
Computing the Minimum k-Cover of a String

Ri
hard Cole

1x

, Costas S. Iliopoulos

2y

, Manal Mohamed

2z

,

W. F. Smyth

3{

and Lu Yang

4

1

Computer S
ien
e Department, Courant Institute of Mathemati
al S
ien
es,

New York University, New York, NY 10012-1185 U.S.A.

ole�
s.nyu.edu

2

Algorithm Design Group, Department of Computer S
ien
e,

King's College London, London WC2R 2LS, England

{
si,manal}�d
s.k
l.a
.uk

3

Algorithms Resear
h Group, Department of Computing & Software,

M
Master University, Hamilton ON L8S 4K1, Canada &

S
hool of Computing, Curtin University, Perth WA 6845, Australia

smyth�m
master.
a

4

IBM Canada Limited, 8200 Warden Avenue, Markham ON L6G 1C7, Canada

luyang�
a.ibm.
om

Abstra
t. We study the minimum k-
over problem. For a given string x of

length n and an integer k, the minimum k-
over is the minimum set of k-

substrings that
overs x. We show that the on-line algorithm that has been

proposed by Iliopoulos and Smyth [IS92℄ is not
orre
t. We prove that the

problem is in fa
t NP-hard. Furthermore, we propose two greedy algorithms

that are implemented and tested on di�erent kind of data.

Keywords: string algorithm, k-
over, data
ompression, NP-
omplete, greedy algo-

rithm.

1 Introdu
tion

The minimum k-
over problem is to
ompute, for a given string x and an integer

k < jxj, a set U = fu

1

; u

2

; : : : ; u

m

g of substrings of x su
h that:

(i) every u

i

is of length k;

(ii) the set U
overs the string x;

(iii) the number m = jU j of su
h substrings is the smallest possible.

x

Work supported in part by NSF grant CCR-0105678.

y

Partially supported by a Marie Curie fellowship,Well
ome and Royal So
iety grants.

z

Supported by an EPSRC studentship.

{

Supported by a grant from the Natural S
ien
es & Engineering Resear
h Coun
il of Canada.

51

Pro
eedings of the Prague Stringology Conferen
e '03

This problem was studied by Iliopoulos and Smyth [IS92℄, where they designed an

O(n

2

(n� k)) on-line algorithm. The idea of a k-
over is a generalization of the idea

of a
over, where a string w is
alled a
over of a string x if x
an be
onstru
ted

by
on
atenations and superpositions of w. For example, if x = ababaaba, then aba

and x are the
overs of x. If w 6= x
overs x then w is
alled a proper
over of a

overable string x. The notion of a
over was introdu
ed by Apostoli
o et al. [AFI91℄,

where they gave a linear time algorithm for the shortest
overs problem. Breslauer

[B92℄ presented an on-line algorithm for the same problem. Moore and Smyth [MS94℄

presented a linear time algorithm to
ompute all the
overs of every pre�x of a string.

An on-line algorithm for the same problem was developed by Li and Smyth [LS02℄.

Two O(n logn) algorithms for
omputing all maximal
overable substrings of a given

string were also presented, one by Iliopoulos and Mou
hard [IM93℄ and the other by

Brodal and Pederson [BP00℄. A lot of work has been done on parallel
omputation

of
overs; see for example [B94℄ and [IP94℄.

A minimum k-
over provides a theoreti
al
lassi�
ation of strings a

ording to

approximate periodi
ity. For every k, some strings have a minimum k-
over of
ar-

dinality 1, some a minimum k-
over of
ardinality 2, and so on. Thus for a range of

k, a minimum k-
over
an provide a measure of how
lose to periodi
 every string

x is. Pra
ti
ally, a minimum k-
over has a potential appli
ation in data
ompres-

sion of nonrandom strings. A minimum k-
over may also be useful in DNA sequen
e

analysis. A DNA sequen
e is based on a four-letter alphabet for example fa;
; g; tg.

Hen
e, �nding the k-
over of a DNA sequen
e
ould be helpful for the analysis of its

stru
ture.

In this paper, we brie�y present Iliopoulos and Smyth's on-line algorithm. Their

algorithm
omputes the minimum k-
overs for all pre�xes of a given string x in

O(n

2

(n� k)) time. We show why the algorithm does not work
orre
tly (Se
tion 3).

In the rest of the paper we
onsider two
losely-related problems:

(Problem 1) for given x, k and m, de
ide whether there exists a k-
over of x of

ardinality m;

(Problem 2)
ompute a minimum k-
over of x.

For m = 1, Problem 1
an be solved in �(n) time simply by
omputing all

the
overs of x [MS94, MS95, LS02℄ while at the same time testing to determine

whether or not ea
h one is of length k. For m > 1 we show by redu
tion to 3-SAT

that Problem 1 is NP-hard (Se
tion 4). We then des
ribe two e�
ient algorithms

that yield approximate solutions to Problem 2 (Se
tion 5). These approximation

algorithms have been tested and shown to provide good results (Se
tion 6). More

approximation algorithms were proposed in [Y00℄.

2 Preliminaries

A string is a sequen
e of zero or more symbols drawn from an alphabet �. The set

of all strings over � is denoted by �

�

. The string of length zero is the empty string �;

a string x of length n > 0 is represented by x

1

x

2

� � �x

n

, where x

i

2 � for 1 � i � n.

A string w is a substring of x if x = uwv for u; v 2 �

�

. More pre
isely, let i � n and

j � n denote nonnegative integers: if 1 � i � j, x[i::j℄ denotes the substring of x

52

Computing the Minimum k-Cover of a String

that starts at position i and has length j � i+ 1; otherwise, x[i::j℄ = �. A string w is

a pre�x of x if x = wu for some u 2 �

�

. Similarly, w is a su�x of x if x = uw for

some u 2 �

�

.

The string xy is a
on
atenation of two strings x and y. The
on
atenation of k

opies of x is denoted by x

k

. For two strings x = x

1

� � �x

n

and y = y

1

� � �y

m

su
h

that x

n�i+1

� � �x

n

= y

1

� � � y

i

for some i � 1 (that is, su
h that x has a su�x equal to

a pre�x of y), the string x

1

� � �x

n

y

i+1

� � � y

m

is said to be a superposition of x and y.

Alternatively, we may say that x overlaps with y.

A substring w is said to be a
over of a given string x if every position of x lies

within an o

urren
e of a string w within x. Additionally, if jwj < jxj then w is
alled

a proper
over of x. For example, x is always a
over of x, and w = aba is a proper

over of x = abaababa.

For a given a nonempty string x of length n and a set

U = fu

1

; u

2

; : : : ; u

m

g

of m strings ea
h of length k, we say that U is a k-
over of x if and only if every

position of x lies within an o

urren
e of some u

i

, 1 � i � m. If m is the minimum

integer for whi
h su
h a set U exists, then U is said to be a minimum k-
over of x. To

avoid trivialities we suppose throughout that 1 < k < n=2. Note that 1 � m � dn=ke.

Next we state some basi
 fa
ts about the minimum k-
over.

Fa
t 1 The pre�x x[1::k℄ and the su�x x[n� k+1::n℄ are both ne
essarily elements

of every minimum k-
over of x.

Fa
t 2 The
ardinality of a minimum k-
over of a string of length n is at most dn=ke.

Fa
t 3 A minimum k-
over of a string x is not unique.

For example, if x = ab
defg, then the sets

fab
; b
d; efgg; fab
;
de; efgg; fab
; def; efgg

are all minimum 3-
overs of x.

In [IS92℄, the number of distin
t minimum k-
overs of a given string x of length

n has been proved to be exponential in n. This is a major
ompli
ating fa
tor in the

design of polynomial time algorithm for
omputing the minimum k-
overs of a given

string.

3 Iliopoulos & Smyth On-Line Algorithm

Re
all that in [IS92℄, Iliopoulos and Smyth designed an O(n

2

(n � k)) time on-line

algorithm for
omputing a minimum k-
over of a given string x of length n. Their

algorithm s
ans a given string x from left to right and iteratively
al
ulates a minimum

k-
over for every pre�x of x. The algorithm is based upon the following two main

ideas:

1. Fa
t 1 states that a minimum k-
over of x[1::i + 1℄ must in
lude the su�x

x[i� k + 2::i+ 1℄. This is used as a yardsti
k to �nd a minimum k-
over.

53

Pro
eedings of the Prague Stringology Conferen
e '03

2. For i � k, a minimum k-
over of x[1::i + 1℄ depends only on the minimum

k-
overs of the previous k positions; that is, the minimum k-
over of x[1::i �

k + 1℄; : : : ; x[1::i� 1℄; x[1::i℄.

To a
hieve e�
ien
y, the algorithm stores for ea
h positions i in x an array whi
h

identi�es all the k-substrings that o

ur in at least one of the minimum k-
overs.

Let

i

be the
ardinality of this set. At step i + 1, the algorithm
he
ks for ea
h

position j 2 i�k+1::i, whether the
urrent su�x x[i�k+2::i+1℄ has already been

in
luded in the stored minimum k-
over of x[1::j℄. If so then the set
overs x[1::i+1℄,

otherwise the
urrent su�x has to be added to the set. Among these k
andidates,

the algorithm
hooses a set with the smallest
ardinality as a minimum k-
over of

x[1::i + 1℄. For more details see [IS92℄.

Lemma 3.1 For i � 2k and l; l

0

= 1; 2; : : :, let U

i;l

denotes the distin
t minimum

k-
over for x[1::i℄. Then every minimum set U

i+1;l

is a superset of some minimum set

U

j;l

0

, i� k + 1 � j � i.

The above lemma is stated in [IS92℄ and it follows dire
tly from the two ideas

stated at the beginning of this se
tion. The algorithm as we brie�y des
ribed also

relies on the
orre
tness of the lemma. In the next example we will show that the

lemma is not
orre
t and
onsequentially nor is the algorithm. The following example

illustrates just one of the situations where the algorithm fails to
ompute a minimum

k-
over.

Example: If x = ba
aababbaaa

aabbabbbaaaa
 and k = 3 then when i + 1 = 27,

j 2 24::26, and position 27 should form its minimum k-
over from position 24 be
ause

24

= min(

j

); j 2 24::27. The minimum k-
overs of position 24 are as follows:

U

24;1

= fba
; aab; abb; baa;

ag;

U

24;2

= fba
; aab; abb; baa; a

g:

Neither of them
ontains the su�x aa
, so we get

27

=

24

+ 1 = 6, and a

ordingly

the minimum k-
overs of position 27 are as follows:

U

27;1

= fba
; aab; abb; baa;

a; aa
g;

U

27;2

= fba
; aab; abb; baa; a

; aa
g:

But we
an �nd at least one minimum k-
over that is di�erent from U

27;1

and U

27;2

;

namely:

U

27;3

= fba
; aab; abb; baa;
aa; aa
g:

U

27;3

is a k-
over of position 24, but not the minimum. However it will
ontribute to

the minimum when position 27 is rea
hed. There is a potential problem for future

al
ulations if we lose U

27;3

at position 27; for example if we extend x by adding aa to

the end. As we
an see, U

27;3

an be a minimum k-
over of x[1::29℄. Without keeping

U

27;3

, we shall get

29

= 7, one greater than the minimum.

The above suggests that in order to
ompute a minimum k-
over of the
urrent

position, we have to refer to every single k-
over of the previous positions. Sin
e

the number of minimum k-
overs of a string may be exponential, we doubt that the

problem of
omputing a minimum k-
over
an be solved in polynomial time.

54

Computing the Minimum k-Cover of a String

4 Problem 1 and NP-Completeness

The k-
over problem is to �nd a set
over of minimum size for a given string. Restating

this optimization problem as a de
ision one, we wish to determine whether a given

string has a k-
over of a given size m.

k

m

-COVER = fhx; k;mi : string x has a k-
over of size mg.

The following theorem shows that this problem is NP-
omplete.

Theorem 4.1 The k

m

-COVER 2 NP.

Proof. To show that k

m

-COVER 2 NP, for a given string x, we use the set U

m

of m

substrings all of length k as a
erti�
ate for x. Che
king whether U

m

is a k-
over
an

be a

omplished in O(n logn) time by
he
king whether, for ea
h position 1 � i � n,

i is
overed by at least one of the k-substrings in U

m

.

We next prove that 3-SAT �

p

k

m

-COVER, whi
h shows that a minimum k-
over

problem is NP-hard. 3-SAT is well-known to be NP-
omplete [C71℄. We transform 3-

SAT to k

m

-COVER. Let V = fv

1

; v

2

; : : : ; v

p

g be a set of variables, C = f

1

;

2

; : : : ;

q

g

be the set of
lauses and F =

1

^

2

^ : : :^

q

be a 3-SAT formula with

i

= `

i

1

_`

i

2

_`

i

3

,

1 � i � q.

We shall show how to
onstru
t from F a string x su
h that x will have a k-
over

of size m if and only if F is satis�able. We
hoose k = 3 and note that there is an

easy redu
tion to 2-CNF for k = 2. The string x is build of substrings separated by

sequen
es of sssss; hen
e sss is one of the
hosen
overing k-strings, and thus we
an

fo
us on the individual substrings. The
onstru
tion will be made up of truth-setting

omponents, and satisfa
tion testing
omponents.

Variable Choi
e

For ea
h variable v 2 V , we
onstru
t the following 6 substrings (ea
h substring is

pro
eeded and followed by sssss); ea
h
hara
ter is indexed by v:

(i) #

a

r r $ v � � r r #

a

(ii)#

b

t t $ �v � � t t #

b

(iii)#

a

(iv) #

b

(v)#

a

#

b

(vi)#

b

#

a

The only ways to
over the above strings with 9 or fewer length 3 strings, are one of

the following (noti
e the uninteresting �exibility in (v) and (vi)):

1. fss#

a

; rr$; v��; rr#

a

;#

b

tt; $�v�; �tt;#

b

ssg and one of fs#

b

#

a

;#

b

#

a

sg.

2. f#

a

rr; $v�; �rr;#

a

ss; ss#

b

; tt$; �v��; tt#

b

g and one of fs#

a

#

b

;#

a

#

b

sg.

To see this,
onsider
overing string (iii). It
an be done by one of ss#

a

, #

a

ss,

s#

a

s, but only the �rst two
ould be used elsewhere, so one of them may as well be

hosen. Clearly, 8 strings at least are needed to
over (i) and (ii) as they have no

length 3 substring in
ommon. Thus, to use only 1 additional string to
over (v) and

(vi) we need to
hoose either ss#

a

;#

b

ss or #

a

ss; ss#

b

.

The
hoi
e v�� and $�v� (given by
hoosing ss#

a

)
orresponds to v = T while the

hoi
e �v�� and $v� (given by
hoosing #

a

ss)
orresponds to v = F .

55

Pro
eedings of the Prague Stringology Conferen
e '03

Clause Satis�ability

For ea
h
lause
 2 C, where
 = `

1

_`

2

_`

3

, the following substrings are
reated, again

pre
eded and followed by sssss. The
hara
ters, ex
ept for $

i

; �

i

; �

i

; `

i

; i = 1; 2; 3 are

indexed by
 also; $

i

; �

i

; �

i

; `

i

arry the index for the literal.

(i)$

1

`

1

�

1

�

1

h

1

(ii) $

2

`

2

�

2

�

2

h

2

(iii) $

3

`

3

�

3

�

3

h

3

(iv)$

1

(v)$

2

(vi)$

3

(vii)h

1

(viii)h

2

(ix)h

3

(x)�

1

�

1

h

1

d

1

�

2

�

2

h

2

(xi)�

2

�

2

h

2

d

2

�

3

�

3

h

3

(xii)�

3

�

3

h

3

d

3

�

1

�

1

h

1

(xiii)�

1

(xiv)�

2

(xv)�

3

To
over (iv)-(ix) and (xiii)-(xv) we may as well
hoose ss$

i

; h

i

ss and ss�

i

as these

are the only reusable substrings.

If `

i

is true, then `

i

�

i

�

i

was already
hosen; otherwise $

i

`

i

�

i

was
hosen. Thus, if

`

i

is false; in (i)-(iii), �

i

remains to be
overed. The only reusable
overing string is

�

i

�

i

h

i

.

Consider strings (x)-(xii) and suppose at least one `

i

is true. Without loss of

generality let it be `

1

. Then it is not hard to see that 5 more strings that in
lude

�

2

�

2

h

2

and �

3

�

3

h

3

thereby
overing �

2

in (ii) and �

3

in (iii) su�
e. We
hoose:

�

2

�

2

h

2

; �

3

�

3

h

3

; �

1

h

1

d

1

; d

2

�

3

�

3

and d

3

�

1

�

1

. It is not hard to see that 5
overing strings

are needed: 3 to
over d

1

; d

2

and d

3

, but this
an only
ompletely
over one of �

1

; �

2

and �

3

as ea
h o

urs twi
e, and hen
e two more
overing strings are needed for the

remaining pair among �

1

; �

2

and �

3

.

If no `

i

is true, we are obliged to
hoose �

1

�

1

h

1

; �

2

�

2

h

2

and �

3

�

3

h

3

as well as 3

strings to
over d

1

; d

2

and d

3

. At least 6
overing strings in all are needed. Thus, if

F is satis�able then the full string
an be
overed by

m = 9p+ 6p+ 3q + 5q + 1 = 15p+ 8q + 1

overing strings, where p is the number of variables in F and q is the number of

lauses. Otherwise, it needs at least 15p+ 8q + 2
overing strings. 2

5 Approximate Minimum k-Cover

In this se
tion we introdu
e two greedy algorithms to
ompute a minimum k-
over.

The greedy method works by pi
king, at ea
h stage, the k-substring whi
h
overs the

greatest number of un
overed positions. The �rst algorithm works globally while the

se
ond algorithm follows a lo
al strategy. To
al
ulate all possible k-substrings in a

given string x, both greedy algorithms use Cro
hemore's partitioning algorithm [C81℄

to prepro
ess the input string x.

Originally, Cro
hemore's algorithm was designed to
ompute the repetitions in a

string inO(n logn) time. A string has a repetition when it has at least two
onse
utive

equal substrings. For example, abab is a repetition in aababba = a(ab)

2

ba. We shall

use the algorithm in another way � to �nd the sets of the starting positions of all

the distin
t substrings of length k in a given string x. This idea
an be expressed

more pre
isely as follows:

56

Computing the Minimum k-Cover of a String

Given a string x[1::n℄ and an integer k, Cro
hemore's algorithm is used to
ompute

the equivalen
e
lasses of all equal substrings of length k in x. We denote these equiv-

alen
e
lasses by e

1

; e

2

; :::; e

m

, where the elements in e

i

are sorted integers denoting

starting positions of equal substrings, and m is the number of possible equivalen
e

lasses returned by the algorithm.

These elements are stored using a global array L[1::n℄, su
h that L[i℄ is the next

position in the same equivalen
e
lass of equal substrings of length k. That is, L[i℄ = j

if L[i::i+ k� 1℄ = x[j::j + k� 1℄ and the
ir
ular sequen
e i; L[i℄; L[L[i℄℄; : : : ; L

`

[i℄ = i

identi�es all ` k-substrings in x that are equal to x[i::i + k � 1℄.

For example, if x = abaababaabaab and k = 3 then e

1

= f3; 8; 11g; e

2

=

f1; 4; 6; 9g; e

3

= f2; 7; 10g; and e

4

= f5g are the equivalen
e
lasses. Where aab; aba;

baa; bab are the
orresponding 3-substrings. Hen
e, the value of array L is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a b a a b a b a a b a a b

L[i℄ 4 7 8 6 5 9 10 11 1 2 3

Eid[i℄ 2 3 1 2 4 2 3 1 2 3 1

In the above, Eid[i℄ identi�es the equivalen
e
lass
ontaining position i. In the

following subse
tions, we shall present two approximation algorithms. We
all the

�rst Global-Un
overed and the se
ond Lo
al-Un
overed.

5.1 Global-Un
overed Algorithm

Re
all that the greedy algorithmworks by sele
ting one k-substring at a time that
ov-

ers the most positions among the un
overed ones. Our greedy algorithm is
omparable

to the greedy one [J74℄ to
onstru
t the minimum set
over. The
ost of a greedy

solution is known to
ome always within a multipli
ative fa
tor of H(max

j

jEC

j

j),

where EC

j

is the number of positions that
ould be
overed by the k-substring j.

Here, H(d) =

P

d

i=1

1

i

is the dth harmoni
 number and is bounded by 1 + log d. This

was shown by Johnson [J74℄ and Lovasz [L75℄ for the general SET COVER problem.

The key to Algorithm Global-Un
overed is �nding the equivalen
e
lass whi
h
an

over the maximum number of so-far-un
overed positions e�
iently. The details of

the algorithm are provided in Figure 1. To a
hieve e�
ien
y, the algorithm uses the

following data stru
tures:

1. An array Ebu
ket[1::n℄ indexed by the number of so-far-un
overed positions

that
ould be
overed by a single equivalen
e
lass. Ea
h element (bu
ket) of

the array is doubly-linked list of the equivalen
e
lasses that
ould
over equal

number of so-far-un
overed positions. Thus, every element of the doubly linked

list
ontains an index of an equivalen
e
lass in addition to the left and the right

pointers to the adja
ent elements.

2. A two dimensional array Eptr[1::m℄ indexed by the equivalen
e
lass j. Where

Eptr[j℄[bu
ket℄ identi�es the bu
ket that in
ludes j in its doubly linked list.

In other words, equivalen
e
lass j
ould
over Eptr[j℄[bu
ket℄ so-far-un
overed

positions. Additionally Eptr[j℄[ptr℄ is a pointer to the
orresponding element

of the doubly linked list Ebu
ket[Eptr[j℄[bu
ket℄℄. Thus, any elements of the

doubly linked lists
an be referen
ed in
onstant time by using Eptr.

57

Pro
eedings of the Prague Stringology Conferen
e '03

Algorithm Global-Un
overed(x; k)

Input: A string x of length n, an integer 0 < k < n

Output: An approximate minimum k-
over U

g

1. (L[1::n℄; Eid[1::n℄; start[1::m℄;m) Cro
hemorePar(x; k)

2.
over_so_far[1::n℄ F; F; : : : ; F

3. initialization:

4. U

g

 ;

5. for e 1 to m do

6. Eun
ov[e℄ 0 **number of positions that
ould be
overed by equivalen
e
lass e**

7. for i 1 to n� k + 1

8. if i < L[i℄

9. then Eun
ov[Eid[i℄℄ + = min(k; L[i℄� i)

10. else Eun
ov[Eid[i℄℄ + = k

11. (Ebu
ke
t; Eptr) Bu
ket-Sort(Eun
ov)

12. The algorithm:

13. k_prefix; k_suffix Eid[1℄; Eid[n� k + 1℄

14. GU-Cover(k_prefix; Ebu
ket; Eptr)

15. Add(U

g

; k_prefix)

16. if k_suffix 6= k_prefix

17. then GU-Cover(k_suffix; Ebu
ket; Eptr)

18. Add(U

g

; k_suffix)

19. e Head(Ebu
ket)

20. while e 6= 0

21. GU-Cover(e; Ebu
ket; Eptr)

22. Add(U

g

; e)

23. e Head(Ebu
ket)

24. return U

g

25. Fun
tion GU-Cover(e; Ebu
ket; Eptr)

26. i start[e℄ **the �rst element in the equivalen
e
lass e**

27. repeat

28. for j 1 to k do

29. if
over_so_far[i+ j � 1℄ = F then

30.
over_so_far[i+ j � 1℄ T

31. for every l 2 Eid[(i+ j � 1)� k + 1℄; : : : Eid[i+ j � 1℄ do

32. Delete(Ebu
ket[Eptr[l℄[bu
ket℄℄,Eptr[l℄[ptr℄)

33. if Eptr[l℄[bu
ket℄ 6= 1

34. then Insert(Ebu
ket[Eptr[l℄[bu
ket� 1℄℄,Eptr[l℄[ptr℄)

35. Eptr[l℄[bu
ket℄ Eptr[l℄[bu
ket℄� 1

36. i L[i℄

37. until (i = start[e℄)

Figure 1: Global-Un
overed Algorithm.

58

Computing the Minimum k-Cover of a String

On
e Ebu
ket is established, the k-pre�x and the k-su�x are the �rst elements

to be in
luded in the approximate minimum k-
over. The algorithm then iteratively

hoose a head element of Ebu
ket as an element of the approximate minimum k-

over. The head element is an equivalen
e
lass that
overs the largest number of so

far un
overed positions. Finding su
h equivalen
e
lasses
osts O(n) time throughout

the
al
ulations.

The algorithm requires O(n logn) time to run Cro
hemore's algorithm and an

additional O(n) time to
onstru
t and initialize Ebu
ket and Eptr. Note that a

linear time Bu
ket-Sort has been used be
ause the number of positions that
ould be

overed by any equivalen
e
lass is bounded.

For ea
h position i,
over_so_far[i℄ is initialized to F and set to T on
e during

the
al
ulation. When
over_so_far[i℄ is set from F to T , O(k) elements in Ebu
ket

may need to be deleted from the
urrent bu
ket and inserted to the next bu
ket.

Ea
h rearrangement
osts O(1) time. Thus, the total time required to maintain the

elements in Ebu
ket throughout the
al
ulation is O(kn). Summing the above gives

the total running time: O(n logn) + O(n) + O(kn) = maxfO(n logn); O(kn)g time,

whi
h for a �xed k, asymptoti
ally approa
hes O(n logn) as n in
reases to 1.

5.2 Lo
al-Un
overed Algorithm

Algorithm Lo
al-Un
overed
hooses its
andidate element, of the approximate mini-

mum k-
over, in a range of Eid[left_un
over�k+1℄::Eid[left_un
over℄; the integer

left_un
over keeps tra
k of the leftmost so-far-un
overed position. The algorithm

uses the array un
over_no. The array un
over_no[1::m℄ is indexed by the equiva-

len
e
lasses, where un
over_no[j℄ is the number of positions
orresponding to equiv-

alen
e
lass j that have not been
overed. Hen
e, the values of the array need to be

updated dynami
ally during the
omputation. The details of the algorithm are pro-

vided in Figure 2.

The initialization is just the same as in Global-Un
overed. However, we need to

update un
over_no. As in Global-Un
overed, the k-pre�x and the k-su�x are the

�rst two elements to be in
luded in the approximate minimum k-
over. The algorithm

then tries to
over the leftmost un
overed position with the k-substring
orresponding

to the equivalen
e
lass whi
h
an
over the maximum number of un
overed positions.

That is, let j = left_un
over if j < n, then the
hosen k-substring is the one

orresponding to equivalen
e
lass satisfying

maxfun
over_no[Eid[j � k + 1℄; un
over_no[j � k + 2℄; : : : ; un
over_no[Eid[j℄℄g:

A brief analysis of the algorithm shows that the algorithm requires:

� O(n logn): to run Cro
hemore's algorithm;

� O(n): Step 2, the loop on (Steps 6-9), and the total time spent in Add();

� O(k): the loop on (Steps 19-23);

� O(kn): is the total time of the LU-Cover subroutine.

Summing the above gives the total running time O(n logn)+O(n)+O(k)+O(kn) =

maxfO(n logn); O(kn)g time.

59

Pro
eedings of the Prague Stringology Conferen
e '03

Algorithm Lo
al-Un
overed(x; k)

Input: A string x of length n, an integer 0 < k < n

Output: An approximate minimum k-
over U

l

1. (L[1::n℄; Eid[1::n℄;m) Cro
hemorePar(x; k)

2.
over_so_far[1::n℄ F; F; : : : ; F

3. initialization:

4. U

l

 ;

5. left_un
over 1

6. for i 1 to n� k + 1 do

7. if i < L[i℄

8. then un
over_no[Eid[i℄℄ + = min(k; L[i℄� i)

9. else un
over_no[Eid[i℄℄ + = k

10. The algorithm:

11. k_prefix; k_suffix Eid[1℄; Eid[n� k + 1℄

12. LU-Cover(k_prefix; 1; un
over_no; left_un
over)

13. Add(U

l

; k_prefix)

14. if k_suffix 6= k_prefix then

15. LU-Cover(k_suffix; n� k + 1; un
over_no; left_un
over)

16. Add(U

l

; k_suffix)

17. while left_un
over < n do

18. max = 0

19. for j 1 to k do

20. if un
over_no[Eid[left_un
over � j + 1℄℄ > max then

21. max un
over_no[Eid[left_un
over � j + 1℄℄

22. e Eid[left_un
over � j + 1℄

23. s left_un
over � j + 1

24. LU-Cover(e; s; un
over_no; left_un
over)

25. Add(U

l

; e)

26. return U

l

27. Fun
tion LU-Cover(e; start; un
over_no; left_un
over)

28. i start

29. repeat

30. for j 1 to k do

31. if
over_so_far[i+ j � 1℄ = F then

32.
over_so_far[i+ j � 1℄ T

33. for every l 2 Eid[(i+ j � 1)� k + 1℄; : : : Eid[i+ j � 1℄ do

34. un
over_no[l℄ � = 1

35. i L[i℄

36. until (i = start)

37. while left_un
over � n and
over_so_far[left_un
over℄ do

38. left_un
over ++

Figure 2: Lo
al-Un
overed Algorithm.

60

Computing the Minimum k-Cover of a String

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

100 12 11 11 11 9.09 0 0

200 14 14 14 14 0 0 0

300 14 15 15 14 0 7.14 7.14

400 16 15 17 15 6.67 0 13.3

500 17 17 17 17 0 0 0

600 16 16 16 16 0 0 0

700 18 16 16 16 12.5 0 0

800 17 17 19 17 0 0 11.8

900 18 16 18 16 12.5 0 12.5

1000 18 17 16 16 12.5 6.25 0

Average (%) = / / / 5.33 1.34 4.47

Table 1: Pseudo-Random Strings on Alphabet fa; b;
g, and k = 3

6 Experimental Results

We used four types of strings: sturmian strings, pseudo random strings on the al-

phabets: fa; bg, fa; b;
g, fa; b;
; dg, DNA sequen
es

�

, and English text. In order

to
ompare our approximate methods in term of e�e
tiveness, we developed a naive

algorithm based on the Iliopoulos and Smyth algorithm. This naive algorithm �nds

the minimum k-
over at position i+ 1 by testing ea
h position j 2 i� k + 1::i in the

same way as in Iliopoulos and Smyth's. However, the key di�eren
e is that the algo-

rithm stores not only the
overs that are minimum but also those that are one more

than minimum at every position. Thus, the aim here is to store as mu
h informa-

tion as possible taking into
onsideration the limitation of the
omputer's resour
es.

The implementation results show that the naive algorithm does not always yield the

best k-
over - in most
ases the two approximate algorithms yield better results. Let

U

min

be the minimum k-
over of a string x, U

N

be the result
omputed by our naive

method, U

GU

be the result
omputed by Global-Un
overed algorithm, and U

LU

be

the result
omputed by Lo
al-Un
overed algorithm. Then the following simplifying

assumption has been made:

jU

min

j � jU

best

j = minfjU

N

j; jU

GU

j; jU

LU

jg

Table 1, 2, 3 show that Algorithm Global-Un
overed yields the best result in most

ases, the naive algorithm never ex
eed a deviation of 7:83%, and Algorithm Lo
al-

Un
overed never ex
eed 6:24%. The following observations are also worth mentioning:

� The Sturmian strings are very well-stru
tured. For the tested Sturmian strings,

from length of 20 to 1000, for every k 2 3; 4; 5, jU

best

j = 2.

� For the tested pseudo-random strings and DNA sequen
es, jU

best

j in
reases as

the values of k, the length n, and the alphabet size are in
reasing.

� Let jU

best�DNA

j denotes the
ardinality of the approximate minimum k-
over

of DNA sequen
e and jU

best�ab
d

j denotes the
ardinality of the approximate

�

ex
erpted from www.
bs.dtu.dk/databases/DNA2protSS/nu
all.seq.

61

Pro
eedings of the Prague Stringology Conferen
e '03

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

100 19 19 19 19 0 0 0

200 25 26 27 25 0 4.00 8.00

300 32 29 29 29 10.3 0 0

400 37 34 36 34 8.80 0 5.88

500 36 36 35 35 2.86 2.86 0

600 37 36 37 36 2.78 0 2.78

700 37 35 38 35 5.71 0 8.57

800 42 37 39 37 16.2 0 5.41

900 42 35 42 35 20 0 20

1000 42 38 39 38 10.5 0 2.63

Average (%) / / / / 7.71 0.68 5.32

Table 2: Pseudo-Random Strings on Alphabet fa; b;
; dg, and k = 3

Length jU

N

j jU

GU

j jU

LU

j jU

best

j �

N

(%) �

GU

(%) �

LU

(%)

60 13 13 13 13 0 0 0

126 21 22 23 21 0 4.76 9.52

171 23 22 23 22 4.54 0 4.54

234 25 24 26 24 4.17 0 8.33

312 32 29 30 29 10.3 0 3.45

432 26 27 29 26 0 3.85 11.5

591 34 31 35 31 9.68 0 12.9

771 40 34 36 34 17.6 0 5.89

1233 43 38 37 37 24.3 2.70 0

Average (%) / / / / 7.83 1.26 6.24

Table 3: DNA Sequen
es, and k = 3

62

Computing the Minimum k-Cover of a String

minimum k-
over of pseudo-random strings on alphabet fa; b;
; dg. For the

same value of k and n, jU

best�DNA

j < jU

best�ab
d

j. We
an make a
onje
ture

that DNA sequen
es are better stru
tured than pseudo-random strings on an

alphabet of size 4.

Con
lusions

We have shown that for k � 2, the k-
over problem (Problem1) is NP-Complete. We

have then proposed two O(n logn) greedy algorithms that
an be used to
al
ulate an

approximate minimum k-
over. The results obtained by the algorithms are believed

to
ome within a multipli
ative fa
tor of the minimum. Prove this has been left as

an open problem.

Referen
es

[AFI91℄ A. Apostoli
o, M. Fara
h & C. S. Iliopoulos,Optimal superprimitivity

testing for strings, Information Pro
essing Letters 39-1 (1991) 17-20.

[B92℄ D. Breslauer, An on-line string superprimitivity test, Information

Pro
essing Letters 44 (1992) 345-347.

[B94℄ D. Breslauer, Testing string superprimitivity in parallel, Informa-

tion Pro
essing Letters 49-5 (1994) 235-241.

[BP00℄ G. S. Brodal & C. Pederson, Finding maximal quasiperiodi
ities in

strings. In Pro
eedings of the 11th Annual Symposium on Combinatorial

Pattern Mat
hing (CPM) (2000) 397-411.

[C71℄ Stephen A. Cook, The
omplexity of theorem-proving pro
edures,

Pro
. Third Annual ACM Symp. on Theory of Computing (1971) 151-158.

[C81℄ M. Cro
hemore, An optimal algorithm for
omputing all the repe-

titions in a word, Information Pro
essing Letters 12-5 (1981) 244-248.

[IM93℄ C. S. liopoulos & L. Mou
hard, An O(n logn) algorithm for
omput-

ing all maximal quasiperiodi
ities in strings, Theorati
al Computer

S
ien
e 119-2 (1993) 247-265.

[IP94℄ C. S. Iliopoulos & K. Park, An optimal O(log logn)-time algorithm

for parallel superprimitivity testing, Journal of the Korea Informa-

tion S
ien
e So
iety 21-8 (1994) 1400-1404.

[IS92℄ C. S. Iliopoulos & W. F. Smyth, An on-line algorithm of
omputing

a minimum set of k-
overs of a string, Pro
. Ninth Australasian

Workshop on Combinatorial Algorithms (AWOCA), (1998) 97-106.

[J74℄ D. S. Johnson, Approximation algorithms for
ombinatorial prob-

lems, Journal of Computer and System S
ien
e 9 (1974) 256-278.

63

Pro
eedings of the Prague Stringology Conferen
e '03

[MS94℄ D. Moore & W. F. Smyth, An optimal algorithm to
ompute all the

overs of a string, Information Pro
essing Letters 50-5 (1994) 239-246.

[MS95℄ D. Moore & W. F. Smyth, A
orre
tion to: An optimal algorithm

to
ompute all the
overs of a string, Information Pro
essing Letters

54 (1995) 101-103.

[L75℄ L. Lovasz, On the ratio of optimal integral and fra
tional
overs,

Dis
rete Mathemati
s 13 (1975) 383-390.

[LS02℄ Y. Li & W. F. Smyth, Computing the
over array in linear time,

Algorithmi
a 32-1, (2002) 95-106.

[Y00℄ Lu Yang, Computing the Minimum k-Cover of a String, M. S
.

thesis, M
Master University, (2000).

64

