
Bounded Size Di
tionary Compression:

Relaxing the LRU Deletion Heuristi


Sergio De Agostino

Computer S
ien
e Department

Universit�a \La Sapienza"

Via Salaria 113, 00135 Roma, Italy

e-mail: deagostino�di.uniroma1.it

Abstra
t. The unbounded version of the Lempel-Ziv dynami
 di
tionary 
om-

pression method is P-
omplete. Therefore, it is unlikely to implement it with

sublinear work spa
e unless a deletion heuristi
 is applied to bound the di
tio-

nary. The well-known LRU strategy provides the best 
ompression performan
e

among the existent deletion heuristi
s. We show experimental results on the


ompression e�e
tiveness of a relaxed version (RLRU) of the LRU heuristi
.

RLRU partitions the di
tionary in p equivalen
e 
lasses, so that all the ele-

ments in ea
h 
lass are 
onsidered to have the same \age" for the LRU strategy.

Su
h heuristi
 turns out to be as good as LRU when p is greater or equal to

2. Moreover, RLRU is slightly easier to implement than LRU in addition to be

more spa
e eÆ
ient.

Keywords: Bounded di
tionary 
ompression, spa
e 
omplexity, LRU strategy

1 Introdu
tion

The Lempel-Ziv dynami
 di
tionary (LZ2) 
ompression algorithm learns substrings

by reading the input string from left to right with an in
remental parsing pro
edure

[7℄. The di
tionary is empty, initially. The pro
edure adds a new substring to the

di
tionary as soon as a pre�x of the still unparsed part of the string does not mat
h

a di
tionary element and repla
es the pre�x with a pair 
omprising a pointer to the

di
tionary and the last un
ompressed 
hara
ter. For example, the parsing of the

string abababaaaaaa is a; b; ab; aba; aa; aaa and the 
oding is 0a; 0b; 1b; 3a; 1a; 5a (the

pointer value for the �rst element in the di
tionary is 1 and 0 represents the empty

string). We will see in the next se
tion di�erent LZ2 
ompression heuristi
s (NC, FC,

ID, AP), whi
h work with a di
tionary 
ontaining initially the alphabet 
hara
ters

and produ
e a 
oding with no raw 
hara
ters.

The main issue for implementation purposes is to bound the work spa
e to produ
e

the in
remental parsing of the string to 
ompress. Sin
e the problem of 
omputing

su
h parsing is P-
omplete [2, 3℄, it is unlikely to have sublinear work spa
e when

LZ2 
ompression is implemented unless a deletion heuristi
 is applied to bound the

di
tionary. Several deletion heuristi
s have been designed and applied to the 
om-

pression heuristi
s mentioned above (see the books of Storer [5, 6℄ and Bell, Cleary

135



Pro
eedings of the Prague Stringology Conferen
e '05

and Witten [1℄). A strategy that 
an a
hieve good 
ompression ratio with small

memory is the LRU deletion heuristi
 that dis
ards the least re
ently used di
tionary

element to make spa
e for the new substring. The least re
ently used strategy pro-

vides the best 
ompression performan
e among the well-known heuristi
s (FREEZE,

RESTART, SWAP, LRU). AP-LRU turns out to be the best 
ompression heuristi


when the di
tionary is bounded.

When the size of the di
tionary is O(log

k

n) the LRU strategy is log-spa
e hard for

SC

k

(Steve Cook's 
lass), the 
lass of problems solvable simultaneously in polynomial

time and O(log

k

n) spa
e [4℄. Sin
e its sequential 
omplexity is polynomial in time

and O(log

k

n log logn) in spa
e, the problem belongs to SC

k+1

. Moreover, in [4℄ a

relaxed version (RLRU) was introdu
ed whi
h turned out to be the �rst (and only so

far) natural SC

k

-
omplete problem. RLRU partitions the di
tionary in p equivalen
e


lasses, so that all the elements in ea
h 
lass are 
onsidered to have the same \age"

for the LRU strategy.

While in [4℄ the RLRU heuristi
 was 
onsidered only for theoreti
al reasons 
on-


erning 
omplexity theory, in this paper we want to look at its pra
ti
al aspe
ts. We

show experimental results on its 
ompression e�e
tiveness for 2 � p � 6, using the

AP 
ompression heuristi
. RLRU turns out to be as good as LRU even when p is

equal to 2. Sin
e RLRU removes an arbitrary element from the equivalen
e 
lass

with the \older" elements, the two 
lasses (when p is equal to 2) 
an be implemented

with a 
ouple of sta
ks, whi
h makes RLRU slightly easier to implement than LRU in

addition to be more spa
e eÆ
ient. Surprisingly, the 
ompression e�e
tiveness (whi
h

we 
an measure as the inverse of the 
ompression ratio) is not monotoni
ly in
reasing

with the value of p. This might be explained by the fa
t that the approa
h is heuristi


(
hoosing to remove an older element is not always a better 
hoi
e). However, LRU

is always stri
tly better (in an irrelevant way for the 
ompression e�e
tiveness) than

RLRU. This fa
t shows that there should be always an improvement when two values

of p di�er substantially.

Simpler 
hoi
es for the deletion heuristi
 are FREEZE, RESTART and SWAP.

These heuristi
s do not delete elements from the di
tionary at ea
h step. SWAP is

the best among these simpler approa
hes and has a worse 
ompression performan
e

than RLRU and LRU. We des
ribe 
ompression and deletion heuristi
s in se
tion 2.

In se
tion 3, we dis
uss the 
omplexity of the LRU and RLRU heuristi
s. In se
tion

4, we 
ompare the experimental results of LRU, RLRU and SWAP. Con
lusions are

given in se
tion 5.

2 Compression and Deletion Heuristi
s

As mentioned in the introdu
tion, the 
ompression and deletion heuristi
s presented

in this se
tion 
an be found in [1, 5, 6℄. The in
remental parsing pro
edure used

by the LZ2 algorithm produ
es a 
ompressed string 
omprising pointers and raw


hara
ters. In pra
ti
e, we do not want to leave 
hara
ters un
ompressed. This 
an

be avoided by initializing the di
tionary with the alphabet 
hara
ters. The NC (next


hara
ter) heuristi
 also parses the string from left to right with a greedy pro
edure. It

�nds the longest mat
h in the 
urrent position and updates the di
tionary by adding

the 
on
atenation of the mat
h with the next 
hara
ter. The FC (�rst 
hara
ter)

heuristi
 di�ers in the way it updates the di
tionary. The element to add is de�ned

136



Bounded Size Di
tionary Compression: Relaxing the LRU Deletion Heuristi


as the 
on
atenation of the last mat
h with the �rst 
hara
ter of the 
urrent mat
h.

With the ID (identity) heuristi
, the element to add is de�ned as the 
on
atenation

of the last mat
h with the whole 
urrent mat
h. The AP (all pre�xes) heuristi
 adds

a set of elements to the di
tionary at ea
h step. Ea
h element is the 
on
atenation

of the last mat
h with a pre�x of the 
urrent mat
h. In this way, the di
tionary of

the AP heuristi
 has both the 
hara
teristi
s of the di
tionaries of the FC and ID

heuristi
s. Observe that with FC, ID and AP, an element to add might be in the

di
tionary already. How these heuristi
s work on the example in the introdu
tion is

shown in Figure 1.

NC heuristi


parsing: a; b; ab; aba; a; aa; aa;

di
tionary: a; b; ab; ba; aba; abaa; aa; aaa;


oding: 1, 2, 3, 5, 1, 7, 7

FC heuristi


parsing: a, b, ab, ab, a, a, aa, aa

di
tionary: a, b, ab, ba, aba, aa, aaa, aaaa


oding: 1, 2, 3, 3, 1, 1, 7, 7

ID heuristi


parsing: a, b, ab, ab, a, a, aa, aa

di
tionary : a, b, ab, bab, abab, aba, aa, aaaa


oding: 1, 2, 3, 3, 1, 1, 7, 7

AP heuristi


parsing: a, b, ab, ab, a, a, aa, aa

di
tionary : a, b, ab, ba, bab, aba, abab, aa, aaa, aaaa


oding: 1, 2, 3, 3, 1, 1, 8, 8

Figure 1: The 
ompression heuristi
s.

It is well known that these heuristi
s 
an be implemented by storing the di
tionary

in a tree data stru
ture, 
alled trie. At ea
h step, we �nd the longest mat
h in the

di
tionary as a path from the root to a leaf of the trie and update the di
tionary by

adding a new leaf to the trie. Real time implementations are possible for ea
h 
om-

pression heuristi
 using any deletion heuristi
 (FREEZE, RESTART, SWAP, LRU

and RLRU) to bound the di
tionary. FREEZE, RESTART and SWAP work as it

follows:

� FREEZE: on
e the di
tionary is full, freeze it and do not allow any further

entries to be added.

137



Pro
eedings of the Prague Stringology Conferen
e '05

� RESTART: stop adding further entries when the di
tionary is full; when the


ompression ratio starts deteriorating 
lear the di
tionary and learn new strings.

� SWAP: when the primary di
tionary �rst be
omes full, start an auxiliary di
-

tionary, but 
ontinue 
ompression based on the primary di
tionary; when the

auxiliary di
tionary be
omes full, 
lear the primary di
tionary and reverse their

roles.

The SWAP and RESTART heuristi
s 
an be viewed as dis
rete versions of LRU.

In fa
t, the di
tionaries depend only on small segments of the input string.

parsing: a; b; ab; ab; a; a; aa; aa;

di
tionary (step 3): a, b, ab, ba, bab

di
tionary (step 4): a, b, ab, ba, aba

di
tionary (step 4): a, b, ab, abab , aba

di
tionary (step 6): a, b, ab, aa, aba

di
tionary (step 7): a, b, ab, aa, aaa

di
tionary (step 8): a, b, aaaa, aa, aaa


oding: 1, 2, 3, 3, 1, 1, 4, 4

Figure 2: The AP-LRU heuristi
 on the example string.

We showed in the introdu
tion of the paper how the LZ2 algorithm parses the

example string abababaaaaaa. If we bound the di
tionary size with 3 and use LRU,

after three steps a; b; ab is the partial parsing, 0a; 0b; 1b is the partial 
oding and the

di
tionary is �lled up with the three elements a; b; ab. The LRU heuristi
 works as

follows:

LRU: de�ne a string as \used" when it is added to the di
tionary and re-

move the least re
ently used leaf of the trie representing the di
tionary

after a new leaf is added. The pointer to the element whi
h is removed

be
omes the pointer to the new element.

Hen
e at the fourth step, �rst aba is added and 
oded as 3a. Then, b is dis
arded.

Finally, aba is repla
ed with aa, 
oded as 1a, and ab with aaa, 
oded as 2a.

Observe that while for the NC heuristi
 the element added to the di
tionary is an

extension of the 
urrent mat
h as for the original LZ2 algorithm, this is not true for

the other heuristi
s. To make things work properly when we apply the LRU deletion

strategy to the FC, ID and AP heuristi
s, a string is de�ned to be \used" also when

it is mat
hed. AP-LRU turns out to be the best 
ompression heuristi
 when the

di
tionary is bounded. How the AP-LRU heuristi
 works on the example string with

a di
tionary of size 5 is shown in Figure 2. Steps 
orrespond to the parsing. In

this example, the AP-LRU heuristi
 adds more than one element only at the fourth

parsing step. In Figure 3, we extend the example by adding the suÆx bbaaa to make

some observations. At step 11, the 
urrent mat
h is removed from the di
tionary. In

138



Bounded Size Di
tionary Compression: Relaxing the LRU Deletion Heuristi


this 
ase, the AP-LRU heuristi
 puts it ba
k into the di
tionary at step 12 and then

it adds its extensions (this 
an happen with FC and ID as well). With AP, it 
ould

be possible that pre�xes of the 
urrent mat
h are removed and similarly they would

be put ba
k into the di
tionary at the next step. Finally, observe that at step 10

if aab were removed instead of aaa, aaa would be parsed o� at the end providing a

shorter 
ode for the string. This shows that removing the older element might not be

the better 
hoi
e.

parsing: a; b; ab; ab; a; a; aa; aa; b; b; aa; a;

di
tionary (step 9): a, b, aab, aa, aaa

di
tionary (step 10): a, b, aab, aa, bb

di
tionary (step 11): a, b, ba, aa, bb

di
tionary (step 11): a, b, ba, baa, bb

di
tionary (step 12): a, b, ba, baa, aa

di
tionary (step 12): a, b, ba, aa, aaa


oding: 1, 2, 3, 3, 1, 1, 4, 4, 2, 2, 4, 1

Figure 3: The AP-LRU heuristi
 on the extended example.

We present, now, a relaxed version of LRU. The relaxed version (RLRU) of the

LRU heuristi
 is:

RLRU: When the di
tionary is not full, label the i

th

element added to

the di
tionary with the integer di � p=ke, where k is the di
tionary size

minus the alphabet size and p < k is the number of labels. When

the di
tionary is full, label the i � th element with p if di � p=ke =

d(i � 1)p=ke. If di � p=ke > d(i � 1)p=ke, de
rease by 1 all the labels

greater or equal to 2. Then, label the i � th element with p. Finally,

remove one of the elements represented by a leaf with the smallest

label.

In other words, RLRU works with a partition of the di
tionary in p 
lasses, sorted

somehow in a fashion a

ording to the order of insertion of the elements in the di
-

tionary, and an arbitrary element from the oldest 
lass with removable elements is

deleted when a new element is added. RLRU is more sophisti
ated than SWAP

(whi
h is the best among the simpler deletion strategies presented above) sin
e it

removes elements in a 
ontinuous way as the original LRU. In fa
t, we will see in

se
tion 4 that the 
ompression performan
e of AP-RLRU is better than AP-SWAP.

Moreover, even if it relaxes on the 
hoi
e of the element to remove AP-RLRU is as

good as AP-LRU.

139



Pro
eedings of the Prague Stringology Conferen
e '05

3 The Complexity of LRU and RLRU Heuristi
s

The unbounded version of the LZ2 
ompression method is P-
omplete [2, 3℄. This

means there is a log-spa
e redu
tion from any problem in P to the problem of 
om-

puting LZ2 
ompression. Sin
e it is believed that POLYLOGSPACE, the 
lass of

problems 
omputed with polylogarithmi
 work spa
e, is not 
ontained in P, it is un-

likely to have sublinear work spa
e when LZ2 
ompression is implemented unless a

deletion heuristi
 is applied to bound the di
tionary.

The LZ2 algorithm with LRU deletion heuristi
 on a di
tionary of size O(log

k

n)


an be performed in polynomial time and O(log

k

n log logn) spa
e (n is the length

of the input string). In fa
t, the trie requires O(log

k

n) spa
e by using an array

implementation sin
e the number of 
hildren for ea
h node is bounded by the alphabet


ardinality. The log logn fa
tor is required to store the information needed for the

LRU deletion heuristi
 sin
e ea
h node must have a di�erent age, whi
h is an integer

value between 0 and the di
tionary size. Obviously, this is true for any LZ2 heuristi


(NC, FC, ID, AP). If the size of the di
tionary is O(log

k

n), the LRU strategy is log-

spa
e hard for SC

k

(Steve Cook's 
lass), the 
lass of problems solvable simultaneously

in polynomial time and O(log

k

n) spa
e [4℄. The problem belongs to SC

k+1

. This

hardness result is not so relevant for the spa
e 
omplexity analysis sin
e 
(log

k

n) is

an obvious lower bound to the work spa
e needed for the 
omputation. Mu
h more

interesting is what 
an be said about the parallel 
omplexity analysis. In [4℄ it was

shown that LZ2 
ompression using the LRU deletion heuristi
 with a di
tionary of

size 
 
an be performed in parallel either in O(logn) time with 2

O(
 log 
)

n pro
essors

or in 2

O(
 log 
)

logn time with O(n) pro
essors. This means that if the di
tionary size

is 
onstant, the 
ompression problem belongs to NC, the 
lass of problems solvable

in polylogarithmi
 time with a polynomial number of pro
essors. NC and SC (the


lass of problems solvable simultaneously in polynomial time with polylogarithmi


work spa
e) are 
lasses that 
an be viewed in some sense symmetri
 and are believed

to be in
omparable. Sin
e log-spa
e redu
tions are in NC, the 
ompression problem


annot belong to NC when the di
tionary size is polylogarithmi
 if NC and SC are

in
omparable. We want to point out that the di
tionary size 
 �gures as an exponent

in the parallel 
omplexity of the problem. This is not by a

ident. If we believe that

SC is not in
luded in NC, then the SC

k

-hardness of the problem when 
 is O(log

k

n)

implies the exponentiation of some in
reasing and diverging fun
tion of 
. In fa
t,

without su
h exponentiation either in the number of pro
essors or in the parallel

running time, the problem would be SC

k

-hard and in NC when 
 is O(log

k

n). Observe

that the P-
ompleteness of the problem, whi
h requires a superpolylogarithmi
 value

for 
, does not suÆ
e to infer this exponentiation sin
e 
 
an �gure as a multipli
ative

fa
tor of the time fun
tion. Moreover, this is a unique 
ase where somehow we use

hardness results to argue that pra
ti
al algorithms of a 
ertain kind (NC in this 
ase)

do not exist be
ause of huge multipli
ative 
onstant fa
tors o

urring in their analysis.

Finally, the LZ2 
ompression heuristi
s with RLRU deletion heuristi
 on a di
tio-

nary of size O(log

k

n) 
an be performed in polynomial time and O(log

k

n) spa
e sin
e

the number of ages is 
onstant. In fa
t, LZ2-RLRU 
ompression is the �rst (and only

so far) natural SC

k

-
omplete problem [4℄.

140



Bounded Size Di
tionary Compression: Relaxing the LRU Deletion Heuristi


4 Experimental Results

We show experimental results 
on
erning the 
ompression e�e
tiveness of AP-RLRU

with a number of 
lasses between 2 and 6, and 
ompare them with the results of

AP-SWAP and AP-LRU. Ea
h 
lass is implemented with a sta
k. Therefore, the

newest element in the 
lass of least re
ently used elements is removed. Observe that

if RLRU worked with only one 
lass, after the di
tionary is �lled up the next element

added would be immediately deleted. Therefore, RLRU would work like FREEZE.

This is why we show results for a number of 
lasses between 2 and 6. We 
onsidered

natural language, programming language and posts
ript. The di
tionary size in real

life implementations has usually varied between 4,096 (twelve bits pointer size) and

65,536 (sixteen bits pointer size). In Figure 4, we present results with a di
tionary

size equal to 4,096.

Heuristi
 English C Programs Posts
ript

LRU .51034 .52026 .46806

RLRU2 .51193 .52039 .46971

RLRU3 .51147 .52060 .46916

RLRU4 .51153 .51957 .46902

RLRU5 .51159 .52008 .46888

RLRU6 .51150 .51982 .46919

SWAP .68654 .71967 .61341

Figure 4: Compression ratios with di
tionary size 4,096.

We experimented on samples of English text �les, C programs and Posts
ript

�les. The �le size varied between 100 Kilobytes and 2 Megabytes. The table shows

the average of the 
ompression ratios obtained on ea
h sample. RLRUp denotes that

the RLRU heuristi
 works with p 
lasses. The 
ompression ratios of LRU and RLRUp

for 2 � p � 6 are about the same up to the third or fourth de
imal digit. On the other

hand, their 
ompression e�e
tiveness provides about 15 to 20 per
ent improvement

on the performan
e of SWAP. As mentioned in the introdu
tion, the 
ompression

e�e
tiveness of the RLRU heuristi
 is not monotoni
ly in
reasing with the value of

p, whi
h might be explained by the fa
t that the approa
h is heuristi
 (
hoosing to

remove an older element is not always a better 
hoi
e as dis
ussed with the example

of Figure 3).

The 
ompression ratios of LRU and RLRU improve when the di
tionary size is

65,536 as shown in Figure 5, but they 
ompare to ea
h other in a similar way while

SWAP is only a 3 per
ent of LRU and RLRU on C programs and about 10 and 20

per
ent on English and Posts
ript, respe
tively.

5 Con
lusions

We showed that a relaxed version of the best bounded size di
tionary LZ2 
ompression

te
hnique, whi
h uses the least re
ently used strategy, provides the same 
ompression

e�e
tiveness. This version is more spa
e eÆ
ient and easier to implement, sin
e it

141



Pro
eedings of the Prague Stringology Conferen
e '05

Heuristi
 English C Programs Posts
ript

LRU .32363 .38213 .33556

RLRU2 .32371 .38221 .33710

RLRU3 .32414 .38219 .33667

RLRU4 .32374 .38229 .33613

RLRU5 .32342 .38217 .33588

RLRU6 .32349 .38216 .33597

SWAP .41402 .41657 .52827

Figure 5: Compression ratios with di
tionary size 65,536.

relaxes by making a bipartition of the di
tionary whi
h de�nes, generally speaking, a

set of less re
ently used elements from whi
h one element 
an be removed arbitrarily.

Referen
es

[1℄ Bell, T.C., J.G. Cleary and I.H. Witten [1990℄. Text Compression, Prenti
e Hall.

[2℄ De Agostino, S. [1994℄. \P-
omplete Problems in Data Compression", Theoreti
al

Computer S
ien
e 127, 181-186.

[3℄ De Agostino, S. [2000℄. \Erratum to P-
omplete Problems in Data Compression",

Theoreti
al Computer S
ien
e 234, 325-326.

[4℄ De Agostino, S. and R. Silvestri [2003℄. \Bounded Size Di
tionary Compres-

sion: SC

k

-Completeness and NC Algorithms", Information and Computation

180, 101-112.

[5℄ Storer, J.A. [1988℄. Data Compression: Methods and Theory (Computer S
ien
e

Press).

[6℄ Storer, J.A. [1992℄. \Massively Parallel Systoli
 Algorithms for Real-Time

Di
tionary-Based Text Compression" Image and Text Compression, Kluwer A
-


ademi
 Publishers (Storer J.A., editor), 159{178.

[7℄ Ziv, J. and A. Lempel [1978℄. \Compression of Individual Sequen
es via Variable

Rate Coding", IEEE Transa
tions on Information Theory 24, 530-536.

142


