
Flexible Musi
 Retrieval in Sublinear Time

Kimmo Fredriksson

1�

, Veli M�akinen

2y

, and Gonzalo Navarro

3z

1

Dept. of Computer S
ien
e, University of Joensuu, Finland

e-mail: kfredrik�
s.joensuu.fi

2

Te
hnis
he Fakult�at, Bielefeld Universit�at, Germany

e-mail: veli�
ebite
.uni-bielefeld.de

3

Dept. of Computer S
ien
e, University of Chile, Chile

e-mail: gnavarro�d

.u
hile.
l

Abstra
t. Musi
 sequen
es
an be treated as texts in order to perform musi

retrieval tasks on them. However, the text sear
h problems that result from this

modeling are unique to musi
 retrieval. Up to date, several approa
hes derived

from
lassi
al string mat
hing have been proposed to
ope with the new sear
h

problems, yet ea
h problem had its own algorithms. In this paper we show that

a te
hnique re
ently developed for multipattern approximate string mat
hing

is
exible enough to be su

essfully extended to solve many di�erent musi

retrieval problems, as well as
ombinations thereof not addressed before. We

show that the resulting algorithms are
lose to optimal and mu
h better than

existing approa
hes in many pra
ti
al
ases.

Keywords: Musi
 retrieval, approximate string mat
hing, (Æ;
)-mat
hing,

transposition invarian
e.

1 Introdu
tion

In this paper we are interested in musi
 retrieval, and in parti
ular, in a re
ent

approa
h to it where musi
al s
ores are regarded as strings and string mat
hing

te
hniques
an be used to solve musi
 retrieval problems. In order to map the problem

to string mat
hing, the alphabet of the string
ould simply be the set of notes in the

hromati
 or diatoni
 notation, or the set of intervals that appear between notes

(for example, pit
hes may be represented as MIDI numbers and pit
h intervals as

number of semitones). In both
ases, we deal with numeri
 strings. Then, many

musi
 retrieval problems
an be
onverted into string mat
hing problems, that is,

�nd the o

urren
es of a short string (
alled the pattern) in a longer string (
alled

the text). This is usually not enough to fully solve all musi
 retrieval problems, but

it provides a useful and eÆ
ient �lter to leave the most promising
andidates for a

�

Funded by the A
ademy of Finland, grant 202281.

y

Funded by the Deuts
he Fors
hungsgemeins
haft (BO 1910/1-3) within the Computer S
ien
e

A
tion Program.

z

Partially funded by Millennium Nu
leus Center for Web Resear
h, Grant P04-067-F, Mideplan,

Chile.

174

Flexible Musi
 Retrieval in Sublinear Time

more profound and
ostly evaluation. There are also some problems where two long

musi
al pie
es are
ompared, whi
h we do not address in this paper.

Exa
t string mat
hing
annot be used to �nd o

urren
es of a parti
ular melody,

be
ause a number of irrelevant distortions
ould exist between the melody sought and

its version stored in the musi
 database. To perform meaningful musi
 retrieval one

must resort to diverse forms of approximate mat
hing, where a limited amount of dif-

feren
es of diverse kinds are permitted between the sear
h pattern and its o

urren
e

in the text. Di�erent versions of the approximate string mat
hing problem arise in

di�erent �elds [24℄, yet those of musi
 retrieval are unique of this area [11, 5, 28℄.

One approximate mat
hing model of use in musi
 retrieval is (Æ;
)-mat
hing. In

this model, two strings a

1

a

2

: : : a

m

and b

1

b

2

: : : b

m

of the same length m mat
h if (i)

the absolute di�eren
es between
orresponding
hara
ters do not ex
eed Æ, that is,

ja

i

� b

i

j � Æ for all 1 � i � m (or, alternatively, max

1�i�m

ja

i

� b

i

j � Æ), and (ii) the

sum of those absolute di�eren
es does not ex
eed
, that is,

P

1�i�m

ja

i

� b

i

j �
.

This model a

ounts for small di�eren
es that may arise between two versions of the

same melody, setting a limit for the individual absolute di�eren
es, as well as a global

limit to the overall di�eren
es. Sear
hing for pattern p under (Æ;
)-mat
hing
onsists

of �nding all the text positions where a text substring that (Æ;
)-mat
hes p appears.

Less popular subproblems are Æ-mat
hing and
-mat
hing, whi
h only enfor
e one of

the two
onditions.

A se
ond relevant approximate mat
hing model is the longest
ommon subsequen
e

(LCS) and its dual indel distan
e. The former, LCS(a; b), is the maximum length

of a string that is subsequen
e both of a and b, that is, LCS(a; b) = maxfjsj; s v

a; s v bg. A string s = s

1

s

2

: : : s

r

is a subsequen
e of string a

1

a

2

: : : a

m

, s v a, if s
an

be obtained by removing zero or more
hara
ters from a, that is, s = a

i

1

a

i

2

: : : a

i

r

for

1 � i

1

< i

2

< : : : < i

r

� m. The LCS has been largely used in
omputational biology

to model biologi
al similarity, and it is also relevant to identify musi
al passages that

are similar ex
ept for a few extra or missing notes. This is espe
ially relevant be
ause

musi

ontains various kind of \de
orations", su
h as gra
e notes and ornamentations,

that are not essential for mat
hing. The indel distan
e id(a; b) between strings a and

b is the number of
hara
ters one has to add or remove to a and b to make them

equal, id(a; b) = jaj+ jbj � 2 �LCS(a; b). Sear
hing for pattern p under indel distan
e

with toleran
e k
onsists of �nding all the text positions where a string p

0

appears

so that id(p; p

0

) � k. Other variants of indel distan
e, whi
h are less popular in

musi
 retrieval, are Levenshtein or edit distan
e (where substitutions of
hara
ters

are also permitted) and episode mat
hing (where only insertions in the pattern are

permitted).

Finally, a third similarity
on
ept of relevan
e in musi
 retrieval is transposition

invarian
e. Two strings a = a

1

a

2

: : : a

m

and b = b

1

b

2

: : : b

m

are one the transposed

version of the other if there is a
onstant t su
h that a+t = (a

1

+t)(a

2

+t) : : : (a

m

+t) =

b. Transposition invarian
e is very relevant be
ause Western people tend to listen to

musi
 analyti
ally, by observing the intervals between
onse
utive pit
h values rather

than the a
tual pit
h values themselves. As a result, a melody performed in two

distin
t pit
h levels is per
eived as equal regardless of whether it is performed in a

lower or higher level of pit
hes.

As a string mat
hing problem, dealing with transposition invarian
e is trivial

be
ause it suÆ
es to represent text and pattern as di�eren
es between
onse
utive

175

Pro
eedings of the Prague Stringology Conferen
e '05

notes and then apply exa
t string mat
hing. However, the above problems in most

ases of interest appear in
ombined form. In parti
ular, transposition invarian
e

is usually
ombined with longest
ommon subsequen
e. The longest
ommon trans-

position invariant subsequen
e between two strings a and b, LCTS(a; b), permits

transposing a or b as ne
essary to �nd the longest
ommon subsequen
e among them,

LCTS(a; b) = max

t2Z

LCS(a+ t; b).

In re
ent years, there has been mu
h a
tivity around developing spe
i�
 string

mat
hing te
hniques to solve diverse musi
 retrieval problems, mostly
onsisting of

ombinations of those outlined above. Several theoreti
al and pra
ti
al results of

interest have been a
hieved. We
over these in the next se
tion.

Our
ontribution in this paper is to show that a parti
ular approa
h re
ently devel-

oped for multiple approximate string mat
hing [17℄ is
exible enough to be su

essfully

adapted to solve most of the
ombinations of problems sket
hed above. Basi
ally the

same sear
h te
hnique,
oupled with slightly di�erent pattern prepro
essings, yield

algorithms that solve ea
h
ombination. We also
hara
terize those
ombinations

that
annot be addressed by our approa
h. In theoreti
al terms, we show that the

resulting algorithms are sublinear (that is, they do not inspe
t all text
hara
ters)

and
an be argued to be
lose to optimal. Yet, the most important aspe
t is the

pra
ti
al side, where we show that our te
hnique largely outperforms all the existing

ones in most
ases of interest.

2 Related Work

In whi
h follows, we assume that a long text T = t

1

t

2

: : : t

n

is sear
hed for a
ompar-

atively short pattern p = p

1

p

2

: : : p

m

. Both are sequen
es over alphabet �, a �nite

ontiguous subset of Z, of size �.

2.1 (Æ;
)-Mat
hing

Several re
ent algorithms exist to solve this problem. These
an be
lassi�ed as

follows:

Bit-parallel: The idea is to take advantage of the intrinsi
 parallelism of the bit

operations inside a
omputer word of w bits [27℄, so as to pa
k several values

in a single word and manage to update them all in one step [6, 7, 13℄. The

best
omplexity a
hieved [13℄ is O(n m log(
)=w) in the worst
ase and O(n)

on average.

O

urren
e heuristi
s: Inspired by Boyer-Moore te
hniques [4℄, they skip some text

hara
ters a

ording to the position of some
hara
ters in the pattern [6, 12℄.

In general, only Æ is used to skip
hara
ters, while the
-
ondition is used to

verify
andidates. This makes these algorithms weak for large Æ and small
.

Substring heuristi
s: Based on suÆx automata [15℄, these algorithms skip text
har-

a
ters a

ording to the position of some pattern substrings [12, 13℄. In the

se
ond arti
le, they use bit-parallelism to �lter the text using both Æ and
,

unlike previous approa
hes. This is shown to be the approa
h examining the

least number of text
hara
ters.

176

Flexible Musi
 Retrieval in Sublinear Time

FFT-related: It is possible to solve the Æ-mat
hing and (Æ;
)-mat
hing problems in

O(Æn logm) time, and
-mat
hing problem in O(n

p

m logm) time [8℄ using Fast

Fourier Transform (FFT) based te
hniques. The O(n
 log
) time algorithm in

[2℄ is faster for small
. This algorithm is based on bounded divide-and-
onquer

and non-boolean
onvolutions. This te
hnique
an be also used to solve the

Æ-mat
hing problem in O(n logm

p

Æ) time. Other FFT based o(mn) solutions

exist for related problems, see e.g. [9℄ and espe
ially related to Æ-mat
hing [1, 10℄.

Mat
hing under
-restri
tion is possible in O(mn= log

�

n) time [22℄ without

using FFT (but using the Four-Russians tri
k).

In pra
ti
e, the best
urrent algorithms for (Æ;
)-mat
hing are those in [13℄, as

demonstrated by the experiments in [12, 13℄. In [13℄ they present a plain bit-parallel

and a substring heuristi
. The �rst is shown to be the best in most
ases, but for

short patterns and small Æ and
, the
hara
ter-skipping te
hnique is better.

The FFT based te
hniques, although elegant, have
onsiderably large overheads to

make them pra
ti
al. Our preliminary tests show that they only be
ome faster than

the naive algorithm on very long patterns. Sear
hing for long patterns is not typi
al

in musi
 retrieval. The solution based on the Four-Russians tri
k is only pra
ti
al for

small alphabets, mu
h smaller than what is required for musi
 retrieval.

2.2 Transposition Invariant LCS and Indel Distan
e

Plain (non-transposed) LCS among strings p and T
an be
omputed in O(mn) time

using dynami
 programming [18℄. In general, any LCTS algorithm
an be adapted to

text sear
hing with indel distan
e. The LCTS problem was �rst stated in [21℄, where

O(�mn) time was obtained by trying out all the 2� + 1 possible transpositions one

by one. Further solutions to the problem
an be
lassi�ed as follows.

Brute-for
e: The idea is to pi
k any LCS algorithm and try it for all the 2� + 1

possible transpositions. Apart from the original proposal [21℄, several others

have been attempted
onsidering di�erent pra
ti
al LCS algorithms based on

bit-parallelism [14, 19℄. The best
omplexity a
hieved is O(�mn=w).

Sparse dynami
 programming: An evolution over the above s
heme is to noti
e that

the LCS(a + t; b) problem for ea
h transposition t has only a few
hara
ter

mat
hes between a and b, mn in total. Those sparse problems are best handled

by sparse dynami
 programming algorithms. This idea lead to several solutions

[23, 26, 16℄. The best
omplexity a
hieved is O(mn log logmin(m; �)), yet a

version with
omplexity O(mn log�= logw) is shown to be better in pra
ti
e.

Bran
h and bound: In this
ase the idea is to sear
h for the best possible trans-

position t by a ba
ktra
king method, re
ursively dividing the spa
e of 2� + 1

transpositions into ranges until �nding the best one [20℄. This yields a best-
ase

omplexity of O((mn+ log log �) log�), and the method works well in pra
ti
e.

Yet, it
annot be extended to sear
hing with indel distan
e.

Experiments in [20, 19, 16℄ demonstrate that the O(mn log�= logw) algorithm in

[16℄ is the fastest in pra
ti
e. This method
an be adapted to sear
hing with indel

distan
e.

177

Pro
eedings of the Prague Stringology Conferen
e '05

3 Optimal Multiple Approximate String Mat
hing

In [17℄, new algorithms for single and multiple approximate string mat
hing were

presented. Those algorithms were not only optimal on average, but also very eÆ
ient

in pra
ti
e, even in the more
ompetitive area of single approximate string mat
hing.

It was shown that, to sear
h for the o

urren
es of r patterns of length m in a text

of length n, all them uniformly distributed over an alphabet of size �, the algorithm

required O(n(k + log

�

(rm))=m) time on average. Here k is the maximum number of

missing, extra, or substituted
hara
ters permitted to mat
h a pattern against a text

string (sear
hing under edit distan
e). This average
omplexity is optimal [29, 25℄.

We �rst explain how to sear
h for a single pattern p. We
hoose a blo
k length `,

and
omputemed(b; p) for every possible blo
k b 2 �

`

(that is, every possible `-gram).

Here, med(b; p) is the minimum edit distan
e between b and a substring of p,

med(b; p) = minfed(b; p

0

); 9x; y; p = xp

0

yg;

being ed(b; p

0

) the edit distan
e between b and p

0

.

Now, the text T = t

1

t

2

: : : t

n

is s
anned as follows. Sin
e the minimum length of

an o

urren
e of p = p

1

p

2

: : : p

m

in T with edit distan
e at most k has length at least

m�k (when k deletions o

ur on p), we slide a window of length m�k along the text.

For ea
h window tried, t

i+1

t

i+2

: : : t

i+m�k

, we read its `-grams right to left. That is, we

read at most b(m� k)=`
 `-grams b

1

, b

2

, and so on, so that b

1

= t

i+m�k�`+1

: : : t

i+m�k

is the rightmost, b

2

= t

i+m�k�2`+1

: : : t

i+m�k�`

pre
edes b

1

, et
. The invariant is that

any o

urren
e of p starting at positions � i has already been reported.

For ea
h su
h `-gram b

j

= t

i+m�k�j`+1

: : : t

i+m�k�j`+`

, we �nd med(b

j

; p) in the

pre
omputed table. If, after reading b

j

, we have med(b

1

; p) + med(b

2

; p) + : : : +

med(b

j

; p) > k, then no possible o

urren
e of p
an
ontain the text b

j

b

j�1

: : : b

2

b

1

,

thus the window is slid forward to start at the se
ond
hara
ter of b

j

, that is, we set

i i+m� k � j`+ 1 (as the new window will start at i + 1).

If, on the other hand, all the `-grams of the window are s
anned and yet the

window
annot be shifted, it must be veri�ed for a real o

urren
e. At this point,

we must
he
k if there is an o

urren
e p

0

of p starting at text position i + 1. Sin
e

the maximum length of an o

urren
e is m+ k (where k insertions o

ur into p), any

potential p

0

mush �nish between positions i +m� k and i +m+ k. So we
ompute

led(p; i) = minfed(p; t

i+1

: : : t

i+m�k+d

); 0 � d � 2kg;

whi
h
an be done in O(m

2

) time by
omputing ed() in
rementally in d. If led(p; i) �

k, we report i + 1 as the starting position of an o

urren
e. Finally, we advan
e the

window by one position, i i+ 1.

We show now that the way we shift the window is safe, that is, no o

urren
e
an

start at positions i+ 1 to i+m� k� j`+ 1. Any su
h o

urren
e, of length at least

m� k, must
ontain the sequen
e of `-grams b

j

: : : b

1

. Let p

0

= xb

j

: : : b

1

y be su
h an

o

urren
e. This is a split of p

0

into j + 2 pie
es. The main point is that the edit

distan
e is de
omposable: For any strings p and p

0

, given any split p

0

= p

0

1

: : : p

0

j+2

,

there is a split p = p

1

: : : p

j+2

su
h that ed(p

0

; p) = ed(p

0

1

; p

1

) + : : : + ed(p

0

j+2

; p

j+2

).

But ea
h su
h ed(p

0

s

; p

s

) � med(p

0

s

; p) � 0, by de�nition of med().

Hen
e, in our parti
ular
ase, ed(p

0

; p) � med(b

j

; p)+ : : :+med(b

1

; p). Thus if the

latter ex
eeds k, there
an be no o

urren
e of p
ontaining b

j

: : : b

1

.

178

Flexible Musi
 Retrieval in Sublinear Time

The extension of the algorithm for multiple patterns is trivial. We only have to

hange the prepro
essing so that p is now a set of patterns p = fp

1

: : : p

r

g and now

med(b; p) = min

1�i�r

med(b; p

i

). Somed(b; p) is a lower bound to the
ost of mat
hing

b anywhere inside any pattern of the set.

By appropriately
hoosing ` = �(log

�

(rm)), we obtain the promised
omplexity.

3.1 Extensions

Several other improvements are studied in [17℄. We brie
y review some that are used

in our experiments. For more details see [17℄.

On the windows that have to be veri�ed, we
ould simply run the veri�
ation for

every pattern, one by one. A more sophisti
ated
hoi
e is hierar
hi
al veri�
ation [3℄.

We form a tree whose nodes have the form [i; j℄ and represent the group of patterns

p

i

: : : p

j

. The root is [1; r℄, and the leaves have the form [i; i℄. Every internal node

[i; j℄ has two
hildren [i; b(i + j)=2
℄ and [b(i+ j)=2
+ 1; j℄.

The prepro
essing is done �rst for the leaves, as in the single pattern
ase,

that is, we
ompute a table for med(b; p

i

). The internal nodes
ontain tables for

min

i�h�j

med(b; p

h

),
omputed as minimizing over the two tables of the subtrees. In

the �ltering phase, we �rst use the table for the root,
orresponding to the full set of

patterns, and if the
urrent window has to be veri�ed with respe
t to a node in the

hierar
hy, we res
an the window
onsidering the two
hildren of the
urrent node. It

is possible that the window
an be dis
arded for both
hildren, for one, or for none.

We re
ursively repeat the pro
ess for every
hild that does not permit dis
arding the

window. If we pro
ess a leaf node and still have to verify the window, then we run

the veri�
ation algorithm for the
orresponding single pattern.

The se
ond improvement is to have bit-parallel
ounters. In this
ase we reserve

only O(log

2

k) bits to a

umulate the di�eren
es med(b

j

; p). This means that if we

have a
omputer word of w bits, we
an pro
ess O(w= log

2

k) patterns in parallel.

This te
hnique
an also be used with the hierar
hi
al veri�
ation, to in
rease the

arity of the tree to O(w= log

2

k).

The third improvement is to use ordered `-grams, where ea
h b

j

is permit-

ted to mat
h only in the area of p where it
ould be aligned in an o

urren
e

starting at i + 1. In an approximate o

urren
e of b

j

: : : b

1

inside the pattern,

b

i

annot be
loser than (i � 1)` positions to the end of the pattern. There-

fore, we
ompute tables for med

j

(b; p), 1 � j � b(m � k)=`
, where med

j

(b; p) =

minfed(b; p

0

); 9x; y; jyj � (j � 1)`; p = xp

0

yg. This allows us to dis
ard a window

whenever med

1

(b

1

; p)+med

2

(b

2

; p)+ : : :+med

j

(b

j

; p) > k. This redu
es veri�
ations

but in
reases prepro
essing time and spa
e.

Finally, it is possible to improve the prepro
essing time by using a trie of all the

possible `-grams to reuse prepro
essing work. All the improvements
an be
ombined

into a single algorithm.

179

Pro
eedings of the Prague Stringology Conferen
e '05

4 Adapting to Musi
 Retrieval

The method above was designed for multiple string mat
hing under edit distan
e. Yet

its main idea is mu
h more general and
an be used to solve many other problems. In

this se
tion we demonstrate that the idea solves most of the musi
 retrieval problems

we have fo
used on in this paper. We note that this gives immediately a solution to

the multipattern version of the same problems.

4.1 Transposition Invariant Indel Distan
e

Let us start with sear
hing with transposition invariant indel distan
e. For ea
h

`-gram b 2 �

`

, we
ompute

mtid(b; p) = minfid(b+ t; p

0

); 9x; y; p = xp

0

y; � � � t � �g:

This is the minimum transposition invariant indel distan
e to mat
h b anywhere inside

p. The same algorithm of the previous se
tion is used, and the same argument shows

that we
annot dis
ard a window that starts an o

urren
e of p in T . Indel distan
e

is de
omposable just like edit distan
e, that is, for any split p

0

= p

0

1

: : : p

0

j+2

, there is

a split p = p

1

: : : p

j+2

su
h that id(p

0

; p) = id(p

0

1

; p

1

) + : : : + ed(p

0

j+2

; p

j+2

). Assume

p mat
hes t the
urrent window xb

j

: : : b

1

y starting at position i + 1. That is, there

exists a transposition t su
h that id(p

0

; p) � k, p

0

= (x + t)(b

j

+ t) : : : (b

1

+ t)(y + t).

Now, id(p

0

; p) � id(b

j

+ t; p

2

)+ : : : id(b

1

+ t; p

j+1

) � mtid(b

j

; p)+ : : :mtid(b

1

; p). Thus

if the latter ex
eeds k we
an safely shift the window.

When a window starting at position i + 1
annot be shifted, we simply
om-

pute LCTS(p; t

i+1

: : : t

i+m�k+d

) for any 0 � d � 2k, and report position i + 1 if

LCTS(p; t

i+1

: : : t

i+m�k+d

) � (m +m � k + d � k)=2 = m � k + d=2 for some d, as

this is equivalent to id(p; t

i+1

: : : t

i+m�k+d

) � k for some transposition t.

Fig. 1 shows simpli�ed pseudo
ode.

4.2 (Æ;
)-Mat
hing

Alternatively, we
an sear
h for (Æ;
)-mat
hes of p in T . In this
ase the window is of

length m, as o

urren
es are all of that length. For ea
h `-gram b 2 �

`

, we
ompute

mdg(b; p) = minf

0

; 9x; y; p = xp

0

y; b (Æ;

0

)-mat
hes p

0

g:

This is the minimum total number of absolute di�eren
es obtained by b inside p,

where we restri
t those positions to Æ-mat
h as well. The same algorithm of the

previous se
tion is used with this prepro
essing (and the threshold is
 instead of k).

Being
-mat
hing a
umulative measure, the sum of mdg(b

j

; p) values is a

lower bound to the
 needed to mat
h the window inside p. Consider window

p

0

= t

i+1

: : : t

i+m

= xb

j

: : : b

1

. Assume p

0

(Æ;
)-mat
hes p. Then, by de�nition of

(Æ;
)-mat
hing, b

1

(Æ;

1

)-mat
hes p

m�`+1

: : : p

m

, and so on until b

j

, whi
h (Æ;

j

)-

mat
hes p

m�j`+1

: : : p

m�j`+`

, so that

1

+ : : : +

j

�
. As ea
h b

s

(Æ;

s

)-mat
hes

p

m�s`+1

: : : p

m�s`+`

, it holds mdg(b

s

; p) �

s

, and mdg(b

j

; p) + : : :+mdg(b

1

; p) � k.

When a window t

i+1

: : : t

i+m

annot be shifted, we
he
k whether p (Æ;
)-mat
hes

the window in time O(m), and report position i + 1 if this is the
ase.

180

Flexible Musi
 Retrieval in Sublinear Time

Sear
h ()

1. D Prepro
ess ()

2. i 0

3. While i � n� (m� k) Do

4. pos Shift (i; D)

5. If pos = i

6. Verify area t

i+1

: : : t

i+m+k

7. pos pos+ 1

8. i pos

Shift (i; D)

1. M 0

2.
 m� k

3. While
 � ` Do

4.

� `

5. M M +D[t

i+
+1

: : : t

i+
+`

℄

6. If M > k Return i+
 + 1

7. Return i

Prepro
ess ()

1. ` �(log

�

m)

2. For b 2 �

`

Do D[b℄ mtid(b; p)

3. Return D

Figure 1: Simple des
ription of the algorithm. The main variables are global for all

the algorithms. The
ode
orresponds to transposition invariant indel.

The pseudo
ode of Fig. 1
an be easily adapted to this model. One needs only to

repla
e mtid() with mdg(), k with
, and adjust the window size from m � k to m,

and veri�
ation area from t

i+1

: : : t

i+m+k

to t

i+1

: : : t

m

.

4.3 Feasible and Unfeasible Combinations

We
an also
ombine transposition invariant indel distan
e with Æ-mat
hing. In this

ase we
ount indels, but two
hara
ters mat
h whenever they do not di�er by more

than Æ units. This is easily handled by modifyingmtid(b; p) formula so that id(b+t; p

0

)

onsiders mat
hes in the more relaxed way. Transposition invarian
e
an also be

ombined with (Æ;
)-mat
hing, by using mtdg(b; p) instead of mdg(b; p), so that

mtdg(b; p) = minf

0

; 9x; y; p = xp

0

y; b + t (Æ;

0

)-mat
hes p

0

; � � � t � �g:

We
annot dire
tly
ombine transposition invariant indel distan
e with (Æ;
)-

mat
hing. The reason is that we do not have here a single value to minimize, su
h

as the number of indels or
, but both of them at the same time. It was possible to

ombine transposition invariant indel distan
e with Æ-mat
hing be
ause the latter is

not a parameter to optimize but a
ondition for mat
hing. Likewise, it was possible

to
ombine
-mat
hing with Æ-mat
hing to obtain (Æ;
)-mat
hing. Yet, if we want

to
ombine indel distan
e (even without transposition invarian
e) with
-mat
hing,

the problem is that ea
h pair (b; p

0

) produ
es some number of indels and some
, so

di�erent pairs will yield the minimal of ea
h and it is not
lear whi
h to
hoose.

Of
ourse we
an
ount indels and
 separately in di�erent tables (ea
h a
hieved

by a di�erent pair). This is equivalent to �ltering ea
h window with k and with

separately, and verifying those that pass both �lters. Yet, this is not the same as a

ombined �lter, but it
ould be pra
ti
al.

181

Pro
eedings of the Prague Stringology Conferen
e '05

4.4 Complexity Considerations

We are not able to analyze our algorithms, but we
an give some
lues about their

average
ase performan
e. As we have des
ribed it, our algorithm for transposition

invariant indel distan
e is equivalent to multipattern sear
h with indel distan
e for the

set p

1

= p��, p

2

= p��+1, : : :, p

2�+1

= p+�. Sin
e id(a; b) � ed(a; b) for any strings

a and b, we
an use the analysis of [17℄ on edit distan
e for indel distan
e and the

result is pessimisti
 (yet tight). A

ording to that analysis, sear
hing for r = 2� + 1

random patterns in random text yields average
omplexity O(n(k+ log

�

(rm))=m) =

O(n(k + log

�

m)=m). This value is optimal even for one pattern [29℄, and it would

show that our algorithm is optimal too.

Yet, the problem is that our 2� + 1 patterns are not random, but are all the

transpositions of a random pattern. For example, if ` = 1, then our 2� + 1 patterns

ne
essarily mat
h any string of length 1, whereas the same number of random pat-

terns do not. Thus our analysis is optimisti
 and therefore not
on
lusive. Yet, we

onje
ture that the result of the analysis is valid.

In
ase Æ-mat
hing is permitted together with transposition invarian
e indel dis-

tan
e in the model, then the probability of mat
hing is not 1=� but O(Æ=�), and

therefore the base of the logarithm is not � but O(�=Æ). Redoing the analysis we get

O(n(k+log

�=Æ

(Æm))=m). With Æ-mat
hing alone (no transposition invarian
e) we get

O(n log

�=Æ

m=m), and with Æ-mat
hing with transposition invarian
e (without indels)

we get O(n log

�=Æ

(Æm)=m). We are not able to a

ount for the analyti
al e�e
t of a

-restri
tion in these analyses, but of
ourse they
an only improve.

In the worst
ase the �ltering algorithm for ea
h model takes O(mn) time with-

out the hierar
hi
al veri�
ation, and O(mn�) with hierar
hi
al veri�
ation (for the

transposition invariant models). There is also a linear time variant of the �ltering

algorithm that runs in O(n) time in the best and worst
ases, see [17℄. However,

in the worst
ase the veri�
ation time dominates. For transposition invariant indel

distan
e the worst
ase veri�
ation time is O(nm�=w). For (Æ;
)-mat
hing the worst

ases are O(nm) without transpositions and O(nm�) with transpositions. We note

that these
an be improved by using the more eÆ
ient worst
ase algorithms available

in the literature.

The prepro
essing time is O(m�

`+1

=w) for transposition invariant indels, O(m�

`

)

for (Æ;
)-mat
hing, and O(m�

`+1

) for transposition invariant (Æ;
)-mat
hing. With

ordered `-grams the prepro
essing
ost for indels in
reases to O(m�

`+1

). For the other

models the
osts remain the same. The spa
e requirement is O(�

`

) and O(�

`

m=`)

for the basi
 algorithm and for the ordered `-grams, respe
tively. These have to be

multiplied by O(�) if hierar
hi
al veri�
ation is used. All the bounds are polynomial

in m (as ` = �(log

�

m)).

5 Experimental Results

We have implemented the algorithms in C,
ompiled using i

 8.0 with full op-

timizations. The experiments were run in a 2GHz Pentium 4, with 512mb ram,

running Linux 2.4.18. The
omputer word length is w = 32 bits.

For the text we used a
on
atenation of 7543 musi
 pie
es, whose total length

is 1828089 bytes. The �le was obtained by extra
ting the pit
h values from MIDI

182

Flexible Musi
 Retrieval in Sublinear Time

�les. The pit
h values are in the range [0 : : : 127℄. A set of 100 patterns were ran-

domly extra
ted from the text. Ea
h pattern was then sear
hed for separately, and

we report the average sear
h times. We measured user times. We have separated the

prepro
essing and sear
h times, whi
h makes it easier to
ompare the sear
h perfor-

man
e. Our prepro
essing
ost is
onsiderably high, but this is amortized by large

musi

olle
tions that arise in pra
ti
al appli
ations.

5.1 Implementation

Several variants of the optimal multipattern algorithm were
onsidered in [17℄. For

(Æ;
)-mat
hing without transpositions, we used the basi
 single pattern algorithm.

As the transpositions were implemented as multipattern sear
h, we used bit-parallel

ounters and hierar
hi
al veri�
ation in these
ases, whi
h give a
onsiderable speed-

up. For indels, we used the IndelMYE algorithm [19℄ for the �nal veri�
ations. We

ran ea
h experiment with and without ordered `-grams. The former is an order of

magnitude faster in many
ases, but it has higher prepro
essing
ost, justi�ed only

for large texts.

For all experiments we used ` = 2. Due to the
onsiderably large alphabet size,

larger ` values were not pra
ti
al. On the other hand, ` = 1 gives in general poor re-

sults, espe
ially
ombined with transpositions (but note that with bit-parallel
ounters

even 1-grams are not guaranteed to mat
h always, as di�erent transposition ranges

are mapped to di�erent
ounters).

As the alphabet size was large (128), but most of the values o

ur in the middle

of the range, we mapped the alphabet into the range 0 : : : 63. That is, values 32 : : : 95

were mapped to 0 : : : 63, values 0 : : : 31 to 0, and values 96 : : : 127 to 95. This map-

ping allows us to use the original Æ values. Veri�
ation was done using the original

alphabet. This improves the prepro
essing times, without worsening the sear
h times.

We note that other alphabet mappings may make sense. In parti
ular, for musi

appli
ations, it might be a

eptable to make the alphabet o
tave-independent, so that

the same notes in di�erent o
taves are mapped to the same value.

5.2 Prepro
essing Time

Table 1 gives the prepro
essing times. For mtid() and mtdg() we have
onsidered hi-

erar
hi
al veri�
ation be
ause it gave
onsistently better results, so the prepro
essing

timings in
lude all the hierar
hy
onstru
tion. Using ordered `-grams in
reases the

prepro
essing
ost, but improves the sear
h performan
e.

mtid(), m = 32 mdg(), m = 8 mdg(), m = 64 mtdg(), m = 32

0.0699 / 0.2680 0.0048 / 0.0052 0.0067 / 0.0092 0.0936 / 0.5177

Table 1: Prepro
essing times in se
onds for ` = 2. The se
ond timings are for ordered

`-grams.

183

Pro
eedings of the Prague Stringology Conferen
e '05

5.3 Transposition Invariant Indel Distan
e

We
ompared our approa
h against the LCTS algorithm [16℄, whose running time

is O(mn log�= logw). Although the algorithm solves the dual problem, it
ould be

adapted to sear
hing with indel distan
e as well. We also
ompared against the bit-

parallel dynami
 programming algorithm IndelMYE [19℄, whose running time for a

single transposition is O(mn=w). We superimposed [3℄ all the transpositioned pat-

terns and used hierar
hi
al veri�
ation, in the same manner as in [17℄ with BPM

algorithm. This works very well in pra
ti
e, although the worst
ase
omplexity is

still O(�mn=w). Fig. 2 shows the results for m = 8 : : : 64 and k = 1 : : : 5. Our al-

gorithm is by far the fastest for small k=m. LCTS is
ompetitive only for very large

k=m, while IndelMYE is the best
hoi
e for moderate k=m. Our algorithm
learly

improves with ordered `-grams, at the
ost of higher prepro
essing e�ort and memory

requirements.

0.001

0.01

0.1

1

10

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

tim
e

(s
)

m

Ours, k=1
Ours, k=3

Ours, k=5
LCTS

IndelMYE, k=1
indelMYE, k=5

0.001

0.01

0.1

1

10

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

tim
e

(s
)

m

Ours, k=1
Ours, k=3

Ours, k=5
LCTS

IndelMYE, k=1
indelMYE, k=5

Figure 2: Left: Sear
h time in se
onds for transposition invariant indel/LCS for

m = 8:::64. Right: The same with ordered `-grams.

Fig. 3 shows the results for m = 32, k = 1 : : : 6 and Æ = 0 : : : 2. The LCTS

algorithm
annot be applied for this setting. Being bit-parallel algorithm, IndelMYE

an be easily adapted to this
ase by using
lasses of
hara
ters to implement Æ. In

this
ase we are again
ompetitive against IndelMYE for small k=m, but only for very

small Æ. Ordered `-grams boost the sear
h
onsiderably.

5.4 (Æ;
)-Mat
hing

For (Æ;
)-mat
hing we
ompared against the bit-parallel Forward mat
hing algorithm

(Fwd) of [13℄. Fig. 4 shows the results form = 8 : : : 64, Æ = 1 : : : 3 and
 = mÆ=2. Our

algorithm is mu
h more sensitive to in
reasing Æ than Fwd, but for small Æ values we

are an order of magnitude faster. Using ordered `-grams makes our algorithm more

tolerant for in
reasing
 (but note that
=m is
onstant here).

In [13℄ they give also bit-parallel ba
kward mat
hing algorithm, that is able to

skip some text
hara
ters. The implementation restri
ts the pattern lengths to be at

most �(w= log

2

(
)). This means that in this experiment this algorithm is appli
able

only for the
ase m = 8, Æ = 1, and
 = 8 � 1=2 = 4. The algorithm takes 0.0063s

average time, in this
ase, and marginally beats our algorithm (0.0065s)

184

Flexible Musi
 Retrieval in Sublinear Time

0.001

0.01

0.1

1

0 1 2 3 4 5 6

tim
e

(s
)

k

Ours, δ=0
Ours, δ=1
Ours, δ=2

IndelMYE, δ=0
indelMYE, δ=1
IndelMYE, δ=2

0.001

0.01

0.1

1

0 1 2 3 4 5 6

tim
e

(s
)

k

Ours, δ=0
Ours, δ=1
Ours, δ=2

IndelMYE, δ=0
indelMYE, δ=1
IndelMYE, δ=2

Figure 3: Left: Sear
h times in se
onds for transposition invariant indel for Æ = 1:::3,

and m = 32. Right: The same with ordered `-grams.

Timings for m = 32, Æ = 1 : : : 3, and
 = 4 : : : 40 are shown in Fig. 5. (Note

that for Æ = 1 there is no point for using
 > m.) Again, Fwd be
omes eventually

faster for large Æ and
, while our algorithm dominates for small parameter val-

ues. Fig. 6 repeats the experiment for transposition invariant (Æ;
)-mat
hing. Note

that no
ompetitors exist in this
ase, although transposition superimposition and

hierar
hi
al veri�
ation
ould be applied for some of the existing (Æ;
) mat
hing al-

gorithms. However, observe that our transposition invariant algorithm is faster than

Fwd algorithm (without transpositions) for small Æ and
.

0.001

0.01

0.1

1

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

tim
e

(s
)

m

Ours, δ=1
Ours, δ=2
Ours, δ=3

Fwd, δ=1
Fwd, δ=2
Fwd, δ=3

0.001

0.01

0.1

1

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

tim
e

(s
)

m

δ=1
δ=2
δ=3

Fwd, δ=1
Fwd, δ=2
Fwd, δ=3

Figure 4: Left: Sear
h times in se
onds for (Æ;
)-mat
hing for m = 8 : : : 64 and

Æ = 1 : : : 3. For ea
h data point
 = mÆ=2. Right: The same with ordered `-grams.

5.5 Comparison

We have separated the prepro
essing and sear
hing times in presenting the experi-

mental results. This may seem unfair against the
ompeting algorithms, and so it is

for short texts. To show that our algorithms are
ompetitive, Table 2 gives estimates

for the minimum �le sizes required to beat the
ompeting approa
hes for various

problem instan
es. These limits are quite modest, and for smaller parameter values

even shorter �les are suÆ
ient.

185

Pro
eedings of the Prague Stringology Conferen
e '05

0.001

0.01

0.1

1

10

4 8 12 16 20 24 28 32 36 40

tim
e

(s
)

γ

Ours, δ=1
Ours, δ=2
Ours, δ=3

Fwd, δ=1
Fwd, δ=2
Fwd, δ=3

0.001

0.01

0.1

1

10

4 8 12 16 20 24 28 32 36 40

tim
e

(s
)

γ

Ours, δ=1
Ours, δ=2
Ours, δ=3

Fwd, δ=1
Fwd, δ=2
Fwd, δ=3

Figure 5: Left: Sear
h times in se
onds for (Æ;
)-mat
hing for m = 32, Æ = 1 : : : 3,

and
 = 4 : : : 40. Right: The same with ordered `-grams.

0.001

0.01

0.1

1

10

4 8 12 16 20 24 28 32 36 40

tim
e

(s
)

γ

δ=1 δ=2 δ=3

0.001

0.01

0.1

1

10

4 8 12 16 20 24 28 32 36 40

tim
e

(s
)

γ

δ=1 δ=2 δ=3

Figure 6: Left: Sear
h times in se
onds for (Æ;
)-mat
hing with transpositions for

m = 32, Æ = 1 : : : 3, and
 = 4 : : : 40. Right: The same with ordered `-grams.

6 Con
lusions

We have presented new �ltering algorithms for musi
 retrieval. Our algorithms are

very eÆ
ient in pra
ti
e, and are
onje
tured to be optimal on average. The experi-

ments show that for small to moderate error thresholds our algorithms are substan-

tially faster than previous approa
hes for all but very short texts. These are the

parameter values that are most interesting in most musi
 retrieval appli
ations.

The algorithms are extremely
exible. We
an solve many di�erent problem vari-

ants essentially without any modi�
ations to the sear
h algorithms, only prepro
ess-

ing
hanges a

ording to the sear
h model. In parti
ular, we are able to solve some

variants where no
ompeting algorithms
urrently exist. These are transposition in-

variant indel with Æ > 0, and transposition invariant (Æ;
)-mat
hing. Moreover, our

algorithms
an be used for multipattern sear
h as well.

186

Flexible Musi
 Retrieval in Sublinear Time

Indels (Æ;
)-mat
hing

k = 4; Æ = 0 k = 1; Æ = 1 (1;1) (2;1) (3; 24)

> 0:61 Mb > 1:77 Mb > 0:46 Mb > 0:71 Mb > 1:52 Mb

Table 2: Examples of musi
 �le sizes where we begin to win for a few settings. The

�rst row shows the parameter values, and the se
ond row gives an estimate of the

minimum �le size where our algorithm wins its
ompetitor. For smaller parameters

shorter �les would suÆ
e. The estimates are for m = 32.

Referen
es

[1℄ A. Amir and M. Fara
h. EÆ
ient 2-dimensional approximate mat
hing of half-

re
tangular �gures. Information and Computation, 118(1):1{11, 1995.

[2℄ A. Amir, O. Lipsky, E. Porat, and J. Umanski. Approximate mat
hing in the

L

1

metri
. In Pro
. CPM'05, LNCS v. 3537, pages 91{103, 2005.

[3℄ R. Baeza-Yates and G. Navarro. New and faster �lters for multiple approximate

string mat
hing. Random Stru
tures and Algorithms, 20:23{49, 2002.

[4℄ R. Boyer and J. Moore. A fast string sear
hing algorithm. Comm. of the ACM,

20(10):762{772, 1977.

[5℄ E. Cambouropoulos, T. Crawford, and C. Iliopoulos. Pattern pro
essing in

melodi
 sequen
es: Challenges,
aveats and prospe
ts. In Pro
. AISB'99, pages

42{47, 1999.

[6℄ E. Cambouropoulos, M. Cro
hemore, C. Iliopoulos, L. Mou
hard, and Y. J.

Pinzon. Algorithms for
omputing approximate repetitions in musi
al sequen
es.

In Pro
. AWOCA'99, pages 129{144, 1999.

[7℄ E. Cambouropoulos, M. Cro
hemore, C. S. Iliopoulos, L. Mou
hard, and Y. J.

Pinzon. Algorithms for
omputing approximate repetitions in musi
al sequen
es.

J. of Computational Mathemati
s, 79(11):1135{1148, 2002.

[8℄ P. Cli�ord, R. Cli�ord, and C. Iliopuolos. Faster algorithms for (Æ;
)-mat
hing

and related problems. In Pro
. CPM'05, LNCS v. 3537, pages 68{78, 2005.

[9℄ R. Cole and R. Hariharan. Verifying
andidate mat
hes in sparse and wild
ard

mat
hing. In Pro
. STOC'02, pages 592{601, 2002.

[10℄ R. Cole, C. Iliopoulos, T. Le
roq, W. Plandowski, and W. Rytter. On spe
ial

families of morpishms related to Æ-mat
hing and don't
are symbols. Information

Pro
essing Letters, 85(5):227{233, 2003.

[11℄ T. Crawford, C. Iliopoulos, and R. Raman. String mat
hing te
hniques for mu-

si
al similarity and melodi
 re
ognition. Computing in Musi
ology, 11:73{100,

1998.

187

Pro
eedings of the Prague Stringology Conferen
e '05

[12℄ M. Cro
hemore, C. Iliopoulos, T. Le
roq, Y. J. Pinzon, W. Plandowski, and

W. Rytter. O

uren
e and substring heuristi
s for Æ-mat
hing. Fundamenta

Informati
ae, 55:1{15, 2003.

[13℄ M. Cro
hemore, C. Iliopoulos, G. Navarro, Y. Pinzon, and A. Salinger. Bit-

parallel (Æ;
)-mat
hing suÆx automata. J. of Dis
rete Algorithms, 3(2{4):198{

214, 2005.

[14℄ M. Cro
hemore, C. Iliopoulos, Y. Pinzon, and J. Reid. A fast and pra
ti
al

bit-ve
tor algorithm for the longest
ommon subsequen
e problem. Information

Pro
essing Letters, 80(6):279{285, 2001.

[15℄ M. Cro
hemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[16℄ S. Deorowi
z. Speeding up transposition invariant string mat
hing. Te
hni
al

report, Institute of Computer S
ien
e, Silesian University of Te
hnology, Poland,

2005. http://www-zo.iinf.polsl.gliwi
e.pl/~sdeor/pub/deo05babs.htm.

[17℄ K. Fredriksson and G. Navarro. Average-optimal single and multiple approximate

string mat
hing. ACM J. of Experimental Algorithmi
s, 9(1.4), 2004.

[18℄ D. Gus�eld. Algorithms on Strings, Trees and Sequen
es: Computer S
ien
e and

Computational Biology. Cambridge University Press, 1997.

[19℄ H. Hyyr�o, Y. Pinzon, and A. Shinohara. New bit-parallel algorithm for approx-

imate string mat
hing under indel distan
e. In Pro
. WEA'05, LNCS v. 3503,

pages 380{390, 2005.

[20℄ K. Lemstr�om, G. Navarro, and Y. Pinzon. Pra
ti
al algorithms for transposition-

invariant string-mat
hing. J. of Dis
rete Algorithms, 3(2{4):267{292, 2005.

[21℄ K. Lemstr�om and E. Ukkonen. In
luding interval en
oding into edit distan
e

based musi

omparison and retrieval. In Pro
. AISB'00, pages 53{60, 2000.

[22℄ V. M�akinen. Sub-quadrati
 algorithm for weighted k-mismat
hes problem. Te
h-

ni
al Report C-2004-1, Dept. of Computer S
ien
e, Univ. of Helsinki, 2004.

http://www.
s.helsinki.fi/u/vmakinen/papers/weightedkmm.ps.gz.

[23℄ V. M�akinen, G. Navarro, and E. Ukkonen. Transposition invariant string mat
h-

ing. J. of Algorithms, 2004. To appear. Conferen
e version in Pro
. STACS'03,

LNCS 2607, pages 191{202.

[24℄ G. Navarro. A guided tour to approximate string mat
hing. ACM Computing

Surveys, 33(1):31{88, 2001.

[25℄ G. Navarro and K. Fredriksson. Average
omplexity of exa
t and approximate

multiple string mat
hing. Theoreti
al Computer S
ien
e, 321(2{3):283{290, 2004.

[26℄ G. Navarro, Sz. Grabowski, V. M�akinen, and S. Deorowi
z. Improved time

and spa
e
omplexities for transposition invariant string mat
hing. Te
hni-

al Report TR/DCC-2005-4, Dept. of Computer S
ien
e, Univ. of Chile, 2005.

ftp://ftp.d

.u
hile.
l/pub/users/gnavarro/mnloglogs.ps.gz.

188

Flexible Musi
 Retrieval in Sublinear Time

[27℄ G. Navarro and M. RaÆnot. Flexible Pattern Mat
hing in Strings. Cambridge

University Press, 2002.

[28℄ P. Roland and J. Ganas
ia. Musi
al pattern extra
tion and similarity assessment.

In E. Miranda, editor, Readings in Musi
 and Arti�
ial Intelligen
e, pages 115{

144. Harwood A
ademi
 Publishers, 2000.

[29℄ A. C. Yao. The
omplexity of pattern mat
hing for a random string. SIAM J.

of Computing, 8(3):368{387, 1979.

189

