A Linear Algorithm for the Detection of Evolutive
Tandem Repeats

Richard Groult*!, Martine Léonard! and Laurent Mouchardf?

! LIFAR - ABISS, Faculté des Sciences, 76821 Mont Saint Aignan Cedex, France

2 UMR 6037 - ABISS, Faculté des Sciences, 76821 Mont Saint Aignan Cedex, France
and Dept. Computer Science, King’s College London, London WC2R 2LS, England

e-mail: {Richard.Groult,Martine.Leonard,Laurent.Mouchard}@univ-rouen.fr

Abstract. We present here a linear algorithm for the detection of evolutive
tandem repeats. An evolutive tandem repeat consists in a series of almost con-
tiguous copies, every copy being similar (using Hamming distance in this article)
to its predecessor and successor. From a global view point, evolutive tandem
repeats extend the traditional approximate tandem repeat where each copy has
to be in a neighborhood of a given model. Due to the lack of algorithms, these
repeats have been discovered in genomic sequences only recently. In this article,
we present a two-stage algorithm, where we first compute an array containing all
the Hamming distances between candidates, then we visit this array to build a
complete evolutive tandem repeat from insulated pairs of copies. Moreover, we
explain how it is still consistent with the usual technique devoted to dynamic
programming which consists in filling a comparison matrix and backtracking
through it to find an optimal alignment.
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1 Introduction

The notion of approximate tandem repeat is generally well-defined, from the formal
view point [2, 12], it uses a consensus model, every copy participating to this repeat
being very similar to the consensus. An evolutive tandem repeat has no need for
a consensus model, the first and the last copies might be completely different but
every time we are considering two successive copies participating to the repeat, they
are very similar to each other: finding evolutive tandem repeats is obviously much
more complicated than detecting generic tandem repeats for which usual well-known
structures, such as suffix trees, can be used during a preprocessing stage [9].

Evolutive tandem repeats have been phrased by molecular biologists, for example
in [4], and have been observed in real DNA sequences (see Appendix A for a complete
example, detected in A. thaliana). In [5|, we gave a formal definition of evolutive
tandem repeats with jumps then we described a quadratic space and time algorithm
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which detects all the maximal. Even if numerous models and algorithms searching
for various kinds of repeats have been developed [1, 3, 10, 11, 8, 12|, none of these
algorithms are able to locate evolutive tandem repeats, as far as we know, we therefore
designed a quadratic algorithm for their detection, it was based on the construction
of two graphs and their visits.

Since we are looking for local repetitions having approximatively the average length
of mini (or even micro) satellites and because we are also looking for a certain number
of copies (having three or less copies in an evolutive tandem repeats is meaningless),
we are here interested in searching for copies whose length may vary from 4 to 64 [6],
that is usually thousands times less than the size of the sequences we are studying.
We present in this article a O((4paz — lmin + 1) X (Jmaz — Jmin + 1) X |w])-time and
O (Jmaz — Jmin + 1)-space algorithm where and £,,;, and lp00 (v€Sp. Jmin and Jomez)
are the minimal and maximal values of the length of the copies (resp. the jump
between two copies) and w is the studied sequence. More precisely, since length and
jump values are very small (with respect to the length of the sequence which can be
counted in millions of base pairs), we still have an overall linear time-complexity. So
in practice, the time complexity is in O(C x |w]), where C' < (61 X (jmaz — Jmin)-

In section 2, we recall some basic definitions and introduce the evolutive tandem
repeats. In section 3, we present the ideas of our algorithm. In section 4, we explain
the connection with comparison matrices. In section 5, we present experimental
results and finally, in section 6, we conclude.

2 Preliminaries

Let ¥ be an alphabet and ¥* its associated free monoid. A word (resp. non empty
word) over ¥ is an element of X* (resp. £T). The letter of a word w occurring at
position i is denoted by w;. The length |w| of a word w is the number of letters of w,
ie. w = w - -wy. We will denote by ¥¢ the set of all possible words of length ¢
over ¥.. We denote by u.v (or simply uv) the concatenation of two words u and wv.
Consider w = p.f.s for some p, f,s € ¥*. Such p, f, s are respectively prefiz, factor
and suffiz of w. We denote f = w[i, j| = wjwiq1---wj_qw; for 1 <i < j <|w|. The
concatenation of n copies of u is denoted by u™.

There exist several distances one can use for the analysis of genomic sequences. In
this article, we will consider the Hamming distance: the Hamming distance between
two words of equal length is the number of positions at which their corresponding
letters differ: for u,v € £f, dy(u,v) = Card{i € {1,...,0} | u; # vi}.

Definition 2.1 (Evolutive tandem repeat)

An evolutive tandem repeat with jumps (e.t.r. for short) is a tuple (v, &, (Jmin, Jmaz )
l,n, (pi)i<i<n) Where v is a word, ¢ is the maximal number of errors between two
consecutive copies, [jmin, Jmaz] 15 the range of the length of a jump (overlap or gap
between two consecutive copies) with (Jmaz — Jmin + 1) < /2, € is the length of
the copies, n is the number of copies, p; are the starting positions of the copies
¢; = vl[pi, pi + ¢ — 1] and

plzla pn+£_1:|v|a
jmin §p1+1— (pz"_g) Sjmaza Vi € {1,...,77,—1},
dH(CiaCi—i—l) < g, Vi € {]_,,’I’L—]_}
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Example 2.1 Let consider the word v = aaataacagcge.
(v,1,(-1,1),3,4,(1,5,8,10)) is an e.t.r. with jumps: p; = 1, p, = 5 (gap), p3 = 8
and py = 10 (overlap) corresponding to ¢; = aaa, co = aac, c3 = age and ¢y = cge
(see F1G. 1).

<e=1 <e <e
t=3 L t | 4 | co= aaa
o= aac

v = a a a t a a c a g c g c
3= agc
D1 : D2 b3 D4 = cgc
. . .
Sjmaz:]- ijin
gap overlap

F1G. 1: Example of an evolutive tandem repeat with jumps

We will consider only in what follows maximal e.t.r., that is e.t.r. which is not
embedded in a longer one: consider for example a word w = gaaagacgaggcgg and
¢ = 3. The e.t.r. etr; = (aagacgagg, 1,(—1,1),3,3,(1,4,7)) is not maximal in w since
the repeat etr, = (aagacgaggcgg,1,(—1,1),3, 4,(1,4,7,10)) contains more copies. In
this case, we say that etr, “contains” etr; and remark that etry is a maximal e.t.r. in
w.

In a previous article [5], we first considered all factors of w having the same length.
For each factor, we computed the set of its starting positions using an equivalence
relation on positions in w. Then, we built a graph for which nodes are these sets
and there exists an edge between two nodes if the corresponding factors are slightly
different in the meaning of the Hamming distance. Next, we computed a second graph
namely the /-position graph defined as follows:

Definition 2.2 (/-position graph) Let w be a word and ¢ and jump integers. The
(-position graph corresponding to w, € and jump is the oriented graph PG (w,e,
jump) = (N, E) where

N=A{1,.. |lw|—€+1} and

E={(i,ii" — (i +0)) for (i,i!) € N x N, i <
such that |i' — (i + £)| < jump,
dg(wli,i+ 0 —1],w[i', i + € —1]) < e}.

Nodes are labeled with all the positions {1,...,|w|— ¢+ 1} of factors of length ¢ and
there exists an edge labeled with d between two nodes if the corresponding positions
are close in w and if the Hamming distance between their associated factors, denoted
d is not greater than a given €. We used a quadratic time but linear space algorithm
to compute it. In what follows we denote by (i,4’, d) an edge labeled d from the node i
to the node 7'.

Finally, we looked for all the longest paths in the /-position graph to find maximal
e.t.r.

79



Proceedings of the Prague Stringology Conference 03

3 A Linear — Time and Space — Algorithm

In a previous article [5], we described a quadratic space and time algorithm which
detects all maximal e.t.r. in a word w. In what follows, we present a linear time
and space algorithm that starts with the filling of a “position” array and follows on
with the visit of this array in an attempt to find regularities. We will first draw the
“big-picture” and will consolidate the description by explaining the structures we used
and the strategies we developed.

The first important idea consists in considering every f(-mer (factor of length /) as
a sliding window. Since we have to compute the distances between pairs of factors,
we have to use two sliding windows f and f’ (see F1G. 2): one window, f’, ending
at position i will correspond to the right-most factor (moving sequentially from left
to right, one position at a time) while the other window, f, will correspond to the
candidates for a pair (ending at a position in the interval [i — ¢ — jaz, @ — £ — Jmin])-
Therefore, we only have to consider j,ae — Jjmin + 1 possible positions for the left
sliding window, for each given position of the right sliding window and focus on the
computation of (Jmaz — Jjmin+1) X (Jw|—£+1) distances, that is a linear-time and space
construction of a “position” array (emulating the position graph we defined in [5]).

k

l > 14

i—20—k+1 i—l—k i—l+1 )

f f
F1G. 2: The two sliding windows f and f’

The second important idea is the computation of the Hamming distance by itself: if
the Hamming distance between the factors of length ¢ ending at position 7 and ' is
known then the Hamming distance between the factors ending at position ¢ + 1 and
i" + 1 can be computed in O(1)-time because (£ — 1) comparisons have already been
done. Tt will speed up the filling of the position array (see F1G. 3).

Witp—1: Wit Wi—1 Wi C Wip

’LUZ'/+4,1§ Wity p - Wir—1 wj Wi 41
dp(wli 4+ € — 1,4], w[i' + £ —1,7") | § |

. g

i l

dy(wli+ £, i+ 1], w[i’ + £,7" + 1)

Y

-~

14
< -
£ — 1 comparisons in common
Fia. 3: Computing Hamming distance on incremental positions

Finally we only have to visit the position array and search for a series of acceptable
values (smaller than &) located at appropriate positions (the distance between two
consecutive positions has to belong to [ + Jmin, £ + Jmaz])-
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A Two-stage Algorithm

We first have to compute the Hamming distances between every possible pairs of
candidates and fill the position array D that contains all these computations.

Definition 3.1 Let w = w; ... w, be a word over ¥, ¢ an integer and k € {jnin, - - -,
Jmaz - We define D"*(3) by

0, Vie{l,...,(+k}
D (i) dy(w[l,i— 0 — k], w[l + k +1,1]), Vie{l+k+1,...,204+k—1}
dy(wli =20 — k41,0 — £ — El,wli — 0+ 1,i]), Vic {20+Fk,...,|w|}

We assume now that D}"‘(i — 1) has been previously computed and we would like to
compute D¥*(4), i.e we know dg(w[i — 20 — ki —( —k — 1], w[i — (,i — 1]) and we
would like to compute dp(w[i — 20 — k+1,i — { — k], w[i — { + 1,1]).

We therefore define two additional functions:

e Va,be X, 1,(b) =0if b =a, 1 otherwise;

o Vi € {mins- - imats EXHG) = My, (w;) if i € {L+k+1,... Jw|}, 0

otherwise.
Lemma 3.1 Let w be a word over ¥, £ an integer and k& € {Jmin, - - -, jmaz - We have:
0, Vie{l,...,l+k},
DY) D — 1) + B (0), Vie{l+k+1,...,204+k—1},
DY (i — 1) + EP'G) — B — 0), Vie {204k, ..., |w}.

Proof 1 Let k € {jmin,---sJmar} and i € {20+ k,... |w|}. If i > 20 + k then
DY —1) =dg(wli — 20 — ki — 0 —k — 1], w[i — £,i — 1]) and therefore
Dy (i)

= dy(wli—20—k+1,i—0—k|,w[i—(+1,i])

= dg(wi—20—k+1,i—0—k—1],w[li—0+1,i—1]) + Ly, _,_, (7)

= dy(wli—20—kyi—0—k—1)wli—t,i—1]) —Ly,_,,_ (i —0)+

NG

= DYi—-1) - E;:)Z(Z —0) + E).
If i = 20 + k then D(i) = dp(w[l,i — ¢ — k], w[l + k + 1,4]) = dg(w([1,i — (-
k—1], [€+k+1 z—l])—i—]l (w;) = DY — 1) + B ).
But we have E\"(i — () = wa((ze +k) =0 = EMU+k) =0, s0o D) =
DY —1) — E,ZM(Z—Z) + B (i).
We prove the other case in the same manner. O

The size of the arrays D (where D[k][i] = Di"‘(i)) and E (where E[k][i]] = E\"“(i))
i (Jmaz — Jmin + 1) X Jw|. In order to fill these two arrays, we now use a O((jmar —
Jmin + 1) X |w])-time and space algorithm.

Example 3.1

This example (see F1G. 4) has been obtained with w = aaataagttatcaatccaaatcegtgtea,
C=4, Jmin = =1, jmae = 1 and € = 2:

For example D“Y(7) = dp(w[l,4], w[4,7]) = dy(aaat, taag) = 2, DY (17) = dy(
w(10, 13], w[14,17]) = dy(atca, atec) = 1 and D¥*(28) = dp(w[20, 23], w[25, 28]) =
dy(ateg, gtca) = 2.
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EPYNG) 0 o o 0o 1 1
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33

A
93P puag;

Fi1G. 4: D and F arrays

The space complexity can be improved as follows.

Since the values F[k][i] are independent, we can decrease the space complexity by
ignoring the filling of the array E and by computing E[k][i] only when needed without
increasing the time complexity.

Moreover, for a given /, we only need the last value D}:’é(i — 1) in order to com-
pute D'(i) (see Lemma 3.1), thus we will only store the last column of the ar-
ray D. Finally (see FI1G. 5), we obtain a O((Jmez — Jmin + 1) X |w])-time and
O (Jmaz — Jmin + 1)-space algorithm (D is an array of size O(jmaz — Jmin + 1)) If
we are looking for all e.t.r. for copies of length ¢ € [lpin, lmaz),the complexity is
O((Umaz — limin + 1) X (Jmaz — Jmin + 1) X |w]). From a practical point of view,
(Urmaz — lmin +1) < 61 is much lower than |w| and the time complexity is still linear:
O(C x |w|), where C' < 61 X (Jmaz — Jmin)-

Construction of the Longest Paths

The two arrays are compact representations of the graphs we depicted in [5], and if
we refer to the traditional graph vocabulary, we can associate a cell in the position
array and a node in the position graph.

CONSTRUCTION OF THE ARRAY CONTAINING THE LONGEST PATHS(w, £, jmin, Jmaz, €)

1 for ¢« ¢,,;, to {,,,. do
2  for i<+ 1 to |w|do
Cli] + -1
L[i] + 0
for k < jmin tO Jmaes do

if (1 </ +k) then

DIk« 0

elseif (i < 20+ k) then

9 D[k] A D[k] + ﬂwi_e_k(wi)
10 else D[k] A D[k] + ﬂwi—[—k (wl) - ]lwi—N—k(wi*Z)
11 if (i >20+k)and (D[k] <¢)and (L[i =20 —k+ 1]+ 1> L[i — ¢+ 1]) then
12 Li—t+1]« Lli—20—k+1]+1
13 Cli—l+1] < i—20—k+1
14 return (C, D)

O~ O O = W

F1G. 5: Construction of the array containing the longest paths

When D(i) < ¢ and i > 20+ k, the arc between nodes (i —2¢ —k+1) and (i —£+1)
is added only if it creates a longest path to node (i — £ + 1), moreover the previously
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existing, previously unique arc ending in i — ¢ + 1 is removed: let a path of length ¢
ending in (i —£-+1), if the length of the path ending in (i —2¢ —k+1) plus 1 is greater
than ¢, then thearc ending in (i — ¢+ 1) is removed and the arc from (i —2¢ — &k + 1)
to (i — £+ 1) is created.

Finally each node 7 has at most one arc ending in 7 and therefore the /-position graph
is stored in an array C' of integers, where C[i] is the index of the head of the arc (C/[i],
i), and —1 otherwise. We use an array L of integers, where L[i] is the length of the
longest path ending in i.

Let C and L be arrays of integers of size |w| (see algorithm FIG. 5).

The determination of the longest paths, corresponding to the maximal e.t.r., uses the
traditional algorithm.

Computation of the Distance between Two Factors of Length
(+1
w,l+1

Lemma 3.2 (Computation of D, (7)) Let £, jmin, jmaz and k be integers. We
have V& € {Jmins - - s Jmaz}, 1 € {20+ k, ..., |w|}, DY (i) = D5 G) + B (- 0),
(see F1G. 6).

Proof 2 Let ¢, jmin, jmaz,? and k integers such that & € {jmin,-- -, Jmac} and i €
{20+ k,...,|w|}. We have
D}C”’”l(i) =dg(w[i—2(0+1)—j+1,i—((+1)—kl,w}i—(£+1)+1,i])
=dy(w[i—20—k—1,i—0—k—1],w[i — ¢,i])
=dy(wli —20—k,i—0—k—1],wli —(+1,1]) + Ly, _,,_,_, (wiy)
=dy(wli—20—(k+1)+1,i —0— (k+ 1), w[i — £+ 1,i])+
ﬂwi—zl—k—l(w’i*é)
= D () + B (i = 0),

r+1 (+1

041 (+1

FIG. 6: Computation of D" (i) F1G. 7: Computation of D" (i + 1)

Lemma 3.3 (Computation of Dz”gﬂ(i + 1)) Let £, jmin and jyqe be integers. We

have V& € {Jmins - - - maz}> i € {204k, ..., |w|} D (i41) = D () +EPL (1),
(see F1G. 7).

Proof 3 According to Lemma 3.2, D" (i +-1) = D} (i +1) + B (i — €4+ 1) and
by Definition 3.1, D" (i + 1) = D (6) — B (i — 0+ 1) + B (6 + 1), therefore,
DY i+ 1) = DL G) + EX G+ 1),

O
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Lemma 3.4 (Computation of Dz”éﬂ(i)) Let £, jmin and jnee be integers. We
have Yk € {Jmin, -+ Jmaz}, 1 € {20+ kK, ... |w|}

DY) = D)+ B~
= Dy (i — 1) + B (4).

4 Evolutive Tandem Repeats and Comparison Ma-
trices

Comparison Matrices

We will now explain the connection between the arrays we are computing and using,
and well-known techniques used by several algorithms devoted to sequence compari-
son.

A traditional technique in sequence comparison consists in the construction and the
visit of the two-dimension matrix, where a cell (i,7') contains the comparison score,
i.e. the distance, between a factor ending at position 7 in one sequence and a factor
ending at position i’ in the other sequence.

Computing the positions of all the approximate repeats in one sequence can be carried
out by comparing the sequence with itself, that is by constructing a specific symmetric
square matrix, like the one we are presenting in FI1G. 8. Note that F1G. 9 represents
the arrays D and F corresponding to the three white diagonals of FiG. 8.

i 1 5 10
w c t a a c a ¢ g a t g
w3

i@ o 0o 1 1 1 1 0o 0 1 1 1 1
D@ o o 1 2 3 3 2 [ B 2 3 3
w,3 -

"o 00 0o 1 1 0o 1 1 o0 1
Dy o o o o 1 2 2 2 2 2 2 N
E') o o o o o o1 1 1 1 1 1
D6 0 0 0 0 0 O 3 3 3

F1G. 9: The arrays D and E correspond-
ing to the three white diagonals

dH(s[i],s[i’])—> 1
jump—»«— d (sli-2.il.s[-2.'])

F1G. 8: Matrix and its diagonals for ¢ = 3,
Jmin = —1, Jmaz =1 and ¢ =1

In this matrix, the content of a cell (i,4") contains informations corresponding to
dy(wli — 2,i],w[i’ — 2,4']). One can observe four different kinds of cells: dark gray
cells correspond to undefined distances (i < £ or ¢’ < ¢, the factors are not long enough
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to compute dy(wli — 2,1], w[i' —2,']), therefore only dy(w[i], w[i']) is reported in the
upper left corner), light gray cells correspond to useless cells such that i —i < £+ jin
or ' —i > 0+ jmaz, White cells contain three values as expressed in F1G. 8 and are the
only cells that are really needed and finally dashed cells tick copies participating to a
potential e.t.r. (for example, the dashed cell (3, 7) states that dy(w|[1, 3], w[5,7]) < &,
that is dy (act, aca) < 1, which is correct).

Remark 4.1 Dashed cells contributing to a diagonal indicate a potential larger re-
peat: (3,9) and (4,10) (corresponding respectively to dg(act, acg) < 1 and dy(cta,
cga) < 1) can establish the existence of a longer repeat (in this example dg(acta,
acga) < 1) but more generally, dashed cells (i,i") and (i + 1,4" + 1), that is dg(w[i —
2,i,wli’ —2,4]) < 1 and dg(w[i — 1,7 + 1],w][i’ — 1,7’ + 1]) < 1, does not imply
necessarily that dy(w[i — 2,7+ 1], w[i’ — 2,7 + 1]) < 1 (consider (6,8) and (7,9) for
example).

Assume now that we are searching for approximate tandem repeats of length ¢ = 3,
with an error rate ¢ = 1 and j,,in = —1, Jmaez = 1, once we have built our matrix, the
hunt for the repeats can be carried out by visiting one row at a time and reporting
regions containing cells with a lower right value smaller than ¢ every at least /4 j,,in =
3—1=2and at most ¢ + j = 3+ 1 = 4 positions. In this matrix (see Fig. 10), if
we consider the third row, one can find such cells in columns 3, 7 and 9 and therefore
deduce that there exists an approximate repetition starting at position 1 and ending
at position 9: as a matter of fact, actaacacg is an approximate tandem repeat with
jumps, the letter a located at position 4 corresponds to a gap between copies ¢; = act
and ¢y = aca, the letter a locates at position 7 corresponds to an overlap between
copies ¢, = aca and c3 = acg. This is more or less the concept Sagot and Myers used
in [12] for finding microsatellites.

Evolutive Tandem Repeats

Finding evolutive tandem repeats with jumps is slightly different, the location of a
copy participating to the e.t.r. depends only on the location of its predecessor, /,
the length of the copies and Jin, jmae the acceptable jump between two consecutive
copies.

Consider a copy belonging to the e.t.r. that ends at position ¢, its successor must ends
at a specific position (between i+ ¢+ jpin and i+ 0+ jq,) in the matrix, we therefore
have to search for a dashed cell at positions (i,4") for i + 0+ jmin < 7' < i+l jmaz- If
there exists such a cell, it gives us a significant information about the way the copies
are connected: if ¢ + 0 + jin < i < i+ ¢ — 1 there is an overlap of length i + ¢ — ¢
between the copies, if i = i+ /¢ the copies are contiguous, if i+/+1 < ¢’ < i+l~+ jmaz
there exists a gap of length i — i — ¢ between the copies. Therefore, for every row i,
we only have to consider (jmaz — Jmin) + 1 cells. In order to find e.t.r. we therefore
have to compute and visit the diagonals starting in columns ¢+ £+ j,in t0 i+ €+ Jmaz -
That leads to computing and visiting only O((jmaz — Jmin + 1) X |w]) cells.

The left-most diagonal, starting in cell (1,7 + jm + 1), corresponds to the maximal
authorized overlap, while the right-most diagonal, starting in cell (1,4 4+ jy0e + 1),
corresponds to the maximal authorized gap. We can therefore build a matrix that
sums up all these informations as depicted in F1G. 8. The three white diagonals are
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12

FiGg. 10: Two dimension matrix corresponding to the comparison of actaacacgatg
with itself, for =3 and e =1

the only ones that need to be computed (even if in this matrix, we show all the cells).
Moreover, the computation of the three diagonals is equivalent to the computation of
the D and E arrays.

5 Experimental Results

We have implemented and tested this algorithm on various sequences, we built ran-
dom sequences over the alphabet {a,c, g,t} and no e.t.r. has been detected (for the
same rapameters as below), it appears that this kind of repetition is not an artifact.
Moreover we focused on real sequences from A. thaliana and for testing purpose we
used sequences with length varying from 10kb to 200kb (see F1G. 11).

The average behaviour of the timing curves corresponds to that we were expecting.
Time and space consumptions enabled us to search for e.t.r. in whole chromosomes,
we studied more specifically A. thaliana which possesses five chromosomes (their
length varying from 17 to 29Mb) and an example is presented in Appendix A.

6 Conclusion and Perspectives

In this article, we presented a both space and time linear algorithm for the detection
of evolutive tandem repeats. Furthermore, we implemented this approach, developed
a web interface (see FI1G. 12, http://abiss.crihan.fr/~rgroult/index.php) that
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Execution times on sequences
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Execution times on sequences: length variation
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F1G. 11: Execution times on sequences, where [ is the length of the copies, e is the
maximal Hamming distance and j is the jump

presents the copies, the alterations and sums up informations relative to the repeats.
We are now looking for this kind of repeats in complete genomes, we found several
interesting e.t.r. that are not inherited from approximate tandem repeats. We are
still in the process of studying the way it works, from the biologist viewpoint and we
are trying to figure out their role, preferred location and number in different genomes.
Since considering Hamming distance is somehow restrictive, we are moving forward
by designing an algorithm that makes use of Levenshtein distance (which allows indels
as well as substitution) instead of Hamming distance.
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# Result: Finding Evolutive tandem repeats with jump - Mozilla
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Finding Evolutive Tandem Repeats With Jumps

Repetition list:

Positions |length | Length of the factors

[Number of elements

124 8

16

14 38 15
13 8 15

Sequence:

& Upload a file from your directory.
507 Gename/al-z0000 7 | BTGHIse.

¢ Cutand paste sequence.

(1 Elt. 1 {positions 5-128, length 8)
H Factor:

aaaccotaaa coo coc tasacctotg astecttaat coctaaatce
ctasatettt aastectaca tog )

o atgaat taaat taattoact,
aaaaa gazac cggtttoter ggtt
Length of the factors: [
Maximal numiber of G
orrors allowed: B Start | End Factor AC|G|T Type
° 5| 12| eaacce ta [4[3[0[1
Maximal jump allowed: [ 12 19] aaacce ta 4301 overlap=1
Minimum number of o 19 26| aaacce ta [4[3[0[1] overlap=1
elements: 26| 33| azacc tet |3 [3[0[2 overlap=1
Clear the information | Submit sequence 35| 42| aatoctta |3 (2|0 |3 gap-1
1 43 50 teect 3|30 |2 concatenation
1© @ @ @ & |vosment com 35500 | | @ @ @ G G courmr voe 50 —————
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A An Example of e.t.r. Occurring in A. thaliana,
chr 4 (17Mb)

We found numerous e.t.r. in chr 4 (17Mb) of A. thaliana, here is an example appearing
in an exon of the AT4G38590.1 gene.

./evorep -mll -e3 -j1 -r4 -f “/at4.fasta
->

- number of e.t.r.: 662

- time: Om38.758s

Example of found e.t.r.

Fry
H

# Parameters: length=11, error=3, jmin=-1, jmax=1, rMin=4
# Sequence: > at4.seq (17Mb)
# Execution time: 38 sec.

17245698 17245709 17245719 17245731 17245743 17245755 17245767
acaagatgagaagaagaagaaagaagataaagacgaagaggaagaggacgatgaagatgatgatgaagaagaag

[ aagaag

17245698 acaagatgaga
17245709 agaagaagaaa
17245719 agaagataaag
17245731 cgaagaggaag
17245743 ggacgatgaag
17245755 tgatgatgaag
17245767 agaagaagaag
H#

"

We investigated this sequence using “tandem repeat finder” [2| and “mreps” [7] and
obtained:

->

Tandem Repeat Finder:

Indices Period Copy Consensus Percent Percent Score A C G T Entropy(0-2)
Size  Number Size Matches Indels

No Repeats Found!

->
./mreps -err 3 -minp 2 -from 1 -exp 3.0
* Processing window [1 : 80] *

from -> to : size <per.> [exp.] repetition

1 ->18 : 18 <5> [3.60] acaag atgag aagaa gaa
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25 :
40 :
32 :
33 :
80 :

80 :

80 :

47
80 :

21
33
23
23
61

51

<6> [3.50]
<4> [8.25]
<7> [3.29]
<5> [4.60]
<6> [10.17]

<9> [6.67]

<12> [4.25]

<4> [3.00]
<4> [6.25]

gatgag aagaag aagaaa gaa
gaga agaa gaag aaag aaga taaa gacg aaga g
gaagaag aagaaag aagataa ag
aagaa gaaga aagaa gataa aga
aaagaa gataaa gacgaa gaggaa gaggac gatgaa
[ gatgat gatgaa gaagaa gaagaa g
aagacgaag aggaagagg acgatgaag atgatgatg
[ aagaagaag aagaag
aagacgaagagg aagaggacgatg aagatgatgatg
[ aagaagaagaag aag
aaga ggaa gagg
atga tgaa gaag aaga agaa g

5 ->
8 >
10 ->
11 >
20 ->
30 ->
30 ->
36 ->
60 ->
RESULTS:

There are 10 maximal repetitions in the segment processed
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