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Abstrat. We initiate the design of a software library of algorithms and data

strutures on strings. The design is based on generi programming, whih aims

for a single implementation of an abstrat algorithm that works in every situa-

tion, partiularly with any kind of string or sequene, without any disadvantage

to a more spei� implementation. The design requires a deep understanding of

both di�erent algorithms and various types of strings. In this paper, we address

one aspet of strings, the alphabet. The main ontribution is a novel de�nition

of the onept of an alphabet in a program. The key feature is the reognition

of two levels, the level of abstrat algorithms and the level of onrete programs,

and the establishment of a onnetion between the levels. Based on the de�ni-

tion, we provide a sketh of a design for alphabet traits, a ruial abstration

layer between algorithms and strings.

1 Introdution

Algorithms and data strutures on strings [5, 12℄ are often pratial: implementable

with a reasonable e�ort and usable for real world problems. Indeed, many basi

algorithms have been implemented several times in appliations or for experimental

evaluation, and pratial aspets have been an important area of researh (see, for

example, [11℄). However, existing implementations are usually hard to �nd, of low

quality (even inorret), or diÆult to modify for new purposes. Thus, someone

needing an implementation faes a lot of work whether implementing from srath or

starting from an existing implementation.

A good software library an signi�antly ease the task of an implementer as it

provides a single soure of high quality, well-tested and exible implementations of

algorithms and data strutures. There are suessful libraries in several areas of

algorithmis inluding fundamental algorithms and data strutures (STL [3℄), graph

algorithms (LEDA [10℄), and omputational geometry (CGAL [8℄). Stringology has

been identi�ed as another area that is ripe for a software library and a proposal has

been made [7℄, but nothing omparable to STL, LEDA or CGAL exists, yet.

The purpose of this paper is to initiate the design for a software library of algo-

rithms and data strutures on strings. The library design is based on the generi pro-

gramming paradigm [3℄, whih was established by STL and is also the basis of CGAL.

Generi programming strives for simultaneous exibility and eÆieny through imple-

mentations that work with as many data types as possible without a loss of eÆieny.

Ideally, one an use a single generi implementation of an abstrat algorithm in ev-

ery situation without any disadvantage to a speialized implementation. In the ase
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of stringology, generi programming means that the library algorithms should work

eÆiently with almost any kind of a string or a sequene.

Generi programming ahieves its goal of generiity by the means of an abstration

layer between algorithms and the data they operate on, in this ase strings. Designing

this layer is the ruial step in designing an algorithm library. The layer needs to

operate with a large number of di�erent algorithms and a wide variety of string types,

and a good design must be based on a deep understanding of both. Full analysis is

far beyond the sope of this paper but we will start with one fundamental aspet.

A string an be de�ned as a sequene of haraters, whih reveals the two largely

orthogonal aspets of strings: the sequene aspet and the aspet of individual har-

ater, whih we will all the alphabet aspet. Sequenes are entral to STL, and there,

a deep analysis of sequenes and algorithms on sequenes has led to the onept of

iterators. A good introdution to iterators an be found in [3℄. For understanding

this paper, it is enough to think iterators as pointers to an array, with a sequene

represented by a pair of iterators indiating the beginning and the end of the sequene.

We will onentrate on the alphabet aspet. We start with a motivating example

of a simple algorithm illustrating the problem of alphabets in generi programming.

We will then go on to analyze and de�ne the onept of an alphabet. The entral

feature is the reognition of two levels, the level of abstrat algorithm design and

analysis, and the level of onrete implementations and programs. We establish a

formal onnetion between the levels enabling one to see an alphabet at both levels

simultaneously. Finally, we sketh the design of alphabet traits that forms a part of

the abstration layer between algorithms and strings.

C++ is the language of LEDA, STL and CGAL, and has the best support for

generi programming (out of widely used languages, at least). It is thus the obvious

hoie of language. The fast development of template metaprogramming tehniques

in reent years [1, 2, 6, 13℄ has brought us loser to ahieving the ideals of generi pro-

gramming. Understanding this paper does not require knowledge of these tehniques,

though some knowledge of C++ may be helpful.

2 Example Algorithm

Consider the following simple algorithm that omputes the number of distint har-

aters in a string.

ount distint(string S)

1 seen := ;

2 for eah harater  of S do

3 seen := seen [ fg

4 return jseenj

Two points in this algorithm are problemati for a generi implementation. One

is the set seen, and the other is the iteration over the haraters of S. The latter is

involved with the sequene aspet of the string and is the kind of thing that iterators

were designed for. The former is involved with the alphabet aspet and ould be

handled using the generi set data struture in STL. This would lead to the following
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typial STL-style funtion:

1

template <typename Iterator>

int ount_distint(Iterator begin, Iterator end) {

typedef iterator_traits<Iterator>::value_type hartype;

set<hartype> seen;

for (Iterator i = begin; i != end; ++i)

seen.insert(*i);

return seen.size();

}

This is a quite generi implementation, but it is slower than neessary in many

ases sine the set is implemented with a balaned searh tree. In partiular, in the

most ommon ase of the haraters being of type har, the following funtion is

signi�antly faster for a long string.

template <typename Iterator>

int ount_distint(Iterator begin, Iterator end) {

vetor<bool> seen(256,false);

for (Iterator i = begin; i != end; ++i)

seen[*i℄=true;

return ount(seen.begin(), seen.end(), true);

}

Using standard tehniques, we ould use the latter implementation, when the

haraters are of type har and the former otherwise. However, hoosing the optimal

data struture for the set is not that simple:

� If the alphabet is a small range of integers, we should use a vetor, whatever

the harater type.

� If the alphabet is a small set of integers from a large range, a hash table might

be the hoie.

� Even balaned tree is not quite as generi as is possible. It requires order

omparisons, whih not all C++ types have, and whih, even when available,

might do the wrong thing (see below). In suh ases, we ould still implement

the set as an unordered list.

Further omplexity an be reated by an unusual onept of harater equality. Con-

sider the following examples:

� With a ase insensitive alphabet, an upper ase and a lower ase letter are

onsidered to be the same harater, and are ounted as one.

1

We have simpli�ed the C++ ode in this paper by ignoring some quirks of C++: omitted

typename at plaes, used vetor<bool> though it's not the best hoie, assumed har is unsigned,

et.
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� A harater in a protein sequene might ontain information about seondary

or tertiary struture in addition to the amino aid. If we want to ount distint

amino aids, however, the extra information should be ignored when omparing

haraters.

� Two oating point values might be onsidered the same if they round to the

same integer.

All the examples ould be handled by reating �rst a new string using an appropriate

harater onversion, but at the ost of a time and spae overhead. In harater

ounting, the overhead is probably small, but in other ases it ould be signi�ant.

For example, the Boyer{Moore algorithm [4℄ usually aesses only a small fration of

haraters and onverting all of them ould be ostly.

The above disussion shows that we annot expet the C++ type of haraters

to arry all relevant information about the alphabet. A separate entity (a type or

an objet) is needed for that purpose. In generi programming, suh entities are

known as traits (see iterator_traits above). The C++ standard library does, in

fat, inlude something alled harater traits, but they are more of a reli from time

before generi programming. We will all our traits alphabet traits.

Let us �nally see what an implementation of our ounting funtion using alpha-

bet traits might look like. (A full implementation with a usage example is in the

Appendix.)

template <typename Iterator, typename Alphabet>

int ount_distint(Iterator begin, Iterator end, Alphabet A) {

typedef generate_set<Alphabet>::type harset;

harset seen(A);

for (Iterator i = begin; i != end; ++i)

seen.insert(*i);

return seen.size();

}

Here Alphabet is an alphabet traits type and A an alphabet traits objet. The meta-

funtion generate_set hooses the appropriate implementation for the set.

Despite its simpliity, the above algorithm aptures a lot of the diÆulties with

alphabets in generi programming. For example, the problem of implementing a node

in a trie or an automaton is losely related to the problem of implementing the set

seen.

3 Alphabet

Alphabet traits desribe the properties of an alphabet, whih itself is a more abstrat

entity. Before designing alphabet traits, we need to de�ne more learly what an

alphabet is. That is the purpose of this setion and, indeed, the main purpose of this

paper.

When we talk about an alphabet in a generi implementation of an abstrat al-

gorithm, we are talking about two di�erent things. One is the abtrat alphabet, the

mathematial set appearing in problem de�nitions, abstrat algorithms and their
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asymptoti analysis. The other is the onrete alphabet, whih is a spei� represen-

tation of an alphabet in a program.

3.1 Abstrat Alphabet

An abstrat alphabet is the set of all possible haraters. The following properties of

the set are of interest:

� ordering : Does the alphabet have a linear order?

� size: Is it onstant, � (�nite), or in�nite (unknown)?

� integrality : Are the harater integers?

One ould also speify other properties but these are suÆient for most situations

arising in design and analysis of abstrat algorithms. Note that we allow in�nite and

unordered alphabets.

Consider the harater ounting algorithm from Setion 2. The best implemen-

tation of the harater set and the resulting omplexity depend on the properties of

the alphabet. For a string of length n, we have the following omplexities for various

kinds on alphabets:

� in�nite: O(n

2

)

� �nite: O(nminfn; �g)

� onstant: O(n)

� ordered: O(n logn)

� �nite and ordered: O(n logminfn; �g)

� �nite and integral: O(n+ �) deterministi, O(n) randomized

3.2 Conrete Alphabet

A onrete alphabet is a representation of an abstrat alphabet based on the following

three priniples:

� All harater representations are values of a single C++ type T.

� Not all values of T need to represent a harater.

� Multiple values may represent the same harater.

Formally, a onrete alphabet A is a triple (T; C;�), where

� T is a C++ type.

� C is a subset of the possible values of the type T.

� � is an equivalene relation on C.
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The onrete alphabet A de�nes an abstrat alphabet

e

A as the set of equivalene

lasses of C under �. We will denote by [a℄ the equivalene lass ontaining a.

Two distint but equivalent harater values are di�erent representations of the

same abstrat harater. The two representations should behave identially in all

algorithms. For example, a don't-are harater that mathes all other haraters is

distint from other haraters and forms its own equivalene lass. Its speial math-

ing properties are not part of the alphabet but a separate entity alled a mathing

relation.

3.3 Conversions

The restrition to a single type applies to onrete alphabets but not abstrat al-

phabets as multiple onrete alphabets an represent the same abstrat alphabet.

Conversions between onrete alphabets are the mehanism to deal with this.

Let A and B be two onrete alphabets. A onversion from A to B is a mapping

f : C

A

! C

B

that is homomorphi w.r.t. �, i.e., a � a

0

) f(a) � f(a

0

) for all

a; a

0

2 A. Then, we an de�ne

e

f :

e

A!

e

B by

e

f([a℄) = [f(a)℄. The following properties

of

e

f are of interest:

�

e

f is an embedding if it is injetive (one-to-one), i.e., [a℄ 6= [a

0

℄)

e

f([a℄) 6=

e

f([a

0

℄).

�

e

f is an isomorphism if it is a surjetive embedding, i.e., an embedding satisfying

e

f(

e

A) =

e

B.

If there is an isomorphism

e

f :

e

A!

e

B, we an say thatA and B are two representations

of the same abstrat alphabet. Similarly, an embedding implies a subset relation.

The mapping

e

f being an embedding or an isomorphism does not imply that the

onversion f is injetive or surjetive. The following lemmas haraterize embeddings

and isomorphisms in terms of onversions.

Lemma 1.

e

f is an embedding i� a 6� b) f(a) 6� f(b).

Lemma 2.

e

f :

e

A !

e

B is an isomorphism and eg :

e

B !

e

A is its inverse i�

e

f and eg

are embeddings and g(f(a)) � a for all a 2 A.

Embedding onversions in partiular play a entral role in the library as we will see

later. Isomorphi onversions ome into play when inverse onversions are involved.

3.4 Ordered alphabets

A onrete ordered alphabet A is a quadruple (T; C;�; <), where T, C and � are as

before and < is a strit order on C satisfying: For all a; b 2 C, exatly one of a < b,

a � b and b < a is true. (We also de�ne . in the usual way.) The orresponding

abstrat ordered alphabet

e

A has an order � de�ned by [a℄ � [b℄ if a � b or a < b.

A mapping

e

f :

e

A !

e

B is order preserving if it is homomorphi w.r.t. �.

Lemma 3.

e

f is order-preserving i� f is homomorphi w.r.t. ..

e

f is an order-preserving embedding i� f is homomorphi w.r.t. <.
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Order preservation is a surprisingly subtle issue. There are ommon isomor-

phisms and embeddings that are not order-preserving. The standard onversion from

signed har to unsigned har is an example. Also, order preservation is often not

required even when order omparisons are involved. For example, the implementation

of a harater set using a balaned searh tree requires a linear order but what the

order is does not matter. A non-order-preserving onversion would not be a prob-

lem then. We will therefore not generally require onversions to be order preserving.

However, when the problem de�nition involves an order, for example in the ase of

sorting, the onversions must be order preserving.

3.5 Integral Alphabets

Many algorithmi tehniques work only or primarily on integral alphabets. These

inlude using a harater as an array index, omputing �ngerprints or hash values,

radix sorting, et. These tehniques an be made available to a wide variety of

alphabets through embeddings to proper integral alphabets.

A onrete alphabet (T; C;�; <) is a primary integral alphabet if T is a built-in

integral type (for example har or int), C is a range of the form [0; �), � is the

standard operator==, and < is the standard operator<. Requiring the minimum to

be zero simpli�es many of the tehniques mentioned above.

A onrete alphabet is a seondary integral alphabet if there is an embedding

onversion f from it to a primary integral alphabet. An integer range with a minimum

other than zero is a seondary integral alphabet, too.

Of additional interest is an isomorphi onversion from a primary integral alpha-

bet. For example, random generation of haraters an be aomplished using it.

4 Alphabet Traits

The harater type T does not, in general, ontain full information about the alphabet.

Additional information in a form usable by algorithms is provided by alphabet traits.

We will not desribe the full design of alphabet traits but give a glimpse to their use

with examples.

An alphabet traits is partly a C++ lass and partly an objet of that lass. The

lass ontains stati information about the alphabet, i.e., information that is known

at ompile time and an be used for ompile time optimization. An objet of that

lass may ontain additional dynami information. For example, whether an alphabet

is integral or not is always stati information but the size of the integral range might

be dynami information.

4.1 Writing Generi Algorithms

The example in Setion 2 shows the use of alphabet traits in writing generi algorithms

at its simplest. Almost all details are hidden inside the metafuntion generate_set,

whih is a part of the basi library infrastruture.

Obtaining more detailed information is demonstrated in the following example.

Let Alphabet be an alphabet traits lass and A an objet of the lass. If the alphabet

is integral, we an obtain the onversion to a primary integral alphabet as follows:
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get_har2int<Alphabet>::type har2int = make_har2int(A);

Then har2int(h) performs the onversion for the harater h. Comparison fun-

tions, for example, are obtained similarly.

The above statement would not even ompile for a non-integral alphabet. How-

ever, there are standard metaprogramming tehniques for onditional ompilation

based on ompile time prediates [1℄. In this ase, we an determine the integrality,

at ompile time, using the metafuntion

is_integral<Alphabet>::value

As we saw in Setion 2, alphabet traits is supplied as an argument to a funtion. To

make things simpler for the aller of the algorithm, the argument should be optional.

When no argument is supplied, the default alphabet traits for the harater type is

used instead. In the ase of the ount_distint funtion, this is aomplished by

providing the following seond variant of the funtion.

template <typename Iterator>

int ount_distint(Iterator begin, Iterator end) {

typedef iterator_traits<Iterator>::value_type hartype;

typedef default_alphabet<hartype>::type alphabet;

return ount_distint(begin, end, alphabet());

}

4.2 Creating Alphabets

As mentioned, algorithms typially assume a default alphabet if no alphabet traits is

provided by the user. If the default is not orret, the user needs to pass a orret

one as an argument to the algorithm. The library will provide a number of alphabet

traits for ommon situations. If none of these is satisfatory, there are metafuntions

for reating ustom alphabets.

The following example shows one way for reating a ase-insensitive alphabet.

strut aseless_equal {

bool operator() (har a, har b) {

return tolower(a)==tolower(b);

}

};

typedef onstrut_alphabet<har,

set_equivalene<aseless_equal> >::type

aseless_alphabet;

Now a all suh as ount_distint(begin, end, aseless_alphabet()) would

ount upper and lower ase letters as one.

The above alphabet is not ordered or integral as no order omparison or integral

onversion is provided. Therefore, the set in ount_distint would be implemented

as an unordered list. An order omparison and an integral onversion ould be pro-

vided as additional arguments to the metafuntion, but there is simpler way:
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strut tolower_onversion {

har operator() (har ) { return tolower(); }

};

typedef embedded_alphabet<har, default_alphabet<har>::type,

tolower_onversion >::type

aseless alphabet;

Here we reate a new alphabet by embedding it to an existing alphabet. Many

properties inluding ordering and integrality are automatially inherited. There is a

similar metafuntion isomorphi_alphabet that also takes the inverse onversion as

an argument.

Integral alphabets are ommon and useful alphabets and there is a separate meta-

funtion for reating alphabet traits for them. For example,

integral_alphabet<har, 10, 20>::type

reates an alphabet representing the range [10; 20℄.

All the example alphabet traits here ontain no dynami information. Creating

alphabet traits with dynami information is more ompliated and we ignore the

details here.

5 Conluding Remarks

The purpose of this paper is to iniate the design of a string algorithms library based

on the generi programming paradigm. We have addressed only one fundamental

but limited aspet of the library, the alphabet. However, we believe that the design

approah based on a areful analysis of onrete examples leading to a de�nition of the

onept of an alphabet and the programming tehniques developed for implementing

the design provide a good start for the design of further aspets of the library.

The design of the sequene aspet has already been provided to an extent, thanks

to the STL iterators and some further work building on them (http://boost.org/

libs/iterator/do/, http://boost.org/do/html/string_algo/design.html,

and http://boost.org/libs/range/). There are still issues remaining, though. For

example, in some ases the alphabet and sequene aspets annot be fully separated

without a loss of eÆieny [9℄.

Still more aspets are relevant to a string algorithms library. We have already

mentioned one, math relation. Other issues arise, for example, from approximate

string mathing and other more omplex stringology problems.
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A Full Example

Here is the full implementation of the ount_distint algorithm.

#inlude"glas/set.hpp"

#inlude<iterator>

// ount the number of distint haraters in a string

// generi form with an alphabet as an argument

template< typename Iterator, typename Alphabet>

int

ount_distint(Iterator begin,

Iterator end,

Alphabet A)

{

typedef typename glas::generate_set<Alphabet>::type harset;

harset seen;

for (Iterator i = begin; i != end; ++i) {
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seen.insert(*i);

}

return seen.size();

}

// speifi form that uses default alphabet

template<typename Iterator>

int

ount_distint(Iterator begin, Iterator end)

{

typedef typename std::iterator_traits<Iterator>::value_type

har_type;

typedef typename glas::default_alphabet<har_type>::type

alphabet;

return ount_distint(begin, end, alphabet());

}

Below is an program that uses the ount_distint funtion with a ase insensitive

alphabet.

#inlude "ount.hpp"

#inlude "glas/alphabet_traits.hpp"

#inlude<string>

#inlude<iostream>

// ase insensitive alphabet

strut tolower_onversion

{

har operator() (har ) onst { return tolower(); }

};

strut aseless_alphabet

: glas::embedded_alphabet<

har,

glas::default_alphabet<har>::type,

tolower_onversion

>::type

{};

int main()

{

std::string str("ABRACAdabra");

int nt = ount_distint(str.begin(), str.end(),

aseless_alphabet());

std::out << nt << " distint haraters in "

<< '"' << str << '"' << "\n";

// prints: 5 distint haraters in "ABRACAdabra"

}
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