
A Simple Lossless Compression Heuristic

for Grey Scale Images

L. Cinque1, S. De Agostino1, F. Liberati1 and B. Westgeest2

1 Computer Science Department
University “La Sapienza”

Via Salaria 113, 00198 Rome, Italy
e-mail: deagostino@di.uniroma1.it

2 Computer Science Department
Armstrong Atlantic State University

Savannah, Georgia 31419, USA

Abstract. In this paper, we show a simple lossless compression heuristic for
gray scale images. The main advantage of this approach is that it provides
a highly parallelizable compressor and decompressor. In fact, it can be ap-
plied independently to each block of 8x8 pixels, achieving 80 percent of the
compression obtained with LOCO-I (JPEG-LS), the current lossless standard
in low-complexity applications. The compressed form of each block employs
a header and a fixed length code, and the sequential implementations of the
encoder and decoder are 50 to 60 percent faster than LOCO-I.

Keywords: grey scale image, lossless compression, differential coding, paral-
lelization

1 Introduction

Lossless image compression is often realized by extending string compression meth-
ods to two-dimensional data. Standard lossless image compression methods extend
model driven text compression [1], consisting of two distinct and independent phases:
modeling [13] and coding [12]. In the coding phase, arithmetic encoders enable the
best model driven compressors both for bi-level images (JBIG [7]) and for grey scale
and color images (CALIC [18]), but they are often ruled out because too complex.
The compression gap between simpler techniques and state of the art compressors
can be significant. Storer [15] and Storer and Helfgott [16] extended dictionary text
compression [14] to bi-level images to avoid arithmetic encoders, achieving 70 percent
of the compression of JBIG1 on the CCITT bi-level image test set. Such method is
suitable for high speed applications by means of a simple hashing scheme. A polyloga-
rithmic time work-optimal parallel implementation of this method was also presented
to further speed up the computation on the PRAM EREW [3, 4]. Such implementa-
tion requires more sophisticated architectures (pyramids or meshes of trees) [9] than
a simple array of processors to be executed on a distributed memory system. The

48



A Simple Lossless Compression Heuristic for Grey Scale Images

extension of this method to grey scale and color images was left as an open prob-
lem, but it seems not feasible since the high cardinality of the alphabet causes an
unpractical exponential blow-up of the hash table used in the implementation.

With grey scale and color images, the modeling phase consists of three compo-
nents: the determination of the context of the next pixel, the prediction of the next
pixel and a probabilistic model for the prediction residual, which is the value dif-
ference between the actual pixel and the predicted one. In the coding phase, the
prediction residuals are encoded. A first step toward a good low complexity compres-
sion scheme was FELICS [8], which involves Golomb-Rice codes [6, 10] rather than
arithmetic ones . With the same complexity level for compression (but with a 10
percent slower decompressor) LOCO-I [17] attains significantly better compression
than FELICS, only a few percentage points of CALIC. As explained in section 2, also
polylogarithmic time parallel implementations of FELICS and LOCO would require
more sophisticated architectures than a simple array of processors.

The use of prediction residuals for grey scale and color image compression relies
on the fact that most of the times there are minimal variations of color in the neigh-
borood of one pixel. Therefore, differently than for bi-level images we should be able
to implement an extremely local procedure which is able to achieve a satisfying de-
gree of compression by working independently on different very small blocks. In this
paper, we show such procedure. We present the heuristic for grey scale images, but
it could be applied to color images by working on the different components [2]. The
main advantage of this approach is that it provides a highly parallelizable compres-
sor and decompressor. In fact, it can be applied independently to each block of 8x8
pixels, achieving 80 percent of the compression obtained with LOCO-I (JPEG-LS),
the current lossless standard in low-complexity applications. The compressed form of
each block employs a header and a fixed length code, and the sequential implemen-
tations of the encoder and decoder are 50 to 60 percent faster than LOCO-I. Two
different techniques might be applied to compress the block. One is the simple idea of
reducing the alphabet size by looking at the values occurring in the block. The other
one is to encode the difference between the pixel value and the smallest one in the
block. Observe that this second technique can be interpreted in terms of the model
driven method, where the block is the context, the smallest value is the prediction
and the fixed length code encodes the prediction residual. More precisely, since the
code is fixed length the method can be seen as a two-dimensional extension of differ-
ential coding [5]. Differential coding, often applied to multimedia data compression,
transmits the difference between a given signal sample and another sample.

In section 2, we sketch how FELICS and LOCO-I work and discuss their parallel
complexity. In section 3, we explain our heuristic. Conclusions are given in section 4.

2 FELICS and LOCO-I

In this section, we sketch how FELICS and LOCO-I work and discuss their parallel
complexity. As explained in the introduction, these are context-based method.

In FELICS the context for the current pixel P is determined by the last two pixels
N1 and N2 read in a raster scan. If P is in the range defined by N1 and N2, then it is
encoded with an adjusted binary code. Otherwise, the value distance from the closer
of values N1 and N2 is encoded using a Golomb-Rice code. Golomb-Rice codes use a

49



Proceedings of the Prague Stringology Conference ’04

positive integer parameter m to encode a non-negative integer n. Given the value m,
⌊n/m⌋ is encoded in unary and n mod m in binary. A typical method of computing
the parameter for Golomb-Rice code is to divide the image in 8x8 pixel blocks and
select in a set of reasonable values the best one for each block with an exaustive search
[11]. This method is not used in [8] because a better exaustive search is proposed for
a sequential implementation. That is, to mantain for each context a cumulative total
of the code length we would have at the current step for each reasonable parameter
and to pick the best one each time.

Observe that the coding process would be highly parallelizable with the parameter
selection of [11], since for each pixel of a block the parameter selection is completely
independent from the rest of the image. A distributed memory system as simple as an
array of processors would be able to perform the algorithm. With the other method
instead, the design of a highly parallelized procedure becomes a much more complex
issue, involving prefix computation and more sophisticated architectures than a simple
array of processors [9]. However, with both methods the decoding process is hardly
parallelizable, since to decode the current pixel the knowledge of the two previous
pixels is required.

LOCO-I employs a more involved context modeling procedure where the context
of pixel P in position (i, j) is determined by the pixels in positions (i, j−1), (i, j−2),
(i − 1, j − 1), (i − 1, j) and (i − 1, j + 1). A count of prediction residuals and an
accumulated sum of magnitudes of prediction residuals seen so far is maintained in
order to select the parameter for the Golomb-Rice code. Moreover, in order to im-
prove the compression performance a count of context occurences and an accumulated
sum of prediction residuals encoded so far for each context also is maintained. These
computations are used to reduce the prediction error. Further improvement is ob-
tained by switching the Golomb-Rice code to encode characters from an extended
alphabet when long runs of a character from the original alphabet are detected. All
these operations require prefix computation in a highly parallelized version of the
algorithm.

In conclusion, FELICS and LOCO methods do not provide highly parallelizable
encoders and decoders implementable on a simple array of processors. The heuristic
we present in the next section works independently on each 8x8 block of pixels. Since
no information is shared among the blocks, a simple array of processors suffices to
realize a constant time work-optimal parallel implementation.

3 A Simple Heuristic for Grey Scale Images

As previously mentioned, the heuristic applies independently to blocks of 8x8 pixels
of the image. We can assume the heuristic reads the image with a raster scan on each
block. The heuristic apply at most three different ways of compressing the block and
chooses the best one. The first one is the following.

The smallest pixel value is computed on the block. The header consists of three
fields of 1 bit, 3 bits and 8 bits repectively. The first bit is set to 1 to indicate that
we compress a block of 64 pixels. This is because one of the three methods will
partition the block in four sub-blocks of 16 pixels each and compress each of these
smaller areas. The 3-bits field stores the minimum number of bits required to encode
in binary the distance between the smallest pixel value and every other pixel value

50



A Simple Lossless Compression Heuristic for Grey Scale Images

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 254 128 127 128 129 130

255 253 253 128 128 129 130 131

254 253 252 129 129 130 131 132

253 252 251 130 130 130 254 255

Figure 1: An 8x8 pixel block of a grey scale image.

in the block. The 8-bits field stores the smallest pixel value. If the number of bits
required to encode the distance, say k, is at most 5, then a code of fixed length k is
used to encode the 64 pixels, by giving the difference between the pixel value and the
smallest one in the block. To speed up the procedure, if k is less or equal to 2 the
other techniques are not tried because we reach a satisfying compression ratio on the
block. Otherwise, two more techniques are experimented on the block.

One technique is to detect all the different pixel values in the 8x8 block and create
a reduced alphabet. Then, encode each pixel in the block using a fixed length code
for this alphabet. The employment of this technique is declared by setting the 1-bit
field to 1 and the 3-bits field to 110. Then, an additional three bits field stores the
reduced alphabet size d with an adjusted binary code in the range 2 ≤ d ≤ 9. The
last componenent of the header is the alphabet itself, a concatenation of d bytes.
Then, a code of fixed length ⌈log d⌉ bits is used to encode the 64 pixels.

The other technique compresses the four 4x4 pixel sub-blocks. The 1-bit field is
set to 0. Four fields follow the flag bit, one for each 4x4 block. The two previous
techniques are applied to the blocks and the best one is chosen. If the first technique
is applied to a block, the corresponding field stores values from 0 to 7 rather than
from 0 to 5 as for the 8x8 block. If such value is in between 0 and 6, the field stores
three bits. Otherwise, the three bits (111) are followed by three more. This is because
111 is used to denote the application of the second technique to the block as well,
which is less frequent to happen. In this case, the reduced alphabet size stored in
this three additional bits has range from 2 to 7, it is encoded with an adjusted binary
code from 000 to 101 and the alphabet follows. 110 denotes the application of the
first technique with distances expressed in seven bits and 111 denotes that the block
is not compressed. After the four fields, the compressed forms of the blocks follow,
which are similar to the ones described for the 8x8 block. When the 8x8 block is not
compressed, 111 follows the flag bit set to 1.

51



Proceedings of the Prague Stringology Conference ’04

Image OURS LOCO

1 1.22 1.52

2 1.57 2.00

3 1.75 2.31

4 1.52 1.93

5 1.22 1.55

6 1.39 1.75

7 1.57 2.22

8 1.19 1.51

9 1.60 2.05

10 1.56 2.04

11 1.43 1.83

12 1.63 2.10

13 1.15 1.34

14 1.30 1.63

15 1.67 2.07

16 1.51 1.97

17 1.51 1.96

18 1.30 1.58

19 1.41 1.80

20 2.00 2.55

21 1.45 1.77

22 1.41 1.76

23 1.75 2.29

24 1.39 1.74

Avg 1.48 1.89

Figure 2: Compression ratios (uncompressed / compressed).

We now show how the heuristic works on the example of Figure 1.

Since the difference between 110, the smallest pixel value, and 255 requires a code
with fixed length 8 and the number of different values in the 8x8 block is 12, the tech-
nique employed to compress the block is to work separately on the 4x4 sub-blocks.
Each block will be encoded with a raster scan (row by row). The upper left block has
254 as smallest pixel value and 255 is the only other value. Therefore, after setting the
1-bit field to zero the corresponding field is set to 001. The compressed form after the
header is 1110111011101110. The reduced alphabet technique is more expensive since
the raw pixel values must be given. On the hand, the upper right block needs the
reduced alphabet technique. In fact, one byte is required to express the difference be-
tween 110 and 254. Therefore, the corresponding field is set to 111000, which indicates
that the reduced alphabet size is 2, and the sequence of two bytes 0110111011111110
follows. The compressed form after the header is 1000100010001000. The lower left
block has 8 different values so we do not use the reduced alphabet technique since
the alphabet size should be between 2 and 7. The smallest pixel value in the block is
128 and the largest difference is 127 with the pixel value 255. Since a code of fixed
length 7 is required, the corresponding field is 111110. The compressed form after
the header is (we introduce a space between pixel encodings in the text to make it
more readable): 1111111 1111111 1111110 0000000 1111111 1111101 1111101 0000000
1111110 1111101 1111100 0000001 1111101 1111100 1111011 0000010. Observe that

52



A Simple Lossless Compression Heuristic for Grey Scale Images

Image OURS LOCO

1 33.8 64.7

2 32.9 60.5

3 32.2 59.5

4 33.0 60.6

5 34.1 67.4

6 32.2 60.7

7 34.9 60.1

8 34.7 67.0

9 32.7 58.6

10 35.3 60.0

11 33.2 62.5

12 34.4 60.3

13 34.0 68.2

14 33.9 64.5

15 32.3 60.5

16 33.3 60.5

17 33.3 60.0

18 33.4 64.9

19 33.2 61.9

20 25.5 48.1

21 32.8 61.1

22 33.4 62.8

23 33.2 56.6

24 33.2 63.8

Avg. 33.1 61.4

Figure 3: Compression times (ms.).

the compression of the block would have been the same if we had allowed the reduced
alphabet size to grow up to 8. However, experimentally we found more advantageous
to exclude this case in favor of the other technique. Our heuristic does not compress
the lower right block since it has 8 different values and the difference between pixel
values 127 and 255 requires 8 bits. Therefore, the corresponding field is 111111 and
the uncompressed block follows.

We experimented this technique on the kodak image test set, which is an exten-
sion of the standard jpeg image test set. We reached 70 to 85 percent of LOCO-I
compression ratio (Figure 2) (78 percent in average). The executions of our algorithm
and LOCO were compared with a Intel Pentium 4, 2.00 GHz processor on a RedHat
Linux platform. Our compression heuristic turned out to be about 50 percent faster
(Figure 3). When we compared the decompression times, we obtain an even greater
speedup (around 60 percent) in comparison with LOCO (Figure 4). This is not sur-
prising since, as we mentioned in the introduction, while the LOCO compressor is
more or less as fast as FELICS, the decompressor is 10 percent slower.

Conclusions

In this paper, we showed a simple lossless compression heuristic for grey scale images.
The main advantage of this approach is that it provides a highly parallelizable com-
pressor and decompressor since it can be applied independently to each block of 8x8

53



Proceedings of the Prague Stringology Conference ’04

Image OURS LOCO

1 30.8 69.7

2 26.3 65.3

3 24.4 64.2

4 26.0 65.2

5 31.2 69.2

6 33.8 64.9

7 25.7 65.1

8 32.1 69.9

9 26.4 64.2

10 25.4 64.7

11 26.9 66.6

12 26.1 63.8

13 32.6 70.5

14 29.6 67.7

15 23.6 68.4

16 26.1 64.6

17 25.7 66.0

18 28.7 68.8

19 27.0 66.1

20 20.1 52.2

21 26.3 65.3

22 27.0 67.0

23 22.9 62.9

24 27.3 67.7

Avg. 27.2 65.8

Figure 4: Decompression times (ms.).

pixels. The compressed form of each block employs a header and a fixed length code.
Two different techniques might be applied to compress the block. One is the simple
idea of reducing the alphabet size by looking at the values occurring in the block. The
other one is to encode the difference between the pixel value and the smallest one in
the block. It was interesting to see that this technique achieves about 80 percent of
the compression performance of LOCO-I and the compressor and decompressor are
50 to 60 percent faster. Also, our technique is definitely the easiest to implement and
can be applied as well to color images.

References

[1] Bell T.C., Cleary J.G. and Witten I.H [1990]. Text Compression, Prentice Hall.

[2] Cinque L., De Agostino S. and Liberati F. [2004]. “A Simple Lossless Compres-
sion Heuristic for RGB Images”, IEEE Data Compression Conference, 533.

[3] De Agostino S. [2002]. “A Work-Optimal Parallel Implementation of Lossless
Image Compression by String Matching”, Proceedings Prague Stringology Club

Conference, 1-8.

[4] Cinque L., De Agostino S. and Liberati F. [2003]. “A Work-Optimal Parallel
Implementation of Lossless Image Compression by String Matching”, Nordic

Journal of Computing, 10, 13-20.

54



A Simple Lossless Compression Heuristic for Grey Scale Images

[5] Gibson J. D. [1980]. “Adaptive prediction in speech differential encoding system”,
Proceedings of the IEEE, 68, 488-525.

[6] Golomb S. W. [1966]. “Run-Length Encodings”, IEEE Transactions on Infor-

mation Theory 12, 399-401.

[7] Howard P. G., Kossentini F., Martinis B., Forchammer S., Rucklidge W. J. and
Ono F. [1998]. “The Emerging JBIG2 Standard”, IEEE Transactions on Circuits

and Systems for Video Technology, 8, 838-848.

[8] Howard P. G. and Vitter J. S. [1993]. “Fast and Efficient Lossles Image Com-
pression”, IEEE Data Compression Conference, 351-360.

[9] Leighton F. T. [1992]. Introduction to Parallel Algorithms and Architectures,
Morgan-Kaufmann.

[10] Rice R. F. [1979]. “Some Practical Universal Noiseless Coding Technique - part
I”, Technical Report JPL-79-22, Jet Propulsion Laboratory, Pasadena, Califor-
nia, USA.

[11] Rice R. F. [1991]. “Some Practical Universal Noiseless Coding Technique - part
III”, Technical Report JPL-91-3, Jet Propulsion Laboratory, Pasadena, Califor-
nia, USA.

[12] Rissanen J. [1976]. “Generalized Kraft Inequality and Arithmetic Coding”, IBM

Journal on Research and Development 20, 198-203.

[13] Rissanen J. and Langdon G. G. [1981]. “Universal Modeling and Coding”, IEEE

Transactions on Information Theory 27, 12-23.

[14] Storer J.A. [1988]. Data Compression: Methods and Theory (Computer Science
Press).

[15] Storer J. A.[1996] “Lossless Image Compression using Generalized LZ1-Type
Methods”, IEEE Data Compression Conference, 290-299.

[16] Storer J. A. and Helfgott H. [1997] “Lossless Image Compression by Block Match-
ing”, The Computer Journal 40, 137-145.

[17] Wimberger M. J., Seroussi G and Sapiro G. [1996] “LOCO-I: A Low Complexity,
Context Based, Lossless Image Compression Algorithm”, IEEE Data Compres-

sion Conference, 140-149.

[18] Wu X. and Memon N. D. [1997] “Context-Based, Adaptive, Lossless Image Cod-
ing”, IEEE Transactions on Communications, 45, 437-444.

55


