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Abstra
t. We present an O(n log n) algorithm for 
omputing the set of repe-

titions in a weighted sequen
e with probability of appearan
e larger than 1/k ,

where k is a given 
onstant.

1 Introdu
tion

The key problem today in sequen
ing a large string of DNA is that only a small

amount of DNA 
an be sequen
ed in a single read. That is, whether the sequen
ing is

done by a fully automated ma
hine or by a more manual method, the longest unbroken

DNA substring that 
an be reliably determined in a single laboratory pro
edure is

about 300 to 1000 (approximately 500) bases long [Celera1, Celera2℄. A longer string


an be used in the pro
edure but only the initial 500 bases will be determined. Hen
e

to sequen
e long strings or an entire genome, the DNA must be divided into many

short strings that are individually sequen
ed and then used to assemble the sequen
e

of the full string. The 
riti
al distin
tion between di�erent large-s
ale sequen
ing

methods is how the task of sequen
ing the full DNA is divided into manageable

subtasks, so that the original sequen
e 
an be reassembled from sequen
es of length

500.

Reassembling DNA substrings introdu
es a degree of un
ertainty for various posi-

tions in a biosequen
e. This notion of un
ertainness was initially expressed with the

use of �don't 
are� 
hara
ters denoted as ���. A don't 
are symbol has the property of

mat
hing with any symbol in the given alphabet. For example the string p = AC �C�

mat
hes the pattern q = A�DCT . In some 
ases s
ientists determine the appearan
e

of a symbol in a position of a sequen
e by assigning a probability of appearan
e for
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every symbol. In other words a don't 
are symbol is repla
ed by a list of probabilities

of appearan
e for a set of 
hara
ters. Su
h a sequen
e is 
alled a weighted sequen
e.

Other immediate appli
ations in mole
ular biology in
lude: using sequen
es 
ontain-

ing degenerate bases, IUB 
odes [IUB℄, where a letter 
an repla
e several bases (for

example, a B will represent a G, T or C and a H will represent A, T or C); using logo

sequen
es [SS90℄ whi
h are more or less related to 
onsensus: either from assembly

or from blo
ks obtained by a multiple alignment program.

In this paper we present an e�
ient algorithm for 
omputing all possible repe-

titions of primitive words in a weighted sequen
e. The stru
ture of the paper is as

follows. In Se
tion 2 we give all the basi
 de�nitions used in the rest of the paper, in

Se
tion 3 we present our algorithm while in Se
tion 4 we give a brief time 
omplexity

analysis of the proposed method. Finally in Se
tion 5 we 
on
lude and dis
uss our

resear
h interest in open problems of the area.

2 Ba
kground

A lot of work has been done for identifying the repetitions in a word. In [Cro81℄,

[Apo83℄, [Mai84℄ and [Sto98℄, authors have presented e�
ient methods that �nd

o

urren
es of squares in a string of length n in time O(nlogn) plus the time to report

the dete
ted squares. Moreover in [Kol99a℄ and [Kol99b℄ authors presented e�
ient

algorithms to �nd maximal repetitions in a word. In the area of 
omputational

biology, algorithms for �nding identi
al repetitions in biosequen
es are presented in

[Kur99℄, [Tsu99℄ and [Mar83℄. In this se
tion we will give all the basi
 de�nitions

used in the paper.

2.1 Basi
 De�nitions

Let � be a �nite alphabet whi
h 
onsists of a set of 
hara
ters (or symbols). The


ardinality of an alphabet denoted by j�j expresses the number of distin
t 
hara
ters

in the alphabet. A string or word is a sequen
e of zero or more 
hara
ters drawn

from an alphabet. The set of all words over the alphabet � is denoted by �

+

. A

word w of length n is represented by w[1::n℄ = w[1℄w[2℄ � � �w[n℄, where w[i℄ 2 � for

1 � i � n, and n = jwj is the length of w. The empty word is the empty sequen
e (of

zero length) and is denoted by "; we write �

�

= �

+

[ f"g. Moreover a word is said

to be primitive if it 
annot be written as v

e

with v 2 �

+

and e � 2.

A fa
tor f of length p is said to o

ur at position i in the word w if f = w[i; � � � i+

p� 1℄. In other words f is a substring of length p o

urring at position i in word w.

A word has a repetition when it has at least two 
onse
utive equal fa
tors. More

pre
isely, a repetition in w is de�ned as a triple (i; p; e) so that w[i; � � � i+p�1℄=w[i+

p; � � � i+ 2 � p� 1℄ = � � � = w[i+ (e� 1) � p; � � � i+ e � p� 1℄. The integers p and e are


alled respe
tively the period and exponent of the repetition.

In the 
ase that for a given position of a word w we 
onsider the presen
e of a

set of 
hara
ters with a given probability of appearan
e ea
h we de�ne the sense of a

weighted word w, de�ned as follow:

De�nition 1. A weighted word w = s

1

s

2

� � � s

n

is a 
ontinuous set of 
ouples

(s; �

i

(s)), where �

i

(s) is the probability of having the 
hara
ter s at position i. For

every position 1 � i � n, ��

i

(s) = 1.
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For example, if we 
onsider the DNA alphabet � = fA;C;G; Tg the word w=

[(A,0.5),(C,0.25),(G,0.25),(T,0)℄ [(A,0),(C,1),(G,0),(T,0)℄ [(A,1),(C,0),(G,0),(T,0)℄,

represents a word having three letters: the �rst one is either A,C,G with respe
tive

probabilities 0.5, 0.25 and 0.25, the se
ond one is always a C, while the third letter

is ne
essarily an A, sin
e its probability of presen
e is 1. That means that in a given

biologi
al sequen
e one of the following words: ACA, CCA, GCA might appear with

probability 0.5, 0.25 and 0.25 ea
h. We observe that the probability of presen
e of

a word is the 
umulative probability whi
h is 
al
ulated by multiplying the relative

probabilities of appearan
e of ea
h 
hara
ter in every position. For the above example

the probability of the word ACA to appear in positions 1 to 3 
an be analyzed as

follows: �(ACA) = �

1

(A) ��

2

(C) ��

3

(A)=0.5*1*1=0.5. The de�nition of a weighted

fa
tor 
an be easily extended.

A weighted sequen
e has a repetition when it has at least two identi
al o

urren
es

of a fa
tor (weighted or not). The probability of appearan
e of the fa
tor may vary

a

ording to the position it appears. In biologi
al problems s
ientists are interested in

dis
overing all the repetitions of all possible words having a probability of appearan
e

larger than a prede�ned 
onstant.

2.2 Equivalent Classes of Repetitions

In our methodology, in order to re
ord the repetitions of all possible words we use

a list (L

p

)

p�1

of equivalent repetitions of length p on the positions of a weighted

sequen
e, de�ned as follows:

De�nition 2. Let x be a weighted sequen
e of length jxj=n; then (i; j) 2 L

p

i�

i+p � n, j+p � n and x

i

� � �x

i+p�1

= x

j

� � �x

j+p�1

, while �(x

i

� � �x

i+p�1

) � 1=k and

�(x

j

� � �x

j+p�1

) � 1=k :

So, two positions in x are equivalent when the fa
tors of x of length p starting at

i and j respe
tively are equal although the respe
tive probabilities of appearan
e 
an

vary. The positions of appearan
e of the fa
tors as well as the respe
tive probabilities

are stored in a set of 
lasses C

p

.

De�nition 3. Let x be a weighted sequen
e of length jxj=n; then the (C

p

f

) 
lass

is the ordered list of at least 2 
ouples (i

f

; �

i

(f)), whi
h in
ludes all positions of

appearan
e of the fa
tor f of length p in the weighted sequen
e. We ex
lude all 
ouples

with probability less than 1/k .

Moreover we also de�ne a fun
tion on the positions of x, whi
h gives for every

position the next position in the same equivalen
e 
lass.

De�nition 4. D

p

(i) = the least integer k > 0, so that (i; i+ k) 2 L

p

. (If there is

no su
h k the fun
tion is not de�ned).

One 
an easily 
he
k that any list L

p+1

is a re�nement of L

p

(L

p+1

� L

p

), sin
e

list L

p+1


ontains all possible repetitions of length p that 
an be extended by one


hara
ter. Furthermore there 
learly exists a smallest integer N, 1 � N � n, so that

L

1

� L

2

� � � � L

N

. Thus the 
omputation of the equivalen
es L

p


an be done using

the values of L

p�1

, the respe
tive 
lasses C

p�1

and a proper 
hoi
efun
tion f .

De�nition 5. A 
hoi
efun
tion f is a fun
tion

f : fC

0

1

; � � � ; C

0

k

g �! fC

1

; � � � ; C

k

g, with the properties: for any C

0

2 fC

0

1

; � � � ; C

0

k

g

[f(C

0

) � C

0

and for any C 2 fC

1

; � � � ; C

k

gC � C

0

=) jCj � jf(C

0

)j℄;

where fC

0

1

; � � � ; C

0

k

g and fC

1

; � � � ; C

k

g the equivalen
e 
lasses of L

p�1

and L

p

re-

spe
tively .
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So f asso
iates to ea
h E

p�1

� 
lass one of its E

p

� sub
lasses of maximal size.

Given a 
hoi
e fun
tion f , ea
h L

p


lass f(C

0

) is 
alled a big_
lass; the others are


alled small_
lasses. By de�nition, all the L

1

-
lasses are small.

Now we de�ne a new sequen
e (S

p

)

p�1

of equivalen
es on the positions of x as

follows:

De�nition 6. (i; j) 2 S

p

i� for any small 
lass L

p

-
lass C

p

, i 2 C

p

i� j 2 C

p

.

Lemma. For any p � 1 , (i; j) 2 L

p+1

i� (i; j) 2 L

p

and (i+ 1; j + 1) 2 S

p

.

For more information on the proof of the Lemma the reader 
an refer to [Cro81℄.

3 Computing the Repetitions

In this paper we address the problem of 
omputing the set of repetitions in a weighted

biologi
al sequen
e. More formally the problem 
an be stated as follows:

Problem Given a weighted sequen
e X and an integer k �nd all the repetitions

of all possible words having a probability of appearan
e larger than 1/k .

0.5
 0
 1
 1
0.5
 0
A


T


G


C


0
0
0
0
0
0


0
0
0.25
0
0
0.25


0
1
0.25
0
1
0.25


Figure 1: Graphi
al approa
h of the problem.

In a graphi
al approa
h the problem 
an be represented as in the Figure 1. For

ea
h position of the weighted sequen
e we write down the probability of appearan
e

of ea
h 
hara
ter of the alphabet. For the DNA alphabet whi
h 
onstitutes of 4


hara
ters we write down 4 respe
tive probabilities. The probability of appearan
e

of a word is the 
umulative probability 
al
ulated following the respe
tive dire
ted

path.When the probability is larger than 1/k , the dire
ted path is a s
hema that 
an

be extended by one 
hara
ter, in the following step and graphi
ally we sear
h for

a repeated s
hema. In the above Figure the red dire
ted path has a probability of

appearan
e larger than 1/2 , (k=2 ) thus we sear
h for su
h repeated s
hemas.

Solution. For every 
hara
ter s in the alphabet we de�ne a 
lass C

1

as the

ordered list of 
ouples (i

s

; �

i

(s)), whi
h in
ludes all equivalent positions of appearan
e

of the 
hara
ter s in the weighted sequen
e. We ex
lude all 
ouples with probability

less than 1/k. The set of C

1


lasses forms the L

1

list for all possible repetitions of

length one. We 
ontinue by 
omputing D

1

for ea
h position in the sequen
e.All L

1

-


lasses are small. The pro
ess is 
ontinued by 
omputing all C

p


lasses for p � 2
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and updating L

p

thus forming D

p

. The pro
ess stops when we rea
h the maximal (in

length) repeated words with probability of appearan
e larger than 1/k .

The above solution uses ideas from the algorithm presented by Cro
hemore (see

[Cro81℄). The major di�eren
e is the 
hoi
e fun
tion that we have used in order to

in
orporate the notion of probability of appearan
e in repetitions. A s
hema of the

algorithm is presented below.

FIND-WEIGHTED REPETITIONS(X,k)

Compute all possible repetitions of any length with probability larger than 1/k

FOR all s 2 � DO


reate the small 
lasses C

1

of 
ouples (s; �

i

(s)),

where �

i

(s) is the probability of having the 
hara
ter s at position i.

IF �

i

(s) � 1=k ex
lude it from the respe
tive 
lass

Compute for p = 1 L

p

and D

p

;

WHILE

S

small_
lasses 6= 0, DO

report the repetitions of period p.

p � p+ 1; if p > jxj=2 return repetitions;

L

p

 � L

p

\ S

p

; update D

p

;

small_
lasses � {indi
es of small L

p

� 
lassesg

END FIND-WEIGHTED REPETITIONS

Example Suppose we want to �nd all repetitions of the weighted sequen
e: X=

ACTT[(A,0.5),(C,0.5)℄TC[(A,0.5),(C,0.3),(T,0.2)℄TTT, with probability larger than

1/4. We will illustrate the steps following the above presented algorithm.

1. For all 
hara
ters s 2 �

DNA

= fA;C;G; Tg 
reate the C

1


lasses.

C

1

A

= (1

A

; 1)(5

A

; 0:5)(8

A

; 0:5):

C

1

C

= (2

C

; 1)(5

C

; 0:5)(7

C

; 1)(8

C

; 0:3):

C

1

G

= empty:

C

1

T

= (3

T

; 1)(4

T

; 1)(6

T

; 1)(9

T

; 1)(10

T

; 1)(11

T

; 1):

2. De�ne L

1


lass as the union of C

1


lasses and the values D

1

.

L

1

= C

1

A

[ C

1

C

[ C

1

T

.

D

1

= f1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g.

3. Sin
e

S

small_
lasses 6= 0 we will 
ompute all possible repetitions of length

p � 2, using the lemma we presented in subse
tion 2.2.

C

2

AT

= (5

AT

; 0:5)(8

AT

; 0:5):

C

2

CT

= (2

CT

; 1)(5

CT

; 0:5)(8

CT

; 0:3):

C

2

TC

= (4

TC

; 0:5)(6

TC

; 1):

C

2

TT

= (3

TT

; 1)(9

TT

; 1)(10

TT

; 1):

4. De�ne L

2


lass as the union of C

2


lasses and the values D

2

.

L

2

= C

2

AT

[ C

2

CT

[ C

2

TC

[ C

2

TT

.

D

2

= {not de�ned, 1, 1, 1, 1, 2, not de�ned, 1, 1, not de�ned, not de�ned}.

5. Following the above pro
edure we 
on
lude that the repetitions with probability

larger than 1/k are:.

L

3

= C

3

CTT

= (2

CTT

; 1)(8

CTT

; 0:3)
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Theorem The above algorithm 
omputes all repetitions in a weighted sequen
e

X of length jnj.

Proof. It is easy to see that the algorithm stops. The length of L

1

in the algorithm

is bounded by O(j�j

jXj

). As far as it 
on
erns the values of the list L

p

for p � 2, are


omputed using the Lemma in subse
tion 2.2 and the values of L

p�1

list. Ea
h list of

repetitions p+ 1 is at most half the size of the list of repetitions of length p.

4 Time Complexity Analysis

The time 
omplexity analysis of our algorithm is based on the 
ombination of the

following two fa
ts:

1. The well known �smaller-half tri
k� used also in [Cro81℄, [Apo83℄, [Sto98℄,

for �nding tandem repeats. A

ording to the �smaller-half tri
k� ea
h list of

repetitions of length p + 1 is at most half the size of the list of repetitions of

length p.

2. The probability of existen
e of a fa
tor f in a weighted sequen
e X is the 
umu-

lative probability whi
h is 
al
ulated by multiplying the relative probabilities

of appearan
e of ea
h 
hara
ter/symbol in every position. Note that we inter-

ested in repetitions with probability greater than 1=k. It is not di�
ult to see

that given a position i of x, then there is only a 
onstant number of di�erent

substrings that 
an o

ur at position i with probability greater than 1=k. (The

proof follows).

For every weighted sequen
e w of length n, w[1::n℄ = w[1℄w[2℄ � � �w[n℄, ea
h

position w[i℄ for 1 � i � n, is the starting position of a weighted fa
tor i� the

respe
tive 
hara
ter s has �(s

i

) � 1=k . Therefore the maximum probability of

appearan
e for the rest of the 
hara
ters in position i is bounded by p = 1�1=k .

Assume that the number of starting positions inside a weighted fa
tor, produ
ed

from position i is l. In order this fa
tor to be interesting its probability of

appearan
e must be grater than 1=k . This is mathemati
ally formulated as

follows:

p

l

� 1=k �! l � log

p

(k).

That means that the number of weighted positions inside a weighted fa
tor is

bounded by a 
onstant and thus the number of di�erent substrings that 
an

o

ur at position i with probability greater than 1=k is also a 
onstant number.

Based on the above two fa
ts the time 
omplexity of our algorithm for 
omputing

the set of repetitions in a weighted sequen
e with probability of appearan
e larger

than 1/k is O(n logn).

5 Con
lusions

Our future dire
tion is fo
used on de�ning the notion of borders for a weighted se-

quen
e and developing e�
ient algorithms for 
omputing the 
overs and the seeds of

weighted sequen
es.
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Moreover we are studying the same problem using the su�x tree as the fundamen-

tal data stru
ture. The basi
 idea behind this approa
h is to in
orporate the notion

of probability of appearan
e in the path labels and in the leaves in the su�x tree of

a weighted sequen
e [Ili03℄.

Another potential appli
ation of our algorithm is in de�ning a basis for the re-

peated motifs of a weighted sequen
e. In our algorithm we 
reate in an exhaustive

way all possible repetitions with probability larger than 1/k . We 
an use all primitive

repetitions and a set of allowed operations in order to de�ne a basis that e�
iently

produ
es all repeated motifs. As any repeated word 
an be expressed as an array of

primitive repetitions, it is often desirable to �nd only primitive repetitions.
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