
Constru
ting Fa
tor Ora
les

Loek Cleophas

1

and Gerard Zwaan

1

and Bru
e W. Watson

1;2

1

Department of Mathemati
s and Computer S
ien
e, Te
hnis
he Universiteit

Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

2

Department of Computer S
ien
e, University of Pretoria,

Pretoria 0002, South Afri
a

e-mail: loek�loek
leophas.
om, g.zwaan�tue.nl, bru
e�bru
e-watson.
om

Abstra
t. A fa
tor ora
le is a data stru
ture for weak fa
tor re
ognition. It is

an automaton built on a string p of length m that is a
y
li
, re
ognizes at least

all fa
tors of p, has m+1 states whi
h are all �nal, and has m to 2m� 1 transi-

tions. In this paper, we give two alternative algorithms for its
onstru
tion and

prove the
onstru
ted automata to be equivalent to the automata
onstru
ted

by the algorithms in [1℄. Although these new O(m

2

) algorithms are pra
ti
ally

ine�
ient
ompared to the O(m) algorithm given in [1℄, they give more insight

into fa
tor ora
les. Our �rst algorithm
onstru
ts a fa
tor ora
le based on the

su�xes of p in a way that is more intuitive. Some of the
ru
ial properties of

fa
tor ora
les, whi
h in [1℄ need several lemmas to be proven, are immediately

obvious. Another important property however be
omes less obvious. A se
ond

algorithm gives a
lear insight in the relationship between the trie or dawg re
-

ognizing the fa
tors of p and the fa
tor ora
le re
ognizing a superset thereof.

We
onje
ture that an O(m) version of this trie-based algorithm exists.

Keywords: fa
tor ora
le, �nite automaton, weak fa
tor re
ognition, algorithm

derivation, pattern mat
hing.

1 Introdu
tion

A fa
tor ora
le is a data stru
ture for weak fa
tor re
ognition. It
an be des
ribed

as an automaton built on a string p of length m that (a) is a
y
li
, (b) re
ognizes

at least all fa
tors of p, (
) has m + 1 states (whi
h are all �nal), and (d) has m to

2m�1 transitions (
f. [1℄). Some example fa
tor ora
les are given in Figures 1 and 2.

0 1
a

2

b

4

c

b
3

b

c

c

Figure 1: Fa
tor ora
le for abb
 (re
ognizing ab
 62 fa
t(p))

37

Pro
eedings of the Prague Stringology Conferen
e '03

0 1
a

2

b

4

c

b
3

b

c

c
5

c
6

a

a

Figure 2: Fa
tor ora
le for abb

a (re
ognizing ab
; ab

; ab

a; ab
a; abb
a; bb
a; b
a 62

fa
t(p))

Fa
tor ora
les are introdu
ed in [1℄ as an alternative to the use of exa
t fa
tor

re
ognition in many on-line keyword pattern mat
hing algorithms. In su
h algorithms,

a window on a text is read ba
kward while attempting to mat
h a keyword fa
tor.

When this fails, the window is shifted using the information on the longest fa
tor

mat
hed and the mismat
hing
hara
ter.

Instead of an automaton re
ognizing exa
tly the set of fa
tors of the keyword,

it is possible to use a fa
tor ora
le: although it re
ognizes more strings than just

the fa
tors and thus might read ba
kwards longer than ne
essary, it
annot miss any

mat
hes. The advantage of using fa
tor ora
les is that they are easier to
onstru
t

and take less spa
e to represent
ompared to the automata that were previously used

in these fa
tor-based algorithms, su
h as su�x, fa
tor and subsequen
e automata.

This is the result of the latter automata la
king one or more of the four essential

properties of the fa
tor ora
le.

The fa
tor ora
le is introdu
ed in [1℄ by means of an O(m

2

)
onstru
tion algorithm

that is used as its de�nition. Furthermore, an O(m) sequential
onstru
tion algorithm

is des
ribed. It is not obvious by just
onsidering the algorithms that it re
ognizes

at least all fa
tors of p and has m to 2m� 1 transitions (i.e. that (b) and (d) hold).

For both algorithms, a number of lemmas are needed to prove this. In this paper, we

give two alternative algorithms for the
onstru
tion of a fa
tor ora
le.

Our �rst algorithm, in Se
tion 2,
onstru
ts a fa
tor ora
le based on the su�xes

of p. This algorithm is O(m

2

) and thus not of pra
ti
al interest, but it is more in-

tuitive to understand and properties (b) and (d)�two important properties of fa
tor

ora
les�are immediately obvious from the algorithm. The a
y
li
ity of the fa
tor or-

a
le however�
orresponding to property (a)�is not immediately obvious. Our proof

of this property (part of Property 6) is rather involved, whereas the property is imme-

diately obvious from the algorithms in [1℄. We prove that the alternative
onstru
tion

algorithm and those given in [1℄
onstru
t equivalent automata in Se
tion 3.

In Se
tion 4 we present our se
ond algorithm, whi
h
onstru
ts a fa
tor ora
le

from the trie re
ognizing the fa
tors of p. Although this algorithm is O(m

2

) as well,

it gives a
lear insight in the relationship between the trie and dawg re
ognizing the

fa
tors of p and the fa
tor ora
le re
ognizing a superset thereof. In addition, we

onje
ture that an O(m) trie-based algorithm exists.

Finally, Se
tion 5 gives a summary and overview of future work.

1.1 Related Work

An earlier version of this paper appears as [3, Chapter 4℄. In that thesis, some

properties of the language of a fa
tor ora
le are dis
ussed as well. The thesis also

38

Constru
ting Fa
tor Ora
les

dis
usses pattern mat
hing algorithms�among them those using fa
tor ora
les�and

the implementation of the fa
tor ora
le as part of the SPARE Time pattern mat
hing

toolkit, a revised and extended version of SPARE Parts ([9℄).

As mentioned before, fa
tor ora
les were introdu
ed in [1℄ as an alternative to the

use of exa
t fa
tor re
ognition in many on-line keyword pattern mat
hing algorithms.

A pattern mat
hing algorithm using the fa
tor ora
le is des
ribed in that paper as

well.

Apart from their use in pattern mat
hing algorithms, fa
tor ora
les have been

used in a heuristi
 to
ompute repeated fa
tors of a string [6℄ as well as to
ompress

text [7℄. An improvement for those uses of fa
tor ora
les is introdu
ed in [8℄ in the

form of the repeat ora
le.

Related to the fa
tor ora
le, the su�x ora
le�in whi
h only those states
orre-

sponding to a su�x of p are marked �nal�is introdu
ed in [1℄. In [2℄ the fa
tor ora
le

is extended to apply to a set of strings.

1.2 Preliminaries

A string p = p

1

:::p

m

of length m is a sequen
e of
hara
ters from an alphabet V . A

string u is a fa
tor (resp. pre�x, su�x) of a string v if v = sut (resp. v = ut, v = su),

for s; t 2 V

�

. We will use pref(p), su�(p) and fa
t(p) for the set of pre�xes, su�xes

and fa
tors of p respe
tively. A pre�x (resp. su�x or fa
tor) is a proper pre�x (resp.

su�x or fa
tor) of a string p if it does not equal p. We write u �

s

v to denote that u

is a su�x of v, and u <

s

v to denote that u is a proper su�x of v.

2 Constru
tion Based on Su�xes

Our �rst alternative algorithm for the
onstru
tion of a fa
tor ora
le
onstru
ts a

`skeleton' automaton for p�re
ognizing pref(p)�and then
onstru
ts a path for

ea
h of the su�xes of p in order of de
reasing length, su
h that eventually at least

pref(su�(p)) = fa
t(p) is re
ognized. If su
h a su�x of p is already re
ognized, no

transition needs to be
onstru
ted. If on the other hand the
omplete su�x is not yet

re
ognized there is a longest pre�x of su
h a su�x that is re
ognized. A transition on

the next, non-re
ognized symbol is then
reated, from the state in whi
h this longest

pre�x of the su�x is re
ognized, to a state from whi
h there is a path leading to state

m that spells out the rest of the su�x.

Build_Ora
le_2(p = p

1

p

2

:::p

m

)

1: for i from 0 to m do

2: Create a new �nal state i

3: end for

4: for i from 0 to m� 1 do

5: Create a new transition from i to i + 1 by p

i+1

6: end for

7: for i from 2 to m do

8: Let the longest path from state 0 that spells a pre�x of p

i

:::p

m

end in state j

and spell out p

i

:::p

k

(i� 1 � k � m)

9: if k 6= m then

39

Pro
eedings of the Prague Stringology Conferen
e '03

10: Build a new transition from j to k + 1 by p

k+1

11: end if

12: end for

Note that this algorithm is O(m

2

) (sin
e the operation on line 6
an be implemented

using a while loop). The fa
tor ora
le on p built using this algorithm is referred to

as Ora
le(p) and the language re
ognized by it as fa
tora
le(p).

The �rst two properties we give are obvious given our algorithm. They
orrespond

to (b) and (
)-(d) respe
tively as mentioned in Se
tion 1.

Property 1 fa
t(p) � fa
tora
le(p).

Proof: The algorithm
onstru
ts a path for all su�xes of p and all states are �nal.

Property 2 For p of length m, Ora
le(p) has exa
tly m + 1 states and between m

and 2m� 1 transitions.

Proof: States
an be
onstru
ted in steps 1-2 only, and exa
tly m + 1 states are

onstru
ted there. In step 4 of the algorithm, m transitions are
reated. In steps 5-8,

at most m� 1 transitions are
reated.

Property 3 (Glushkov's property) All transitions rea
hing a state i of Ora
le(p)

are labeled by p

i

.

Proof: The only steps of the algorithm that
reate transitions are steps 4 and 8. In

both, transitions to a state i are
reated labeled by p

i

.

Property 4 (Weak determinism) For ea
h state of Ora
le(p), no two outgoing

transitions of the state are labeled by the same symbol.

Proof: The algorithm never
reates an outgoing transition by some symbol if su
h a

transition already exists.

We now de�ne fun
tion po

ur(u; p) to give the end position of the leftmost o

urren
e

of u in p (equivalent to the same fun
tion in [1℄):

De�nition 1 Fun
tion po

ur 2 V

�

� V

�

! N is de�ned as

po

ur(u; p) = minfjtuj; p = tuvg (p; t; u; v 2 V

�

)

Note that if u 62 fa
t(p), po

ur(u; p) =1.

Property 5 For su�xes and pre�xes of fa
tors we have:

uv 2 fa
t(p)) po

ur(v; p) � po

ur(uv; p) (p; u; v 2 V

�

)

uv 2 fa
t(p)) po

ur(u; p) � po

ur(uv; p)� jvj (p; u; v 2 V

�

)

We introdu
e min(i) for the minimum length string re
ognized in state i�either in

a partially
onstru
ted or in the
omplete automaton.

In the following property, we use j

i

and k

i

to identify the values j and k attain

when
onsidering su�x p

i

:::p

m

of p in steps 5-8 of the algorithm.

40

Constru
ting Fa
tor Ora
les

Property 6 For the partial automaton
onstru
ted a

ording to algorithmBuild_-

Ora
le_2 with all su�xes of p of length greater than m� i + 1 already
onsidered

in steps 5-8 (2 � i � m+ 1), we have that

i. it is a
y
li

ii. for ea
h h with 1 � h < i, all pre�xes of p

h

:::p

m

are re
ognized

iii. for ea
h state n and outgoing transition to a state q 6= n+ 1,

q � k

max

+ 1 holds where k

max

= maxfk

h

; 1 < h < i ^ k

h

< mg

iv. for ea
h state n, min(n) is an element of fa
t(p), min(n) is a su�x of ea
h

string re
ognized in n, and n = po

ur(min(n); p)

v. if u 2 fa
t(p) is re
ognized, it is re
ognized in a state n � po

ur(u; p)

vi. for ea
h state n and ea
h symbol a su
h that there is a transition from n to a

state q by a, min(n) � a 2 fa
t(p) and q = po

ur(min(n) � a; p)

vii. for ea
h pair of states n and q, if min(n) �

s

min(q), then n � q, and as a

result, if min(n) <

s

min(q), then n < q

viii. if w is re
ognized in state n, then for any su�x u of w, if u is re
ognized, it is

re
ognized in state q � n

Proof: See Appendix A.

Note that Property 6, i.
orresponds to property (a) in Se
tion 1.

3 Equivalen
e to Original Algorithms

A fa
tor ora
le as introdu
ed in [1℄ is built by the following algorithm:

Build_Ora
le(p = p

1

p

2

:::p

m

)

1: for i from 0 to m do

2: Create a new �nal state i

3: end for

4: for i from 0 to m� 1 do

5: Create a new transition from i to i + 1 by p

i+1

6: end for

7: for i from 0 to m� 1 do

8: Let u be a minimal length word in state i

9: for all � 2 �; � 6= p

i+1

do

10: if u� 2 Fa
t(p

i�juj+1

:::p

m

) then

11: Build a new transition from i to

�

i� juj+ po

ur(u�; p

i�juj+1

:::p

m

) by �

12: end if

13: end for

�

Note that in [1℄ the term �juj is missing in the algorithm, although from the rest of the paper

it is
lear that it is used in the
onstru
tion of the automata

41

Pro
eedings of the Prague Stringology Conferen
e '03

14: end for

To prove the equivalen
e of the automata
onstru
ted by the two algorithms, we need

the following properties.

Property 7 For any state i of both Ora
le(p) (i.e. the fa
tor ora
le
onstru
ted a
-

ording to algorithm Build_Ora
le_2 and the fa
tor ora
le
onstru
ted a

ording

to algorithm Build_Ora
le), if u = min(i) then

u� 2 fa
t(p

i�juj+1

:::p

m

) � u� 2 fa
t(p)

Proof:): Trivial. (: By Property 6, iv. (for Build_Ora
le_2) and [1, Lemma

1℄ (for Build_Ora
le), i = po

ur(u; p). By Property 5, po

ur(u�; p) � i, hen
e

u� 2 fa
t(p

i�juj+1

:::p

m

).

Property 8 For any state i of an automaton
onstru
ted by either algorithm, if

u = min(i) and u� 2 fa
t(p) then

i� juj+ po

ur(u�; p

i�juj+1

:::p

m

) = po

ur(u�; p)

Proof:

i� juj+ po

ur(u�; p

i�juj+1

:::p

m

)

= { de�nition po

ur }

i� juj+minfjtu�j; p

i�juj+1

:::p

m

= tu�vg

= { u = min(i), hen
e re
ognized in i = po

ur(u; p) }

i� juj+minfjtu�j � (i� juj); p = tu�vg

= { u� 2 fa
t(p), property of min }

i� juj+minfjtu�j; p = tu�vg � (i� juj)

= {
al
ulus, de�nition po

ur }

po

ur(u�; p)

Property 9 The algorithms Build_Ora
le_2 and Build_Ora
le

onstru
t equivalent automata.

Proof: We prove this by indu
tion on the states. Our indu
tion hypothesis is that

for ea
h state j (0 � j < i), min(j) is the same in both automata, and the outgoing

transitions from state j are equivalent for both automata.

If i = 0, u = min(i) = " in both automata. Consider a transition
reated

by Build_Ora
le_2, say to state k by � 6= p

i+1

. Sin
e this transition exists,

u� 2 fa
t(p) and k = po

ur(u�; p) (due to Property 6, vi.). Using Properties 7

and 8, su
h a transition was
reated by Build_Ora
le as well. Similarly,
onsider

a transition
reated by Build_Ora
le, say to state k by �. This transition, say

on symbol �, leads to state k = i � juj + po

ur(u�; p

i�juj+1

:::p

m

) and was
reated

sin
e u� 2 fa
t(p

i�juj+1

:::p

m

) (see the algorithm). Using Properties 7 and 8, su
h a

transition was
reated by Build_Ora
le_2 as well.

42

Constru
ting Fa
tor Ora
les

If i > 0, using the indu
tion hypothesis and a
y
li
ity of the automata, i has

the same in
oming transitions and as a result min(i) is the same for both automata.

Using the same arguments as in
ase i = 0, the outgoing transitions from state i are

equivalent for both automata.

As a result, the two automata are equivalent.

4 Constru
tion Based on Trie

0 1
a

5

b

9

c

2
b

3
b

4
c

6
b

8

c
7

c

Figure 3: Trie re
ognizing fa
t(abb
)

0 1
a

5
b

4

c

2
b

3
b c
b

c

Figure 4: DAWG re
ognizing fa
t(abb
)

0 1
a

2

b

4

c

b
3

b

c

c

Figure 5: Fa
tor ora
le re
ognizing fa
t(abb
) [fab
g

There is a
lose relationship between the data stru
tures Trie(fa
t(p)) �the trie

([5℄) on fa
t(p)�re
ognizing exa
tly fa
t(p), DAWG(fa
t(p)) �the dire
ted a
y
li

word graph ([4℄) on fa
t(p)�re
ognizing exa
tly fa
t(p), and Ora
le(p)�the fa
tor

ora
le on p�whi
h re
ognizes at least fa
t(p).

It is well known that DAWG(fa
t(p))
an be
onstru
ted from Trie(fa
t(p)) by

merging states whose right languages are identi
al (see for example [4℄). The fa
tor

ora
le as de�ned by Ora
le(p)
an also be
onstru
ted from Trie(fa
t(p)), by merging

states whose right languages have identi
al longest strings (whi
h are su�xes of p).

An example of a trie, DAWG and fa
tor ora
le for the fa
tors of abb

an be seen in

Figures 3-5.

43

Pro
eedings of the Prague Stringology Conferen
e '03

De�nition 2 We de�ne Trie(S) as a 5-tuple <Q, V , Æ, ", F> where S is a �nite

set of strings, Q = pref(S) is the set of states, V is the alphabet, Æ is the transition

fun
tion, de�ned by

Æ(u; a) =

(

ua if ua 2 pref(S)

? if ua 62 pref(S)

(u 2 pref(S); a 2 V);

" is the single start state and F = S is the set of �nal states.

Property 10 For u; v 2 fa
t(p) we have :

uv 2 fa
t(p) ^ (8w : uw 2 fa
t(p) : jwj � jvj)) uv 2 su�(p)

uv

1

2 fa
t(p) ^ (8w : uw 2 fa
t(p) : jwj � jv

1

j)

^ uv

2

2 fa
t(p) ^ (8w : uw 2 fa
t(p) : jwj � jv

2

j)) v

1

= v

2

Property 11 For u 2 fa
t(p) and C 2 N,

(8w : uw 2 fa
t(p) : jwj � C) � (8w : uw 2 su�(p) : jwj � C)

Proof:): trivial. (: Let ux 2 fa
t(p), then (9y : : uxy 2 su�(p)), hen
e (9y : :

jxyj � C), and sin
e jyj � 0, jxj � C.

Using Properties 10 and 11, max

p

(u)
an be de�ned as the unique longest string v

su
h that uv 2 su�(p):

De�nition 3 De�ne max

p

(u) = v where v is su
h that

uv 2 su�(p) ^ (8w : uw 2 su�(p) : jwj � jvj)

We now present our simple trie-based
onstru
tion algorithm for fa
tor ora
les:

Trie_To_Ora
le(p = p

1

p

2

:::p

m

)

1: Constru
t Trie(fa
t(p))

2: for i from 2 to m do

3: Merge all states u for whi
h max

p

(u) = p

i+1

:::p

m

into the single state p

1

:::p

i

4: end for

The order in whi
h the values of i are
onsidered is not important. In addition, note

that it is not ne
essary to
onsider the states u for whi
h max

p

(u) = p

2

:::p

m

sin
e

there is pre
isely one su
h state u in Trie(fa
t(p)), u = p

1

. Due to Property 10, it is

su�
ient to only
onsider su�xes of p as longest strings.

Also note that the intermediate automata may be nondeterministi
, but the �nal

automaton will be weakly deterministi
 (as per Property 4).

The above algorithm has
omplexity O(m

2

) (assuming that max

p

(u) was
om-

puted during
onstru
tion of the trie). The
onstru
tion of a Trie
an be done in

O(m) time however, and the merging of the states is similar to minimization of an

44

Constru
ting Fa
tor Ora
les

a
y
li
 automaton, whi
h
an also be done in O(m). We therefore
onje
ture that an

O(m) trie-based fa
tor ora
le
onstru
tion algorithm exists.

To prove that algorithm Trie_To_Ora
le
onstru
ts Ora
le(p), we de�ne a

partition on the states of the trie, indu
ed by an equivalen
e relation on the states.

De�nition 4 Relation �

p

on states of Trie(fa
t(p)) is de�ned by

t �

p

u � max

p

(t) = max

p

(u) (t; u 2 fa
t(p))

Note that relation �

p

is an equivalen
e relation.

We now show that the partitioning into sets of states of Trie(fa
t(p)) indu
ed by �

p

,

is the same as the partitioning of Trie(fa
t(pa)) indu
ed by �

pa

, restri
ted to the

states of Trie(fa
t(p)), i.e.

Property 12

t �

p

u � t �

pa

u (t; u 2 fa
t(p); a 2 V)

Proof:

t �

p

u

� { de�nition �

p

}

max

p

(t) = max

p

(u)

� { }

max

p

(t)a = max

p

(u)a

� { (?) }

max

pa

(t) = max

pa

(u)

� { de�nition �

pa

}

t �

pa

u

where we prove (?) by

v = max

pa

(u)

� { de�nition max

pa

}

uv 2 su�(pa) ^ (8w : uw 2 su�(pa) : jwj � jvj)

� { u 2 fa
t(p), hen
e (9x : : uxa 2 su�(pa)),

hen
e jxaj > 0 and jvj > 0; su�(pa) = su�(p)a [f"g }

uv 2 su�(p)a ^ (8w : uw 2 su�(pa) : jwj � jvj)

� { jvj > 0 }

uv 2 su�(p)a ^ (8w : w 6= " ^ uw 2 su�(pa) : jwj � jvj) ^ v = v

0

a

� { su�(pa) = su�(p)a [f"g }

uv 2 su�(p)a ^ (8w : w 6= " ^ uw 2 su�(p)a : jwj � jvj) ^ v = v

0

a

45

Pro
eedings of the Prague Stringology Conferen
e '03

� { w = w

0

a }

uv 2 su�(p)a ^ (8w

0

: uw

0

a 2 su�(p)a : jw

0

aj � jv

0

aj) ^ v = v

0

a

� { }

uv 2 su�(p)a ^ (8w

0

: uw

0

2 su�(p) : jw

0

j � jv

0

j) ^ v = v

0

a

� { v = v

0

a }

uv

0

2 su�(p) ^ (8w

0

: uw

0

2 su�(p) : jw

0

j � jv

0

j) ^ v = v

0

a

� { de�nition max

p

}

v

0

= max

p

(u) ^ v = v

0

a

� { }

v = max

p

(u)a

Property 13 Algorithm Trie_To_Ora
le
onstru
ts Ora
le(p).

Proof: By indu
tion on jpj = m. If m = 0, p = ", and Trie(fa
t(")) = Ora
le(").

If m = 1, p = a (a 2 V), and Trie(fa
t(a))=Ora
le(a). If m > 1, p = xa

(x 2 V

�

; a 2 V), and we may assume the algorithm to
onstru
t part Ora
le(x)

of Ora
le(xa)
orre
tly (using fa
t(ua) = fa
t(u) [su�(u)a, Trie(fa
t(xa)) being

an extension of Trie(fa
t(x)), and Ora
le(xa) being an extension of Ora
le(x) (whi
h

is straightforward to see from algorithm Build_Ora
le_2 as well as [1, page 57,

after Corollary 4℄), and Property 12). Now
onsider the states of this partially
on-

verted automaton in whi
h su�xes of x are re
ognized. By
onstru
tion of the trie,

there are transitions from these states by a. The fa
tor ora
le
onstru
tion a

ord-

ing to algorithm Ora
le_Sequential in [1℄
reates Ora
le(xa) from Ora
le(x)+a

(i.e. the fa
tor ora
le for x extended with a single new state m rea
hable from state

m� 1 by symbol p

m

= a) by
reating new transitions to state m from those states in

whi
h su�xes of x are re
ognized and that do not yet have a transition on a. Sin
e

Trie_To_Ora
le merges all states t for whi
h max

xa

(t) = a into the single state

m, Ora
le(xa) is
onstru
ted
orre
tly from Trie(fa
t(xa)).

5 Con
lusions and Future Work

We have presented two alternative
onstru
tion algorithms for fa
tor ora
les and

shown the automata
onstru
ted by them to be equivalent to those
onstru
ted by

the algorithms in [1℄. Although both our algorithms are O(m

2

) and thus pra
ti
ally

ine�
ient
ompared to the O(m) sequential algorithm given in [1℄, they give more

insight into fa
tor ora
les.

Our �rst algorithm is more intuitive to understand and makes it immediately

obvious, without the need for several lemmas, that the fa
tor ora
le re
ognizes at

least fa
t(p) and has m to 2m� 1 transitions.

Our se
ond algorithm gives a
lear insight into the relationship between the trie

or dawg re
ognizing fa
t(p) and the fa
tor ora
le re
ognizing a superset thereof. We

46

Constru
ting Fa
tor Ora
les

onje
ture that an O(m) trie-based algorithm for the
onstru
tion of fa
tor ora
les

exists.

0 1
a

2

b

3

c

6

d

9

e

b
5

c

c
4

a

d

e

c d

e

7
a

8
c e

Figure 6: Fa
tor ora
le re
ognizing a superset of fa
t(p) (in
luding for example
a
e 62

fa
t(p)), for p = ab
a
da
e.

0 1
a

2

b

3

c

6

d

9

e

b

c

c
4

a

d

e

5
c d

7
a

8
c e

Figure 7: Alternative automaton with m + 1 states satisy�ng Glushkov's property

yet re
ognizing a di�erent superset of fa
t(p) than the fa
tor ora
le for p (in
luding

for example a
a
da
e 62 fa
tora
le(p), but not
a
e) and having less transitions, for

p = ab
a
da
e.

As stated in [1℄, the fa
tor ora
le is not minimal in terms of number of transitions

among the automata with m+ 1 states re
ognizing at least fa
t(p). We note that it

is not even minimal among the subset of su
h automata having Glushkov's property

(see Figures 6 and 7).

We are working on an automaton-independent de�nition of the language re
og-

nized by the fa
tor ora
le. Su
h a
hara
terization would enable us to
al
ulate how

many strings are re
ognized that are not fa
tors of the original string. This
ould

be useful in determining whether to use a fa
tor ora
le-based algorithm in pattern

mat
hing or not.

A
knowledgements

We would like to thank Mi
hiel Frishert for reading and
ommenting on earlier ver-

sions of this paper, and the anonymous referees for their helpful
omments and sug-

gestions.

47

Pro
eedings of the Prague Stringology Conferen
e '03

Referen
es

[1℄ Cyril Allauzen, Maxime Cro
hemore, and Mathieu Ra�not. E�
ient Experi-

mental String Mat
hing by Weak Fa
tor Re
ognition. In Pro
eedings of the 12th

onferen
e on Combinatorial Pattern Mat
hing, volume 2089 of LNCS, pages 51�

72, 2001.

[2℄ Cyril Allauzen and Mathieu Ra�not. Ora
le des fa
teurs d'un ensemble de mots.

Te
hni
al Report 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée,

June 1999.

[3℄ Loek G.W.A. Cleophas. Towards SPARE Time: A New Taxonomy and Toolkit

of Keyword Pattern Mat
hing Algorithms. MS
 thesis, Te
hnis
he Universiteit

Eindhoven, August 2003.

[4℄ Maxime Cro
hemore and Woj
ie
h Rytter. Text Algorithms. Oxford University

Press, 1994.

[5℄ E. Fredkin. Trie memory. Communi
ations of the ACM, 3(10):490�499, 1960.

[6℄ Arnaud Lefebvre and Thierry Le
roq. Computing repeated fa
tors with a fa
tor

ora
le. In L. Brankovi
 and J. Ryan, editors, Pro
eedings of the 11th Australasian

Workshop on Combinatorial Algorithms, pages 145�158, 2000.

[7℄ Arnaud Lefebvre and Thierry Le
roq. Compror: on-line losless data
ompression

with a fa
tor ora
le. Inf. Pro
ess. Lett., 83(1):1�6, 2002.

[8℄ Arnaud Lefebvre, Thierry Le
roq, and J. Alexandre. Drasti
 improvements over

repeats found with a fa
tor ora
le. In E. Billington, D. Donovan, and A. Khodkar,

editors, Pro
eedings of the 13th Australasian Workshop on Combinatorial Algo-

rithms, pages 253�265, 2002.

[9℄ Bru
e W. Watson and Loek Cleophas. SPARE Parts: A C++ toolkit for String

PAttern RE
ognition. Software: Pra
ti
e and Experien
e, 2003. To be published.

A Proof of Property 6

We �rst
onsider the automaton
onstru
ted in steps 1-4 of the algorithm. It is

straightforward to verify that the properties hold for i = 2.

Now assume that the properties hold for the automaton with all su�xes of p of

length greater than m � i + 1 already
onsidered. We prove that they also hold for

the automaton after the su�x of length m� i+ 1, p

i

:::p

m

, has been
onsidered.

If k = m in step 6, su�x p

i

:::p

m

is already re
ognized, no new transition will be

reated, the automaton does not
hange and the properties still hold.

If k < m, then we need to prove that ea
h of the properties holds for the new

automaton.

Ad i: By v., string p

i

:::p

k

is re
ognized in state j � po

ur(p

i

:::p

k

; p). Sin
e

p

i

:::p

k

�

s

p

1

:::p

k

and po

ur(p

1

:::p

k

; p) = k, po

ur(p

i

:::p

k

; p) � k due to Property 5.

Sin
e j � k, the transition
reated from j to k + 1 is a forward one.

48

Constru
ting Fa
tor Ora
les

Ad ii: Trivial.

Ad iii: We prove that the property holds for the new automaton by showing that

k = k

i

� k

max

, i.e. k will be
ome the new k

max

.

If k

max

= �1, k � k

max

learly holds.

If k

max

> �1, assume that k

max

> k, then there is an h su
h that 1 < h < i ^

k

h

< m ^ k

h

= k

max

. Fa
tor p

h

:::p

k

is re
ognized in g � k due to ii. and v.

If g = k, then p

h

:::p

k

is re
ognized in k and p

h

:::p

m

is re
ognized in m; so k

h

= m

whi
h
ontradi
ts k

h

< m.

If g < k, then p

h

:::p

k

is re
ognized in g < k. Sin
e p

i

:::p

k

is re
ognized in j = j

i

and p

i

:::p

k

�

s

p

h

:::p

k

, due to viii., j � g.

If j = g, then p

h

:::p

k

is the longest pre�x of p

h

:::p

m

re
ognized by the old automa-

ton, whi
h
ontradi
ts ii.

If j < g, then j < g < k. We know that min(g) �

s

p

h

:::p

k

(using iv.), min(j) �

s

p

h

:::p

k

(using iv. and p

i

:::p

k

�

s

p

h

:::p

k

) and therefore that min(j) <

s

min(g) (due

to vii.). Let l be the state to whi
h the transition by p

k+1

from g leads, i.e. l is the state

in whi
h p

h

:::p

k+1

is re
ognized. Using vi., we have that l = po

ur(min(g) � p

k+1

; p).

Using Property 5 we have that l � po

ur(p

h

:::p

k+1

; p) and the latter is � k + 1 due

to the de�nition of po

ur (sin
e k + 1 marks the end of an o

urren
e of p

h

:::p

k+1

).

We have po

ur(min(j) � p

k+1

; p) � po

ur(min(g) � p

k+1

; p) = l sin
e min(j) �

s

min(g). We want to prove that k + 1 � po

ur(min(j) � p

k+1

; p). Assume that

po

ur(min(j) � p

k+1

; p) < k + 1. If the �rst o

urren
e of min(j) � p

k+1

starts before

position i of p, then it is a pre�x of a su�x of p longer than p

i

:::p

m

and thus by ii.

min(j) � p

k+1

is re
ognized. Sin
e min(j) is re
ognized in j, a transition from j by

p

k+1

must exist and we have a
ontradi
tion. If the �rst o

urren
e of min(j) � p

k+1

starts at or after position i of p, then there exists a shortest string x su
h that

x �min(j) � p

k+1

2 pref(p

i

:::p

k

) and x �min(j) � p

k+1

is re
ognized in a state � j. But

then x �min(j) is re
ognized in a state n < j. By viii., sin
e min(j) �

s

x �min(j),

this means that min(j) is re
ognized in state s � n < j and we have a
ontradi
tion.

Thus k+1 � po

ur(min(j)�p

k+1

; p) � l and therefore, sin
e l � k+1 holds, l = k+1.

In that
ase, p

h

:::p

k+1

is re
ognized in l = k + 1 and p

h

:::p

m

is re
ognized in m. But

then k

h

= m, and we have a
ontradi
tion.

Thus, k

max

= k

h

� k = k

i

and iii. holds for the new automaton.

Ad iv: Let s = min(j), t = min(k + 1) and u = min(h) (k + 1 � h � m)

respe
tively in the old automaton. Due to the proof of iii., k = k

i

� k

max

and

therefore a unique path between k + 1 and h exists, labeled r, and�due to iv�

u �

s

tr.

If jsp

k+1

rj � juj, u remains the minimal length string re
ognized in state h. Sin
e

s �

s

p

i

:::p

k

, sp

k+1

r �

s

p

i

:::p

k+1

r. Sin
e u �

s

tr, tr �

s

p

1

:::p

k+1

r and jsp

k+1

rj � juj,

u �

s

sp

k+1

r and�due to iv.�u �

s

s

0

p

k+1

r as well for any s

0

re
ognized in state j.

If jsp

k+1

rj < juj, sp

k+1

r is the new minimal length string re
ognized in state

h. Sin
e s �

s

p

i

:::p

k

, sp

k+1

r �

s

p

i

:::p

k+1

r. Sin
e u �

s

tr, tr �

s

p

1

:::p

k+1

r and

jsp

k+1

rj < juj, sp

k+1

r �

s

u and�due to iv.�sp

k+1

r �

s

s

0

p

k+1

r as well for any s

0

re
ognized in state j.

Sin
e p

i

:::p

k+1

r was not re
ognized before, it is not a pre�x of p, p

2

:::p

m

, ...,

p

i�1

:::p

m

(using ii.), hen
e po

ur(p

i

:::p

k+1

r; p) = k + 1 + jrj. Sin
e s �

s

p

i

:::p

k

,

po

ur(sp

k+1

r; p) � k + 1 + jrj. Assume that po

ur(sp

k+1

r; p) < k + 1 + jrj, then

p

i

:::p

k+1

r = usp

k+1

rv (u; v 2 V

�

, v 6= ", juj minimal), sin
e sp

k+1

r
annot start before

49

Pro
eedings of the Prague Stringology Conferen
e '03

p

i

be
ause in that
ase it would have already been re
ognized by the old automaton.

Fa
tor us is re
ognized in state g < j (using i.) and�sin
e viii. holds�s �

s

us is

re
ognized in a state o � g < j. This
ontradi
ts s being re
ognized in j. As a result

po

ur(sp

k+1

r; p) = k + 1 + jrj.

Ad v: Any new fa
tor of p re
ognized after
reation of the transition from j to

k+1 has the form vp

k+1

r and is re
ognized in k+1+ jrj with v 2 fa
t(p) re
ognized

in state j. Sin
e k + 1 + jrj = po

ur(min(k + 1)r; p) (using iii., iv. holding for the

new automaton plus the fa
t that k is the new k

max

) and min(k+1) �r �

s

vp

k+1

r due

to iv. holding for the new automaton, k+1+ jrj � po

ur(vp

k+1

r; p) using Property 5.

Ad vi: The states n we have to
onsider are n = j and n = h for k + 1 � h � m.

For n = j, a new transition to k+1 is
reated and by iv., min(j) �

s

p

i

:::p

k

., hen
e

we have min(j) � p

k+1

�

s

p

i

:::p

k+1

, p

k+1�jmin(j)j

:::p

k+1

= min(j) � p

k+1

, min(j) � p

k+1

2

fa
t(p) and po

ur(min(j) �p

k+1

; p) � k+1. Sin
e min(j) �p

k+1

is re
ognized in state

k + 1, due to v. for the new automaton, k + 1 � po

ur(min(j) � p

k+1

; p). Therefore

k + 1 = po

ur(min(j) � p

k+1

; p).

For n = h with k + 1 � h � m, min(h)
hanges to sp

k+1

r if and only if

jsp

k+1

rj < juj (with r; s; u as in the proof of iv.). We know that ua 2 fa
t(p) and

q = po

ur(ua; p). Sin
e sp

k+1

r �

s

u, sp

k+1

ra �

s

ua, hen
e sp

k+1

ra 2 fa
t(p) as well

and po

ur(sp

k+1

ra; p) � po

ur(ua; p) = q, but due to v., q � po

ur(sp

k+1

ra; p)

hen
e q = po

ur(sp

k+1

ra; p).

Ad vii: Assume min(n) �

s

min(q). We have po

ur(min(n); p) � po

ur(min(q);

p) due to Property 5, whi
h a

ording to iv. is equivalent to n � q.

Ad viii: By indu
tion on jwj. It is true if jwj = 0 or jwj = 1. Assume that it

is true for all strings x su
h that jxj < jwj. We will show that it is also true for w,

re
ognized in n.

Let w = xa (x 6= "), x is re
ognized in h (0 < h < n). Consider a proper su�x of

w, re
ognized in state q. It either equals " and is re
ognized in state 0 � n or it
an

be written as va where v <

s

x.

Su�x va of w is re
ognized, therefore su�x v of x is re
ognized and a

ording

to the indu
tion hypothesis, v is re
ognized in state l � h. Let �x = min(h) and

�v = min(l). Due to iv. for the new automaton, �x �

s

x and �v �

s

v. We now prove

that �v �

s

�x. If l = h, then �v = �x. Now
onsider the
ase l < h. Sin
e v �

s

x and

�v �

s

v, �v �

s

x. Due to vii., �x 6�

s

�v. Thus, sin
e �v and �x both are su�xes of x, �v �

s

�x.

Sin
e �x is re
ognized in h and there is a transition by a from h to n, by vi. for the new

automaton we have that �xa 2 fa
t(p) and n = po

ur(�xa; p). Sin
e �v is re
ognized

in l and there is a transition by a from l to q, �va 2 fa
t(p) and q = po

ur(�va; p) due

to vi. for the new automaton. Sin
e �va �

s

�xa, po

ur(�va; p) � po

ur(�xa; p) due to

Property 5 and hen
e q � n.

We have shown that the properties hold for every partial automaton during the

onstru
tion. Consequently, they hold for the
omplete automaton Ora
le(p).

50

