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Abstract. A new notion, that of semi-lossless text compression, is introduced,

and its applicability in various settings is investigated. First results suggest that

it might be hard to exploit the additional redundancy of English texts, but the

new methods could be useful in applications where the correct spelling is not

important, such as in short emails, and the new notion raises some interesting

research problems in several different areas of Computer Science.
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1 Introduction

One widespread partition when coming to classify data compression methods is into
lossless and lossy methods. Lossless methods include usually those applied on text
files or other data for which no loss of information can be tolerated, lossy techniques
are generally applied to image files as well as to video and audio data, for which the
overall knowledge a user might extract does not seem significantly reduced even if a
part of the data is omitted.

Even though most lossy compression methods include some lossless techniques
as one of their components, the research methods and goals of the corresponding
communities are in fact quite different. While researchers in text compression are
primarily concerned with good compression performance (in terms of speed and of
space, both of the file to be compressed and of the RAM required by the method
at hand), a major topic in image compression is finding a good tradeoff between the
size of the compressed file and the ability of a human observer to find the differences
between the original picture and its partially reconstructed copy. Many articles about
image compression include side by side two pictures looking almost identical, the one
labeled “original” and the other labeled “compressed”. Obviously, the latter is rather
the decompressed, reconstructed, image, the real compressed one consisting of a close
to random sequence of zeros and ones, which would not yield any visual information
when displayed as a raster file.

The basic idea behind lossy compression is thus the fact that even if not all of the
available data is presented, the human brain can often make up for the missing parts
and guess, at least partially, whatever has been omitted, so that overall one has the
feeling that nothing has been lost. We try, in this paper, to transfer this paradigm
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also into the framework of text compression, to which usually only lossless techniques
have been applied.

A hint to the fact that strict losslessness might be relaxed can be found by anybody
who tries to read a newspaper, and mostly succeeds in understanding all the required
information in spite of occasional typing errors and other mistakes. It turns out
that we are able to understand English text even if there are many more errors, as
suggested by the following paragraph, which circulated recently on the Internet1

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht
oredr the ltteers in a wrod are in; the olny iprmoetnt tihng is taht frist and
lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can
sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

If indeed it is true that under certain constraints the exact letter order can be
altered without impairing our understanding of the information contained in English
text, it follows that the order of the characters induced by English grammar and
syntax may contain more redundancy than one thought so far, and eliminating this
redundancy might yield improved compression. Being a hybrid of the two classes of
compression methods mentioned above, we call the type of compression suggested by
these ideas semi-lossless : the original text will not be fully reconstructed, just as a
decompressed JPEG image is not identical to the original, and thereby the method
will be lossy; on the other hand, again similarly to the decompressed image for which
our eyes and brain fill in the omitted parts, here it is the knowledge of English that
will enable the extraction of the full information of the original text, so that at least
from the information point of view, if not from the physically stored file, the method
can be considered as lossless.

A priori, the expexted gain from playing with the order of the characters within a
word is not very large, as the average word in English is rather short (about 5 char-
acters). The applicability of semi-lossless text compression might thus be restricted,
most users preferring to get a clean text, even at the price of marginally lower com-
pression. The new methods could therefore be useful in applications where the correct
spelling is not important, such as in short emails or SMS notes sent between cellular
phones, which already use some widely known shortcuts (that R acceptd by any 1).
Moreover, the new notion raises many interesting research problems, some of which
mentioned in the sequel, which may find applications in several different areas of
Computer Science.

In the next section we suggest some approaches to semi-lossless text compression
and discuss their usefulness as general data compressors. Section 3 then brings some
preliminary experimental results, and we conclude in Section 4 with some possible
extensions of this work.

1See, e.g., http://csunx4.bsc.edu/bmyers/language.htm, but there are dozens of pointers to this

or similar phrases
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2 Semi-lossless text compression techniques

Lossy text compression has already been suggested by Witten at al. in [9], which
includes several quite amusing examples. We shall, however, concentrate on methods
in which there is, at least a priori, no loss of information, and take the rule cited
in the quotation in the introduction as a premise, namely, that if the first and last
letters of the printed words are left in place, the remaining letters within each word
can appear in any order.

This “law” is clearly not universal and relies on the assumption that the reader
has a good knowledge of English. We are not concerned with checking the validity
of this assumption, nor with suggesting alternative rules. This would rather fall into
a domain investigated by psychologists, and the interested reader is referred to the
vast literature dealing with several aspects of this subject, see, e.g., [2, 6] and the
pointers appearing in their references. For our discussion it does not even really
matter whether the given rule is true, or whether it should be reinforced (leaving the
first, last and one or more additional letters in place) or could be relaxed (fixing only
the first letter, or even none, allowing any permutation of any word). All we assume
is that some rule exists according to which not all the characters of a text have to
be restored to their original position for the text to be understandable. Such a rule
will obviously depend on and vary according to language, potential readers and genre
and type of the given text.

Taking therefore the quoted law (first and last letters fixed, the rest in any other
position) as working assumption, it suggests the following generic compression and
decompression algorithm:

Compression: 1. Process the words sequentially and if the current word is not

special (number, proper name, etc.), do

2. keep first and last letters in place, but rearrange the others into

“special” order;

3. apply some encoder on the rearranged text.

Decompression: 1. Decode the compressed words sequentially, and if the current

word is not special, do

2. keep first and last letters in place; choose a random permutation

of the other letters and send them to output.

Since the order of the characters (except the first and last of each word) is not
restricted, it might be useful to choose a special order referred to in Step 2 of the
compression, that will subsequently improve the encoding mentioned in Step 3. The
reason for Step 2 of the decompression process is avoiding a constant bias introduced
by the suggested partial order. It might be that seeing always the same permutations
according to the special order chosen may interfere with our ability to recover the
original word. Introducing the randomization restores for the reader the feeling of
arbitrariness which, possibly, is necessary for correct decoding.

In the following sub-section, we explore some of the possibilities for choosing such
a special order.
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2.1 Choosing a special order of the characters

One possibility that comes to mind is arranging these letters in alphabetic order. The
reason such a strategy is expected to improve compression is similar to the argument
showing why the Burrows-Wheeler Transform (BWT) [1] actually works so well.

The BWT works on a string of length n and applies all the n cyclic rotations
on it, yielding an n × n matrix which is then lexicographically sorted by rows. The
first column of the sorted matrix is thus sorted, but BWT stores the last column of
the matrix, which together with a pointer to the index of the original string in the
matrix lets the file to be recovered. The last column is usually not sorted, but it
corresponds to sorted contexts, and is therefore often very close to be sorted, which is
why it is more compressible than the original string. The compression scheme based
on BWT uses a move-to-front strategy to exploit this nearly sorted nature of the
string to be compressed. Returning to our problem, if the characters in each word
can be arranged alphabetically, this may similarly yield improved compression using
move-to-front and/or run-length coding if the strings are long enough.

Another possibility would be to arrange the characters by frequency. The dis-
tribution of characters in English text is well-known, (see, e.g., [3]), and sorting the
letters following the order E, T, A, O, N, I, S, etc., increases the probability of short
displacements in move-to-front schemes. However, frequency of occurrence alone does
not take the tight connections between certain characters into consideration.

A more precise rule would therefore be trying to group the characters based on

the probabilities of a given letter to appear after another one. A strict approach gets
quickly into loops, for example, E is most likely followed by R, which in turn has E as
its most probable successor. A simple greedy algorithm would thus be:

1. Start with an arbitrary character, x;

2. While not all characters are processed

� Choose, among remaining characters, the successor s of x with highest probability;

� x←− s

Following the probabilities in [3], one possible sequence this may yield is:

A N D E R O U T H I S P L Y M B J - X C K - F - G - Q - V - W - Z.

While the beginning of this sequence seems reasonable, there are some evident short-
comings: P as successor of S is only the 9th choice, because the eight preceding
ones (in order: T, E, I, S, O, A, U and H) all appeared earlier. Towards the end, all
the remaining potential successors have probability practically zero, indicated by the
dashes, so the choice is arbitrary. Note also that choosing the successor with highest
probability might push the second best choice too far away. The second most frequent
successor of A is T, which appears only in seventh position after A.

These speculations lead to the following formulation of the problem: we seek an
ordering of the letters maximizing the overall probability of the letter successions.
More formally, let Σ = {x1, . . . , xn} be the alphabet, and let P [x, y] denote the
probability of character y appearing as successor of x; we look for a permutation
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σ : Σ −→ Σ of the n characters, such that

n−1
∏

i=1

P [σ(i), σ(i + 1)] (1)

is maximized. The following transformation shows that this is in fact an instance of
the Minimum Traveling Salesperson Problem. Consider a full graph G = (V, V × V ),
with V = Σ, and define the weight w(x, y) of an edge (x, y) as

w(x, y) = − log P [x, y].

Finding a permutation maximizing (1) is then equivalent to finding a Hamiltonian
path of minimum weight in G. Unfortunately, this is an NP-complete problem, and
since in our case, there is no reason to assume that the triangle inequality holds for
the weights, it might even be hard to find a good approximation.

We now turn to the more technical details of choosing a specific compression
scheme.

2.2 Choosing the compression technique

A simple statistical encoder, such as Huffman or arithmetic coding, applied indepen-
dently to the individual characters will, of course, not yield any additional compression
at all. The set of encoded characters remains the same, only their order is altered.
To be able to take advantage of the partial reordering, a method is needed that takes
previous characters into account.

A simple example would be run-length encoding, which is not likely to be useful.
Run-length coding is widely used for images or fax-transmission, but in natural lan-
guage text there are hardly any repeated strings of length longer than 2 (in German,
there are some rare examples of runs of length 3, such as in Schifffracht). In our
case, where the internal characters appear in sorted order, the lengths of runs are
still limited by the number of times a given letter appears within a word. But the
average word length, in English, is only about 5, so that no significant runs may be
expected (German provides here again an extreme case: there is a street in Vienna
named Abrahamasantaclaragasse, which would give a run of 9 a’s).

We may expect better performance when using Huffman or arithmetic coding in
connection with a Markov model of order k ≥ 1, meaning that each character is
encoded as a function of the k characters preceding it. Though even natural text is
well compressed by such a model as it captures many of its characteristic features (q
followed by u, high probability for e following th, etc.), having identical characters
grouped together may even cause better compression. However, the additional space
requirements of higher order Markov models may be prohibitive.

Adaptive methods like Lempel-Ziv variants seem at first sight not applicable. In
an adaptive encoding, the current item to be encoded relies on previously seen text,
and if the item is not reliably restored, a subsequent pointer to it may give wrong
results. Consider, for example, the string

· · · a b c x y z c b a d e f w t w c e d f a v · · ·

to be encoded by LZSS [4], and suppose that the whole string consists of internal
characters (not the first or last in a word). The string cba can then be replaced by
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a pointer to the preceding abc, and edfa could point to adef, so that the modified
LZSS encoding would be

· · · a b c x y z (6, 3) d e f w t w c (8, 4) v · · · .

But while the first pointer (6,3) would be decoded to abc, as expected, the second
pointer (8,4) would now refer to the substring cdef, which is not a permutation of
the original edfa. Note that the problem here is caused by the overlap between a
substring, cba, that is replaced by an (offset, length) pointer, and a substring, adef,
which is the target of such a pointer. In the absence of such overlaps, the encoding
scheme works correctly.

One strategy to avoid the problem would thus be to forbid such overlaps, but this
would affect compression efficiency. Another possibility is to adapt LZSS to work in
this case, by keeping a copy of the currently decoded text, and search in it, rather
than in the original text processed so far, for earlier occurrences of the current string
to be encoded or its permutations. Returning to the example above, after having
encoded cba, the processed string would look as

· · · a b c x y z a b c d e f w t w c e d f a v · · ·

where the vertical bar indicates the current position, and to its left appears the
reconstructed, rather than the original, text. While the bar now moves further to the
right, the string edfa cannot be encoded as before. However, in this example, even
a better substitution is possible, replacing wcedf by a pointer to cdefw, so that the
encoded string finally looks as

· · · a b c x y z (6, 3) d e f w t (6, 5) a v · · · .

In fact, a correct algorithm based on LZSS is even more involved. Fast imple-
mentations of LZSS, like LZRW1 [8] or Microsoft’s DoubleSpace [7] find the recurring
strings by locating, using hashing, a previous occurrence of the character pair follow-
ing the current position, and then extending the strings as far as possible by checking
if the subsequent characters coincide. In our case, such a greedy approach may fail,
e.g., for the string

· · · x y z t a b c d e f g · · · x z y t a b e d c h k · · · .

The second occurrence of ab would point to the first one, but trying to extend the
strings would fail in the first two attempts, abe and abed not matching abc and abcd,
respectively, and only the third attempt would succeed, with abedc matching abcde

modulo the reordering. Moreover, word boundaries have to be taken into account
because of the constraint that first and last letters have to remain in place. The
processing must therefore be by a combination of trying to extend partial matches by
entire words and, once this fails, trying to match prefixes of the last word dealt with,
proceeding backwards from the longest to the shorter ones. In the above example
the word xzyt is first matched to xyzt, trying then to match abedchk to abcdefg

fails, so we try to backtrack. abedch does not match abcdef, but abedc does match
abcde, which gives the string xzyt abedc as required match.
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Similar problems to those of LZSS would arise in LZ78 variants like LZW [5].
Instead of pointing to earlier strings in the already processed text, the compressed
file consists of a series of pointers to an external dictionary, which is built on the fly.
Here again, relaxing the rules and letting a pointer refer not necessarily to the string
to be replaced, but possibly to any of its permutations, may yield some savings: the
overall number of strings is reduced, implying that more good strings can be stored, or
that the necessary pointers can be shorter. But as above, decoding may be erroneous,
because the strings stored by LZW are overlapping, specifically, the last character of
the nth stored string is also the first of the n + 1st.

The problem may be more severe in this case, because eliminating one of the
strings stored in an LZW dictionary will affect all the subsequent entries and there-
fore change all subsequent pointers, whereas for LZSS, all the changes are locally
restricted.

2.3 Combining character ordering and compression technique

A different approach than trying to adapt Lempel-Ziv type methods would be to
restrict ourselves to dealing with bigrams, trigrams, or generally, any k-grams with
k > 1. Each word is considered on its own, and decomposed into a sequence of such
consecutive k-grams, leaving, as before, the first and last letters in place. Special
care is needed to deal with the last k-gram in this sequence within a word, which
might require a smaller k. Then each k-gram is mapped to a representative, in a
predetermined order (alphabetic, ETAONI, ANDERO, etc.). Finally, the items obtained
by this decomposition are Huffman coded. Since the number of different k-grams is
reduced from |Σ|k to

(

|Σ|
k

)

, a savings of about 50% for k = 2, and more for higher
k, the average Huffman codeword lengths are expected to be lower. Moreover, the
overhead of storing the different k-grams is also reduced.

An alternative would be to process the k-grams sequentially, without taking
word boundaries into account. Each k-gram would again be mapped to a reordered
one, but flag-bits would be used to indicate if there has been a reordering and which
one. For bigrams, a single bit suffices to indicate whether to switch a pair, and the
bit is needed only for those pairs following or preceding a space.

Block sorting using the BWT could also be adapted to our case. As mentioned
earlier, the last column, which is the one stored by the algorithm, is almost sorted.
Suppose we have a sequence of the form A, A, A, B, A · · · in this column. If we can
change the order of the characters, we might want to remove the B from within the
sequence of As. Work on a general algorithm based on this idea is ongoing.

3 Experimental results

The first text chosen as testbed for the above semi-lossless algorithms consists of about
3MB of the AP newswire files from the TREC collection. In addition, the methods
were applied to Mark Twain’s Tom Sawyer taken from the Gutenberg Project. To
avoid a bias introduced by punctuation and other signs, all non-alphabetic characters,
except the space, have been removed, and all the others have been changed to upper
case, giving an alphabet of size 27.
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Table 1 summarizes some of the results. The first column gives the size of the raw
files, the second after having applied simple Huffman coding on the individual letters.
All compression figures are given in bits per character (bpc). The next columns deal
with bigrams and trigrams, first in a standard fragmentation of the text into bi-
or trigrams, then using the reordering for those k-grams that can be changed. For
the bigrams the variant with the flag-bit has been applied, for the trigrams, triples
including the first or last letter of a word have not been reordered. The figures include
the overhead of storing the bi- or trigrams.

size Huffman bigrams trigrams

standard ordered standard ordered

AP 2.57 Mb 4.148 3.791 3.707 3.529 3.437

Tom Sawyer 361 Kb 4.111 3.707 3.687 3.549 3.485

As can be seen, there is a slight improvement, though not a significant one. In
fact, even with better parsing strategies than the simple one we used, one should not
expect large savings for English text: the average word length being less than 5, and
the two corner letters being fixed, the reordering will affect on the average less than
3 letters. However, with schemes going beyond word boundaries, like LZSS, or for
other languages and other reordering rules, better results might be expected.

Note that there are far better compression schemes: applying Huffman coding
on the basis of words, rather than characters, yields, for AP, 2.136 bpc, and if the
internal letters of the words are reordered, 2.135 bpc, saving less than 0.05 percent.
But such a scheme requires a large overhead for the storage of the Huffman tree,
and can only be justified if the set of different words is stored anyway, e.g., as the
dictionary in an Information Retrieval system.

4 Conclusions and future work

The main contribution of this paper is thus not the presentation of some novel com-
pression technique, but rather the introduction of the notion of semi-lossless text com-
pression and the ensuing research problems it raises in compression, pattern matching,
computational linguistics and possibly other related areas. We have briefly explored
how some of the known compression methods could be adapted to take advantage of
the relaxed constraints and work currently on implementing some of the advanced
methods.

Much work is still to be done. Here is a partial list of topics one might want to
deal with:

� One could try to devise new methods that do not rely on adapting existing ones,
but may possibly be totally different and specially adapted to our case.

� Different languages may suggest other rules. In French, grammatical suffixes
are more abundant and often one or more of the last letters of a word are not
even pronounced. Perhaps the rule of keeping specifically the last letter in place
is then not adequate? German has the ability of concatenating several words
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into a single one; should the rule then be extended to fix also letters at sub-word
boundaries, and how could these boundaries be detected? The average length
of a word in Finnish is much longer than in English and double letters are more
frequent.

� One could adapt ideas from other languages to English. For instance, Hebrew

is generally written without vowels. This gives a large number of possible in-
terpretations for each word, most of which are grammatically incorrect, but
on the average, every word has four possible correct readings. Nevertheless, a
native speaker has generally no trouble to pick the right choice quickly enough
to read fluently, partly because certain consonants may act as vowels. It would
not be reasonable to strip all the vowels from English texts (thgh ths wld gv gd
cmprssn!), but perhaps one can devise rules to get rid of most of them, as we
do anyway in speed-writing or when sending short electronic notes by computer
or on cellular phones.

� Semi-lossless compression is not necessarily restricted to keeping a permutation
of the original characters. When typing on cellular or regular phones, each key
is assigned to several characters and the requested one is reached by repeatedly
pressing the same key. It may be that the sets assigned to each key can be chosen
in such a way that pressing only once, and thereby sending a representative of
a small set, can still result in a text that is understandable. The size of Σ
would be reduced, so one may save space, but also the time necessary to type
a message will be greatly shortened.

Another short note many web-user got lately in their mail claimed that English
spelling will shortly be simplified2. While this was meant as a joke, the idea is
another nice example of how semi-lossless techniques could be implemented. The text
suggested a five year plan during which many old spelling rules would be gradually
abolished or modified, until

after zis fifz yer, ve vil hav a reli sensibl riten styl. zer vil be no mor trubls or
difikultis and evrivun vil find it ezi tu understand ech ozer.

While most of us will easily decipher the quote, note that its length (148 characters)
is 14% shorter than its correctly spelled equivalent (172 characters), and the same
14% gain is also obtained if each of the messages is Huffman encoded (600 instead of
694 bits).
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