Bounded Size Dictionary Compression:
Relaxing the LRU Deletion Heuristic

Sergio De Agostino

Computer Science Department
Universita “La Sapienza”
Via Salaria 113, 00135 Roma, Italy

e-mail: deagostino@di.uniromal.it

Abstract. The unbounded version of the Lempel-Ziv dynamic dictionary com-
pression method is P-complete. Therefore, it is unlikely to implement it with
sublinear work space unless a deletion heuristic is applied to bound the dictio-
nary. The well-known LRU strategy provides the best compression performance
among the existent deletion heuristics. We show experimental results on the
compression effectiveness of a relaxed version (RLRU) of the LRU heuristic.
RLRU partitions the dictionary in p equivalence classes, so that all the ele-
ments in each class are considered to have the same “age” for the LRU strategy.
Such heuristic turns out to be as good as LRU when p is greater or equal to
2. Moreover, RLRU is slightly easier to implement than LRU in addition to be
more space efficient.

Keywords: Bounded dictionary compression, space complexity, LRU strategy

1 Introduction

The Lempel-Ziv dynamic dictionary (LZ2) compression algorithm learns substrings
by reading the input string from left to right with an incremental parsing procedure
[7]. The dictionary is empty, initially. The procedure adds a new substring to the
dictionary as soon as a prefix of the still unparsed part of the string does not match
a dictionary element and replaces the prefix with a pair comprising a pointer to the
dictionary and the last uncompressed character. For example, the parsing of the
string abababaaaaaa is a,b, ab, aba, aa, aaa and the coding is Oa, 0b, 1b, 3a, 1a, 5a (the
pointer value for the first element in the dictionary is 1 and 0 represents the empty
string). We will see in the next section different L.Z2 compression heuristics (NC, FC,
ID, AP), which work with a dictionary containing initially the alphabet characters
and produce a coding with no raw characters.

The main issue for implementation purposes is to bound the work space to produce
the incremental parsing of the string to compress. Since the problem of computing
such parsing is P-complete [2, 3], it is unlikely to have sublinear work space when
LZ2 compression is implemented unless a deletion heuristic is applied to bound the
dictionary. Several deletion heuristics have been designed and applied to the com-
pression heuristics mentioned above (see the books of Storer [5, 6] and Bell, Cleary

135

Proceedings of the Prague Stringology Conference 05

and Witten [1]). A strategy that can achieve good compression ratio with small
memory is the LRU deletion heuristic that discards the least recently used dictionary
element to make space for the new substring. The least recently used strategy pro-
vides the best compression performance among the well-known heuristics (FREEZE,
RESTART, SWAP, LRU). AP-LRU turns out to be the best compression heuristic
when the dictionary is bounded.

When the size of the dictionary is O(logk n) the LRU strategy is log-space hard for
SC* (Steve Cook’s class), the class of problems solvable simultaneously in polynomial
time and O(log® n) space [4]. Since its sequential complexity is polynomial in time
and O(log* nloglogn) in space, the problem belongs to SC**!'. Moreover, in [4] a
relaxed version (RLRU) was introduced which turned out to be the first (and only so
far) natural SC*-complete problem. RLRU partitions the dictionary in p equivalence
classes, so that all the elements in each class are considered to have the same “age”
for the LRU strategy.

While in [4] the RLRU heuristic was considered only for theoretical reasons con-
cerning complexity theory, in this paper we want to look at its practical aspects. We
show experimental results on its compression effectiveness for 2 < p < 6, using the
AP compression heuristic. RLRU turns out to be as good as LRU even when p is
equal to 2. Since RLRU removes an arbitrary element from the equivalence class
with the “older” elements, the two classes (when p is equal to 2) can be implemented
with a couple of stacks, which makes RLRU slightly easier to implement than LRU in
addition to be more space efficient. Surprisingly, the compression effectiveness (which
we can measure as the inverse of the compression ratio) is not monotonicly increasing
with the value of p. This might be explained by the fact that the approach is heuristic
(choosing to remove an older element is not always a better choice). However, LRU
is always strictly better (in an irrelevant way for the compression effectiveness) than
RLRU. This fact shows that there should be always an improvement when two values
of p differ substantially.

Simpler choices for the deletion heuristic are FREEZE, RESTART and SWAP.
These heuristics do not delete elements from the dictionary at each step. SWAP is
the best among these simpler approaches and has a worse compression performance
than RLRU and LRU. We describe compression and deletion heuristics in section 2.
In section 3, we discuss the complexity of the LRU and RLRU heuristics. In section
4, we compare the experimental results of LRU, RLRU and SWAP. Conclusions are
given in section 5.

2 Compression and Deletion Heuristics

As mentioned in the introduction, the compression and deletion heuristics presented
in this section can be found in [1, 5, 6]. The incremental parsing procedure used
by the LZ2 algorithm produces a compressed string comprising pointers and raw
characters. In practice, we do not want to leave characters uncompressed. This can
be avoided by initializing the dictionary with the alphabet characters. The NC (next
character) heuristic also parses the string from left to right with a greedy procedure. It
finds the longest match in the current position and updates the dictionary by adding
the concatenation of the match with the next character. The FC (first character)
heuristic differs in the way it updates the dictionary. The element to add is defined

136

Bounded Size Dictionary Compression: Relaxing the LRU Deletion Heuristic

as the concatenation of the last match with the first character of the current match.
With the ID (identity) heuristic, the element to add is defined as the concatenation
of the last match with the whole current match. The AP (all prefixes) heuristic adds
a set of elements to the dictionary at each step. Each element is the concatenation
of the last match with a prefix of the current match. In this way, the dictionary of
the AP heuristic has both the characteristics of the dictionaries of the FC and ID
heuristics. Observe that with FC, ID and AP, an element to add might be in the
dictionary already. How these heuristics work on the example in the introduction is
shown in Figure 1.

NC heuristic
parsing: a,b,ab, aba, a, aa, aa;
dictionary: a,b, ab, ba, aba, abaa, aa, aaa;

coding: 1,2,3,5,1,7, 7

FC heuristic
parsing: a, b, ab, ab, a, a, aa, aa
dictionary: a, b, ab, ba, aba, aa, aaa, acaa

coding: 1, 2, 3, 3,1, 1, 7, 7

ID heuristic
parsing: a, b, ab, ab, a, a, aa, aa
dictionary : a, b, ab, bab, abab, aba, aa, aaaa

coding: 1, 2, 3, 3,1, 1, 7, 7

AP heuristic
parsing: a, b, ab, ab, a, a, aa, aa
dictionary : a, b, ab, ba, bab, aba, abab, aa, aaa, acaa

coding: 1, 2, 3, 3,1, 1, 8, 8

Figure 1: The compression heuristics.

It is well known that these heuristics can be implemented by storing the dictionary
in a tree data structure, called trie. At each step, we find the longest match in the
dictionary as a path from the root to a leaf of the trie and update the dictionary by
adding a new leaf to the trie. Real time implementations are possible for each com-
pression heuristic using any deletion heuristic (FREEZE, RESTART, SWAP, LRU
and RLRU) to bound the dictionary. FREEZE, RESTART and SWAP work as it
follows:

e FREEZE: once the dictionary is full, freeze it and do not allow any further
entries to be added.

137

Proceedings of the Prague Stringology Conference '05

e RESTART: stop adding further entries when the dictionary is full; when the
compression ratio starts deteriorating clear the dictionary and learn new strings.

e SWAP: when the primary dictionary first becomes full, start an auziliary dic-
tionary, but continue compression based on the primary dictionary; when the
auxiliary dictionary becomes full, clear the primary dictionary and reverse their
roles.

The SWAP and RESTART heuristics can be viewed as discrete versions of LRU.
In fact, the dictionaries depend only on small segments of the input string.

parsing: a,b,ab,ab,a,a,aa, aa;
dictionary (step 3): a, b, ab, ba, bab

dictionary (step 4): a, b, ab, ba, aba

S

dictionary (step 4):

S

, b, ab, abab , aba

S

dictionary (step 6): a, b, ab, aa, aba

dictionary (step 7):

S

, b, ab, aa, aaa
dictionary (step 8): a, b, aaaa, aa, aaa

coding: 1, 2, 3, 3, 1, 1, 4, 4

Figure 2: The AP-LRU heuristic on the example string.

We showed in the introduction of the paper how the LZ2 algorithm parses the
example string abababaaaaaa. If we bound the dictionary size with 3 and use LRU,
after three steps a, b, ab is the partial parsing, Oa, 0b, 1 is the partial coding and the
dictionary is filled up with the three elements a, b, ab. The LRU heuristic works as
follows:

LRU: define a string as “used” when it is added to the dictionary and re-
move the least recently used leaf of the trie representing the dictionary
after a new leaf is added. The pointer to the element which is removed
becomes the pointer to the new element.

Hence at the fourth step, first aba is added and coded as 3a. Then, b is discarded.
Finally, aba is replaced with aa, coded as la, and ab with aaa, coded as 2a.

Observe that while for the NC heuristic the element added to the dictionary is an
extension of the current match as for the original LLZ2 algorithm, this is not true for
the other heuristics. To make things work properly when we apply the LRU deletion
strategy to the FC, ID and AP heuristics, a string is defined to be “used” also when
it is matched. AP-LRU turns out to be the best compression heuristic when the
dictionary is bounded. How the AP-LRU heuristic works on the example string with
a dictionary of size 5 is shown in Figure 2. Steps correspond to the parsing. In
this example, the AP-LRU heuristic adds more than one element only at the fourth
parsing step. In Figure 3, we extend the example by adding the suffix bbaaa to make
some observations. At step 11, the current match is removed from the dictionary. In

138

Bounded Size Dictionary Compression: Relaxing the LRU Deletion Heuristic

this case, the AP-LRU heuristic puts it back into the dictionary at step 12 and then
it adds its extensions (this can happen with FC and ID as well). With AP, it could
be possible that prefixes of the current match are removed and similarly they would
be put back into the dictionary at the next step. Finally, observe that at step 10
if aab were removed instead of aaa, aaa would be parsed off at the end providing a
shorter code for the string. This shows that removing the older element might not be
the better choice.

parsing. a,b,ab,ab, a,a,aa,aa,b,b, aa, a;
dictionary (step 9): a, b, aab, aa, aaa
dictionary (step 10): a, b, aab, aa, bb
dictionary (step 11): a, b, ba, aa, bb
dictionary (step 11): a, b, ba, baa, bb
dictionary (step 12): a, b, ba, baa, aa
dictionary (step 12): a, b, ba, aa, aaa

coding: 1, 2, 3, 3, 1, 1, 4, 4, 2, 2, 4, 1

Figure 3: The AP-LRU heuristic on the extended example.

We present, now, a relaxed version of LRU. The relaxed version (RLRU) of the
LRU heuristic is:

RLRU: When the dictionary is not full, label the i** element added to
the dictionary with the integer [i-p/k|, where k is the dictionary size
minus the alphabet size and p < k is the number of labels. When
the dictionary is full, label the i — th element with p if [i - p/k] =
[(i — Vp/k]. It [i - p/k] > [(i — 1)p/k], decrease by 1 all the labels
greater or equal to 2. Then, label the ¢ — th element with p. Finally,

remove one of the elements represented by a leaf with the smallest
label.

In other words, RLRU works with a partition of the dictionary in p classes, sorted
somehow in a fashion according to the order of insertion of the elements in the dic-
tionary, and an arbitrary element from the oldest class with removable elements is
deleted when a new element is added. RLRU is more sophisticated than SWAP
(which is the best among the simpler deletion strategies presented above) since it
removes elements in a continuous way as the original LRU. In fact, we will see in
section 4 that the compression performance of AP-RLRU is better than AP-SWAP.
Moreover, even if it relaxes on the choice of the element to remove AP-RLRU is as
good as AP-LRU.

139

Proceedings of the Prague Stringology Conference '05

3 The Complexity of LRU and RLRU Heuristics

The unbounded version of the LZ2 compression method is P-complete [2, 3]. This
means there is a log-space reduction from any problem in P to the problem of com-
puting LZ2 compression. Since it is believed that POLYLOGSPACE, the class of
problems computed with polylogarithmic work space, is not contained in P, it is un-
likely to have sublinear work space when LZ2 compression is implemented unless a
deletion heuristic is applied to bound the dictionary.

The LZ2 algorithm with LRU deletion heuristic on a dictionary of size O(log* n)
can be performed in polynomial time and O(log® nloglogn) space (n is the length
of the input string). In fact, the trie requires O(log® n) space by using an array
implementation since the number of children for each node is bounded by the alphabet
cardinality. The loglogn factor is required to store the information needed for the
LRU deletion heuristic since each node must have a different age, which is an integer
value between 0 and the dictionary size. Obviously, this is true for any LZ2 heuristic
(NC, FC, ID, AP). If the size of the dictionary is O(log® n), the LRU strategy is log-
space hard for SC* (Steve Cook’s class), the class of problems solvable simultaneously
in polynomial time and O(log*n) space [4]. The problem belongs to SC¥*!. This
hardness result is not so relevant for the space complexity analysis since Q(log” n) is
an obvious lower bound to the work space needed for the computation. Much more
interesting is what can be said about the parallel complexity analysis. In [4] it was
shown that LZ2 compression using the LRU deletion heuristic with a dictionary of
size ¢ can be performed in parallel either in O(logn) time with 2006169, processors
or in 20(¢1%6¢) Jogn time with O(n) processors. This means that if the dictionary size
is constant, the compression problem belongs to NC, the class of problems solvable
in polylogarithmic time with a polynomial number of processors. NC and SC (the
class of problems solvable simultaneously in polynomial time with polylogarithmic
work space) are classes that can be viewed in some sense symmetric and are believed
to be incomparable. Since log-space reductions are in NC, the compression problem
cannot belong to NC when the dictionary size is polylogarithmic if NC and SC are
incomparable. We want to point out that the dictionary size ¢ figures as an exponent,
in the parallel complexity of the problem. This is not by accident. If we believe that
SC is not included in NC, then the SC*-hardness of the problem when ¢ is O(log" n)
implies the exponentiation of some increasing and diverging function of ¢. In fact,
without such exponentiation either in the number of processors or in the parallel
running time, the problem would be SC*-hard and in NC when ¢ is O(log® n). Observe
that the P-completeness of the problem, which requires a superpolylogarithmic value
for ¢, does not suffice to infer this exponentiation since ¢ can figure as a multiplicative
factor of the time function. Moreover, this is a unique case where somehow we use
hardness results to argue that practical algorithms of a certain kind (NC in this case)
do not exist because of huge multiplicative constant factors occurring in their analysis.

Finally, the LZ2 compression heuristics with RLRU deletion heuristic on a dictio-
nary of size O(log" n) can be performed in polynomial time and O(log® n) space since
the number of ages is constant. In fact, LZ2-RLRU compression is the first (and only
so far) natural SC¥-complete problem [4].

140

Bounded Size Dictionary Compression: Relaxing the LRU Deletion Heuristic

4 Experimental Results

We show experimental results concerning the compression effectiveness of AP-RLRU
with a number of classes between 2 and 6, and compare them with the results of
AP-SWAP and AP-LRU. Each class is implemented with a stack. Therefore, the
newest element in the class of least recently used elements is removed. Observe that
if RLRU worked with only one class, after the dictionary is filled up the next element
added would be immediately deleted. Therefore, RLRU would work like FREEZE.
This is why we show results for a number of classes between 2 and 6. We considered
natural language, programming language and postscript. The dictionary size in real
life implementations has usually varied between 4,096 (twelve bits pointer size) and
65,536 (sixteen bits pointer size). In Figure 4, we present results with a dictionary
size equal to 4,096.

‘ Heuristic ‘ English ‘ C Programs ‘ Postscript ‘

LRU | .51034 52026 .46806
RLRU2 | .51193 52039 46971
RLRU3 | .51147 .52060 46916
RLRU4 | .51153 51957 .46902
RLRU5 | .51159 .52008 46888
RLRU6 | .51150 51982 46919

SWAP | .68654 71967 61341

Figure 4: Compression ratios with dictionary size 4,096.

We experimented on samples of English text files, C programs and Postscript
files. The file size varied between 100 Kilobytes and 2 Megabytes. The table shows
the average of the compression ratios obtained on each sample. RLRUp denotes that
the RLRU heuristic works with p classes. The compression ratios of LRU and RLRUp
for 2 < p < 6 are about the same up to the third or fourth decimal digit. On the other
hand, their compression effectiveness provides about 15 to 20 percent improvement
on the performance of SWAP. As mentioned in the introduction, the compression
effectiveness of the RLRU heuristic is not monotonicly increasing with the value of
p, which might be explained by the fact that the approach is heuristic (choosing to
remove an older element is not always a better choice as discussed with the example
of Figure 3).

The compression ratios of LRU and RLRU improve when the dictionary size is
65,536 as shown in Figure 5, but they compare to each other in a similar way while
SWAP is only a 3 percent of LRU and RLRU on C programs and about 10 and 20
percent on English and Postscript, respectively.

5 Conclusions

We showed that a relaxed version of the best bounded size dictionary .Z2 compression
technique, which uses the least recently used strategy, provides the same compression
effectiveness. This version is more space efficient and easier to implement, since it

141

Proceedings of the Prague Stringology Conference '05

‘ Heuristic ‘ English ‘ C Programs ‘ Postscript

LRU | .32363 38213 33556
RLRU2 | .32371 38221 33710
RLRU3 | .32414 38219 33667
RLRU4 | .32374 38229 33613
RLRUS | .32342 38217 33588
RLRUG6 | .32349 38216 33597

SWAP | .41402 41657 52827

Figure 5: Compression ratios with dictionary size 65,536.

relaxes by making a bipartition of the dictionary which defines, generally speaking, a
set of less recently used elements from which one element can be removed arbitrarily.

References

1]
2]

3]

7]

Bell, T.C., J.G. Cleary and I.H. Witten [1990]. Text Compression, Prentice Hall.

De Agostino, S. [1994]. “P-complete Problems in Data Compression”, Theoretical
Computer Science 127, 181-186.

De Agostino, S. [2000]. “Erratum to P-complete Problems in Data Compression”,
Theoretical Computer Science 234, 325-326.

De Agostino, S. and R. Silvestri [2003]. “Bounded Size Dictionary Compres-
sion: SCF-Completeness and NC Algorithms”, Information and Computation
180, 101-112.

Storer, J.A. [1988]. Data Compression: Methods and Theory (Computer Science
Press).

Storer, J.A. [1992]. “Massively Parallel Systolic Algorithms for Real-Time
Dictionary-Based Text Compression” Image and Text Compression, Kluwer Ac-
cademic Publishers (Storer J.A., editor), 159-178.

Ziv, J. and A. Lempel [1978]. “Compression of Individual Sequences via Variable
Rate Coding”, IEEE Transactions on Information Theory 24, 530-536.

142

