Computing the Repetitions in a Weighted Sequence

Costas S. Iliopoulos!, Laurent Mouchard?, Katerina Pedikuri** and
Athanasios K. Tsakalidis®*

! Department of Computer Science, King’s College London Strand,
London WC2R, 2LS, England
e-mail: csi@dcs.kcl.ac.uk

2 ABISS, Atelier Biology, Informatics, Statistics and Sociolinguistics,
Université de Rouen, 76821 Mont Saint Aignan Cedex, France
e-mail: Laurent .Mouchard@univ-rouen. fr

3 Research Academic Computer Technology Institute,
61 Riga Feraiou Str., 26221 Patras, Greece
e-mail: tsakQcti.gr

4 Department of Computer Engineering and Informatics, University of Patras,
26500 Patras, Greece
e-mail: perdikur@ceid.upatras.gr

Abstract. We present an O(nlogn) algorithm for computing the set of repe-
titions in a weighted sequence with probability of appearance larger than 1/k,
where k is a given constant.

1 Introduction

The key problem today in sequencing a large string of DNA is that only a small
amount of DNA can be sequenced in a single read. That is, whether the sequencing is
done by a fully automated machine or by a more manual method, the longest unbroken
DNA substring that can be reliably determined in a single laboratory procedure is
about 300 to 1000 (approximately 500) bases long [Celeral, Celera2|. A longer string
can be used in the procedure but only the initial 500 bases will be determined. Hence
to sequence long strings or an entire genome, the DNA must be divided into many
short strings that are individually sequenced and then used to assemble the sequence
of the full string. The critical distinction between different large-scale sequencing
methods is how the task of sequencing the full DNA is divided into manageable
subtasks, so that the original sequence can be reassembled from sequences of length
500.

Reassembling DNA substrings introduces a degree of uncertainty for various posi-
tions in a biosequence. This notion of uncertainness was initially expressed with the
use of “don’t care” characters denoted as “x”. A don’t care symbol has the property of
matching with any symbol in the given alphabet. For example the string p = AC' «C'x
matches the pattern ¢ = A+ DCT'. In some cases scientists determine the appearance
of a symbol in a position of a sequence by assigning a probability of appearance for

91

Proceedings of the Prague Stringology Conference 03

every symbol. In other words a don’t care symbol is replaced by a list of probabilities
of appearance for a set of characters. Such a sequence is called a weighted sequence.
Other immediate applications in molecular biology include: using sequences contain-
ing degenerate bases, IUB codes [IUB|, where a letter can replace several bases (for
example, a B will represent a G, T or C and a H will represent A, T or C); using logo
sequences [SS90| which are more or less related to consensus: either from assembly
or from blocks obtained by a multiple alignment program.

In this paper we present an efficient algorithm for computing all possible repe-
titions of primitive words in a weighted sequence. The structure of the paper is as
follows. In Section 2 we give all the basic definitions used in the rest of the paper, in
Section 3 we present our algorithm while in Section 4 we give a brief time complexity
analysis of the proposed method. Finally in Section 5 we conclude and discuss our
research interest in open problems of the area.

2 Background

A lot of work has been done for identifying the repetitions in a word. In [Cro81],
[Apo83|, [Mai84] and [Sto98|, authors have presented efficient methods that find
occurrences of squares in a string of length n in time O(nlogn) plus the time to report
the detected squares. Moreover in [Kol99a] and [Kol99b| authors presented efficient
algorithms to find maximal repetitions in a word. In the area of computational
biology, algorithms for finding identical repetitions in biosequences are presented in
[Kur99], [Tsu99] and [Mar83|. In this section we will give all the basic definitions
used in the paper.

2.1 Basic Definitions

Let ¥ be a finite alphabet which consists of a set of characters (or symbols). The
cardinality of an alphabet denoted by |¥| expresses the number of distinct characters
in the alphabet. A string or word is a sequence of zero or more characters drawn
from an alphabet. The set of all words over the alphabet X is denoted by ¥*. A
word w of length n is represented by w[l..n] = w[1|w[2]---w[n], where w[i] € ¥ for
1 < i< n,and n = |w| is the length of w. The empty word is the empty sequence (of
zero length) and is denoted by £; we write ¥* = ©* U {e}. Moreover a word is said
to be primitive if it cannot be written as v® with v € ¥* and e > 2.

A factor f of length p is said to occur at position i in the word w if f = w[i,---i+
p — 1]. In other words f is a substring of length p occurring at position i in word w.

A word has a repetition when it has at least two consecutive equal factors. More
precisely, a repetition in w is defined as a triple (i, p,) so that w[i,---i+p—1]=w[i+
poi+2%xp—1]=---=w[i+(e—1)*p,---i+exp—1]. The integers p and e are
called respectively the period and exponent of the repetition.

In the case that for a given position of a word w we consider the presence of a
set of characters with a given probability of appearance each we define the sense of a
weighted word w, defined as follow:

Definition 1. A weighted word w = $182---8, @S a continuous set of couples
(s,m;(s)), where m;(s) is the probability of having the character s at position i. For
every position 1 < i <n, Nm;(s) = 1.

92

Computing the Repetitions in a Weighted Sequence

For example, if we consider the DNA alphabet ¥ = {A,C G, T} the word w=
[(A,0.5),(C,0.25),(G,0.25),(T,0)] [(A,0),(C,1),(G,0),(T,0)] [(A,1),(C,0),(G,0),(T,0)],

represents a word having three letters: the first one is either A,C,G with respective
probabilities 0.5, 0.25 and 0.25, the second one is always a C, while the third letter
is necessarily an A, since its probability of presence is 1. That means that in a given
biological sequence one of the following words: ACA, CCA, GCA might appear with
probability 0.5, 0.25 and 0.25 each. We observe that the probability of presence of
a word is the cumulative probability which is calculated by multiplying the relative
probabilities of appearance of each character in every position. For the above example
the probability of the word ACA to appear in positions 1 to 3 can be analyzed as
follows: m(ACA) = m(A) xmo(C) xm3(A)=0.5*1*1=0.5. The definition of a weighted
factor can be easily extended.

A weighted sequence has a repetition when it has at least two identical occurrences
of a factor (weighted or not). The probability of appearance of the factor may vary
according to the position it appears. In biological problems scientists are interested in
discovering all the repetitions of all possible words having a probability of appearance
larger than a predefined constant.

2.2 Equivalent Classes of Repetitions

In our methodology, in order to record the repetitions of all possible words we use
a list (L,),>1 of equivalent repetitions of length p on the positions of a weighted
sequence, defined as follows:

Definition 2. Let x be a weighted sequence of length |x|=n; then (i,j) € L, iff
i+p<n,j+p<nandz; - Titp1 = Tj- - Tjpp_1, While m(x;- - xipp_1) > 1/k and
m(wj - Tjppr) = 1/

So, two positions in x are equivalent when the factors of = of length p starting at
i and j respectively are equal although the respective probabilities of appearance can
vary. The positions of appearance of the factors as well as the respective probabilities
are stored in a set of classes CP.

Definition 3. Let v be a weighted sequence of length |x|=n; then the (C%) class
is the ordered list of at least 2 couples (if,m;(f)), which includes all positions of
appearance of the factor f of length p in the weighted sequence. We exclude all couples
with probability less than 1/k .

Moreover we also define a function on the positions of x, which gives for every
position the next position in the same equivalence class.

Definition 4. D, (i) = the least integer k > 0, so that (i,i+ k) € L,. (If there is
no such & the function is not defined).

One can easily check that any list L, is a refinement of L, (L,;; < L,), since
list L,y contains all possible repetitions of length p that can be extended by one
character. Furthermore there clearly exists a smallest integer N, 1 < N < n, so that
Ly > Ly--- > Ly. Thus the computation of the equivalences L, can be done using
the values of L,_1, the respective classes C?~! and a proper choice function f.

Definition 5. A choicefunction f is a function

fACy,---,C.} — {C4,---,Ck}, with the properties: for any C' € {CY,---,C}}
[/(C") € C" and for any C € {C}, -+, C,}C € C' = |C| < |F(C")])

where {C1,---,CL} and {Cy,---,Cy} the equivalence classes of L,y and L, re-
spectively.

93

Proceedings of the Prague Stringology Conference 03

So f associates to each E,_; — class one of its E, — subclasses of maximal size.
Given a choice function f, each L, class f(C") is called a big_ class; the others are
called small classes. By definition, all the L;-classes are small.

Now we define a new sequence (S,),>; of equivalences on the positions of = as
follows:

Definition 6. (i,7) € S, iff for any small class Ly-class C?, i € C? iff j € CP.

Lemma. Forany p > 1, (i,j) € Ly4y iff (4,5) € L, and (i + 1,5+ 1) € S,.

For more information on the proof of the Lemma the reader can refer to [Cro81|.

3 Computing the Repetitions

In this paper we address the problem of computing the set of repetitions in a weighted
biological sequence. More formally the problem can be stated as follows:

Problem Given a weighted sequence X and an integer k find all the repetitions
of all possible words having a probability of appearance larger than 1/k.

. e O L
c O2020
: OX0R0.

Jiojolole===rololo

Figure 1: Graphical approach of the problem.

In a graphical approach the problem can be represented as in the Figure 1. For
each position of the weighted sequence we write down the probability of appearance
of each character of the alphabet. For the DNA alphabet which constitutes of 4
characters we write down 4 respective probabilities. The probability of appearance
of a word is the cumulative probability calculated following the respective directed
path.When the probability is larger than 1/k, the directed path is a schema that can
be extended by one character, in the following step and graphically we search for
a repeated schema. In the above Figure the red directed path has a probability of
appearance larger than 1/2, (k=2) thus we search for such repeated schemas.

Solution. For every character s in the alphabet we define a class C' as the
ordered list of couples (is, m;(s)), which includes all equivalent positions of appearance
of the character s in the weighted sequence. We exclude all couples with probability
less than 1/k. The set of C' classes forms the Ly list for all possible repetitions of
length one. We continue by computing Dy for each position in the sequence.All L-
classes are small. The process is continued by computing all C? classes for p > 2

94

Computing the Repetitions in a Weighted Sequence

and updating L, thus forming D,. The process stops when we reach the mazimal (in
length) repeated words with probability of appearance larger than 1/k.

The above solution uses ideas from the algorithm presented by Crochemore (see
[Cro81]). The major difference is the choice function that we have used in order to
incorporate the notion of probability of appearance in repetitions. A schema of the
algorithm is presented below.

FIND-WEIGHTED REPETITIONS(X,k)
Compute all possible repetitions of any length with probability larger than 1/k
FOR all s € ¥ DO
create the small classes C! of couples (s, m;(s)),
where 7;(s) is the probability of having the character s at position i.
IF 7;(s) < 1/k exclude it from the respective class
Compute for p =1 L, and D,;
WHILE {J small _classes # 0, DO
report the repetitions of period p.
p<+— p+ 1;if p > |z|/2 return repetitions;
L, «— L, N Sy,; update D,;
small _classes <— {indices of small L, — classes}
END FIND-WEIGHTED REPETITIONS

Example Suppose we want to find all repetitions of the weighted sequence: X =
ACTT[(A,0.5),(C,0.5)]TC[(A,0.5),(C,0.3),(T,0.2)]TTT, with probability larger than
1/4. We will illustrate the steps following the above presented algorithm.

1. For all characters s € Spya = {A,C,G, T} create the C'' classes.
CY = (14,1)(54,0.5)(84,0.5).
CL = (20,1)(5¢,0.5)(7e, 1) (8¢, 0.3).
CL = empty.
Ch = (37,1)(47,1)(67,1)(97,1) (107, 1) (117, 1).

2. Define L; class as the union of C'! classes and the values D;.
L, =Cluc,ucik.
Dy ={1,1,1,1,1,1,1,1,1,1, 1}.

3. Since U small _classes # 0 we will compute all possible repetitions of length
p > 2, using the lemma we presented in subsection 2.2.
C3r = (5a7,0.5)(8 41,0.5).
Cér = (2cr,1)(5¢1,0.5)(8¢T,0.3).
CJQ"C’ — (4TC’; 0-5)(6T07 1)
C%T — (3TT;]-)(9TT7].)(]_OTT,].)

4. Define L, class as the union of C? classes and the values Ds.
Dy = {not defined, 1, 1, 1, 1, 2, not defined, 1, 1, not defined, not defined}.

5. Following the above procedure we conclude that the repetitions with probability
larger than 1/k are:.
Ly = CéTT = (2CTT7]-)(SCTTa 0-3)

95

Proceedings of the Prague Stringology Conference 03

Theorem The above algorithm computes all repetitions in a weighted sequence
X of length |n)|.

Proof. It is easy to see that the algorithm stops. The length of ; in the algorithm
is bounded by O(|Z|X1). As far as it concerns the values of the list L, for p > 2, are
computed using the Lemma in subsection 2.2 and the values of L,_; list. Each list of
repetitions p + 1 is at most half the size of the list of repetitions of length p.

4 Time Complexity Analysis

The time complexity analysis of our algorithm is based on the combination of the
following two facts:

1. The well known “smaller-half trick” used also in [Cro81|, [Apo83|, [Sto98],
for finding tandem repeats. According to the “smaller-half trick” each list of
repetitions of length p + 1 is at most half the size of the list of repetitions of
length p.

2. The probability of existence of a factor f in a weighted sequence X is the cumu-
lative probability which is calculated by multiplying the relative probabilities
of appearance of each character/symbol in every position. Note that we inter-
ested in repetitions with probability greater than 1/k. It is not difficult to see
that given a position ¢ of x, then there is only a constant number of different
substrings that can occur at position i with probability greater than 1/k. (The
proof follows).

For every weighted sequence w of length n, w[l..n] = w[lJw[2]- - wn], each
position w[i] for 1 <i < n, is the starting position of a weighted factor iff the
respective character s has m(s;) > 1/k. Therefore the maximum probability of
appearance for the rest of the characters in position i is bounded by p = 1—1/k.
Assume that the number of starting positions inside a weighted factor, produced
from position ¢ is [. In order this factor to be interesting its probability of
appearance must be grater than 1/k. This is mathematically formulated as
follows:

P> 1/k — 1 <logy(k).
That means that the number of weighted positions inside a weighted factor is

bounded by a constant and thus the number of different substrings that can
occur at position i with probability greater than 1/k is also a constant number.

Based on the above two facts the time complexity of our algorithm for computing
the set of repetitions in a weighted sequence with probability of appearance larger

than 1/k is O(nlogn).
5 Conclusions

Our future direction is focused on defining the notion of borders for a weighted se-
quence and developing efficient algorithms for computing the covers and the seeds of
weighted sequences.

96

Computing the Repetitions in a Weighted Sequence

Moreover we are studying the same problem using the suffix tree as the fundamen-
tal data structure. The basic idea behind this approach is to incorporate the notion
of probability of appearance in the path labels and in the leaves in the suffix tree of
a weighted sequence [I1i03].

Another potential application of our algorithm is in defining a basis for the re-
peated motifs of a weighted sequence. In our algorithm we create in an exhaustive
way all possible repetitions with probability larger than 1/k. We can use all primitive
repetitions and a set of allowed operations in order to define a basis that efficiently
produces all repeated motifs. As any repeated word can be expressed as an array of
primitive repetitions, it is often desirable to find only primitive repetitions.

References

[Cro81] Crochemore, M.: An Optimal Algorithm for Computing the Repetitions in
a Word. Information Processing Letters, Vol.12 (5), (1981) 244-250.

[Celeral| Celera Genomics: The Genome Sequence of Drosophila melanogaster, Sci-
ence 287, (2000) 2185-2195

[Celera2| Celera Genomics: The Sequence of the Human Genome, Science 291, (2001)
1304-1351.

[TUB] Nomenclature Committee of the International Union of Biochemistry (NC-
IUB). Nomenclature for incompletely specified bases in nucleic acid se-
quences, Eur. J. Biochem. 150(1985) 1-5.

[SS90] Schneider T. D., Stephens R. M.: Sequence Logos: A New Way to Display
Consensus Sequences, Nucleic Acids Res. 18, (1990) 6097-6100.

[Knu77] Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings,
SIAM J. Comput., (6), (1977) 322-350.

[Apo83] Apostolico, A., Preparata, F.P.;: Optimal off-line detection of repetitions
in a string. Theoretical Computer Science, (22), (1983) 297-315.

[Mai84] Main, M.G., Lorentz, R.J.,;: An O(nlogn) algorithm for finding all repeti-
tions in a string. Journal of Algorithms, (5), (1984) 422-432.

[Sto98] Stoye, J., Gusfield, D.,: Simple and flexible detection of contiguous re-
peats using a suffix tree. In proceedings of the 9th Annual Symposium on
Combinatorial Pattern matching (CPM), volume 1448 of Lecture Notes in
Computer Science, (1998) 140-152.

[Kol99a| Kolpakov, R., Kucherov, G.,: Finding maximal repetitions in a word in
linear time. Proceedings of IEEE Foundations of Computer Science, (1999).

[Kol99b| Kolpakov, R., Kucherov, G.,: On maximal repetitions in words. Proceedings
of Foundamentals of Computation Theory, (1999) 374-385.

[Mar83] Martinez, H.,: An Efficient Method for Finding Repeats in Molecular Se-
quences. Nucleic Acid Research, (11), (1983) 4626-4634.

97

Proceedings of the Prague Stringology Conference 03

[Tsu99] Tsunoda, T., Fukagawa, M., Takagi, T.,: Time and memory efficient algo-
rithm for extracting palindromic and repetitive subsequences in nucleic acid
sequences. Pacific Symposium on Biocomputing, (4), (1999) 202-213.

[Kur99] Kurtz, S., Schleiermacher, C.,: REPuter: fast computation of maximal
repetas in complete genomes. Bioinformatics, (15), (1999) 426-427.

[[1i03] Tiopoulos, C., Makris, Ch., Panagis, 1., Perdikuri, K., Theodoridis, E.,
Tsakalidis, A.,: Computing the Repetitions in a Weighted Sequence using

Weighted Suffix Trees. European Conference On Computational Biology
(ECCB 2003), (accepted).

98

