest
prefix of the suffix is recognized, to a state from which there is a path leading to state
m that spells out the rest of the suffix.

Build Oracle 2(p = pips...pm)
1: for i from 0 to m do
2: Create a new final state ¢
3: end for
4: for ¢ from 0 to m — 1 do
5: Create a new transition from 7 to ¢ + 1 by p;11
6: end for
7: for i from 2 to m do
8: Let the longest path from state 0 that spells a prefix of p;...p,, end in state j
and spell out p;..pp (i —1 <k < m)
if £ # m then

©

39

Proceedings of the Prague Stringology Conference 03

10: Build a new transition from j to k + 1 by ppi1
11: end if
12: end for

Note that this algorithm is O(m?) (since the operation on line 6 can be implemented
using a while loop). The factor oracle on p built using this algorithm is referred to
as Oracle(p) and the language recognized by it as factoracle(p).

The first two properties we give are obvious given our algorithm. They correspond
to (b) and (c)-(d) respectively as mentioned in Section 1.

Property 1 fact(p) C factoracle(p).
Proof: The algorithm constructs a path for all suffixes of p and all states are final. [

Property 2 For p of length m, Oracle(p) has exactly m + 1 states and between m
and 2m — 1 transitions.

Proof: States can be constructed in steps 1-2 only, and exactly m + 1 states are
constructed there. In step 4 of the algorithm, m transitions are created. In steps 5-8,
at most m — 1 transitions are created.]

Property 3 (Glushkov’s property) All transitions reaching a state i of Oracle(p)
are labeled by p;.

Proof: The only steps of the algorithm that create transitions are steps 4 and 8. In
both, transitions to a state i are created labeled by p;. O

Property 4 (Weak determinism) For each state of Oracle(p), no two outgoing
transitions of the state are labeled by the same symbol.

Proof: The algorithm never creates an outgoing transition by some symbol if such a
transition already exists. O

We now define function poccur(u, p) to give the end position of the leftmost occurrence
of u in p (equivalent to the same function in [1]):

Definition 1 Function poccur € V* x V* — N is defined as

poccur(u, p) = min{|tu|,p = tuv} (p,t,u,v € V)

]
Note that if u & fact(p), poccur(u, p) = oc.
Property 5 For suffixes and prefixes of factors we have:
uv € fact(p) = poccur(v,p) < poccur(uv,p) (p,u,v € V*)
uv € fact(p) = poccur(u, p) < poccur(uv,p) — |v| (p,u,v € V¥)
]

We introduce min(i) for the minimum length string recognized in state i—either in
a partially constructed or in the complete automaton.

In the following property, we use j; and k; to identify the values j and k attain
when considering suffix p;...p,, of p in steps 5-8 of the algorithm.

40

Constructing Factor Oracles

Property 6 For the partial automaton constructed according to algorithm Build -
Oracle 2 with all suffixes of p of length greater than m — i + 1 already considered
in steps 5-8 (2 < i < m+ 1), we have that

i.

ii.

iii.

it is acyclic
for each h with 1 < h < 4, all prefixes of py,...p,, are recognized

for each state n and outgoing transition to a state ¢ # n + 1,
q < kmaz + 1 holds where k0, = max{k,, 1 < h <i Ak, <m}

iv. for each state n, min(n) is an element of fact(p), min(n) is a suffix of each
string recognized in n, and n = poccur(min(n), p)
v. if u € fact(p) is recognized, it is recognized in a state n < poccur(u, p)
vi. for each state n and each symbol a such that there is a transition from n to a
state ¢ by a, min(n) - a € fact(p) and ¢ = poccur(min(n) - a, p)
vii. for each pair of states n and ¢, if min(n) <, min(q), then n < ¢, and as a
result, if min(n) <; min(q), then n < ¢
viii. if w is recognized in state n, then for any suffix u of w, if u is recognized, it is
recognized in state ¢ < n
Proof: See Appendix A. O

Note that Property 6, i. corresponds to property (a) in Section 1.

3 Equivalence to Original Algorithms

A factor oracle as introduced in [1] is built by the following algorithm:

Build _Oracle(p = pips...pm)

1: for 7 from 0 to m do

© ok ey

—_ =
= O

12:
13:

Create a new final state ¢

end for
: for ¢ from 0 to m — 1 do

Create a new transition from 7 to 2 + 1 by p; 14

end for
. for ¢ from 0 to m — 1 do

Let u be a minimal length word in state ¢
for all 0 € ¥, 0 # p;;1 do
if uo € Fact(p;_|u41...-Pm) then
Build a new transition from 7 to*
i — |u| + poccur(uo, pi_jyj+1...pm) by o
end if
end for

*Note that in [1] the term —|u]| is missing in the algorithm, although from the rest of the paper
it is clear that it is used in the construction of the automata

41

Proceedings of the Prague Stringology Conference 03

14: end for

To prove the equivalence of the automata constructed by the two algorithms, we need
the following properties.

Property 7 For any state i of both Oracle(p) (i.e. the factor oracle constructed ac-
cording to algorithm Build Oracle 2 and the factor oracle constructed according

to algorithm Build Oracle), if u = min(i) then
uo € fact(pi_jy41...pm) = uo € fact(p)

Proof: = Trivial. <=: By Property 6, iv. (for Build Oracle 2) and [1, Lemma
1| (for Build Oracle), i = poccur(u,p). By Property 5, poccur(uo,p) > i, hence
uo € fact(p;_juj+1.--Pm)- O

Property 8 For any state ¢ of an automaton constructed by either algorithm, if
u = min(i) and uo € fact(p) then

i — |u| + poccur(uo, pi_ju|+1...pm) = poccur(uo, p)
Proof:

i — |ul + poccur(uo, pi—juf4+1---Dm)
= { definition poccur }
i — |u] + min{|tuo|, pi_juj41..-Pm = tuov}
= { u = min(i), hence recognized in i = poccur(u,p) }
i — |u| + min{|tuo| — (i — |ul),p = tuov}
= { uo € fact(p), property of min }
i — |u| + min{|tuc|,p = tuov} — (i — |u|)
= { calculus, definition poccur }

poccur(uo, p) a

Property 9 The algorithms Build Oracle 2 and Build Oracle

construct, equivalent automata.

Proof: 'We prove this by induction on the states. Our induction hypothesis is that
for each state j (0 < j < i), min(j) is the same in both automata, and the outgoing
transitions from state j are equivalent for both automata.

If i =0, u = min(i) = £ in both automata. Consider a transition created
by Build Oracle 2, say to state £ by o # p;;i. Since this transition exists,
uo € fact(p) and k = poccur(uo,p) (due to Property 6, vi.). Using Properties 7
and 8, such a transition was created by Build Oracle as well. Similarly, consider
a transition created by Build Oracle, say to state £ by o. This transition, say
on symbol o, leads to state k = i — |u| + poccur(uc, pi—juj41---Pm) and was created
since uo € fact(p;—ju41...Pm) (see the algorithm). Using Properties 7 and 8, such a
transition was created by Build Oracle 2 as well.

42

Constructing Factor Oracles

If © > 0, using the induction hypothesis and acyclicity of the automata, 7 has
the same incoming transitions and as a result min(7) is the same for both automata.
Using the same arguments as in case ¢ = 0, the outgoing transitions from state i are
equivalent for both automata.

As a result, the two automata are equivalent. O

4 Construction Based on Trie
:
c

Figure 3: Trie recognizing fact(abbc)

Figure 5: Factor oracle recognizing fact(abbc) U {abc}

There is a close relationship between the data structures Trie(fact(p)) —the trie
([5]) on fact(p)—recognizing exactly fact(p), DAWG(fact(p)) —the directed acyclic
word graph ([4]) on fact(p)—recognizing exactly fact(p), and Oracle(p)—the factor
oracle on p—which recognizes at least fact(p).

It is well known that DAWG(fact(p)) can be constructed from Trie(fact(p)) by
merging states whose right languages are identical (see for example [4]). The factor
oracle as defined by Oracle(p) can also be constructed from Trie(fact(p)), by merging
states whose right languages have identical longest strings (which are suffixes of p).
An example of a trie, DAWG and factor oracle for the factors of abbc can be seen in
Figures 3-5.

43

Proceedings of the Prague Stringology Conference 03

Definition 2 We define Trie(S) as a 5-tuple <@, V, §, &, F> where S is a finite
set of strings, @@ = pref(S) is the set of states, V' is the alphabet, § is the transition
function, defined by

ua if ua € pref(S)

O, 0) = { L if ua & pref(S) (u € pref(5),a € V),

¢ is the single start state and F' = S is the set of final states. O
Property 10 For u,v € fact(p) we have :

uv € fact(p) A (VYw : uw € fact(p) : |w| < |v]) = uv € suff(p)

uvy € fact(p) A (Vw : uw € fact(p) : |w| < |v1])
A uvg € fact(p) A (Vw : uw € fact(p) : |w| < |vg]|) = v1 = vg

Property 11 For u € fact(p) and C' € N,
(Vw :uw € fact(p) : |lw| < C) = (Vw : uw € suff(p) : |w| < C)

Proof: = trivial. <=: Let ux € fact(p), then (Jy : : uzxy € suff(p)), hence (Fy : :
|zy| < C), and since |y| > 0, |z| < C. O

Using Properties 10 and 11, max,(u) can be defined as the unique longest string v
such that uv € suff(p):

Definition 3 Define max,(u) = v where v is such that

uv € suff(p) A (Vw : uw € suff(p) : |w| < |v|)

We now present our simple trie-based construction algorithm for factor oracles:

Trie To Oracle(p = pipa...pm)
1: Construct Trie(fact(p))
2: for i from 2 to m do
3: Merge all states u for which maz,(u) = pit1...pn into the single state p;...p;
4: end for

The order in which the values of ¢ are considered is not important. In addition, note
that it is not necessary to consider the states u for which maz,(u) = ps...pn, since
there is precisely one such state u in Trie(fact(p)), u = p;. Due to Property 10, it is
sufficient to only consider suffixes of p as longest strings.

Also note that the intermediate automata may be nondeterministic, but the final
automaton will be weakly deterministic (as per Property 4).

The above algorithm has complexity O(m?) (assuming that max,(u) was com-
puted during construction of the trie). The construction of a Trie can be done in
O(m) time however, and the merging of the states is similar to minimization of an

44

Constructing Factor Oracles

acyclic automaton, which can also be done in O(m). We therefore conjecture that an
O(m) trie-based factor oracle construction algorithm exists.

To prove that algorithm Trie To Oracle constructs Oracle(p), we define a
partition on the states of the trie, induced by an equivalence relation on the states.

Definition 4 Relation ~, on states of Trie(fact(p)) is defined by
t ~, u=max,(t) = max,(u) (t,u € fact(p))

Note that relation ~,, is an equivalence relation. O

We now show that the partitioning into sets of states of Trie(fact(p)) induced by ~,,
is the same as the partitioning of Trie(fact(pa)) induced by ~,,, restricted to the
states of Trie(fact(p)), i.e.

Property 12
t~pu=try,u (tu € fact(p),a € V)

Proof:
t~pu

{ definition ~, }
mazx,(t) = maz,(u)

{1}

maz,(t)a = max,(u)a

{ (%)}

MaTpg (t) = Mmatp,(u)

{ definition ~,, }
t ~pa U
where we prove (*) by

U = maxy, (u)

{ definition max,, }

uv € suff(pa) A (Vw : uw € suff(pa) : jw| < |v])

{ u € fact(p), hence (Fz : : uxa € suff(pa)),
hence |za| > 0 and |v| > 0; suff(pa) = suff(p)a U {c} }

uv € suff(p)a A (Vw : uw € suff(pa) : jw| < |v])
{ lv[>0}

uv € suff(p)a A (Vw : w # e A uw € suff(pa) : jw| < |v|) Av="1'a
{ suff(pa) = suff(p)aU{c} }

uv € suff(p)a A (Vw : w # e A uw € suff(p)a : jw| < |v|) Av="1'a

45

Proceedings of the Prague Stringology Conference 03

{w=wa }

uv € suff(p)a A (Vw': vw'a € suff(p)a : |w'al < |v'al) Av="1'a
{1}

uv € suff(p)a A (Vw': uw' € suff(p) : |w'| < V') Av=1a

{v=va}

wv' € suff(p) A (Vw' : uw' € suff(p) : [w'| < |v'|) Av="1a

{ definition max, }
v =maz,(u) ANv="1'a
{1

v = max,(u)a

Property 13 Algorithm Trie To Oracle constructs Oracle(p).

Proof: By induction on |p| = m. If m = 0, p = ¢, and Trie(fact(¢)) = Oracle(e).
If m=1 p=a (a € V), and Trie(fact(a))=Oracle(a). If m > 1, p = za
(x € V*;a € V), and we may assume the algorithm to construct part Oracle(x)
of Oracle(za) correctly (using fact(ua) = fact(u) U suff(u)a, Trie(fact(za)) being
an extension of Trie(fact(x)), and Oracle(xa) being an extension of Oracle(z) (which
is straightforward to see from algorithm Build Oracle 2 as well as [1, page 57,
after Corollary 4]), and Property 12). Now consider the states of this partially con-
verted automaton in which suffixes of z are recognized. By construction of the trie,
there are transitions from these states by a. The factor oracle construction accord-
ing to algorithm Oracle Sequential in [1] creates Oracle(za) from Oracle(z)+a
(i.e. the factor oracle for x extended with a single new state m reachable from state
m — 1 by symbol p,, = a) by creating new transitions to state m from those states in
which suffixes of x are recognized and that do not yet have a transition on a. Since
Trie To Oracle merges all states ¢ for which maw,,(t) = a into the single state
m, Oracle(za) is constructed correctly from Trie(fact(za)). O

5 Conclusions and Future Work

We have presented two alternative construction algorithms for factor oracles and
shown the automata constructed by them to be equivalent to those constructed by
the algorithms in [1]. Although both our algorithms are O(m?) and thus practically
inefficient compared to the O(m) sequential algorithm given in [1], they give more
insight into factor oracles.

Our first algorithm is more intuitive to understand and makes it immediately
obvious, without the need for several lemmas, that the factor oracle recognizes at
least fact(p) and has m to 2m — 1 transitions.

Our second algorithm gives a clear insight into the relationship between the trie
or dawg recognizing fact(p) and the factor oracle recognizing a superset thereof. We

46

Constructing Factor Oracles

conjecture that an O(m) trie-based algorithm for the construction of factor oracles
exists.

e

O+~

Figure 6: Factor oracle recognizing a superset of fact(p) (including for example cace ¢
fact(p)), for p = abcacdace.

O

Figure 7: Alternative automaton with m + 1 states satisyfing Glushkov’s property
yet recognizing a different superset of fact(p) than the factor oracle for p (including
for example acacdace ¢ factoracle(p), but not cace) and having less transitions, for
p = abcacdace.

As stated in [1], the factor oracle is not minimal in terms of number of transitions
among the automata with m + 1 states recognizing at least fact(p). We note that it
is not even minimal among the subset of such automata having Glushkov’s property
(see Figures 6 and 7).

We are working on an automaton-independent definition of the language recog-
nized by the factor oracle. Such a characterization would enable us to calculate how
many strings are recognized that are not factors of the original string. This could
be useful in determining whether to use a factor oracle-based algorithm in pattern
matching or not.

Acknowledgements

We would like to thank Michiel Frishert for reading and commenting on earlier ver-
sions of this paper, and the anonymous referees for their helpful comments and sug-
gestions.

47

Proceedings of the Prague Stringology Conference 03

References

[1] Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Efficient Experi-
mental String Matching by Weak Factor Recognition. In Proceedings of the 12th
conference on Combinatorial Pattern Matching, volume 2089 of LNCS, pages 51—
72, 2001.

[2] Cyril Allauzen and Mathieu Raffinot. Oracle des facteurs d’un ensemble de mots.
Technical Report 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée,
June 1999.

[3] Loek G.W.A. Cleophas. Towards SPARE Time: A New Taxonomy and Toolkit
of Keyword Pattern Matching Algorithms. MSc thesis, Technische Universiteit
Eindhoven, August 2003.

[4] Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University
Press, 1994.

[5] E. Fredkin. Trie memory. Communications of the ACM, 3(10):490-499, 1960.

[6] Arnaud Lefebvre and Thierry Lecroq. Computing repeated factors with a factor
oracle. In L. Brankovic and J. Ryan, editors, Proceedings of the 11th Australasian
Workshop on Combinatorial Algorithms, pages 145-158, 2000.

[7] Arnaud Lefebvre and Thierry Lecroq. Compror: on-line losless data compression
with a factor oracle. Inf. Process. Lett., 83(1):1-6, 2002.

[8] Arnaud Lefebvre, Thierry Lecroq, and J. Alexandre. Drastic improvements over
repeats found with a factor oracle. In E. Billington, D. Donovan, and A. Khodkar,
editors, Proceedings of the 13th Australasian Workshop on Combinatorial Algo-
rithms, pages 253-265, 2002.

[9] Bruce W. Watson and Loek Cleophas. SPARE Parts: A C++ toolkit for String
PAttern REcognition. Software: Practice and Fxperience, 2003. To be published.

A Proof of Property 6

We first consider the automaton constructed in steps 1-4 of the algorithm. It is
straightforward to verify that the properties hold for ¢ = 2.

Now assume that the properties hold for the automaton with all suffixes of p of
length greater than m — 7 4+ 1 already considered. We prove that they also hold for
the automaton after the suffix of length m — 7 + 1, p;...pm, has been considered.

If £ = m in step 6, suffix p;...p,, is already recognized, no new transition will be
created, the automaton does not change and the properties still hold.

If £ < m, then we need to prove that each of the properties holds for the new
automaton.

Ad i: By v., string p;...px is recognized in state j < poccur(p;...pk,p). Since
Pie-Dk <s p1---Pr and poccur(py...pg, p) = k, poccur(p;...px, p) < k due to Property 5.
Since j < k, the transition created from j to k 4 1 is a forward one.

48

Constructing Factor Oracles

Ad ii: Trivial.

Ad iii: We prove that the property holds for the new automaton by showing that
k =k; > ke, 1.e. k will become the new k,,,;.

If kppow = —00, k > Ky clearly holds.

If kpow > —00, assume that k,,,, > k, then there is an h such that 1 < h <17 A
kn < m A kp = kpas. Factor py...pg is recognized in g < k due to ii. and v.

If ¢ =k, then py,...p; is recognized in k and py,...p,, is recognized in m; so k, = m
which contradicts k;, < m.

If g < k, then pp...py is recognized in g < k. Since p;...p; is recognized in j = j;
and p;...pr <s Pp..-Px, due to viii., 7 < g.

If 7 = g, then py...p is the longest prefix of py,...p,, recognized by the old automa-
ton, which contradicts ii.

If j < g, then j < g < k. We know that min(g) < pp...px (using iv.), min(j) <,
Ph-..pr (using iv. and p;..pp <; pp...px) and therefore that min(j) <; min(g) (due
to vii.). Let [be the state to which the transition by py,1 from g leads, i.e. [is the state
in which py,...pg41 is recognized. Using vi., we have that [= poccur(min(g) - pe11,p)-
Using Property 5 we have that [< poccur(py...prs1,p) and the latter is < k + 1 due
to the definition of poccur (since k + 1 marks the end of an occurrence of pp...pg11)-
We have poccur(min(j) - pri1,p) < poccur(min(g) - prr1,p) = [since min(j) <
min(g). We want to prove that k + 1 < poccur(min(j) - pg+1,p). Assume that
poccur(min(j) - pr+1,p) < k + 1. If the first occurrence of min(j) - pr+1 starts before
position ¢ of p, then it is a prefix of a suffix of p longer than p;...p,, and thus by ii.
min(j) - pry1 is recognized. Since min(j) is recognized in j, a transition from j by
Pr+1 must exist and we have a contradiction. If the first occurrence of min(j) - pes1
starts at or after position ¢ of p, then there exists a shortest string z such that
x-min(j) - per1 € pref(p;...pr) and x - min(j) - pry1 is recognized in a state < j. But
then x - min(j) is recognized in a state n < j. By viii., since min(j) <, = - min(j),
this means that min(j) is recognized in state s < n < j and we have a contradiction.
Thus k+1 < poccur(min(j)-prs1,p) < [and therefore, since [< k+1 holds, [= k+1.
In that case, pp...prps1 is recognized in [= k + 1 and py,...p,, is recognized in m. But
then k;, = m, and we have a contradiction.

Thus, ke = kn, < k = k; and iii. holds for the new automaton.

Ad iv: Let s = min(j), t = min(k + 1) and v = min(h) (k+1 < h < m)
respectively in the old automaton. Due to the proof of iii., £ = k; > k. and
therefore a unique path between k£ + 1 and h exists, labeled r, and—due to iv—
u <g tr.

If |spky17| > |ul, v remains the minimal length string recognized in state h. Since
§ <y Die-Dhs SPE+1T <y Diwe-Pp17. Since u < tr, tr <; pr..pppr and [spyyir| > |ul,
u <g sppp1r and—due to iv.—u <, s'ppy 17 as well for any s’ recognized in state j.

If |sper1r| < |u|, spgrir is the new minimal length string recognized in state
h. Since s <g pPj.e-Pry SPrr1” <5 Pi---Pry1r. Since u <, tr, tr <; pi...pgs1r and
lsprr| < |ul, sprar <s u and—due to iv.—spp 11 <s; $'prrir as well for any '
recognized in state j.

Since p;...pp11r was not recognized before, it is not a prefix of p, po..pm, ..y
Pi1-.-Pm (using ii.), hence poccur(p;...px417,p) = k + 1+ |r|. Since s <; p;...p,
poccur(spryir,p) < k+ 1+ |r|. Assume that poccur(sppiir,p) < k+ 1+ |r|, then
Dive-Dii1T = uspry17v (u,v € V*, v # £, |u| minimal), since spy 17 cannot start before

49

Proceedings of the Prague Stringology Conference 03

p; because in that case it would have already been recognized by the old automaton.
Factor us is recognized in state g < j (using i.) and—since viii. holds—s <; us is
recognized in a state o < g < j. This contradicts s being recognized in j. As a result
poccur(sprar,p) =k + 1+ r|.

Ad v: Any new factor of p recognized after creation of the transition from j to
k+1 has the form vpg, (7 and is recognized in k + 1+ |r| with v € fact(p) recognized
in state j. Since k + 1+ |r| = poccur(min(k + 1)r,p) (using iii., iv. holding for the
new automaton plus the fact that & is the new k,q,) and min(k+1)-r <, vppyir due
to iv. holding for the new automaton, k+ 1+ |r| < poccur(vpg,17, p) using Property 5.

Ad vi: The states n we have to consider are n =j and n =h for k+1 < h < m.

For n = j, a new transition to k+1 is created and by iv., min(j) < p;...pk., hence
we have min(j) - pr1 <s Pi---Pht1, Phti—|min(j)|---Pht1 — MIn(J) - D1, min(f) - pps1 €
fact(p) and poccur(min(j) - pgs1,p) < k+1. Since min(j) - pg41 is recognized in state
k + 1, due to v. for the new automaton, k + 1 < poccur(min(j) - pp+1,p). Therefore
k + 1 = poccur(min(j) - pri1,p)-

For n = h with £ +1 < h < m, min(h) changes to sppyr if and only if
|spry1r] < |u| (with 7, s,u as in the proof of iv.). We know that ua € fact(p) and
q = poccur(ua, p). Since spp11 <g u, Sprr1ra <s ua, hence spr1ra € fact(p) as well
and poccur(spgiira,p) < poccur(ua,p) = ¢, but due to v., ¢ < poccur(spgiira,p)
hence ¢ = poccur(spgiira,p).

Ad vii: Assume min(n) <; min(q). We have poccur(min(n), p) < poccur(min(q),
p) due to Property 5, which according to iv. is equivalent to n < q.

Ad viii: By induction on |w|. It is true if jw| = 0 or |w| = 1. Assume that it
is true for all strings x such that |z| < |w|. We will show that it is also true for w,
recognized in n.

Let w = za (x # €), x is recognized in h (0 < h < n). Consider a proper suffix of
w, recognized in state ¢. It either equals € and is recognized in state 0 < n or it can
be written as va where v <; x.

Suffix va of w is recognized, therefore suffix v of z is recognized and according
to the induction hypothesis, v is recognized in state [< h. Let & = min(h) and
v = min(l). Due to iv. for the new automaton, Z <, x and v <; v. We now prove
that v <; z. If [= h, then v = Z. Now consider the case [< h. Since v <, x and
v <;v,0 <z x. Due tovii., T £, v. Thus, since v and T both are suffixes of x, v <, 7.
Since 7 is recognized in h and there is a transition by a from A to n, by vi. for the new
automaton we have that Za € fact(p) and n = poccur(Za,p). Since v is recognized
in [and there is a transition by a from [to ¢, va € fact(p) and g = poccur(va, p) due
to vi. for the new automaton. Since va <, Ta, poccur(va,p) < poccur(Za,p) due to
Property 5 and hence ¢ < n.

We have shown that the properties hold for every partial automaton during the
construction. Consequently, they hold for the complete automaton Oracle(p). O

50

