Learning the Morphological Features of a Large Set
of Words*

Abolfazl Fatholahzadeh

Supélec - Campus de Metz
2, rue Edouard Belin, 57078 Metz, France.

e-mail: Abolfazl.Fatholahzadeh@supelec.fr

Abstract. Given K - a large set of words - this paper presents a new method
for learning the morphological features of K. The method, LMF, has two com-
ponents : preprocessing and processing. The first component makes use of two
separate methods, namely, refinement and time-space optimization. The for-
mer is a method that uses the closed world assumption of the default logic for
partitioning K into a set of hierarchical languages. The latter is for efficiently
learning the morphological features of each language outputted by the former
method. Although, the finite-state transducers or the two-trie structure can be
used to map a language onto a set of values, but we use our own competitor
which has recently been proposed for such a mapping, consisting of associating
a finite-state automaton accepting the input language with a decision tree (dt)
representing the output values. The advantages of this approach are that it
leads to more compact representations than transducers, and that decision trees
can easily be synthesized by machine learning techniques.

In the processing phase, given an input string (z), thanks to the hierarchical
languages establishing the preferency order for the utilization of the current
automaton(g;) among the multiple ones, if z can be spelled out using g;, then
the output is returned using its counterpart namely dt;, otherwise, we inspect
other alternative until an output or failure be done. LMF has learned good
strategies for the large sets of the words which are consuming tasks form space
and times point of views e.g., all the verbs in French, including all the conjugated
forms of each verb.

Keywords: morphological features, automata, decision trees, learning.

1 Introduction

The morphological features (i.e., mode, tense, person and gender) are supposed to
be the important ingredients of the lexicons which are widely used in the process
of determining for a word (e.g., “livre”) its output values (e.g., Verb-+IND-PRES-
1-SING, Verb+IND-PRES-3-SING, Verb+IMP-PRES-3-SING, Noun+MASC-SING
and Noun+FEM-SING).

*This work is partially supported by le Conseil Régional de Lorrain.

65

Proceedings of the Prague Stringology Conference 03

Figure 2: Our alternative - a (7,7) un-
labeled automaton along with two de-
cision rules. If b2 = ’b’ Then vl =

b:y Ot y [xxxxx,xxyyx,xtzyx|. If b2 = ’¢’ Then
Figure 1: Example of ambiguous finite- v2 = |yzxxy,yzyyy|. b, stands for the
state transducer shown by a (13,16) au- second character from right to left of
tomaton [4, Page 158|. the input language.

An obvious solution to such a task is to store all the desired words along with
their associated output values in a large-scale dictionary. But in this case two major
problems have to be solved: fast lookup and compact representation. Two modern
and efficient methods can achieve fast lookup by determination and compact repre-
sentation by minimization. The first method is the technique of two—tries proposed
by Aoe et al [1]. This method has the advantage of being applicable to a dynamic
set of keys but unfortunately it has the disadvantage (Please refer to the page 488
of [1]) of containing more than states (hence the transitions) representing the data
compared to its competitor, namely, the automata [13].

The second method is the transducers (i.e., automata with outputs) [6, 8, 9|
which have proved to be a very formal and robust execution framework for linguistic
phenomena, but there are still some aspects that should be investigated. In particular,
as shown in Figures 1, the transducers assign the unnecessary labels to some arcs of the
graph representing the automaton. That is why, in our recent work, we have proposed
a method to avoid such unnecessary labels (hence the states and the transitions) as
pictured in Figure 2. Our solution for mapping a language onto a set of values is
based on associating a finite-state automaton accepting the input language with a
decision tree representing the output values. The advantages of this approach are
that it leads to more compact representations than transducers, and that decision
trees can easily be synthesized by machine learning techniques.

For the sake of clarity, we consider only the verbs in a given language and will
show how our alternate approach can be combined with the closed world assumptions
of the default reasoning. We show that the representation developed here provides a
richer language for dealing with a set of strings where each of which is associated with
one or more set of strings while keeping in the core of our system the two mentioned
desiderata: compact representation and fast lookup. After presenting the default
reasoning and its applicability to the morphology, we illustrate in Section 3 combining
the automata and the decision tree. In Section 4 the refinement is described. The
main algorithm of LMF along with examples in four languages closes: Azeri, English,
French and Persian are described in Section 5. Finally, the concluding remarks close
the paper.

2 Using Default Logic in Morphology

Default reasoning is a special but very important form of non—-monotonic reasoning [5].
The term “default reasoning” is used to denote the process of arriving at conclusions

66

Learning the Morphological Features of a Large Set of Words

based upon patterns of inferences of the form “In the absence of any information to
the contrary assume ...” (e.g., if all elephants we have seen had a trunk, we might
think that all elephants have a trunk). Of course, the possible circumstances in which
any “presumed” correct line of reasoning can be defeated astound, and we are doomed
to make mistakes when our experiences does not support the current situation. If we
assume that the morphology world of the natural languages is closed one then there
is a great chance that the rate of the classification noise be lower, even zero.
Example 1: w.r.t. the world of the verbs in French, even if there is no indications
about the verb “zaper” in our system, LMF is able to learn 95 morphological features
associated with the conjugated forms (e.g., “zapons”) of that verb.

Remark 1: The number 95 came from the fact that LMF is designed to learn the
morphological features of all modes, namely indicative (IND), subjunctive (SUB),
conditional (COND), imperative (IMP), infinitive(INF) and participate (PART). IND
mode has 48 forms in eight tenses: present, imperfect, past, future, etc. Each of which
allows to generate six forms according to: (1) gender (singular and plural); and (2)
the person (1, 2, and 3). SUB mode has 24 forms in four tenses. COND mode has 24
forms in two tenses. IMP, INF modes has two and three forms, respectively. PART
mode has usually three forms, two for some irregular verbs.

2.1 The Closed World Assumption

It seems not generally recognized that the reasoning components of many natural
language understanding systems have default assumption built into them. The repre-
sentation of knowledge upon which the reasoner computes does not explicitly indicate
certain default assumptions. Rather, these default are realized as part of the code of
the reasoner’s process structure containing the hierarchies.

The starting point of the default reasoning is a set of inference rules(axioms) pos-
sibly along with some facts of the domain at hand collected in database which we call
axiomal database (noted by G,;). Given G, the task based on the “specificity” and
“inheritance” is to draw a plausible inference for the input. These can be illustrated
by the classical Tweety example as follows: Consider the database containing four de-
faults: “penguins are birds”, “penguins do not fly”, “birds fly” and “birds have wings”.
“Specificity” tell us Tweety is a penguin, then Tweety doesn’t fly because penguin is
a more specific classification of Tweety than bird. “Inheritance” on the other hand,
does equip Tweety with wings, by virtue of being a bird, albeit an exceptional bird
w.r.t. flying ability.

From efficient implementation of the reasoner’s process structure point of view, if
the class “Specificity” lies “above” the generic class i.e., there is some pointer leading
from penguin’s to node bird in G,;, then given a particular penguin we can conclude
that it doesn’t fly. Notice that the reasoner’s process structure of G4, can be either
a network - the graph of the taxonomy - or a set of first order formulae. The second
option has been chosen to form G, of the morphology world in our work. In that
option for fast inference purpose, GG, is organized according to priorities which are
given as ordering of predicates formulae, or default rules: in conflicting situations
preference is given to item with high priority. That is to say, the data are added
in G, in the following orders: (1) the facts of the exceptional data; (2) the facts

67

Proceedings of the Prague Stringology Conference 03

associated with generic axioms; (3) the exceptional axioms describing the specificity;
and finally (4) the generic axioms.

Example 2: w.r.t. Tweety the orders of G, is as follows: (1) Penguin(tweety); (2)
Bird(tweety); (3) (Vz)Penguin(x) — —Flies(x); (4) (Yz)Bird(z) — Flies(x).

(3) can be paraphrased as “penguins usually cannot fly”. If a particular penguin
(say Foo) can fly, this is obviously a counter exceptional data (or insensitivity to
specificity) w.r.t. to (3). Although, how the representation of the insensitivity to
specificity can be done in the open world (i.e., the data related to the exceptions and
in particular those of the counter exceptions are not known in advance), but this is
not a limitation for our work because the databases of LMF is composed only using
three predicates : regular, exceptional and counter-exceptional. The selection of the
counter exceptional data is based on the fast inference purpose.

The LMF policy for such above purpose is to take into account both the high
priority of usage in the text of a given language (e.g., the auxiliary verbs of a given
language such as “avoir” - to have - or “étre” - to be -) and the seldom of data w.r.t.
exceptional data (e.g., “aller” -to go - the only member of the class 22 of the irregular
verbs) or its specificity w.r.t. the general data (e.g., “Hair” meaning to hate, which
is also a unique member of the 20th class of the regular verb).

3 Combing the Automata and the Decision Trees

In what follows, we summarize our recent work [3| concerning the combination of the
automata and the decision trees. We assume the reader to be familiar with both the
theory of finite automaton and the decision tree learning as presented in standard
books e.g., [13] and [7], respectively. We refer to a key and a value denoted by k
and kv, respectively, as a sequence of characters surrounded by empty spaces which
may have one or more internal spaces. We may use key and word (including verbs),
interchangeably, as well as, the value, key-value and the morphological features.
The input of our algorithm for such above combination is the following customary
form: f = {(k;,v;)|i =1,...,n} for representation and fast lookup. The point of our
idea is as follows: If an input string(z) can be recognized using the unlabeled finite-
state-automaton (g) associated with the keys (of f) - hence having less states and
transitions compared to the transducer as shown in Figures 1 and 2 - then use the learn
decision tree (dt) for outputting the value associated with z. Table 1 shows a sim-
ple decision tree (dt) of f1 = {(Iran,Tehran), (Iraq, Baghdad), (Ireland, Dublin)}.
Note that the dt w.r.t. £5 = {(Iran,Asia),(Iraq,Asia)} has a unique solution-path i.e.
(kvAsia) - no condition (i.e., question) is required to discriminate the key-value.

3.1 Acyclic Finite-state Automaton

Recall that an acyclic finite-state automaton is a graph of the form g = (Q, %, 6, ¢, F)
where Q is a finite set of states, I is the alphabet, qo is the start state, F' C @ is the
accepting states. ¢ is a partial mapping 0 : @) x ¥ — @ denoting transition. If
a € X, the notation §(g,a) = L is used to mean that d(q,a) is undefined. Let T*
denotes the set containing all strings over & including zero-length string, called the

68

Learning the Morphological Features of a Large Set of Words

Table 1: Backward attribute-based Data and Decision Tree.

by b bs by by by by KV Solution-Path Question | KV

*x x * I r a n Tehran (by n kv Tehran) | by = n? | Tehran
* x * I r a q Baghdad | (b q kv Baghdad) | by = q? | Baghdad
I r e 1 a n d Dublin (by d kv Dublin) | by = d? | Dublin

Table 2: Ten keys of the same lengths along with associated values.
Key onC | myC | mnH | onH | nnH | nnC | mnC | nyC | myH | oyC
Value | down | down | up down | up up up up | down | down

empty string €. The extension of the partial § mapping with x € ¥* is a function
0* 1 Q x ¥* — () and defined as follows:

0*(q,e) = q
5(6(a,0),2) if 6(g,0) # L
* . Y))
0"(q,ax) = 1 otherwise.
A finite automaton is said to be (n,m)-automaton if |Q] = n and |E| = m where E

denotes the set of the edges (transitions) of g. The property ¢* allows fast retrieval for
variable-length strings and quick unsuccessful search determination. The pessimistic
time complexity of §* is O(n) w.r.t. a string of length n.

3.2 Decision Tree Learning

Decision tree learning is a method for approximating discrete—valued target functions,
in which the learned function is represented by a decision tree (dt). Learned decision
trees can also be re-represented as a set of if-then rules to improve human readability.

Example 3: Below we list the if-then rules representing the decision tree associated
with data of Table 2.

If fi =10 Then KV = ‘down’;

If fi=m'Afy;=9 Then KV = ‘down’;

If fi=‘m'Afy="n" Then KV = ‘up’;

If fi=":2 Then KV = ‘up’;
where f; and fy denote first character and sceond character (of the key from left to
right), respectively. Decision trees classify instances by sorting them down the tree
from the root to some leaf node, which provides the classification of the instances.
Each node in the tree specifies a test of some attribute (e.g., bl of Table 1) instance,
and each branch descending from that node corresponds to one of the possible values
for this attribute. An instance is classified by starting at the root of the tree, testing
the attribute value by this node, then moving down the tree branch corresponding to
the value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node. Notice that the implementation of the decision tree
is based on m-array tree rather than the binary one. The former allows to save the
decision tree in a less space compared to the latter. Figure 4 shows such a learned
tree representing the values of the keys of Table 2.

69

Proceedings of the Prague Stringology Conference 03

1:omn

o m 1

(0 : down) 2:yn) (0: up)
Ly m
(0 : down) (0 : up)

Figure 3: A (6,10) unlabeled automa- Figure 4: Learned decision tree for de-
ton for recognizing the keys of Table 2. termining the value of any recognized
key of Table 2.

Table 3: Distribution of French regular verbs according to the class and the frequency
noted by C and F, respectively.

C 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
F 3875 156 165 342 69 114 19 12 9 254 26 49 2 302 1

4 Refinement

The refinement process has the following tasks to perform:

1. Transform the input of LMF, namely our input, namely f = {(k;v;)]i =
1,...,n} into axiomal database D,,, as described in Section 2.1.

2. Partition D,, into the counter-exceptional, exceptional and general axioms.

The transformation is based on the closed world assumption of the morphology
assuming that the set of the words of (f) noted by K can be divided into two subsets
of so-called regular and irregular words. The regular forms follows the fact that their
derivate/inflectional forms (each noted by di) can be generated using those axioms
specified by the linguists which are usually further refined in a set of finer regular
axioms (axiom). Using a root (of the word) each axiom allows to generate all dis of
the word. The root is obtained by removing a particular substring of used axiom.

Example 4: The regular forms of the verbs in French is divided into the first group
containing 13 classes (ranged from 6 to 18) and the second group which is composed of
two classes (ranged from 19 to 20), where each number stands for an axiom. Below
the repartition of 5189 infinitives (of the regular verbs) used in our experiment is
shown in Table 3.
Remark 2: As appear from Table 3, 20th class has only one member, namely “Hair”.
However, as we mentioned earlier, it is not considered is a a regular data. Indeed,
w.r.t. to the inference process, it is wise to consider it as a counter-exceptional data.
The reason is to speed up the inference processing by mentioning explicitly the data
and axioms is the following order: counter-exceptional, exceptional and general. This
process constitutes the well known practical trick of the default logic. So, 5188 (i.e.,
5189 -1) roots along with 19 classes will be used as the reservoir for learning the
extended database of 492860 (i.e., 5188 x 95) dis of the lexicographers expressed in
a raw database.

An axiom can be described using a two dimensional vector of size r, where r
stands for the number of morphological features in use. The first row of such a vector

70

Learning the Morphological Features of a Large Set of Words

Table 4: Information on size of 13943 verbs of the third group in French and mor-
phological information along with the forest of the decision trees obtained by the
partitive learning mode. Ent. refers to number of call to the entropy function.

Data Decision Tree Gain
Len. | Freq. Inodes | Leaves | Ent. K% | V%
2 11 9 3 15 66% | 19%
4 183 133 40 371 81% | 23%
5 412 225 66 904 88% | 44%
6 943 460 131 2149 91% | 47%
7 1480 578 202 3388 93% | 57%
8 2160 727 240 5065 94% | 62%

9 2317 692 342 6664 95% | 67%
10 2115 082 252 6531 96% | 70%
11 1729 445 207 6361 96% | 2%
12 1168 318 125 4980 97% | 0%

13 733 164 69 3472 97% | 75%
14 389 106 50 2620 97% | 70%
15 183 29 22 1624 97% | 68%
16 72 36 18 1063 95% | 50%
17 25 9 4 288 97% | 64%
18 7 3 2 83 96% | 58%

is composed of r the values. The second row contain different substrings related to
dps. Usually, the lexicographers are used to add the word in explicit database in
which each entry is composed one d; and a value. Since it may happen that for a dj,
different values be associated with it (e.g., aime IND-PRES-1-SING, IMP-PRES-3-
SING, etc.) therefore, the learning process should assure to collect them into a set of
morphological features representing a set of unique ambiguity class. In summary, the
entire lexicon can viewed as follows. First on can form the the four following reservoir
fgs Sg, fe and f. representing: (1) f,: Database related to the general axioms; (2) s,:
Database of suffixes of the regular (general) words; (3) f.: Database of derivate forms
expressed as the exceptional data; (4) f.: Database of derivate forms based on the
high priority relating the counter exceptional data. Notice that f, along with s, will
be used to recognize the derivate forms of the words governed by the general axioms.

4.1 More Refinement: Learning by Partitive Mode

As we mentioned earlier, the input of decision tree learning is a fixed attributes the
size of this table is /41 x n, where ¢ denotes the length of the longest keys of f and n
is the number of keys. Usually, we have to use the dummy characters (noted by % see
Table 1). Using the dummy characters augment the size of the input table. Because
of the very recursive nature of the learning process, including the characterization of
the decision tree may be a time consuming task for the large data. An alternative to
the a unique table is to employ multiple tables as follows. First f is divided into ¢

71

Proceedings of the Prague Stringology Conference 03

user-inputs (f;) such that the length of the keys of each f; be identical, then form the
corresponding decision trees. So, in the partitive mode, we have to learn a forest of
the decision tress : composed a vector of r positive integers. ith number is pointed
to the ith decision tree.

Searching a value for an input string (x of length y) works as follows. If y belongs
to the vector of above mentioned numbers, first we spell out x this time using the
automaton associated with entire keys of K. If x spelled out correctly, then we use
the y decision tree to output the value.

Example 5: The value of + = abababad can not be learned w.r.t. current f =
{(abe, 1), (ababbac, 2)(abababe, 3)}. We have length(x) = 8 which is not member of
{3,5,7}. In the contrary, for x = abc the value is 1 i.e., (1) length(z) € {3,5,7}, (2)
x is recognized using the automaton associated with K = {abc, ababe, abababc} and
(3) no question is required for f3 the value is 1. Table 4 shows the Information on
size of 13943 verbs of the third group in French and morphological information along
with the forest of the decision trees obtained by the partitive learning mode.

5 Main Algorithm

Below the algorithm for learning morphological features is given which is composed of
two components: preprocessing and processing. In the first component four automata
and two decision trees along with a forest decision trees containing r decision trees are
formed, where r stands for the number of partitions of the exceptional data according
to the same key-length criterion. In the second component, if an user-input (x) can
be recognized by one of the four automata (see below for the order in use) then the
corresponding decision tree will be inspected to output the value. The argument of
main function are:

1. f, = {(root;, axiom;)|i =1...,n1} i.e., Database related to the general axioms;

2. s, ={(sufi,mfili=1...,my} i.e., Database of suffixes of the regular (general)
words; mf stands for a morphological features or a set of alternate morpholog-
ical features;

3. fe=A{(diymfi)|i =1...,ny} i.e., Database of derivate forms expressed as the
exceptional data; d; refers to a derivate form of a base word (e.g., infinitive);

4. fo={(d;,mf;)]i = 1...n3} i.e., Database of derivate forms based on the high
priority relating the counter exceptional data.

func LearningMorphologicalFeatures(f,, sq, fe, fc)

K, + CollectKeys(f,). K. < CollectKeys(f.).

Grg < FormAutomaton(K,); gie < FormAutomaton(K.).
ApplyPreprocessingPartitiveMode(f,).

grce < FormAutomaton(K,).

table. < FormInputForLearning(f.).

t. < LearnDecisionTree(table,).

ts <— LearnDecesionTreeO fSuf fives(s,).

72

Learning the Morphological Features of a Large Set of Words

ApplySearch(z).{Processing component, x is an input string.}
cnuf

The function FormAutomaton() follows the elegant algorithms described in [2] for
the incremental construction of minimal acyclic finite state automata and transducers
from both sorted and unsorted data We adapted the former one such that the length
of the longest key be calculated for being used later in the construction of suitable
input for learning the dt of the counter exceptional data. Please refers to [3] for the
description of the function FormInputForLearning() and LearnDecisionTree().
The construction of the forest of the decision trees works as follows.

func ApplyPreprocessingPartitionMode(f)
Uizy, fei < Partition(f.)
for i € (¢4,...4,) do
K. < CollectKeys(fe;); grei + FormAtuomaton(fe;).
Tabley; + FormInputForLearning(fe;)
te; <+ LearnDecisionTree(Table,;).
end for

cnuf

Since the search order is based on looking at the following order : (1) counter
exceptional, (2) exceptional and general data, then processing component is as follows:

func ApplySearch(z)

return(SearchValue(z, g, t.) OR SearchValueUsingPartitionMode(z, gi., forest)
OR SearchByMismatch(z, gkg, Sg, ts))-

cnuf

For knowing how SearchValue() works, again consider Figure 4 where zero used
in a node indicates that node is a leaf one. A positive integer number used in a node
has its own meaning indicating the test to be done taking into account the content
of the current node under inspection e.g., “1:omn” means that if the first character
of z is 'm’ then gets the value by descending in the sub-tree of first child. Since the
sub-tree has only one node - a leaf - then value is "down’. If the first character of x
is 'm’ this time the value has to be selected using the sub-tree of the second child.
Depending on the second character (“2:yn”) of = the output value is either “down” or
ccupn‘

func SearchValue(z, g, dt)
if 0*(qo,z) = ¢ such that ¢ € F(ofg) then
kv < GetValue(x,dt).
else
kv < nil; {x is unknown w.r.t. the current g}

end if
cnuf

73

Proceedings of the Prague Stringology Conference 03

The function SearchByMismatch() uses the automaton associated with the general
data to know if the root of (the base) word can be recognized by that automaton.
If the input string can be spelled out using a given position then there is a chance
that the suffix of the input string be recognized using the automaton of the available
suffixes (s,), if so, then GetValue will be activated to output the output value.

func SearchByMismatch(z, gig, ts)

pos <— MisMatchPosition(z, gig); s <— substr(z,pos). {s stands for the suffix}
return(GetValue(s, ts)).

cnuf

5.1 Examples

Below we illustrate the traces of LMF applied to the verbs in English and French,
Azeri and Persian.

Example 6 (French): Let us consider the following phrase: “Il livre un livre.” i.e.,
He is providing a book. Suppose that we are interested in learning the morpholog-
ical features of the word “livre”. The current word cannot be spelled out neither
using the automaton associated with the counter exceptional automaton nor with the
exceptional automaton. Therefore, the automaton associated with f, (database of
regular roots in French corresponding to the first group) will be called to partially
spell out the word “livre”. Using function SearchByMismatch tell us to stop at the
fourth character (from left to right). The remaining part of the current word - “e” -
will then be used as the entry of the decision tree associated with the suffixes of f,
outputting the desired result: Verb-+IND-PRES-1-SING, Verb+IND-PRES-3-SING,
Verb+IMP-PRES-3-SING, Noun+MASC-SING and Noun-+FEM-SING.

Remark 3: The reason for which it is preferable to divide the set of words (of
a language) into several files, each of which containing the same syntactic category
could better be illustrated using our previous example. Indeed, one could use the rules
of local grammar e.g., (1) pronoun-+verb as in “il livre” and (2) determinant-+noun,
as in “un livre”, for the efficient tagging purpose while learning the morphological and
right features of used word in a text.

Example 7 (French): In the the following phrase: “Bush hait Saddam et vice-versa.
i.e., Bush hates Saddam and vice-versa.” Learning the morphological features of the
word “hait” is immediate because this word belongs to the exceptional data containing
the verbs of 20th class.

Example 8 (English): The morphological features of the word “stood” in the fol-
lowing phrase: ‘“He stood the child’’, can also be learned immediately, because it
belongs to the exceptional data w.r.t. the verbs in English.

Example 9 (Azeri): Like in Turkish, the order of constituents may change rather
freely without affecting the grammaticality of a sentence. Due to various syntactic
and pragmatic constraints, different orderings are not just stylistic variants of the
canonical order. For instance, a constituent that is to be emphasized is generally
placed immediately before the verb. This affects the places of all the constituents in

74

Learning the Morphological Features of a Large Set of Words

a sentence except that of the verb:

Man oshaxlara ketabi verdim. I gave the book to

I children+DAT book+ACC give+P1S the children.
Oshaxlara man ketabi verdim. [t was me who gave
children+DAT 1 book+ACC give+P1S the children the book.
Man ketabi oshaxlara verdim. It was the children to
I book+ACC children+DAT give+P1S them I gave the book.

The first above sentence is an example of the canonical word order whereas in
the second one the subject, man, is emphasized. Similarly, in the last one the direct
object, oghaxlara, is emphasized.

Remark 4: Although, Azeri has some similarity with old Turkish, but their struc-
tures differ in several aspects, notably w.r.t. new Turkish. This is particularly true
for the the vocabularies and the morphology. All together, this makes the processing
of Azeri different from Turkish, including our learning process.

Example 10 (Persian): If we concern ourselves with the unmarked order of con-
stituents, like in Turkish and Azeri, Persian can be characterized as a subject-object-
verb language: (a) “Man be bageha ketab ra dadam.” (i.e., T gave the book to the
children.) and (b) “Lazat bordand.” (i.e., (They) enjoyed). In (a) the morphological
features of the verb “dadam” is determined by what we call the counter exceptional
data whereas in (b) the segment “Lazat (adjective) bordan (verb)” have to be consid-
ered as a compound verb. So, the combination of the morphological features of two
words would determine the morphological feature of the mentioned segment.

6 Concluding Remarks

LMF is written in C and applied for learning of the large set of the verbs in French
and very limited ones in Persian and Azeri. The experiments show that combing
the closed world assumption, the automata and the decision trees is a good approach
since our tests provide the right results for more than half million verbs - including the
conjugated form - in French. Note that the transducers [8], as the the best available
method, have been used in the morphology world. However, the advantages of comb-
ing the automata with the decision trees are that it leads to compact representations
than transducers, and the decision trees can easily synthesize by machine learning
techniques. This is emphasized in this work by Figure 2.

It must be stressed that using automata is appropriate when there is no need
for frequent updates of one or more databases. This is due to the fact that it is
difficult to update quickly the automaton. However, w.r.t. our present work, this is
not necessarily a limitation because we are dealing with static keys originated from
the morphology world. From update viewpoint, using the two-trie structure of Aoe
et al. [1| instead of the automata is preferred where there is the need for frequent
updates. But in this case, the cost of space (number of states and transitions) is
(slightly) expensive compared to the automaton.

An interesting extension is the question of addressing how to learn the regular
and irregular data from pure Stringology viewpoint i.e., without attaching a domain
to the values of the keys. That is to say, we have to discover the axioms along with
possible exceptional and/or counter exceptional ones.

75

Proceedings of the Prague Stringology Conference 03

Acknowledgments

I thank the anonymous referees for their constructive comments.

References

[1] Aoe, J-1., Morimoto, K., Shishibori, M., and Park, K. A trie compaction algorithm
for a large set of keys. IEFEE Transaction on Knowledge and Data Engineering 8,
3 (1996), 476-491.

[2] Daciuk, J., Mihov, S., Watson, B. W., and Watson, R. E. Incremental construction
of finite-state automata. Association for Computational Linguistics 26, 1 (2000),
3-16.

[3] Fatholahzadeh, A. Implementation of dictionaries via automata and decision trees.
Champarnaud J. M. and Maurel D. (eds.): Seventh International Conference on
Implementation of Automata (CIAA02). In LCNS Lecture notes on Computer
Science, vol. 2608. Springer, Berlin Heidelberg, (2003), 95-105.

[4] Kempe, A. Factorizations of ambiguous finite-state transducers. In International
Conference on Implementation and Application of Automata (2000), Daley M.,
Eramian M., and Yu S. pre-proceeding (eds.), 157-164.

[5] McCarthy J., and Hayes, P.J. Some Philosophic problems from the standpoint
of Artificial Intelligence. In Machine Intelligence (1969), vol. 4, Meltzer B. and
Michie D. (eds), Edinburgh University Press, 463-502.

[6] Mihov, S., and Maurel, D. Direct construction of minimal acyclic sub-sequential
transducers. In International Conference on Implementation and Application of
Automata (2000), Daley M., Eramian E., and S.Yu pre-proceeding (eds.), 150-156.

[7] Mitchell, T. M. Machine Learning. Mc Graw-Hill, 1997.

[8] Mohri, M. On some application of finite-state automata theory to natural lan-
guage. Natural Language Engineering 2, 1 (1996), 1-20.

[9] Mohri, M. Finite-state transducers in language and speech processing. Computa-
tional Linguistics 23, 2 (1997), 269-311.

[10] Mohri, M. Generic e—removal algorithm for weighted automata. In International
Conference on Implementation and Application of Automata (2000), Daley M.,
Eramian E., and Yu S. pre-proceeding (eds.) 26-35.

[11] Quinlan, R. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[12] Reiter R. On reasoning by default. In Reading in Knowledge Representation
(1985), Brachmann R.J. and Levesque H.J. (eds), Morghan Kaufmann, 402-410.

[13] Rozenberg G. and Salomaa A. (eds.) Handbook of Formal Language. Springer—
Verlag, Berlin Heidelberg, 1997.

76

