
Context-dependent Stopper enoding

Jussi Rautio

Laboratory of Information Proessing Siene

Helsinki University of Tehnology

Espoo, Finland

e-mail: Jussi.Rautio�hut.fi

Abstrat. A harater-based enoding method is presented for natural-

language texts and geneti data. Exat string mathing from the enoded text

is faster than from the original text, with medium and longer patterns. A om-

pression ratio of about 50% is ahieved as a by-produt. The method enodes

haraters with variable-length odewords of 2-bit base symbols. An advaned

variant is ontext-dependent, using information from the previous harater.

The method supersedes the previous omparable methods in ompression ratio,

and is omparable to the best suh methods in searh speed.

Keywords: ompressed mathing, aelerator enoding, Stopper enoding

1 Introdution

As the amount of available information is onstantly growing, fast information re-

trieval is beoming more and more important; it is a key onept in many applia-

tions, espeially on-line ones. The string mathing problem is about loating all the

ourrenes of a spei� pattern from the full text. Within this paper, I will onen-

trate on exat string mathing, requiring an exat math with the pattern and the

ourrene in the full text.

A ommon solution to the string mathing problem is to build an external index

with pointers to the full text [15℄. With an index, string mathing an be done in

logarithmi time. The disadvantage of these methods is an inrease in spae onsump-

tion. For stati �les, it is possible to ompress the index only [15℄, or to ompress the

index separately from the full text [15℄. The FM index [5℄ applies Burrows-Wheeler

transformation [4℄ to the text before ompression, drastially reduing the amount of

neessary index data. These methods allow both an exellent ompression ratio and

fast string mathing. However, they do not support on-line updates or approximate

mathing.

An alternative to indexing, it is possible to enode the full text with a loal

sheme spei�ly designed to improve searh speed. A Boyer-Moore [2, 9℄ type string

mathing algorithm an be used with the enoded text, improving searh speed by a

onstant fator. Some of these shemes even o�er a signi�ant ompression ratio as

a by-produt. In the absene of a ommon term for this lass of shemes, I will use

the term aelerator enoding for all suh shemes.

143

Proeedings of the Prague Stringology Conferene '05

Although aelerator enoding falls behind ompressed indexing in both ompres-

sion ratio and searh speed, it allows on-line updates and on-line deoding. It is

suited for douments whih are queried, retrieved or updated often, for example text

databases or log �les.

There are two types of aelerator enoding shemes: word-based and harater-

based. Word-based shemes [3, 12℄ work with whole words at a time, allowing a

better ompression ratio for large �les but requiring a large ditionary. Their use

is limited to natural-language texts where words are separated by delimiters (unlike

Japanese, for example), and string mathing is possible only with whole words and

ombinations of subsequent words. Charater-based shemes [6, 13, 14℄ work with a

�xed number of haraters at a time. String mathing is possible with a more free

range of patterns, possibly inluding errors and lasses of haraters.

I will present a novel harater-based aelerator enoding sheme and an exat

string mathing algorithm whih works with it. Variants of the new sheme, exible

stopper enoding, an be used either with geneti data or with natural-language texts.

The sheme is based on enoding eah harater of the text with a odeword of

one or more 2-bit base symbols. With pure DNA ode (with the alphabet agt),

exatly one base symbol is used for eah base pair, leading to a trivial enoding.

With natural-language texts, the ompression ratio of the sheme is optimized with

methods inluding ontext dependene of the �rst order. String mathing from the

enoded text is done with an algorithm resembling Tuned Boyer-Moore.

Compared with existing harater-based shemes, the new sheme an be useful.

For previous harater-based shemes, the ompression ratio (size of ompressed �le

divided by size of original �le) of natural-language texts was about 50% for the slowest

methods and 60% for the faster ones. For my example texts, ompression ratio of the

new sheme is 0:3 � 2 perentage units better than the best previous shemes, and

the searh speed is omparable to the fastest previous methods.

2 Bakground

Let T [0; n� 1℄ denote a text over the alphabet �. An enoding is a transformation

from the text T [0; n� 1℄ to the enoded text T

0

[0; n

0

� 1℄, in the alphabet �

0

. String

mathing in an enoded text means loating all ourrenes L(P) of a given pattern

P [0; m� 1℄ from the original text, with only the enoded text available. Throughout

this paper, I assume that it is suÆient to loate all ourrenes of the enoded

pattern L

0

(P

0

) in the enoded text.

Aelerator enoding methods use either stati or semi-stati enoding. In the

latter ase, a small ditionary ontaining all neessary information for mathing and

deoding is saved along with the enoded text. Dynami ditionary methods annot

be used, beause the ditionary annot be kept up to date without reading every

harater of the text, whih would be disastrous to the performane of the algorithm.

An important property of any ompression algorithm is ompression ratio, here

denoted as the size of the enoded text divided by the size of the original text, the

smaller the better. For the sake of uniformity, a harater of the original text is

always alulated as one 8-bit byte, even with geneti data.

Byte-pair enoding (BPE) exploited the variable frequenies of onseutive

harater pairs. For BPE, �

0

= �. T

0

is a opy of T , exept that the most ommon

144

Context-dependent Stopper enoding

pairs of onseutive haraters are replaed with haraters of � with no ourrenes

in T . The Manber variant [11℄ limits possible pairs, sari�ing ompression ratio

for searh speed. The original variant [6℄ does not have this limitation, allowing a

better ompression ratio. Both variants have an eÆient Boyer-Moore type string

mathing algorithm. A partially reursive version of the ompression algorithm was

reommended for the original variant [14℄, where one harater in �

0

an represent

one to three haraters in �. Another variant of Byte-pair enoding alled Repair [10℄

is even more optimized to ompression ratio, but laks an eÆient searh algorithm.

Our earlier omparison of these two variants [13℄ suggested that the Manber vari-

ant supported faster exat string mathing, however its ompression ratio was only

70-75% with natural-language texts. For the original variant, and espeially its re-

ursive version, the ompression ratio ould be as good as 45% with the same texts.

However, the better the ompression ratio, the slower the string mathing. The

sheme with the best ompression ratio only allowed a slower string mathing than

with the original text.

Stopper enoding [13℄ is related to an earlier word-based method by de Moura

et al. [12℄. I will desribe here only the 4-bit variant SE

4

; 0. The basi unit of the

enoded text was the base symbol. It onsisted of four bits, �

0

= [0; 15℄. When en-

oding, every harater of T was replaed with a orresponding odeword, a sequene

of one or more base symbols. No odeword ould be a pre�x of another. More om-

mon haraters were given shorter odewords than less ommon ones. This resembled

Hu�man oding. [8℄

To allow faster string mathing, base symbols were divided into two lasses alled

stoppers and ontinuers. Let s denote the number of stoppers, suh as all in �

0

less

than s are stoppers. A legal odeword C

0

[0; r � 1℄ onsisted of zero or more symbols

of the ontinuer lass, followed by exatly one symbol of the stopper lass, that is:

C

0

[i℄ � s holds for all i < r� 1, and C

0

[r� 1℄ < s. This made it possible to reognize

odewords when starting at an arbitary loation in the text, inluding after jumps

made by a Boyer-Moore type algorithm.

The 4-bit enoded text T

0

was stored into the 8-bit form, two base symbols per

a 8-bit omputer byte, so that it ould be used eÆiently. String mathing in the

enoded text was done with a Boyer-Moore type algorithm alled BM-SE, whih

handles whole bytes instead of individual base symbols. The algorithm operates by

enoding pattern P and then loating the ourrenes of the enoded pattern P

0

from

T

0

. Naturally, the possible ourrenes were not restrited to byte boundaries, but

ould start or end at either the �rst or the seond base symbol in the byte. Beause

of this, two possible alignments of the enoded pattern must be produed by using

a shift operation. The atual searh algorithm was a multi-pattern version of Tuned

Boyer-Moore [2, 9℄. It only made one pass of the enoded text, trying to loate both of

the alignments at the same time. When a presumed math was found, the preeding

base symbol was heked. If it is a stopper, the math was on�rmed, otherwise it

was disarded.

Word-based methods resembling Stopper enoding have been used to enode

whole words at a time. In shemes by de Moura et al. [12℄ and Brisaboa et al.

[3℄, whole words were enoded at a time. Eah was given a representation of one to

three base symbols, in this ase 8-bit bytes. These base symbols were divided into

the ontinuer and stopper lasses. This algorithm produed an exellent ompression

145

Proeedings of the Prague Stringology Conferene '05

ratio with natural language (urrently the best one seen in aelerator enoding). De

Moura's sheme used a �xed number of stoppers (128), while Brisaboa allowed free

determination of the number. Searh speed was only disussed by de Moura. Both

shemes had the same disadvantages. They allowed mathing with whole words only

and ould not support approximate mathing. In addition, the size of the required

ditionary was large ompared to other methods in the �eld.

Our earlier omparison between Byte-pair enoding and Stopper enoding [13℄

suggests that Stopper enoding is superior in searh speed (probably partially beause

of implementation issues) and that some variants of Byte-pair enoding provide a

better ompression ratio.

3 New solution

The new solution, exible stopper enoding, is an extension to stopper enoding [13℄.

Stopper enoding used 4- or 6-bit base symbols depending on the variant, whih had

theoretial limits for the ompression ratio at 50%, and 75%, respetively. Flexible

stopper enoding uses 2-bit base symbols, and its theoretial limit for ompression

ratio is 25%. Some limitations of stopper enoding are relaxed to ahieve an eÆient

ompression ratio for this sheme. I will start by desribing the basi method, and

ontinue by disussing improvements one at a time.

Pure DNA data (of the symbols agt only) an be enoded with a trivial

enoding. The alphabet has only four di�erent haraters, so let us denote �

0

=

f0; 1; 2; 3g. This means 2-bit base symbols, four of whih an be stored in a 8-bit

byte. This enoding gives an exat ompression ratio of 25%.

Stopper enoding from the previous setion an also be introdued to 2-bit

base symbols. A onstant s, 0 < s < 4 is determined, dividing the enoded alphabet

into two lasses: stoppers and ontinuers. Aording to the de�nition in the previous

setion, for a valid odeword of length r, denoted by C

0

[0; r � 1℄, for all i < r � 1

holds C

0

[i℄ � s, and C

0

[r � 1℄ < s. The more ommon haraters are represented by

shorter odewords than the less ommon ones.

Note that only three legal values exist for s. 0 is impossible sine no stoppers

means that odewords would never end, and 4 is only valid when there are four or

fewer haraters in the alphabet. The best ompression ratio is usually ahieved with

s = 2, but generally this sheme is too strit and must be relaxed.

Flexibility introdued to the previous sheme produes Flexible stopper enoding

(FSE). The base symbols are divided into two lasses as before, but the de�nition of

the lasses is hanged. Stoppers funtion as before, but ontinuers are replaed with

exers, base symbols that may at either as stoppers or ontinuers, depending on

their position in the odeword. Usually exers at as ontinuers near the beginning

of a odeword, and as stoppers after that.

More formally, assign values to s

i

, 0 < s

i

< 4, for all reasonable i. Now, a valid

odeword has exatly suh base symbols that C

0

[i℄ � s

i

holds for all i < r � 1, and

C

0

[r � 1℄ < s

r�1

. Consequently, s = min s

i

.

Presumed mathes preeded by exer an be on�rmed by loating the �rst stop-

per symbol preeding the presumed ourrene, and deoding after that until the

identity of the exer an be on�rmed.

Context dependene allows a better ompression ratio than possible if all

146

Context-dependent Stopper enoding

haraters are enoded separately. The ontext-dependent variant is alled Context-

dependent FSE, or CFSE. The meanings of odewords hange aording to the mean-

ings of their preeding haraters. This only applies to odeword alloation, not their

struture. Context dependene may be implemented in onjuntion with exibility,

or independently from it.

To allow on-line loating and deoding, delimiters (spaes) are �xed always to

have the same enoding. It ould be possible to hoose any harater, but the spae

is hosen beause it appears regularly and the most often.

A separate suessor table S

is onstruted for eah di�erent harater ourring

in the text. S

[0℄ is �xed to the spae harater, and S

[i℄ is the i:th ommon non-

spae suessor of . In addition, a odeword table is onstruted, ontaining the j�j

shortest valid odewords sorted by inreasing length. When enoding a harater

T [s℄, its index i is loated from the suessor table suh as S

T [s�1℄

[i℄ = T [s℄, and the

i:th odeword from the odeword table is put in the output stream.

Enoding and deoding algorithms are straight-forward to implement. To

enode, the entire text is �rst sanned to ount relative frequenies of haraters.

Then, the base symbol on�guration (number of stoppers s

n

) is deided, and the

odeword table built. Another pass of the text is required to enode the haraters

one by one. Finally, the save �le is built, inluding the base symbol on�guration,

the suessor table, and the enoded text.

The optimal number of stoppers s

i

an be alulated with an exhaustive searh

for small values of i. After preliminary tests, I deided to test all value ombinations

for all i < 4, and to set s

i

= s

4

for all i � 4. The best general values for s

i

for

natural-language texts seem to be 1; 3; 3; : : :. With the ontext-dependent variant, all

preliminary tests with natural-language texts seemed to work almost optimally with

the values s

i

= 2; 3; 3; : : :, so this value set is automatially used with this variant.

The suessor table takes O(n

2

) spae. The list of all haraters in the text is

saved �rst. Then, for eah harater, its suessors are saved in desending order

of frequeny. This takes about 4k spae with 64 di�erent haraters in the text.

Improvements are possible. The data struture used by the non-ontext-dependent

variant is the list of haraters ordered by frequeny.

Deoding is done by building either a single deoding tree (non-ontext-dependent

variant) or a separate deoding tree for eah preeding harater. This works exatly

the same way as Hu�man [8℄ deoding.

String mathing means loating an ourrene of the pattern in the text. With

FSE, it is suÆient to loate an ourrene of the enoded pattern in the enoded text,

preeded by a stopper symbol. In the ontext-dependent variant, the �rst harater

varies aording to the preeding one, but its suessors do not vary and are used for

the searh.

The exat string mathing algorithm BM-CFSE is developed from the 2-bit exat

string mathing algorithm used with stopper enoding, BM-SE

6;2

, whih was in turn

inuened by Tuned Boyer-Moore [9℄. The algorithm is basially a multi-pattern

version of Tuned Boyer-Moore, loating all four possible alignments of the enoded

pattern P

0

in a single pass through the text. It onsists of a preproessing phase and

a searh phase. The searh phase alternates between a fast loop, whih quikly weeds

out most loations, and a more preise slow loop, whih is used to on�rm presumed

mathes found by the fast loop.

147

Proeedings of the Prague Stringology Conferene '05

The searh algorithm needs two data strutures to work. The slow loop uses a

multi-mask table S, resembling the mask table of the shift-or algorithm [1℄. The

fast loop uses a jump table D onstruted from the multi-mask table, resembling the

ourrene heuristi jump table from Boyer-Moore type algorithms.

To onstrut the multi-mask table, some de�nitions are required. Let P

0

be the

enoded pattern, and P

0

0

, P

0

1

, P

0

2

, and P

0

3

its alignments (in any order). The align-

ments are �lled with wild ard symbols where no base symbol is available (before the

beginning or after the end of the enoded pattern). Eah harater in the enoded

text

0

onsists of four base symbols

0

0

,

0

1

,

0

2

, and

0

3

. The enoded haraters

0

and

d

0

are said to unify if and only if for all a, either

0

a

and d

0

a

are equal, or one of them

is a wild ard symbol �.

The multi-mask table is onstruted with a simple rule. Let l

0

be suh that for

all i, P

0

i

[l℄ is the last full harater (one not ontaining any wild ard symbols) of P

0

i

.

Now, S[; i℄

a

= 1 if and only if P

0

a

[i℄ uni�es with , and 0 otherwise. The value of the

multi-mask is now S[; i℄ = S[; i℄

0

+ 2S[; i℄

1

+ 4S[; i℄

2

+ 8S[; i℄

3

.

Algorithm 1 Construting the multi-mask table S

�ll S with 0

q f1,2,4,8g

for 0 to 256, i 0 to m, a 0 to 4 do

if P'

a

[i℄ uni�es with then

S[; i℄ S[; i℄ + q[a℄

When the multi-mask table has been onstruted, making the jump table is a

trivial matter. The l'th enoded harater of the pattern is always the last full

enoded harater of eah alignment. For other enoded haraters in the pattern at

the loation i, the possible jump length is l� i. The jump table onstrution and the

fast loop are diret adaptations from Tuned Boyer-Moore. After preliminary tests, I

deided to use triple loop unrolling as reommended by Hume and Sunday. A md

2

step-after-math heuristi an also be used instead of diret inrementation.

Algorithm 2 Construting the jump table D

�ll D with l

for i 0 to l, 0 to 256 do

if S[; i℄ 6= 0 then

D[S[; i℄℄ l � i

The slow loop of the atual searh algorithm works as a mask automaton, reog-

nizing all 4 patterns at a time. Starting from the suspetedly �rst enoded harater

of the pattern and a state variable q positive for all masks, a bitwise-or operation is

repeatedly applied to the state for eah harater. When the state variable reahes

zero, all hanes of an ourrene are lost and the fast loop an be resumed. If having

gone through all the haraters in the suspeted pattern the state variable still has

one or more positive bits, the math an be on�rmed by loating a stopper symbol

immediately preeding the suspeted pattern.

148

Context-dependent Stopper enoding

Algorithm 3 Searh algorithm: text san phase

opy pattern P

0

to end of text T [n℄; T [n+ 1℄; : : :

s l

for ever do

k D[T [s℄℄

while k 6= 0 do

s s + k

k D[T [s℄℄

i 0; q 15

while i < l and q 6= 0 do

q q bitwise-or S[T [s� l + 1 + i℄; i℄

i i+ 1

if q 6= 0 then

if s = n then

end

else

on�rm and report ourrene(s)

s s+ 1

4 Experiments

The most important properties of aelerator enoding algorithms are searh speed

and ompression ratio, in that order. Compression and deompression times are

reported in the �nal version.

In the experiments, FSE and CFSE are pitted against the leading unompressed

and ompressed mathing algorithms. As referene algorithms, I have my earlier

implementations of SE

4

; 0 and the 6-bit Stopper enoding SE

6

; 2, Tuned Boyer-Moore

by ourtesy of Hume and Sunday, and BM-BPE by ourtesy of Takeda. BM-BPE

omes in three versions, fast limitingmaximum ompression to two original haraters

per enoded harater, re (reommended) limiting it to three, andmax being without

limitation.

I use the Canterbury Corpus version of the King James Bible for test data. I run

two separate tests with separate sets of patterns. In the �rst test, all patterns are

whole words or beginnings of words, inluding the spae before the beginning. Using

them is a ommon senario, and CFSE an searh them faster than other patterns.

In the seond test, the patterns are unrestrited. Experiments with geneti data will

be inluded in the �nal version.

All experiments are run on a 650 MHz AMD Athlon mahine with 384 megabytes

of main memory, running Debian Linux in single-user mode. All the programs are

ompiled using g with maximum optimization (ag -O6).

In the experiment, ommand-line versions of all test programs, all of them perform-

ing exatly one searh per exeution of program, are run several times. The programs

measure their own exeution time by inserting alls to the C funtion lok() into

the ode. This loked time inludes everything exept program argument parsing

and reading the �le from disk.

The ompression ratios are shown in Table 1. CFSE provides a better ompression

ratio than any of the other algorithms in all these examples. Di�erenes between it

149

Proeedings of the Prague Stringology Conferene '05

KJV Bible

(3.86M)

BPE

max

47.8%

BPE

re

51.0%

BPE

fast

56.2%

SE

4;0

58.9%

FSE 55.6%

CFSE 47.5%

Table 1: Compression ratios.

and the maximal-ompression version of BPE are 0:3�2:1 perentage units. However,

it provides an over 10 perentage units better ompression ratio than the generally

fastest of the other algorithms, the 4-bit Stopper Enoding.

Table 2 desribes the searh speed from the Bible with whole words or word

beginnings, and Table 3 repeats the same test with freely hosen patterns. The

performane of BM-CFSE is about the same as that of BM-SE

4;0

, being somewhat

faster with longer patterns and somewhat slower with shorter patterns. However, it

is about twie faster than the algorithms whih o�er a similar ompression ratio, BM-

BPE

re

and BM-BPE

fast

. With pattern length 5 in Table 3, the poor performane

of BM-CFSE is probably beause of an implementation anomaly. CFSE is minimally

better with whole-word patterns than with free ones.

5 Conlusions

I have presented new aelerator enoding shemes alled Flexible stopper enoding

FSE and the ontext-dependent version CFSE, and an exat string mathing algo-

rithm for them, alled BM-FSE. The new shemes produe a better ompression ratio

than any of the the existing aelerator enoding methods for the example natural-

language text. The string mathing algorithm is omparable to the fastest existing

methods with both unompressed and ompressed texts.

With pure geneti data, FSE redues to a trivial enoding with a ompression ratio

of exatly 25%. Compression and deompression are straight-forward operations, and

mapping from the enoded text to the original is trivial. FSE an be used to store

pattern length 3 4 5 6 8 12 20

TBM 99 116 131 142 159 173 193

BM-BPE

max

61 63 66 68 73 81 122

BM-BPE

re

56 90 95 97 128 155 212

BM-BPE

fast

80 84 110 113 138 177 226

BM-SE

4;0

112 152 177 203 241 301 330

BM-SE

6;2

95 160 166 219 281 398 566

BM-FSE 83 123 159 184 228 289 352

BM-CFSE 100 136 165 190 246 322 399

Table 2: Searh speed for KJV Bible (word beginnings only) in kB/ms.

150

Context-dependent Stopper enoding

pattern length 5 6 8 12 20

TBM 143 148 165 189 213

BM-BPE

max

67 69 73 81 120

BM-BPE

re

136 138 165 214 293

BM-BPE

fast

111 115 138 169 214

BM-SE

4;0

186 220 247 358 361

BM-SE

6;2

184 213 273 435 794

BM-FSE 161 196 227 309 385

BM-CFSE 67

�

139 223 307 355

Table 3: Searh speed for KJV Bible (free patterns) in kB/ms.

large �les of pure geneti data for eÆient retrieval.

With natural-language texts, CFSE is eÆient beause of its good ompression

ratio. Its worst limit is that it relies on frequent ourrenes of delimiters in the text.

Unlike word-based aelerator ompression shemes, CFSE still allows exat string

mathing with any pattern, and requires a smaller ditionary.

CFSE's advantage over BPE in ompression ratio omes from the fat that BPE

divides text into units enoded separately from one another. CFSE, however, always

enodes aording to the previous harater.

In searh speed, BM-CFSE is similar to BM-SE. There seems to be no fundamental

di�erene between 4-bit base symbols and 2-bit ones. BM-CFSE bene�ts from its

ompression ratio and su�ers from the omission of the �rst harater from the fast

loop.

The earlier aelerator enoding shemes had trade-o�s, being either good in om-

pression ratio and bad in speed, (BPE

max

), or the other way round (SE

4;0

). It an

be noted that CFSE has no suh trade-o�, having both a superior ompression ratio

and an exellent searh speed. The inlusion of disk read times favors it even more.

The only exeption is searhing with short patterns (less than 5 haraters), where

SE

4;0

is better.

A better ompression ratio ould be obtained by introduing a higher order ontext

dependene. However, there would be problems with ditionary size, and for eah

pattern, two �rst haraters would beome unstable instead of one, further reduing

searh speed. Another interesting question is how well approximate string mathing

ould be performed with stopper enoding or CFSE.

Referenes

[1℄ Baeza-Yates, R., Gonnet, G., A new approah to text searhing, Communiations of

the ACM, 35(10):74{82, 1992.

[2℄ Boyer, R. and Moore, J. A fast string searhing algorithm. Communiations of the

ACM, 20(10):762{772, 1977.

[3℄ Brisaboa, N., Fari~na A., Navarro, G., and Esteller, M. (S,C)-Dense Coding: An Op-

timized Compression Code for Natural Language Text Databases. Proeedings of the

SPIRE onferene, pages 122-136, 2003.

151

Proeedings of the Prague Stringology Conferene '05

[4℄ Burrows, M. and Wheeler, D. A blok-sorting lossless data ompression algorithm.

DEC SRC Researh Report 124, 1994.

[5℄ Ferragina, P. and Manzini, G. An experimental study of an opportunisti index. Pro-

eedings of the 12th ACM-SIAM Symposium of Disrete Algorithms (SODA), 2001.

[6℄ Gage. P. A new algorithm for data ompression. C/C++ Users Journal, 12(2), 1994.

[7℄ Golomb, S. Run-length enoding. IEEE Transations on Information Theory, 12(3),

1966.

[8℄ Hu�man, D. A method for the onstrution of minimum-redundany odes. Proeedings

of the IRE 40, 1098-1101. David Applegate et al, 1952.

[9℄ Hume, A. and Sunday, S. Fast string searhing. Software Pratie and Experiene,

21:1221{1248, 1991.

[10℄ Larsson, N., Mo�at, A. O�ine ditionary-based ompression. Pro. IEEE, 88(11),

1722{1732, 2000.

[11℄ Manber, U. A text ompression sheme that allows fast searhing diretly in the om-

pressed �le. In Pro. Combinatorial Pattern Mathing, Leture Notes in Computer

Siene, 807:113{124. Springer-Verlag, 1994.

[12℄ de Moura, E., Navarro, G., Ziviani, N. and Baeza-Yeates, R. Fast and exible word

searhing on ompressed text. ACM Transations on Information Systems, 18(2):113{

139, 2000.

[13℄ Rautio, J., Tanninen, J., and Tarhio, J. String mathing with stopper enoding and

ode splitting. Pro. CPM '02, Combinatorial Pattern Mathing (ed. A. Apostolio, M.

Takeda), Leture Notes in Computer Siene 2373, Springer, 2002, 42-52.

[14℄ Shibata, Y., Matsumoto, T., Takeda, M., Shinohara, A. and Arikawa, S. A Boyer-

Moore type algorithm for ompressed pattern mathing. Proeedings of the 11th An-

nual Symposium on Combinatorial Pattern Mathing (LNCS 1848), pages 181{194.

Springer-Verlag, 2000.

[15℄ Witten, I., Mo�at, A., Bell, T. Managing gigabytes. Morgan Kaufmann Publishers,

Aademi Press, 1999.

[16℄ Ziv, J. and Lempel, A. A universal algorithm for sequential data ompression. IEEE

Transations on Information Theory, 23:337{343, 1977.

152

