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Abstrat. This paper presents a brand new approah to the general pattern

mathing on regular ollage systems. Our approah provides O(jjDjj+ jSj+E)

(where E is the preproessing ost) worst-ase time omplexity. It is based on

fat that a deterministi �nite automaton is able to distinguish only a limited

number of strings.
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1 Introdution

In the onurrent world, eah year more and more data are to be stored and proessed.

It also seems that the amount of data to be stored and proessed grows faster than

the data storage media and proessing applianes.

The pattern mathing in ompressed text helps in both diretions: the data are

ompressed in order to onsume less spae, and then an algorithm for the pattern

mathing in ompressed text is employed to simplify the data proessing.

In this paper, we provide a new approah for general (regular expression) pattern

mathing over ollage systems. Collage systems are means of representing several

ompression methods in a unique way, and our approah uses �nite automata as

unique approah for solving many pattern mathing problems.

2 Basi notions and notations

Let us denote pref(P ), fat(P ) and su�(P ) set of all pre�xes, fators and suÆxes

(respetivelly) of string P . Let us denote LSpref(w; P ) and LSfat(w; P ) longest

suÆx of w that is onurrently a pre�x (fator) of P .

153



Proeedings of the Prague Stringology Conferene '05

2.1 Collage systems

Collage systems [KST

+

99, KMT

+

01℄ are means of representing several ompression

methods in a unique way. A ollage system is a pair (D;S), where:

D (alled ditionary) is a sequene of assignments in form X

1

= expr

1

; X

2

= expr

2

;

� � � ; X

l

= expr

l

where the expression for assignment X

k

is onstruted in one

of these forms:

a for any a 2 (A [ f"g), (primitive assigment)

X

i

X

j

for i; j < k, (onatenation)

[j℄

X

i

for i < k and an integer j, (pre�x trunation)

X

[j℄

i

for i < k and an integer j, (suÆx trunation)

(X

i

)

j

for i < k and an integer j. (j times repetition)

S (alled sequene) is a sequene of assignments de�ned in D in form

S = X

i

1

; X

i

2

; : : : ; X

i

n

Let us denote u

i

string representing assigment X

i

and u = u

i

1

u

i

2

: : : u

i

n

string repre-

senting the ollage system.

[KST

+

99℄ desribes how to express various ompression methods using ollage

systems.

Several types of ollage systems were de�ned in [KST

+

99℄. The two most impor-

tant types in our ase are regular and simple ollage systems. The ditionary of a

regular ollage system an ontain assignments only in form of a or X

i

X

j

. The simple

ollage systems are suh regular ollage systems, where for eah assigment in form of

X

i

X

j

holds either X

i

= a or X

j

= a for some a 2 A.

For example, let us onsider the following ollage system: D = fX

1

= a;X

2

=

b;X

3

= X

1

X

2

; X

4

= X

3

X

3

g, S = fX

4

X

4

g. Then the assignments represent the

following strings u

1

= a, u

2

= b, u

3

= ab, u

4

= abab and the whole ollage system

represents string u = abababab.

3 Previous work

The ollage systems were de�ned in [KST

+

99℄ as generalization of several ompression

methods. In this paper, an algorithm for exat one pattern mathing was provided.

In [KMT

+

01℄, an algorithm for exat multiple pattern has been provided. For a

given ollage system and pattern(s) of total length m, these algorithms have time

omplexity O(jjDjj+ jSj+m

2

+ r) and spae omplexity O(jjDjj+m

2

).

4 Main result

In this setion we will present algorithm for pattern mathing on ollage systems. In

order to make the pattern mathing algorithm run in time O(jjDjj+ jSj+ �) (where

� represents preproessing time) it is neessary to use only O(1) time for eah item

in the sequene S and eah expression in ditionary D. Therefore, in this setion we

present a new approah to ompute \desriptions" of eah X

i

2 D so we are able to
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reate and update desription for eah X

i

in O(1) time and to proess eah item in

sequene S in O(1) time.

Our solution is based on the fat that there is only a very limited number of strings

that behave \di�erently" in a given pattern mathing automaton (see De�nition 1).

So the main idea is to �nd a (shorter) string (so alled representant string), from a

limited set of prede�ned strings, for eah ditionary item, that will behave in the same

way in the pattern mathing automaton. As will be shown later, the representant

string of onatenation of two representant strings of two ditionary items an then

be omputed in O(1).

De�nition 1. Let M = (Q;A; Æ; q

0

; F ) is a pattern mathing automaton (determinis-

ti �nite automaton) and Æ

�

is a transitive reexive losure of the transition funtion

Æ. Then relation �

M

(shortut � will be used in the future when the automaton M

is lear from the ontext) is de�ned as follows: for eah two strings u; v 2 A

�

holds

that u � v if and only if for eah q 2 Q holds:

1. Æ

�

(q; u) = Æ

�

(q; v)

2. exatly one of the following is true:

{ there exist strings u

0

2 A

�

, u

0

2 pref(u) and v

0

2 A

�

, v

0

2 pref(v) suh that

Æ

�

(q; u

0

) 2 F and Æ

�

(q; v

0

) 2 F ,

{ for all strings u

0

2 A

�

, u

0

2 pref(u) and v

0

2 A

�

, v

0

2 pref(v) holds that

Æ

�

(q; u

0

) =2 F and Æ

�

(q; v

0

) =2 F ,

De�nition 2. For a given deterministi �nite automaton M , let us suppose that an

ordering is given on the set of states Q, so we an enumerate the states in an order.

For eah string u 2 A

�

, let us de�ne signature S(u) as a vetor of pairs S(u) =

((q

0

1

; f

1

); : : : ; (q

0

jQj

; f

jQj

)) of length jQj, where a pair (q

0

i

; f

0

i

), q

0

i

2 Q and f

i

2 ftrue; falseg.

On position i is omputed as q

0

i

= Æ

�

(q

i

; u) and boolean f

i

is true if and only if there

is a pre�x u

0

of u suh that Æ

�

(q

i

; u

0

) 2 F , false otherwise.

Example 3. Let us onsider �nite deterministi automaton shown in Figure 1. For

order of states: (A;B;C), the signatures are as follows:

u S(u)

A B C

" (A; f) (B; f) (C; f)

a (B; t) (B; f) (B; f)

ab (C; t) (C; t) (C; t)

aba (B; t) (B; t) (B; t)

ab (A; t) (A; t) (A; t)

b (A; t) (C; t) (A; f)

ba (B; t) (B; t) (B; f)

b (A; t) (A; t) (A; f)

 (A; f) (A; f) (A; f)

Theorem 4. For a given deterministi �nite automaton M and for eah two strings

u; v 2 A

�

holds that u � v if and only if S(u) = S(v).
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A CB

a

a

ba

c

b, c

b, c

Figure 1: Example pattern mathing automaton

Proof. Leads diretly from De�nitions 1 and 2.

Example 5. Let us onsider �nite deterministi automaton shown in Figure 1 and the

order of states: (A;B;C). Then the signature of strings aba and aba is the same:

S(aba) = S(aba) = ((B; t); (B; t); (B; t)). Therefore it holds that aba � aba.

Theorem 6. The relation � is equivalene, and moreover, it is right ongruene.

Proof. To prove that relation� is an equivalene, we need to prove that it is reexive,

symmetri and transitive (for eah u; v; w 2 A

�

):

reexivity it is obvious that S(u) = S(u),

symmetry if u � v, then S(u) = S(v), and also S(v) = S(u), and therefore v � u,

transitivity if u � v and v � w, then S(u) = S(v) and S(v) = S(w), then S(u) =

S(w) and therefore u � w.

To prove that relation � is a right ongruene, it is neessary to prove that for

all �; �;  2 A

�

, suh that � � � holds � � �. Let us prove this by ontradition:

let us suppose there is an automaton M , and strings �; �;  2 A

�

, suh that � � �,

but not � � �. This means that there exists a state q 2 Q suh that at least one

of there is true:

1. Æ(q; �) = Æ(q; �), but Æ(q; �) 6= Æ(q; �),

2. no �

0

2 pref(�) and �

0

2 pref(�) exists suh that Æ(q; �

0

) 2 F and Æ(q; �

0

) 2 F

and there exists (�)

0

2 pref(�) suh that Æ(q; (�)

0

) 2 F and there is no

(�)

0

2 pref(�) suh that Æ(q; (�)

0

) 2 F (or vie versa).

The �rst variant is not possible, beause Æ(q; �) = Æ(q; �) = q

0

and Æ(q

0

; ) = q

00

,

and therefore q

00

= Æ(q; �) = Æ(q; �).

The seond variant is not possible, beause obviously: Æ(q; �) = Æ(q; �) = q

0

,

j(�)

0

j > j�j and therefore there must be �

0

= (�)

0

and so if Æ(q; �

0

) 2 F then

Æ(q

0

; 

0

) 2 F and Æ(q; �

0

) 2 F , and so exists �

0

2 pref(�) whih breaks this

ondition.

Therefore, suh automaton M and string �; �;  annot exist, and therefore the

equivalene � is a right ongruene.

156



General Pattern Mathing on Regular Collage System

The equivalene de�ned in the De�nition 1 de�nes strings that behave \in the

same way" in the pattern mathing automaton (they lead for a given state q 2 Q

into the same state q

0

and they remember whether or not they passed through a �nal

state).

De�nition 7. Let W � A

�

be a set of lass representatives for partition A

�

= � of

A

�

, suh that for eah w 2 W holds that there does not exist any w

0

suh that w � w

0

and jw

0

j < jwj.

Theorem 8. For a given automaton M = (Q;A; Æ; q

0

; F ), the orresponding set W

is �nite and moreover has at most (2jQj)

jQj

elements.

Proof. As for eah pair of strings u; v 2 A

�

holds that u � v if and only if S(u) = S(v),

it is therefore lear that there annot be more lasses of equivalene in partition A

�

= �

than is the number of distint vetors. The number of di�erent vetors is (2jQj)

jQj

for a given automaton (eah tuple of the vetor an ontain 2jQj distint values, and

jQj tuples are independently ombined into a vetor).

Although the size of set of representatives W is overwhelming, for most pratial

purposes the size of this set is muh smaller. Setion 5 analyses these ases.

Algorithm 4 shows how to onstrut the set of representatives W for a given

automaton M .

Algorithm 4 Constrution of the set of representatives W

Require: Deterministi �nite automaton M

Ensure: Set of representatives W orrespoding to the automaton M

1: U = f"g

2: while U is not empty do

3: remove a w from U suh that there is no w

0

2 U suh that jwj < jw

0

j.

4: if S(w) is not in S

M

then

5: W =W [ fwg

6: for eah a 2 A put wa into U

7: S

M

= S

M

[ fS(w)g

8: end if

9: end while

To solve the pattern mathing problem on the (regular) ollage system inO(jjDjj+

jSj) time, it is neessary to ompute w 2 W orresponding to eah item in O(1) time.

For the simple assignment (like X

i

= a), it is trivial. In order to ompute represen-

tant string for X

k

= X

i

X

j

from representant strings of X

i

and X

j

, a harateristi

automaton M

H

is de�ned.

De�nition 9. For a given deterministi �nite automaton M and orrespoding set of

representatives W , harateristi automaton M

H

= (Q

H

;W; Æ

H

; q

H0

; ;) is de�ned in

the following way:

Q

H

: Q

H

= W ,

Æ

H

: Q

H

�W ! Q

H

: Æ

H

(q

H

; w) = u, where w; u 2 W suh that q

H

w � u,

q

H0

: q

H0

= ".
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The automaton M

H

has obviously spae omplexity O(jW j

2

) for regular ollage

systems. For simple ollage systems, simpli�ed harateristi automaton an be em-

ployed whih spae omplexity is only O(jW jjAj) (only expressions in form X

k

= X

i

a

or X

k

= aX

i

, where a 2 A are allowed).

Another problem to solve is the math detetion. This an be done using a speial

�nal markers table F .

De�nition 10. For a given deterministi �nite automaton M and orrespoding set of

representativesW , the �nal markers table F is de�ned for eah w 2 W and q 2 Q suh

that F [w; q℄ = true if and only if there exists a w

0

2 pref(w) suh that Æ(q; w

0

) 2 F .

Algorithm 5 Pattern Mathing on Regular Collage Systems

. Preproessing phase

for the given pattern P and pattern mathing problem P onstrut pattern math-

ing automaton M , harateristi automaton M

H

and �nal markers table F .

ompute representative for eah ditionary item from the ditionary D

. Pattern mathing phase

q = q

0

j = 0

for all X from S = fX

i

1

; X

i

2

; : : : ; X

i

n

g do

let w 2 W is the representant string orresponding to X

if F [w; q℄ is true then

report ourene(s) between positions j and j + jX:uj

end if

q = Æ(q; w)

j = j + jX:uj

end for

5 On the Size Of W

Although the worst-ase size of the set of representatives W for a given automaton

M is overwhelming (up to (2jQj)

jQj

), for many pratial ases the size of this set is

muh smaller. In this setion, a proof that for exat one pattern mathing of an

aperiodi pattern of length m, the size of the set W is O(m

2

). Moreover, results of

pratial experiments for ommonly used patterns and pattern mathing problem are

disussed.

5.1 Exat One Pattern Mathing

In this setion, we prove that for eah deterministi �nite automaton onstruted to

solve exat one pattern mathing for an aperiodi pattern of length m (see De�ni-

tion 14), the size of set W is O(m

2

).

Moreover, our experiments have shown, that the aperiodi pattern is the worst-

ase with regard to the size of set W . We have reated automata and sets W for all

patterns of length 6, and none of these patterns performed worse than the aperiodi

pattern.
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De�nition 11. Let automaton M = (Q;A; Æ; q

0

; F ) be a pattern mathing automaton

for exat one pattern mathing of pattern P .

Then for eah state q 2 Q exists exatly one string u 2 A

�

suh that u 2 pref(P ),

Æ(q

o

; u) = q and there is no shorter pre�x with the same property. Let us de�ne

funtion orr, whih for eah state q has value of the appropriate string u.

Lemma 12. For a given automaton M , let us de�ne set W

0

whih ful�lls these

properties:

1. " 2 W

0

2. for eah a 2 A and w

0

2 W

0

exists u

0

2 W

0

suh that u

0

� w

0

a

Then for eah w 2 A

�

exists a w

0

2 W

0

suh that w � w

0

.

Proof. (by indution by the length of w)

1. For w = ", w 2 A

�

, there learly exists w

0

= " (the �rst ondition on set W

0

),

suh that w � w

0

.

2. Let us suppose that the laim holds for all w 2 A

�

, jwj � k. Than for eah

a 2 A and w 2 W , jwj � k holds: there exists w

0

2 W

0

suh that w � w

0

.

There also exists u

0

2 W

0

suh that u

0

� w

0

a. As the equivalene � is a right

ongruene, it also holds that wa � u

0

. The laim therefore also holds for all

jwaj � k + 1.

Corollary 13. For set W

0

de�ned in Lemma 12 holds that jW j � jW

0

j.

Proof. (by ontradition)Let us suppose there exists suh automatonM , orrespoding

set of lass representativesW and a setW

0

suh that jW j > jW

0

j. But then there must

be two w

1

; w

2

2 W , w

1

6= w

2

suh that there exists w

0

2 W

0

, w

1

� w

0

, w

2

� w

0

. As �

is equivalene, it is lear that w

1

� w

2

, and that means that strings w

1

and w

2

are in

the same lass of equivalene, and therefore set W is not set of lass representatives,

whih is the ontrandition with the assumptions. Therefore suh automaton M and

sets W and W

0

annot exist.

De�nition 14. Let us all pattern P = a

1

a

2

: : : a

m

of length m suh that for eah

two i; j 2< 1; m >, i 6= j holds a

i

6= a

j

aperiodi.

Lemma 15. For an aperiodi pattern P = a

1

a

2

� � �a

m

of length m, alphabet A =

a

1

; : : : ; a

m

; x, and orresponding automaton M , onstrut set W

0

= fw

0

: w

0

2

fat(P ) or w

0

= sxp; s 2 su�(P ); p 2 pref(P )g. The set W

0

ful�lls requirements

de�ned in Lemma 12.

Proof. As " 2 fat(P ), it is lear that " 2 W

0

.

Let as for eah fator f 2 fat(P ) denote a

n

the symbol in A for whih fa 2

fat(P ). Note that there is no a

n

for all f 2 su�(P ).

For eah w

0

2 W

0

and a 2 A, let us analyse all possibilities (for eah ombination

of w

0

and a, only the topmost step is valid):
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{ w

0

= ": it learly holds a 2 fat(P ) or a = x, and so a 2 W

0

{ w

0

2 fat(P ), a = a

n

: it learly holds fa 2 fat(P ) and so fa 2 W

0

{ w

0

2 fat(P ), w

0

=2 su�(P ), a = a

1

: as for eah state q 2 Q holds that Æ(q; a

1

) =

q

1

, and that there is no suh q 2 Q and w

00

2 pref(w

0

) suh that Æ(q; w

00

) 2 F ,

it holds that w

0

a � a

1

.

{ w

0

2 fat(P ), w

0

=2 su�(P ), a 6= a

1

, a 6= a

n

: as the pattern is not periodi, the

longest suÆx of w

0

a that is pre�x of P is ", and that there is no suh q 2 Q and

w

00

2 pref(w

0

) suh that Æ(q; w

00

) 2 F , it holds that w

0

a � ".

{ w

0

= P , a = a

1

: as for eah state q 2 Q holds that Æ(q; P ) = q

m

2 F ,

Æ(q

m

; a

1

) = q

1

, it holds that Pa � Pxa.

{ w

0

= P , a 6= a

1

: as for eah state q 2 Q holds that Æ(q; P ) = q

m

2 F ,

Æ(q

m

; a) = q

0

, it holds that Pa � Px.

{ w

0

2 su�(P ), a = a

1

: as for one state q

s

2 Q holds that Æ(q

s

; w

0

) = q

m

, and for

all other q 2 Q holds that Æ(q; w

0

) = q

0

, it holds that w

0

a � w

0

xa

1

.

{ w

0

2 su�(P ), a 6= a

1

: as for one state q

s

2 Q holds that Æ(q

s

; w

0

) = q

m

, and for

all other q 2 Q holds that Æ(q; w

0

) = q

0

, it holds that w

0

a � w

0

x.

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), a = a

n

(a

n

regarding pre�x p),

pa

n

6= P : it learly holds that: w

0

a 2 W

0

.

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), a = a

n

(a

n

regarding pre�x p),

pa

n

= P : it learly holds that: w

0

a � P .

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), a = a

1

, p 6= P : as Æ

�

(q; pa

1

) = q

1

for all q 2 Q, and there is no p

00

2 pref(p) suh that Æ(q; p

00

) 2 F , it holds that

w

0

a � sxa

1

.

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), a = a

1

, p = P : as Æ

�

(q; Pa

1

) = q

1

for all q 2 Q, and Æ(q; P ) 2 F , it holds that w

0

a � Pxa

1

.

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), p 6= P : as Æ

�

(q; pa) = q

0

for

all q 2 Q, and there is no p

00

2 pref(p) suh that Æ(q; p

00

) 2 F , it holds that

w

0

a � sx.

{ w

0

= sxp for some s 2 su�(P ), p 2 pref(P ), p = P : as Æ

�

(q; Pa) = q

0

for all

q 2 Q, and Æ(q; P ) 2 F , it holds that w

0

a � Px.

Lemma 16. For an aperiodi pattern P = a

1

a

2

� � �a

m

of length m, alphabet A =

a

1

; : : : ; a

m

; x, and orresponding automaton M for exat one pattern mathing, the

set W has at most O(m

2

) items.

Proof. As the set de�ned in the Lemma 15 has at most O(jQj

2

) elements, and a-

ording to Corollary 13, the set W has at most O(jQj

2

) elements.

As proven in [Hol00℄, the automaton for exat one pattern mathing of pattern of

length m has m + 1 states (jQj = m + 1) and therefore jW j = O(m

2

).
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Figure 2: Size of set of representants W for a random regular expression of given

length

5.2 Regular Expressions

We have onstruted 100 random regular expressions for lengths 1 to 100 (therefore

we tested 10000 regular expressions). We de�ne the length of the regular expression

as the number of symbols from the alphabet in the regular expression, so operators

and brakets are not ounted into the length of the regular expression. The regular

expressions were prepended with \.*" to simulate pattern mathing algorithms. The

results from these experiments are summarised in Figure 2.

As an be seen from the graph, the size of the set W for our regular expressions

grows muh less than jQj

jQj

(note that Q = O(2

m

) where m is the length of the

regular expression). Therefore, it seems that the proposed algorithm may be usefull

for a wide range of pratial appliations.

6 Conlusion

In this paper, a new method for general pattern mathing on ollage systems is pre-

sented. This method allows general pattern mathing on the regular ollage systems

in linear time with respet to the size of the ollage system.

Although the preproessing time and spae requirements of this method may be

very high, in Setion 5 is shown that for some pratial appliations the requirements

are more aeptable. Moreover, it is possible to used here-presented approah as long

as the preproessing requirements are aeptable (gaining very fast proessing time)

and resort to another algorithm (deompress&searh in the worst-ase) otherwise.
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