Computing the Minimum k-Cover of a String

Richard Cole '8, Costas S. Iliopoulos 2, Manal Mohamed %,
W. F. Smyth 37 and Lu Yang*

! Computer Science Department, Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012-1185 U.S.A.
cole@cs.nyu.edu
2 Algorithm Design Group, Department of Computer Science,

King’s College London, London WC2R, 2LS, England
{csi,manal}@dcs.kcl.ac.uk
3 Algorithms Research Group, Department of Computing & Software,
McMaster University, Hamilton ON L8S 4K1, Canada &

School of Computing, Curtin University, Perth WA 6845, Australia
smythOmcmaster.ca
* IBM Canada Limited, 8200 Warden Avenue, Markham ON L6G 1C7, Canada
luyang@ca.ibm.com

Abstract. We study the minimum k-cover problem. For a given string x of
length n and an integer k, the minimum £k-cover is the minimum set of k-
substrings that covers z. We show that the on-line algorithm that has been
proposed by Iliopoulos and Smyth [IS92] is not correct. We prove that the
problem is in fact NP-hard. Furthermore, we propose two greedy algorithms
that are implemented and tested on different kind of data.

Keywords: string algorithm, k-cover, data compression, NP-complete, greedy algo-

rithm.

1 Introduction

The minimum k-cover problem is to compute, for a given string x and an integer
k < x|, aset U= {ui,ug, ..., uy} of substrings of x such that:

(i) every u; is of length k;
(ii) the set U covers the string x;

(iii) the number m = |U| of such substrings is the smallest possible.

§ Work supported in part by NSF grant CCR-0105678.
t Partially supported by a Marie Curie fellowship, Wellcome and Royal Society grants.

t Supported by an EPSRC studentship.
¥ Supported by a grant from the Natural Sciences & Engineering Research Council of Canada.

o1

Proceedings of the Prague Stringology Conference 03

This problem was studied by Iliopoulos and Smyth [IS92], where they designed an
O(n%*(n — k)) on-line algorithm. The idea of a k-cover is a generalization of the idea
of a cover, where a string w is called a cover of a string x if can be constructed
by concatenations and superpositions of w. For example, if x = ababaaba, then aba
and x are the covers of x. If w # x covers x then w is called a proper cover of a
coverable string x. The notion of a cover was introduced by Apostolico et al. [AFI91],
where they gave a linear time algorithm for the shortest covers problem. Breslauer
[B92] presented an on-line algorithm for the same problem. Moore and Smyth [MS94]
presented a linear time algorithm to compute all the covers of every prefix of a string.
An on-line algorithm for the same problem was developed by Li and Smyth [L.S02].
Two O(nlogn) algorithms for computing all maximal coverable substrings of a given
string were also presented, one by Iliopoulos and Mouchard [IM93] and the other by
Brodal and Pederson [BP00]. A lot of work has been done on parallel computation
of covers; see for example [B94| and [IP94].

A minimum k-cover provides a theoretical classification of strings according to
approximate periodicity. For every k, some strings have a minimum k-cover of car-
dinality 1, some a minimum k-cover of cardinality 2, and so on. Thus for a range of
k, a minimum k-cover can provide a measure of how close to periodic every string
x is. Practically, a minimum k-cover has a potential application in data compres-
sion of nonrandom strings. A minimum k-cover may also be useful in DNA sequence
analysis. A DNA sequence is based on a four-letter alphabet for example {a,c, g,t}.
Hence, finding the k-cover of a DNA sequence could be helpful for the analysis of its
structure.

In this paper, we briefly present Iliopoulos and Smyth’s on-line algorithm. Their
algorithm computes the minimum k-covers for all prefixes of a given string x in
O(n*(n — k)) time. We show why the algorithm does not work correctly (Section 3).
In the rest of the paper we consider two closely-related problems:

(Problem 1) for given z, k and m, decide whether there exists a k-cover of z of
cardinality m;

(Problem 2) compute a minimum k-cover of x.

For m = 1, Problem 1 can be solved in ©(n) time simply by computing all
the covers of z [MS94, MS95, LS02| while at the same time testing to determine
whether or not each one is of length k. For m > 1 we show by reduction to 3-SAT
that Problem 1 is NP-hard (Section 4). We then describe two efficient algorithms
that yield approximate solutions to Problem 2 (Section 5). These approximation
algorithms have been tested and shown to provide good results (Section 6). More
approximation algorithms were proposed in [Y00].

2 Preliminaries

A string is a sequence of zero or more symbols drawn from an alphabet 3. The set
of all strings over X is denoted by ¥*. The string of length zero is the empty string e;
a string x of length n > 0 is represented by xi2s - - - x,, where z; € ¥ for 1 < i < n.
A string w is a substring of x if x = wwv for u,v € X*. More precisely, let i < n and
J < n denote nonnegative integers: if 1 < i < j, z[i..j] denotes the substring of =

52

Computing the Minimum k-Cover of a String

that starts at position i and has length j — i + 1; otherwise, z[i..j] = €. A string w is
a prefix of x if x* = wu for some u € ¥*. Similarly, w is a suffiz of x if v = uw for
some u € X*.

The string zy is a concatenation of two strings and y. The concatenation of k
copies of x is denoted by x*. For two strings = z1---2, and y = vy - - -y, such
that z, ;.1 2, =y ---y; for some i > 1 (that is, such that = has a suffix equal to
a prefix of y), the string zq -+ -2, y;11 -+ - Y 18 said to be a superposition of x and y.
Alternatively, we may say that = overlaps with y.

A substring w is said to be a cover of a given string x if every position of = lies
within an occurrence of a string w within z. Additionally, if |w| < |z| then w is called
a proper cover of x. For example, x is always a cover of x, and w = aba is a proper
cover of x = abaababa.

For a given a nonempty string x of length n and a set

U= {uy,ug,...,un}

of m strings each of length k, we say that U is a k-cover of z if and only if every
position of x lies within an occurrence of some wu;, 1 < i < m. If m is the minimum
integer for which such a set U exists, then U is said to be a minimum k-cover of x. To
avoid trivialities we suppose throughout that 1 < k& < n/2. Note that 1 <m < [n/k].
Next we state some basic facts about the minimum k-cover.

Fact 1 The prefix x[1..k] and the suffix z[n — k4 1..n] are both necessarily elements
of every minimum k-cover of x.

Fact 2 The cardinality of a minimum k-cover of a string of length n is at most [n/k].

Fact 3 A minimum k-cover of a string x is not unique.

For example, if x = abede fg, then the sets

{abe, bed, ef g}, {abe, cde, ef g}, {abe, def, e fg}

are all minimum 3-covers of x.

In [IS92], the number of distinct minimum k-covers of a given string x of length
n has been proved to be exponential in n. This is a major complicating factor in the
design of polynomial time algorithm for computing the minimum k-covers of a given
string.

3 Iliopoulos & Smyth On-Line Algorithm

Recall that in [IS92], Tliopoulos and Smyth designed an O(n?(n — k)) time on-line
algorithm for computing a minimum k-cover of a given string x of length n. Their
algorithm scans a given string x from left to right and iteratively calculates a minimum
k-cover for every prefix of x. The algorithm is based upon the following two main
ideas:

1. Fact 1 states that a minimum k-cover of x[1..i + 1] must include the suffix
x[i — k + 2.0 + 1]. This is used as a yardstick to find a minimum k-cover.

53

Proceedings of the Prague Stringology Conference 03

2. For ¢ > k, a minimum k-cover of z[1..i + 1] depends only on the minimum
k-covers of the previous k positions; that is, the minimum k-cover of z[1..i —
k+1],...,2[1..0 — 1], z[1..4].

To achieve efficiency, the algorithm stores for each positions ¢ in x an array which
identifies all the k-substrings that occur in at least one of the minimum k-covers.
Let ¢; be the cardinality of this set. At step 7 + 1, the algorithm checks for each
position j € i — k 4 1..i, whether the current suffix x[i — k + 2..i + 1] has already been
included in the stored minimum k-cover of x[1..j]. If so then the set covers x[1..i + 1],
otherwise the current suffix has to be added to the set. Among these k candidates,
the algorithm chooses a set with the smallest cardinality as a minimum k-cover of
x[1..i + 1]. For more details see [IS92].

Lemma 3.1 For ¢ > 2k and [,I' = 1,2,..., let U;; denotes the distinct minimum
k-cover for z[1..7]. Then every minimum set U, is a superset of some minimum set
Uiy, i —k+1<7 <.

The above lemma is stated in [IS92] and it follows directly from the two ideas
stated at the beginning of this section. The algorithm as we briefly described also
relies on the correctness of the lemma. In the next example we will show that the
lemma is not correct and consequentially nor is the algorithm. The following example
illustrates just one of the situations where the algorithm fails to compute a minimum
k-cover.

Example: 1f © = bacaababbaaaccaabbabbbaaaac and k = 3 then when i + 1 = 27,
j € 24..26, and position 27 should form its minimum k-cover from position 24 because
c24 = min(c¢;), j € 24..27. The minimum k-covers of position 24 are as follows:

Uz, = {bac, aab, abb, baa, cca},
Uz o = {bac, aab, abb, baa, acc}.

Neither of them contains the suffix aac, so we get co; = ¢94 + 1 = 6, and accordingly
the minimum k-covers of position 27 are as follows:

Usra = {bac, aab, abb, baa, cca, aac},
Usz 2 = {bac, aab, abb, baa, acc, aac}.

But we can find at least one minimum k-cover that is different from Usy;; and Uszo;
namely:
Usr 3 = {bac, aab, abb, baa, caa, aac}.

U,z 3 is a k-cover of position 24, but not the minimum. However it will contribute to
the minimum when position 27 is reached. There is a potential problem for future
calculations if we lose U7 3 at position 27; for example if we extend x by adding aa to
the end. As we can see, Uz 3 can be a minimum k-cover of z[1..29]. Without keeping
Usz 3, we shall get cy9 = 7, one greater than the minimum.

The above suggests that in order to compute a minimum k-cover of the current
position, we have to refer to every single k-cover of the previous positions. Since
the number of minimum k-covers of a string may be exponential, we doubt that the
problem of computing a minimum k-cover can be solved in polynomial time.

54

Computing the Minimum k-Cover of a String

4 Problem 1 and NP-Completeness

The k-cover problem is to find a set cover of minimum size for a given string. Restating
this optimization problem as a decision one, we wish to determine whether a given
string has a k-cover of a given size m.

km-COVER = {(z, k,m) : string = has a k-cover of size m}.

The following theorem shows that this problem is NP-complete.

Theorem 4.1 The k,,-COVER € NP.

Proof. To show that k,,-COVER € NP, for a given string =, we use the set U, of m
substrings all of length £k as a certificate for . Checking whether U,, is a k-cover can
be accomplished in O(nlogn) time by checking whether, for each position 1 < i < n,
i is covered by at least one of the k-substrings in U,,.

We next prove that 3-SAT <, k,,,-COVER, which shows that a minimum k-cover
problem is NP-hard. 3-SAT is well-known to be NP-complete [C71|. We transform 3-
SAT to k,,~-COVER. Let V' = {v, v,...,v,} be a set of variables, C' = {¢y, ¢, ..., ¢,}
be the set of clauses and F' = ¢; AcaA. .. Ac, be a 3-SAT formula with ¢; = ¢4V 5V (3,
1 <1 <q.

We shall show how to construct from F' a string = such that = will have a k-cover
of size m if and only if F' is satisfiable. We choose £ = 3 and note that there is an
easy reduction to 2-CNF for £ = 2. The string x is build of substrings separated by
sequences of sssss; hence sss is one of the chosen covering k-strings, and thus we can
focus on the individual substrings. The construction will be made up of truth-setting
components, and satisfaction testing components.

Variable Choice

For each variable v € V| we construct the following 6 substrings (each substring is
proceeded and followed by sssss); each character is indexed by v:

Q) #orrSvomrr#, @{)#ttSoomtt+
(iii) #, (iv) #
(V)#a #o (vi)#o #a

The only ways to cover the above strings with 9 or fewer length 3 strings, are one of
the following (notice the uninteresting flexibility in (v) and (vi)):

1. {ss#ta,rr$, vdm, rrdt,, #ott, S0d, wit, #pss} and one of {s#p#a, #o#aS}-
2. {Ftarr, Svd, Trr, #4585, ss#y, 118, Vo7, tt#, } and one of {s#H b, FaFHbS)

To see this, consider covering string (iii). It can be done by one of ss#,, #45s,
s#aqs, but only the first two could be used elsewhere, so one of them may as well be
chosen. Clearly, 8 strings at least are needed to cover (i) and (ii) as they have no
length 3 substring in common. Thus, to use only 1 additional string to cover (v) and
(vi) we need to choose either ss#,, #,55 or #,5S, SS#.

The choice v and $0¢ (given by choosing ss#,) corresponds to v = T while the
choice vpm and $v¢ (given by choosing #,ss) corresponds to v = F.

95

Proceedings of the Prague Stringology Conference 03

Clause Satisfiability

For each clause ¢ € C, where ¢ = ¢,V {5V (3, the following substrings are created, again
preceded and followed by sssss. The characters, except for $;, ¢;, m;, ;1 = 1,2, 3 are
indexed by ¢ also; $;, ¢;, m;, £; carry the index for the literal.

(1)$1 €1 o1 1 Iy (ii) $2 £ @9 T ho (iii) S5 l3 ¢g T3 hg
(iV)$1 (V)$2 (Vi)$3

(Vii)hl (Viii)h2 (iX)hg

(X)¢1 7y hy dy ¢ o Dy (Xi)¢2 Ty hy dy ¢3 w3 h3 (Xii)¢3 w3 hs d3z ¢1 ™1 hy
(xiii) (xiv) s (xv)¢s

To cover (iv)-(ix) and (xiii)-(xv) we may as well choose ss$;, h;ss and ss¢; as these
are the only reusable substrings.

If ¢; is true, then /;¢;m; was already chosen; otherwise $,/;¢; was chosen. Thus, if
¢; is false; in (i)-(iii), m; remains to be covered. The only reusable covering string is
¢imih;.

Consider strings (x)-(xii) and suppose at least one ¢; is true. Without loss of
generality let it be ¢;. Then it is not hard to see that 5 more strings that include
pamahe and ¢3mzhs thereby covering m in (ii) and 73 in (iii) suffice. We choose:
Gomohs, p3mshs, T hidy, dagpsms and dzpimy. 1t is not hard to see that 5 covering strings
are needed: 3 to cover dy,ds and ds, but this can only completely cover one of 7,
and 73 as each occurs twice, and hence two more covering strings are needed for the
remaining pair among 7y, T and 7s.

If no ¢; is true, we are obliged to choose ¢ 7w hy, pamohy and ¢3m3hs as well as 3
strings to cover dy,ds and ds. At least 6 covering strings in all are needed. Thus, if
F is satisfiable then the full string can be covered by

m=9p+6p+3¢+5¢g+1=15p+8¢+1

covering strings, where p is the number of variables in F' and ¢ is the number of
clauses. Otherwise, it needs at least 15p 4+ 8¢ + 2 covering strings. O

5 Approximate Minimum k-Cover

In this section we introduce two greedy algorithms to compute a minimum k-cover.
The greedy method works by picking, at each stage, the k-substring which covers the
greatest number of uncovered positions. The first algorithm works globally while the
second algorithm follows a local strategy. To calculate all possible k-substrings in a
given string x, both greedy algorithms use Crochemore’s partitioning algorithm [C81]
to preprocess the input string x.

Originally, Crochemore’s algorithm was designed to compute the repetitions in a
string in O(nlogn) time. A string has a repetition when it has at least two consecutive
equal substrings. For example, abab is a repetition in aababba = a(ab)?ba. We shall
use the algorithm in another way — to find the sets of the starting positions of all
the distinct substrings of length k£ in a given string x. This idea can be expressed
more precisely as follows:

56

Computing the Minimum k-Cover of a String

Given a string z[1..n] and an integer k£, Crochemore’s algorithm is used to compute
the equivalence classes of all equal substrings of length £ in . We denote these equiv-
alence classes by ey, es, ..., e,,, where the elements in e; are sorted integers denoting
starting positions of equal substrings, and m is the number of possible equivalence
classes returned by the algorithm.

These elements are stored using a global array L[1..n], such that L[i] is the next
position in the same equivalence class of equal substrings of length k. That is, L[i] = j
if L[i..i+k—1] = x[j..j + k — 1] and the circular sequence i, L[i], L[L[i]], ..., L*[i] = i
identifies all ¢ k-substrings in x that are equal to z[i..i + k — 1].

For example, if x = abaababaabaab and k = 3 then e; = {3,8,11}, ey =
{1,4,6,9}, e3 = {2,7,10}, and e, = {5} are the equivalence classes. Where aab, aba,
baa, bab are the corresponding 3-substrings. Hence, the value of array L is as follows:

123456 7 8 91011 12 13

r= abaababaabaabd
Lli] 47865910111 2 3
Fidli] 2312423 1231

In the above, Fid[i] identifies the equivalence class containing position i. In the
following subsections, we shall present two approximation algorithms. We call the
first Global-Uncovered and the second Local-Uncovered.

5.1 Global-Uncovered Algorithm

Recall that the greedy algorithm works by selecting one k-substring at a time that cov-
ers the most positions among the uncovered ones. Our greedy algorithm is comparable
to the greedy one [J74] to construct the minimum set cover. The cost of a greedy
solution is known to come always within a multiplicative factor of H(max; |EC}|),
where EC; is the number of positions that could be covered by the k-substring j.
Here, H(d) = >2{_, 1 is the dth harmonic number and is bounded by 1 + logd. This
was shown by Johnson [J74] and Lovasz [L.75] for the general SET COVER problem.

The key to Algorithm Global-Uncovered is finding the equivalence class which can
cover the maximum number of so-far-uncovered positions efficiently. The details of
the algorithm are provided in Figure 1. To achieve efficiency, the algorithm uses the

following data structures:

1. An array Fbucket[1..n] indexed by the number of so-far-uncovered positions
that could be covered by a single equivalence class. Each element (bucket) of
the array is doubly-linked list of the equivalence classes that could cover equal
number of so-far-uncovered positions. Thus, every element of the doubly linked
list contains an index of an equivalence class in addition to the left and the right
pointers to the adjacent elements.

2. A two dimensional array Eptr[l..m] indexed by the equivalence class j. Where
Eptr|j][bucket] identifies the bucket that includes j in its doubly linked list.
In other words, equivalence class j could cover Eptr[j|[bucket] so-far-uncovered
positions. Additionally Eptr[j][ptr] is a pointer to the corresponding element
of the doubly linked list Ebucket|Eptr[j][bucket]]. Thus, any elements of the
doubly linked lists can be referenced in constant time by using Eptr.

o7

Proceedings of the Prague Stringology Conference 03

Algorithm Global-Uncovered(z, k)

Input: A string z of length n, an integer 0 < k <n

Output: An approximate minimum k-cover U,

1. (L[1..n], Eid[1..n], start[1..m],m) <CrochemorePar(x, k)
2. cover_so_far[l.n] <F,F,...,F

3. initialization:

4. Uy«0

5. for e +1tom do
6 Euncovle] <0 **number of positions that could be covered by equivalence class e**
7. foric-lton—-Fk+1

8

. if i < L[i]
9. then Euncov[Eid[i]] + = man(k, L[i] — i)
10. else Funcov[FEid[i]] + = k

11. (Ebuckect, Eptr) <Bucket-Sort(Euncov)

12. The algorithm:

13. k_prefiz,k_suffix «Eid[l], Eidln — k + 1]
14. GU-Cover(k_prefiz, Ebucket, Eptr)

15. Add(Uy, k_prefiz)

16. if k_suffix #k_prefiz

17. then GU-Cover(k_suf fixz, Ebucket, Eptr)
18. Add(Uy, k_suf fiz)

19. e < Head(Ebucket)

20. while e # 0

21. GU-Cover(e, Ebucket, Eptr)
22. Add(Uy, e)
23. e < Head(Ebucket)

24. return U,

25. Function GU-Cover(e, Ebucket, Eptr)
26. i <startle] **the first element in the equivalence class e**

27. repeat

28. for j <1 to k do

29. if cover_so_ far[i+ j— 1] = F then

30. cover _so_ far[i+j — 1]«T

31. for every 1 € EBid[(i +j—1)—k+1],...Eidli + j — 1] do

32. Delete(Ebucket[Eptr[l][bucket]], Eptr[l][ptr])

33. if Eptr[l][bucket] # 1

34. then Insert(Ebucket|Eptr[l][bucket — 1]],Eptr[l][ptr])
35. Eptr[l][bucket] < Eptr(l][bucket] — 1

36. i «Lli]

37. until (i = startle])

Figure 1: Global-Uncovered Algorithm.

58

Computing the Minimum k-Cover of a String

Once Ebucket is established, the k-prefix and the k-suffix are the first elements
to be included in the approximate minimum k-cover. The algorithm then iteratively
choose a head element of Ebucket as an element of the approximate minimum k-
cover. The head element is an equivalence class that covers the largest number of so
far uncovered positions. Finding such equivalence classes costs O(n) time throughout
the calculations.

The algorithm requires O(nlogn) time to run Crochemore’s algorithm and an
additional O(n) time to construct and initialize Ebucket and Eptr. Note that a
linear time Bucket-Sort has been used because the number of positions that could be
covered by any equivalence class is bounded.

For each position i, cover so_ far[i] is initialized to F' and set to T once during
the calculation. When cover _so_ far[i] is set from F' to T, O(k) elements in Ebucket
may need to be deleted from the current bucket and inserted to the next bucket.
Each rearrangement costs O(1) time. Thus, the total time required to maintain the
elements in Ebucket throughout the calculation is O(kn). Summing the above gives
the total running time: O(nlogn) + O(n) + O(kn) = max{O(nlogn), O(kn)} time,
which for a fixed k, asymptotically approaches O(nlogn) as n increases to oo.

5.2 Local-Uncovered Algorithm

Algorithm Local-Uncovered chooses its candidate element, of the approximate mini-
mum k-cover, in a range of Fid[left uncover —k+1]..Eid[left uncover]; the integer
left _uncover keeps track of the leftmost so-far-uncovered position. The algorithm
uses the array uncover mno. The array uncover no[l..m] is indexed by the equiva-
lence classes, where uncover nolj| is the number of positions corresponding to equiv-
alence class j that have not been covered. Hence, the values of the array need to be
updated dynamically during the computation. The details of the algorithm are pro-
vided in Figure 2.

The initialization is just the same as in Global-Uncovered. However, we need to
update uncover mno. As in Global-Uncovered, the k-prefix and the k-suffix are the
first two elements to be included in the approximate minimum k-cover. The algorithm
then tries to cover the leftmost uncovered position with the k-substring corresponding
to the equivalence class which can cover the maximum number of uncovered positions.
That is, let 7 = left uncover if j < n, then the chosen k-substring is the one
corresponding to equivalence class satisfying

max{uncover no[Eid[j — k + 1], uncover _nolj — k + 2|,..., uncover_ _no[Fid|[j]]}.
A brief analysis of the algorithm shows that the algorithm requires:

e O(nlogn): to run Crochemore’s algorithm;

e O(n): Step 2, the loop on (Steps 6-9), and the total time spent in Add();

e O(k): the loop on (Steps 19-23);

e O(kn): is the total time of the LU-Cover subroutine.

Summing the above gives the total running time O(nlogn)+O(n)+O(k) 4+ O(kn) =
maz{O(nlogn),O(kn)} time.

29

Proceedings of the Prague Stringology Conference 03

Algorithm Local-Uncovered(z, k)
Input: A string = of length n, an integer 0 < k <n
Output: An approximate minimum k-cover U,

1.

® N ook LD

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

(L[1..n], Eid[1..n],m) <CrochemorePar(z, k)
cover_so_far[l.n] < F,F,...,F
initialization:
U 0
left _uncover <1
for i«~1ton—k+1do
if i < L[i]
then uncover no|Eid]i]
else uncover no|Eid]i]

. The algorithm:
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

k_prefiz,k_suf fix < Eid[1], Fidjn — k + 1]
LU-Cover(k_prefiz,1,uncover _no,left uncover)
Add(U;, k_prefix)
if k_suffizx#k_prefiz then
LU-Cover(k_suf fix,n —k + 1,uncover _no,left uncover)
Add(U, k_suf fix)
while left uncover < n do
maz = 0
for 7 +1 to k do
if uncover no[Eid[left uncover — j + 1]] > maz then
max <uncover _no[Fid[left uncover — j + 1]]
e «FEid[left _uncover — j + 1]
s «left _uncover —j +1
LU-Cover(e, s, uncover_ _no,left uncover)
Add(U,, e)
return U

Function LU-Cover(e, start,uncover _no,left _uncover)
1 <start
repeat
for j +1 to k do
if cover _so_far[i+j— 1] = F then
cover_so_ farfi +j — 1]«T
for every | € Eid[(i+j—1)—k+1],...Eid[i +j — 1] do
uncover _no[l] — =1
i «LJ[i]
until (i = start)
while left _uncover < n and cover so_ far[left uncover] do
left _uncover + +

Figure 2: Local-Uncovered Algorithm.

60

Computing the Minimum k-Cover of a String

Length [Un| | [Ucu| | \Uru| | Usest| | an (%) | acu (%) | ary (%)
100 12 11 11 11 9.09 0 0
200 14 14 14 14 0 0 0
300 14 15 15 14 0 7.14 7.14
400 16 15 17 15 6.67 0 13.3
500 17 17 17 17 0 0 0
600 16 16 16 16 0 0 0
700 18 16 16 16 12.5 0 0
800 17 17 19 17 0 0 11.8
900 18 16 18 16 12.5 0 12.5
1000 18 17 16 16 12.5 6.25 0

Average (%) | / / / / 5.33 1.34 4.47

Table 1: Pseudo-Random Strings on Alphabet {a, b, ¢}, and k = 3

6 Experimental Results

We used four types of strings: sturmian strings, pseudo random strings on the al-
phabets: {a,b}, {a,b,c}, {a,b,c,d}, DNA sequences*, and English text. In order
to compare our approximate methods in term of effectiveness, we developed a naive
algorithm based on the Iliopoulos and Smyth algorithm. This naive algorithm finds
the minimum k-cover at position ¢ + 1 by testing each position j € ¢ — k4 1..7 in the
same way as in [liopoulos and Smyth’s. However, the key difference is that the algo-
rithm stores not only the covers that are minimum but also those that are one more
than minimum at every position. Thus, the aim here is to store as much informa-
tion as possible taking into consideration the limitation of the computer’s resources.
The implementation results show that the naive algorithm does not always yield the
best k-cover - in most cases the two approximate algorithms yield better results. Let
U,nin be the minimum k-cover of a string z, Uy be the result computed by our naive
method, Ugy be the result computed by Global-Uncovered algorithm, and Uy be
the result computed by Local-Uncovered algorithm. Then the following simplifying
assumption has been made:

\Unin| < |Upest| = min{|Un|, |Ucv |, |Urv|}

Table 1, 2, 3 show that Algorithm Global-Uncovered yields the best result in most
cases, the naive algorithm never exceed a deviation of 7.83%, and Algorithm Local-
Uncovered never exceed 6.24%. The following observations are also worth mentioning:

e The Sturmian strings are very well-structured. For the tested Sturmian strings,
from length of 20 to 1000, for every k € 3,4, 5, |Upest| = 2.

e For the tested pseudo-random strings and DNA sequences, |Ujes| increases as
the values of k, the length n, and the alphabet size are increasing.

e Let |Upesi—pnal denotes the cardinality of the approximate minimum k-cover
of DNA sequence and |[Upes;—apeq| denotes the cardinality of the approximate

*excerpted from www.cbs.dtu.dk/databases/DNA2protSS /nucall.seq.

61

Proceedings of the Prague Stringology Conference 03

Length Un| | [Ucu| | [Urv] | [Usest| | an (%) | acu (%) | ary (%)
100 19 19 19 19 0 0 0
200 25 26 27 25 0 4.00 8.00
300 32 29 29 29 10.3 0 0
400 37 34 36 34 8.80 0 .88
500 36 36 35 35 2.86 2.86 0
600 37 36 37 36 2.78 0 2.78
700 37 35 38 35 5.71 0 8.57
800 42 37 39 37 16.2 0 5.41
900 42 35 42 35 20 0 20
1000 42 38 39 38 10.5 0 2.63

Average (%) | / / / / 7.71 0.68 5.32

Table 2: Pseudo-Random Strings on Alphabet {a, b, ¢, d}, and k = 3

Length \Un| | [Ucu| | [Urv| | |Usest| | an (%) | acu (%) | oy (%)
60 13 13 13 13 0 0 0
126 21 22 23 21 0 4.76 9.52
171 23 22 23 22 4.54 0 4.54
234 25 24 26 24 4.17 0 8.33
312 32 29 30 29 10.3 0 3.45
432 26 27 29 26 0 3.85 11.5
591 34 31 35 31 9.68 0 12.9
771 40 34 36 34 17.6 0 5.89
1233 43 38 37 37 24.3 2.70 0

Average (%) | / / / / 7.83 1.26 6.24

Table 3: DNA Sequences, and k =3

62

Computing the Minimum k-Cover of a String

minimum k-cover of pseudo-random strings on alphabet {a, b, ¢, d}. For the
same value of k and n, |Upesi—pnal < |Ubest—abed|- We can make a conjecture
that DNA sequences are better structured than pseudo-random strings on an
alphabet of size 4.

Conclusions

We have shown that for & > 2, the k-cover problem (Problem1) is NP-Complete. We
have then proposed two O(nlogn) greedy algorithms that can be used to calculate an
approximate minimum k-cover. The results obtained by the algorithms are believed
to come within a multiplicative factor of the minimum. Prove this has been left as
an open problem.

References

[AFI91] A. Apostolico, M. Farach & C. S. Iliopoulos, Optimal superprimitivity
testing for strings, Information Processing Letters 39-1 (1991) 17-20.

[B92] D. Breslauer, An on-line string superprimitivity test, Information
Processing Letters 44 (1992) 345-347.

[B94] D. Breslauer, Testing string superprimitivity in parallel, Informa-
tion Processing Letters 49-5 (1994) 235-241.

[BPOO] G. S. Brodal & C. Pederson, Finding maximal quasiperiodicities in
strings. In Proceedings of the 11th Annual Symposium on Combinatorial
Pattern Matching (CPM) (2000) 397-411.

[CT71] Stephen A. Cook, The complexity of theorem-proving procedures,
Proc. Third Annual ACM Symp. on Theory of Computing (1971) 151-158.

[C81] M. Crochemore, An optimal algorithm for computing all the repe-
titions in a word, Information Processing Letters 12-5 (1981) 244-248.

[TM93] C. S. liopoulos & L. Mouchard, An O(nlogn) algorithm for comput-
ing all maximal quasiperiodicities in strings, Theoratical Computer
Science 119-2 (1993) 247-265.

[TP94] C. S. Tliopoulos & K. Park, An optimal O(loglogn)-time algorithm
for parallel superprimitivity testing, Journal of the Korea Informa-
tion Science Society 21-8 (1994) 1400-1404.

[1S92] C. S. Iliopoulos & W. F. Smyth, An on-line algorithm of computing
a minimum set of k-covers of a string, Proc. Ninth Australasian
Workshop on Combinatorial Algorithms (AWOCA), (1998) 97-106.

[J74] D. S. Johnson, Approximation algorithms for combinatorial prob-

lems, Journal of Computer and System Science 9 (1974) 256-278.

63

Proceedings of the Prague Stringology Conference 03

[MS94] D. Moore & W. F. Smyth, An optimal algorithm to compute all the
covers of a string, Information Processing Letters 50-5 (1994) 239-246.

[MS95] D. Moore & W. F. Smyth, A correction to: An optimal algorithm
to compute all the covers of a string, Information Processing Letters
54 (1995) 101-103.

[L75] L. Lovasz, On the ratio of optimal integral and fractional covers,
Discrete Mathematics 13 (1975) 383-390.

[LS02] Y. Li & W. F. Smyth, Computing the cover array in linear time,
Algorithmica 32-1, (2002) 95-106.

[Y00] Lu Yang, Computing the Minimum k-Cover of a String, M. Sc.
thesis, McMaster University, (2000).

64

