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Abstra
t. Musi
 sequen
es 
an be treated as texts in order to perform musi


retrieval tasks on them. However, the text sear
h problems that result from this

modeling are unique to musi
 retrieval. Up to date, several approa
hes derived

from 
lassi
al string mat
hing have been proposed to 
ope with the new sear
h

problems, yet ea
h problem had its own algorithms. In this paper we show that

a te
hnique re
ently developed for multipattern approximate string mat
hing

is 
exible enough to be su

essfully extended to solve many di�erent musi


retrieval problems, as well as 
ombinations thereof not addressed before. We

show that the resulting algorithms are 
lose to optimal and mu
h better than

existing approa
hes in many pra
ti
al 
ases.

Keywords: Musi
 retrieval, approximate string mat
hing, (Æ; 
)-mat
hing,

transposition invarian
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1 Introdu
tion

In this paper we are interested in musi
 retrieval, and in parti
ular, in a re
ent

approa
h to it where musi
al s
ores are regarded as strings and string mat
hing

te
hniques 
an be used to solve musi
 retrieval problems. In order to map the problem

to string mat
hing, the alphabet of the string 
ould simply be the set of notes in the


hromati
 or diatoni
 notation, or the set of intervals that appear between notes

(for example, pit
hes may be represented as MIDI numbers and pit
h intervals as

number of semitones). In both 
ases, we deal with numeri
 strings. Then, many

musi
 retrieval problems 
an be 
onverted into string mat
hing problems, that is,

�nd the o

urren
es of a short string (
alled the pattern) in a longer string (
alled

the text). This is usually not enough to fully solve all musi
 retrieval problems, but

it provides a useful and eÆ
ient �lter to leave the most promising 
andidates for a

�

Funded by the A
ademy of Finland, grant 202281.

y

Funded by the Deuts
he Fors
hungsgemeins
haft (BO 1910/1-3) within the Computer S
ien
e

A
tion Program.

z

Partially funded by Millennium Nu
leus Center for Web Resear
h, Grant P04-067-F, Mideplan,

Chile.

174



Flexible Musi
 Retrieval in Sublinear Time

more profound and 
ostly evaluation. There are also some problems where two long

musi
al pie
es are 
ompared, whi
h we do not address in this paper.

Exa
t string mat
hing 
annot be used to �nd o

urren
es of a parti
ular melody,

be
ause a number of irrelevant distortions 
ould exist between the melody sought and

its version stored in the musi
 database. To perform meaningful musi
 retrieval one

must resort to diverse forms of approximate mat
hing, where a limited amount of dif-

feren
es of diverse kinds are permitted between the sear
h pattern and its o

urren
e

in the text. Di�erent versions of the approximate string mat
hing problem arise in

di�erent �elds [24℄, yet those of musi
 retrieval are unique of this area [11, 5, 28℄.

One approximate mat
hing model of use in musi
 retrieval is (Æ; 
)-mat
hing. In

this model, two strings a

1

a

2

: : : a

m

and b

1

b

2

: : : b

m

of the same length m mat
h if (i)

the absolute di�eren
es between 
orresponding 
hara
ters do not ex
eed Æ, that is,

ja

i

� b

i

j � Æ for all 1 � i � m (or, alternatively, max

1�i�m

ja

i

� b

i

j � Æ), and (ii) the

sum of those absolute di�eren
es does not ex
eed 
, that is,

P

1�i�m

ja

i

� b

i

j � 
.

This model a

ounts for small di�eren
es that may arise between two versions of the

same melody, setting a limit for the individual absolute di�eren
es, as well as a global

limit to the overall di�eren
es. Sear
hing for pattern p under (Æ; 
)-mat
hing 
onsists

of �nding all the text positions where a text substring that (Æ; 
)-mat
hes p appears.

Less popular subproblems are Æ-mat
hing and 
-mat
hing, whi
h only enfor
e one of

the two 
onditions.

A se
ond relevant approximate mat
hing model is the longest 
ommon subsequen
e

(LCS) and its dual indel distan
e. The former, LCS(a; b), is the maximum length

of a string that is subsequen
e both of a and b, that is, LCS(a; b) = maxfjsj; s v

a; s v bg. A string s = s

1

s

2

: : : s

r

is a subsequen
e of string a

1

a

2

: : : a

m

, s v a, if s 
an

be obtained by removing zero or more 
hara
ters from a, that is, s = a

i

1

a

i

2

: : : a

i

r

for

1 � i

1

< i

2

< : : : < i

r

� m. The LCS has been largely used in 
omputational biology

to model biologi
al similarity, and it is also relevant to identify musi
al passages that

are similar ex
ept for a few extra or missing notes. This is espe
ially relevant be
ause

musi
 
ontains various kind of \de
orations", su
h as gra
e notes and ornamentations,

that are not essential for mat
hing. The indel distan
e id(a; b) between strings a and

b is the number of 
hara
ters one has to add or remove to a and b to make them

equal, id(a; b) = jaj+ jbj � 2 �LCS(a; b). Sear
hing for pattern p under indel distan
e

with toleran
e k 
onsists of �nding all the text positions where a string p

0

appears

so that id(p; p

0

) � k. Other variants of indel distan
e, whi
h are less popular in

musi
 retrieval, are Levenshtein or edit distan
e (where substitutions of 
hara
ters

are also permitted) and episode mat
hing (where only insertions in the pattern are

permitted).

Finally, a third similarity 
on
ept of relevan
e in musi
 retrieval is transposition

invarian
e. Two strings a = a

1

a

2

: : : a

m

and b = b

1

b

2

: : : b

m

are one the transposed

version of the other if there is a 
onstant t su
h that a+t = (a

1

+t)(a

2

+t) : : : (a

m

+t) =

b. Transposition invarian
e is very relevant be
ause Western people tend to listen to

musi
 analyti
ally, by observing the intervals between 
onse
utive pit
h values rather

than the a
tual pit
h values themselves. As a result, a melody performed in two

distin
t pit
h levels is per
eived as equal regardless of whether it is performed in a

lower or higher level of pit
hes.

As a string mat
hing problem, dealing with transposition invarian
e is trivial

be
ause it suÆ
es to represent text and pattern as di�eren
es between 
onse
utive
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notes and then apply exa
t string mat
hing. However, the above problems in most


ases of interest appear in 
ombined form. In parti
ular, transposition invarian
e

is usually 
ombined with longest 
ommon subsequen
e. The longest 
ommon trans-

position invariant subsequen
e between two strings a and b, LCTS(a; b), permits

transposing a or b as ne
essary to �nd the longest 
ommon subsequen
e among them,

LCTS(a; b) = max

t2Z

LCS(a+ t; b).

In re
ent years, there has been mu
h a
tivity around developing spe
i�
 string

mat
hing te
hniques to solve diverse musi
 retrieval problems, mostly 
onsisting of


ombinations of those outlined above. Several theoreti
al and pra
ti
al results of

interest have been a
hieved. We 
over these in the next se
tion.

Our 
ontribution in this paper is to show that a parti
ular approa
h re
ently devel-

oped for multiple approximate string mat
hing [17℄ is 
exible enough to be su

essfully

adapted to solve most of the 
ombinations of problems sket
hed above. Basi
ally the

same sear
h te
hnique, 
oupled with slightly di�erent pattern prepro
essings, yield

algorithms that solve ea
h 
ombination. We also 
hara
terize those 
ombinations

that 
annot be addressed by our approa
h. In theoreti
al terms, we show that the

resulting algorithms are sublinear (that is, they do not inspe
t all text 
hara
ters)

and 
an be argued to be 
lose to optimal. Yet, the most important aspe
t is the

pra
ti
al side, where we show that our te
hnique largely outperforms all the existing

ones in most 
ases of interest.

2 Related Work

In whi
h follows, we assume that a long text T = t

1

t

2

: : : t

n

is sear
hed for a 
ompar-

atively short pattern p = p

1

p

2

: : : p

m

. Both are sequen
es over alphabet �, a �nite


ontiguous subset of Z, of size �.

2.1 (Æ; 
)-Mat
hing

Several re
ent algorithms exist to solve this problem. These 
an be 
lassi�ed as

follows:

Bit-parallel: The idea is to take advantage of the intrinsi
 parallelism of the bit

operations inside a 
omputer word of w bits [27℄, so as to pa
k several values

in a single word and manage to update them all in one step [6, 7, 13℄. The

best 
omplexity a
hieved [13℄ is O(n m log(
)=w) in the worst 
ase and O(n)

on average.

O

urren
e heuristi
s: Inspired by Boyer-Moore te
hniques [4℄, they skip some text


hara
ters a

ording to the position of some 
hara
ters in the pattern [6, 12℄.

In general, only Æ is used to skip 
hara
ters, while the 
-
ondition is used to

verify 
andidates. This makes these algorithms weak for large Æ and small 
.

Substring heuristi
s: Based on suÆx automata [15℄, these algorithms skip text 
har-

a
ters a

ording to the position of some pattern substrings [12, 13℄. In the

se
ond arti
le, they use bit-parallelism to �lter the text using both Æ and 
,

unlike previous approa
hes. This is shown to be the approa
h examining the

least number of text 
hara
ters.
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FFT-related: It is possible to solve the Æ-mat
hing and (Æ; 
)-mat
hing problems in

O(Æn logm) time, and 
-mat
hing problem in O(n

p

m logm) time [8℄ using Fast

Fourier Transform (FFT) based te
hniques. The O(n
 log 
) time algorithm in

[2℄ is faster for small 
. This algorithm is based on bounded divide-and-
onquer

and non-boolean 
onvolutions. This te
hnique 
an be also used to solve the

Æ-mat
hing problem in O(n logm

p

Æ) time. Other FFT based o(mn) solutions

exist for related problems, see e.g. [9℄ and espe
ially related to Æ-mat
hing [1, 10℄.

Mat
hing under 
-restri
tion is possible in O(mn= log

�

n) time [22℄ without

using FFT (but using the Four-Russians tri
k).

In pra
ti
e, the best 
urrent algorithms for (Æ; 
)-mat
hing are those in [13℄, as

demonstrated by the experiments in [12, 13℄. In [13℄ they present a plain bit-parallel

and a substring heuristi
. The �rst is shown to be the best in most 
ases, but for

short patterns and small Æ and 
, the 
hara
ter-skipping te
hnique is better.

The FFT based te
hniques, although elegant, have 
onsiderably large overheads to

make them pra
ti
al. Our preliminary tests show that they only be
ome faster than

the naive algorithm on very long patterns. Sear
hing for long patterns is not typi
al

in musi
 retrieval. The solution based on the Four-Russians tri
k is only pra
ti
al for

small alphabets, mu
h smaller than what is required for musi
 retrieval.

2.2 Transposition Invariant LCS and Indel Distan
e

Plain (non-transposed) LCS among strings p and T 
an be 
omputed in O(mn) time

using dynami
 programming [18℄. In general, any LCTS algorithm 
an be adapted to

text sear
hing with indel distan
e. The LCTS problem was �rst stated in [21℄, where

O(�mn) time was obtained by trying out all the 2� + 1 possible transpositions one

by one. Further solutions to the problem 
an be 
lassi�ed as follows.

Brute-for
e: The idea is to pi
k any LCS algorithm and try it for all the 2� + 1

possible transpositions. Apart from the original proposal [21℄, several others

have been attempted 
onsidering di�erent pra
ti
al LCS algorithms based on

bit-parallelism [14, 19℄. The best 
omplexity a
hieved is O(�mn=w).

Sparse dynami
 programming: An evolution over the above s
heme is to noti
e that

the LCS(a + t; b) problem for ea
h transposition t has only a few 
hara
ter

mat
hes between a and b, mn in total. Those sparse problems are best handled

by sparse dynami
 programming algorithms. This idea lead to several solutions

[23, 26, 16℄. The best 
omplexity a
hieved is O(mn log logmin(m; �)), yet a

version with 
omplexity O(mn log�= logw) is shown to be better in pra
ti
e.

Bran
h and bound: In this 
ase the idea is to sear
h for the best possible trans-

position t by a ba
ktra
king method, re
ursively dividing the spa
e of 2� + 1

transpositions into ranges until �nding the best one [20℄. This yields a best-
ase


omplexity of O((mn+ log log �) log�), and the method works well in pra
ti
e.

Yet, it 
annot be extended to sear
hing with indel distan
e.

Experiments in [20, 19, 16℄ demonstrate that the O(mn log�= logw) algorithm in

[16℄ is the fastest in pra
ti
e. This method 
an be adapted to sear
hing with indel

distan
e.
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3 Optimal Multiple Approximate String Mat
hing

In [17℄, new algorithms for single and multiple approximate string mat
hing were

presented. Those algorithms were not only optimal on average, but also very eÆ
ient

in pra
ti
e, even in the more 
ompetitive area of single approximate string mat
hing.

It was shown that, to sear
h for the o

urren
es of r patterns of length m in a text

of length n, all them uniformly distributed over an alphabet of size �, the algorithm

required O(n(k + log

�

(rm))=m) time on average. Here k is the maximum number of

missing, extra, or substituted 
hara
ters permitted to mat
h a pattern against a text

string (sear
hing under edit distan
e). This average 
omplexity is optimal [29, 25℄.

We �rst explain how to sear
h for a single pattern p. We 
hoose a blo
k length `,

and 
omputemed(b; p) for every possible blo
k b 2 �

`

(that is, every possible `-gram).

Here, med(b; p) is the minimum edit distan
e between b and a substring of p,

med(b; p) = minfed(b; p

0

); 9x; y; p = xp

0

yg;

being ed(b; p

0

) the edit distan
e between b and p

0

.

Now, the text T = t

1

t

2

: : : t

n

is s
anned as follows. Sin
e the minimum length of

an o

urren
e of p = p

1

p

2

: : : p

m

in T with edit distan
e at most k has length at least

m�k (when k deletions o

ur on p), we slide a window of length m�k along the text.

For ea
h window tried, t

i+1

t

i+2

: : : t

i+m�k

, we read its `-grams right to left. That is, we

read at most b(m� k)=`
 `-grams b

1

, b

2

, and so on, so that b

1

= t

i+m�k�`+1

: : : t

i+m�k

is the rightmost, b

2

= t

i+m�k�2`+1

: : : t

i+m�k�`

pre
edes b

1

, et
. The invariant is that

any o

urren
e of p starting at positions � i has already been reported.

For ea
h su
h `-gram b

j

= t

i+m�k�j`+1

: : : t

i+m�k�j`+`

, we �nd med(b

j

; p) in the

pre
omputed table. If, after reading b

j

, we have med(b

1

; p) + med(b

2

; p) + : : : +

med(b

j

; p) > k, then no possible o

urren
e of p 
an 
ontain the text b

j

b

j�1

: : : b

2

b

1

,

thus the window is slid forward to start at the se
ond 
hara
ter of b

j

, that is, we set

i i+m� k � j`+ 1 (as the new window will start at i + 1).

If, on the other hand, all the `-grams of the window are s
anned and yet the

window 
annot be shifted, it must be veri�ed for a real o

urren
e. At this point,

we must 
he
k if there is an o

urren
e p

0

of p starting at text position i + 1. Sin
e

the maximum length of an o

urren
e is m+ k (where k insertions o

ur into p), any

potential p

0

mush �nish between positions i +m� k and i +m+ k. So we 
ompute

led(p; i) = minfed(p; t

i+1

: : : t

i+m�k+d

); 0 � d � 2kg;

whi
h 
an be done in O(m

2

) time by 
omputing ed( ) in
rementally in d. If led(p; i) �

k, we report i + 1 as the starting position of an o

urren
e. Finally, we advan
e the

window by one position, i i+ 1.

We show now that the way we shift the window is safe, that is, no o

urren
e 
an

start at positions i+ 1 to i+m� k� j`+ 1. Any su
h o

urren
e, of length at least

m� k, must 
ontain the sequen
e of `-grams b

j

: : : b

1

. Let p

0

= xb

j

: : : b

1

y be su
h an

o

urren
e. This is a split of p

0

into j + 2 pie
es. The main point is that the edit

distan
e is de
omposable: For any strings p and p

0

, given any split p

0

= p

0

1

: : : p

0

j+2

,

there is a split p = p

1

: : : p

j+2

su
h that ed(p

0

; p) = ed(p

0

1

; p

1

) + : : : + ed(p

0

j+2

; p

j+2

).

But ea
h su
h ed(p

0

s

; p

s

) � med(p

0

s

; p) � 0, by de�nition of med( ).

Hen
e, in our parti
ular 
ase, ed(p

0

; p) � med(b

j

; p)+ : : :+med(b

1

; p). Thus if the

latter ex
eeds k, there 
an be no o

urren
e of p 
ontaining b

j

: : : b

1

.
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The extension of the algorithm for multiple patterns is trivial. We only have to


hange the prepro
essing so that p is now a set of patterns p = fp

1

: : : p

r

g and now

med(b; p) = min

1�i�r

med(b; p

i

). Somed(b; p) is a lower bound to the 
ost of mat
hing

b anywhere inside any pattern of the set.

By appropriately 
hoosing ` = �(log

�

(rm)), we obtain the promised 
omplexity.

3.1 Extensions

Several other improvements are studied in [17℄. We brie
y review some that are used

in our experiments. For more details see [17℄.

On the windows that have to be veri�ed, we 
ould simply run the veri�
ation for

every pattern, one by one. A more sophisti
ated 
hoi
e is hierar
hi
al veri�
ation [3℄.

We form a tree whose nodes have the form [i; j℄ and represent the group of patterns

p

i

: : : p

j

. The root is [1; r℄, and the leaves have the form [i; i℄. Every internal node

[i; j℄ has two 
hildren [i; b(i + j)=2
℄ and [b(i+ j)=2
+ 1; j℄.

The prepro
essing is done �rst for the leaves, as in the single pattern 
ase,

that is, we 
ompute a table for med(b; p

i

). The internal nodes 
ontain tables for

min

i�h�j

med(b; p

h

), 
omputed as minimizing over the two tables of the subtrees. In

the �ltering phase, we �rst use the table for the root, 
orresponding to the full set of

patterns, and if the 
urrent window has to be veri�ed with respe
t to a node in the

hierar
hy, we res
an the window 
onsidering the two 
hildren of the 
urrent node. It

is possible that the window 
an be dis
arded for both 
hildren, for one, or for none.

We re
ursively repeat the pro
ess for every 
hild that does not permit dis
arding the

window. If we pro
ess a leaf node and still have to verify the window, then we run

the veri�
ation algorithm for the 
orresponding single pattern.

The se
ond improvement is to have bit-parallel 
ounters. In this 
ase we reserve

only O(log

2

k) bits to a

umulate the di�eren
es med(b

j

; p). This means that if we

have a 
omputer word of w bits, we 
an pro
ess O(w= log

2

k) patterns in parallel.

This te
hnique 
an also be used with the hierar
hi
al veri�
ation, to in
rease the

arity of the tree to O(w= log

2

k).

The third improvement is to use ordered `-grams, where ea
h b

j

is permit-

ted to mat
h only in the area of p where it 
ould be aligned in an o

urren
e

starting at i + 1. In an approximate o

urren
e of b

j

: : : b

1

inside the pattern,

b

i


annot be 
loser than (i � 1)` positions to the end of the pattern. There-

fore, we 
ompute tables for med

j

(b; p), 1 � j � b(m � k)=`
, where med

j

(b; p) =

minfed(b; p

0

); 9x; y; jyj � (j � 1)`; p = xp

0

yg. This allows us to dis
ard a window

whenever med

1

(b

1

; p)+med

2

(b

2

; p)+ : : :+med

j

(b

j

; p) > k. This redu
es veri�
ations

but in
reases prepro
essing time and spa
e.

Finally, it is possible to improve the prepro
essing time by using a trie of all the

possible `-grams to reuse prepro
essing work. All the improvements 
an be 
ombined

into a single algorithm.
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4 Adapting to Musi
 Retrieval

The method above was designed for multiple string mat
hing under edit distan
e. Yet

its main idea is mu
h more general and 
an be used to solve many other problems. In

this se
tion we demonstrate that the idea solves most of the musi
 retrieval problems

we have fo
used on in this paper. We note that this gives immediately a solution to

the multipattern version of the same problems.

4.1 Transposition Invariant Indel Distan
e

Let us start with sear
hing with transposition invariant indel distan
e. For ea
h

`-gram b 2 �

`

, we 
ompute

mtid(b; p) = minfid(b+ t; p

0

); 9x; y; p = xp

0

y; � � � t � �g:

This is the minimum transposition invariant indel distan
e to mat
h b anywhere inside

p. The same algorithm of the previous se
tion is used, and the same argument shows

that we 
annot dis
ard a window that starts an o

urren
e of p in T . Indel distan
e

is de
omposable just like edit distan
e, that is, for any split p

0

= p

0

1

: : : p

0

j+2

, there is

a split p = p

1

: : : p

j+2

su
h that id(p

0

; p) = id(p

0

1

; p

1

) + : : : + ed(p

0

j+2

; p

j+2

). Assume

p mat
hes t the 
urrent window xb

j

: : : b

1

y starting at position i + 1. That is, there

exists a transposition t su
h that id(p

0

; p) � k, p

0

= (x + t)(b

j

+ t) : : : (b

1

+ t)(y + t).

Now, id(p

0

; p) � id(b

j

+ t; p

2

)+ : : : id(b

1

+ t; p

j+1

) � mtid(b

j

; p)+ : : :mtid(b

1

; p). Thus

if the latter ex
eeds k we 
an safely shift the window.

When a window starting at position i + 1 
annot be shifted, we simply 
om-

pute LCTS(p; t

i+1

: : : t

i+m�k+d

) for any 0 � d � 2k, and report position i + 1 if

LCTS(p; t

i+1

: : : t

i+m�k+d

) � (m +m � k + d � k)=2 = m � k + d=2 for some d, as

this is equivalent to id(p; t

i+1

: : : t

i+m�k+d

) � k for some transposition t.

Fig. 1 shows simpli�ed pseudo
ode.

4.2 (Æ; 
)-Mat
hing

Alternatively, we 
an sear
h for (Æ; 
)-mat
hes of p in T . In this 
ase the window is of

length m, as o

urren
es are all of that length. For ea
h `-gram b 2 �

`

, we 
ompute

mdg(b; p) = minf


0

; 9x; y; p = xp

0

y; b (Æ; 


0

)-mat
hes p

0

g:

This is the minimum total number of absolute di�eren
es obtained by b inside p,

where we restri
t those positions to Æ-mat
h as well. The same algorithm of the

previous se
tion is used with this prepro
essing (and the threshold is 
 instead of k).

Being 
-mat
hing a 
umulative measure, the sum of mdg(b

j

; p) values is a

lower bound to the 
 needed to mat
h the window inside p. Consider window

p

0

= t

i+1

: : : t

i+m

= xb

j

: : : b

1

. Assume p

0

(Æ; 
)-mat
hes p. Then, by de�nition of

(Æ; 
)-mat
hing, b

1

(Æ; 


1

)-mat
hes p

m�`+1

: : : p

m

, and so on until b

j

, whi
h (Æ; 


j

)-

mat
hes p

m�j`+1

: : : p

m�j`+`

, so that 


1

+ : : : + 


j

� 
. As ea
h b

s

(Æ; 


s

)-mat
hes

p

m�s`+1

: : : p

m�s`+`

, it holds mdg(b

s

; p) � 


s

, and mdg(b

j

; p) + : : :+mdg(b

1

; p) � k.

When a window t

i+1

: : : t

i+m


annot be shifted, we 
he
k whether p (Æ; 
)-mat
hes

the window in time O(m), and report position i + 1 if this is the 
ase.
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Sear
h ( )

1. D Prepro
ess ( )

2. i 0

3. While i � n� (m� k) Do

4. pos Shift (i; D)

5. If pos = i

6. Verify area t

i+1

: : : t

i+m+k

7. pos pos+ 1

8. i pos

Shift (i; D)

1. M  0

2. 
 m� k

3. While 
 � ` Do

4. 
 
� `

5. M  M +D[t

i+
+1

: : : t

i+
+`

℄

6. If M > k Return i+ 
 + 1

7. Return i

Prepro
ess ( )

1. ` �(log

�

m)

2. For b 2 �

`

Do D[b℄ mtid(b; p)

3. Return D

Figure 1: Simple des
ription of the algorithm. The main variables are global for all

the algorithms. The 
ode 
orresponds to transposition invariant indel.

The pseudo
ode of Fig. 1 
an be easily adapted to this model. One needs only to

repla
e mtid() with mdg(), k with 
, and adjust the window size from m � k to m,

and veri�
ation area from t

i+1

: : : t

i+m+k

to t

i+1

: : : t

m

.

4.3 Feasible and Unfeasible Combinations

We 
an also 
ombine transposition invariant indel distan
e with Æ-mat
hing. In this


ase we 
ount indels, but two 
hara
ters mat
h whenever they do not di�er by more

than Æ units. This is easily handled by modifyingmtid(b; p) formula so that id(b+t; p

0

)


onsiders mat
hes in the more relaxed way. Transposition invarian
e 
an also be


ombined with (Æ; 
)-mat
hing, by using mtdg(b; p) instead of mdg(b; p), so that

mtdg(b; p) = minf


0

; 9x; y; p = xp

0

y; b + t (Æ; 


0

)-mat
hes p

0

; � � � t � �g:

We 
annot dire
tly 
ombine transposition invariant indel distan
e with (Æ; 
)-

mat
hing. The reason is that we do not have here a single value to minimize, su
h

as the number of indels or 
, but both of them at the same time. It was possible to


ombine transposition invariant indel distan
e with Æ-mat
hing be
ause the latter is

not a parameter to optimize but a 
ondition for mat
hing. Likewise, it was possible

to 
ombine 
-mat
hing with Æ-mat
hing to obtain (Æ; 
)-mat
hing. Yet, if we want

to 
ombine indel distan
e (even without transposition invarian
e) with 
-mat
hing,

the problem is that ea
h pair (b; p

0

) produ
es some number of indels and some 
, so

di�erent pairs will yield the minimal of ea
h and it is not 
lear whi
h to 
hoose.

Of 
ourse we 
an 
ount indels and 
 separately in di�erent tables (ea
h a
hieved

by a di�erent pair). This is equivalent to �ltering ea
h window with k and with 


separately, and verifying those that pass both �lters. Yet, this is not the same as a


ombined �lter, but it 
ould be pra
ti
al.
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4.4 Complexity Considerations

We are not able to analyze our algorithms, but we 
an give some 
lues about their

average 
ase performan
e. As we have des
ribed it, our algorithm for transposition

invariant indel distan
e is equivalent to multipattern sear
h with indel distan
e for the

set p

1

= p��, p

2

= p��+1, : : :, p

2�+1

= p+�. Sin
e id(a; b) � ed(a; b) for any strings

a and b, we 
an use the analysis of [17℄ on edit distan
e for indel distan
e and the

result is pessimisti
 (yet tight). A

ording to that analysis, sear
hing for r = 2� + 1

random patterns in random text yields average 
omplexity O(n(k+ log

�

(rm))=m) =

O(n(k + log

�

m)=m). This value is optimal even for one pattern [29℄, and it would

show that our algorithm is optimal too.

Yet, the problem is that our 2� + 1 patterns are not random, but are all the

transpositions of a random pattern. For example, if ` = 1, then our 2� + 1 patterns

ne
essarily mat
h any string of length 1, whereas the same number of random pat-

terns do not. Thus our analysis is optimisti
 and therefore not 
on
lusive. Yet, we


onje
ture that the result of the analysis is valid.

In 
ase Æ-mat
hing is permitted together with transposition invarian
e indel dis-

tan
e in the model, then the probability of mat
hing is not 1=� but O(Æ=�), and

therefore the base of the logarithm is not � but O(�=Æ). Redoing the analysis we get

O(n(k+log

�=Æ

(Æm))=m). With Æ-mat
hing alone (no transposition invarian
e) we get

O(n log

�=Æ

m=m), and with Æ-mat
hing with transposition invarian
e (without indels)

we get O(n log

�=Æ

(Æm)=m). We are not able to a

ount for the analyti
al e�e
t of a


-restri
tion in these analyses, but of 
ourse they 
an only improve.

In the worst 
ase the �ltering algorithm for ea
h model takes O(mn) time with-

out the hierar
hi
al veri�
ation, and O(mn�) with hierar
hi
al veri�
ation (for the

transposition invariant models). There is also a linear time variant of the �ltering

algorithm that runs in O(n) time in the best and worst 
ases, see [17℄. However,

in the worst 
ase the veri�
ation time dominates. For transposition invariant indel

distan
e the worst 
ase veri�
ation time is O(nm�=w). For (Æ; 
)-mat
hing the worst


ases are O(nm) without transpositions and O(nm�) with transpositions. We note

that these 
an be improved by using the more eÆ
ient worst 
ase algorithms available

in the literature.

The prepro
essing time is O(m�

`+1

=w) for transposition invariant indels, O(m�

`

)

for (Æ; 
)-mat
hing, and O(m�

`+1

) for transposition invariant (Æ; 
)-mat
hing. With

ordered `-grams the prepro
essing 
ost for indels in
reases to O(m�

`+1

). For the other

models the 
osts remain the same. The spa
e requirement is O(�

`

) and O(�

`

m=`)

for the basi
 algorithm and for the ordered `-grams, respe
tively. These have to be

multiplied by O(�) if hierar
hi
al veri�
ation is used. All the bounds are polynomial

in m (as ` = �(log

�

m)).

5 Experimental Results

We have implemented the algorithms in C, 
ompiled using i

 8.0 with full op-

timizations. The experiments were run in a 2GHz Pentium 4, with 512mb ram,

running Linux 2.4.18. The 
omputer word length is w = 32 bits.

For the text we used a 
on
atenation of 7543 musi
 pie
es, whose total length

is 1828089 bytes. The �le was obtained by extra
ting the pit
h values from MIDI
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�les. The pit
h values are in the range [0 : : : 127℄. A set of 100 patterns were ran-

domly extra
ted from the text. Ea
h pattern was then sear
hed for separately, and

we report the average sear
h times. We measured user times. We have separated the

prepro
essing and sear
h times, whi
h makes it easier to 
ompare the sear
h perfor-

man
e. Our prepro
essing 
ost is 
onsiderably high, but this is amortized by large

musi
 
olle
tions that arise in pra
ti
al appli
ations.

5.1 Implementation

Several variants of the optimal multipattern algorithm were 
onsidered in [17℄. For

(Æ; 
)-mat
hing without transpositions, we used the basi
 single pattern algorithm.

As the transpositions were implemented as multipattern sear
h, we used bit-parallel


ounters and hierar
hi
al veri�
ation in these 
ases, whi
h give a 
onsiderable speed-

up. For indels, we used the IndelMYE algorithm [19℄ for the �nal veri�
ations. We

ran ea
h experiment with and without ordered `-grams. The former is an order of

magnitude faster in many 
ases, but it has higher prepro
essing 
ost, justi�ed only

for large texts.

For all experiments we used ` = 2. Due to the 
onsiderably large alphabet size,

larger ` values were not pra
ti
al. On the other hand, ` = 1 gives in general poor re-

sults, espe
ially 
ombined with transpositions (but note that with bit-parallel 
ounters

even 1-grams are not guaranteed to mat
h always, as di�erent transposition ranges

are mapped to di�erent 
ounters).

As the alphabet size was large (128), but most of the values o

ur in the middle

of the range, we mapped the alphabet into the range 0 : : : 63. That is, values 32 : : : 95

were mapped to 0 : : : 63, values 0 : : : 31 to 0, and values 96 : : : 127 to 95. This map-

ping allows us to use the original Æ values. Veri�
ation was done using the original

alphabet. This improves the prepro
essing times, without worsening the sear
h times.

We note that other alphabet mappings may make sense. In parti
ular, for musi


appli
ations, it might be a

eptable to make the alphabet o
tave-independent, so that

the same notes in di�erent o
taves are mapped to the same value.

5.2 Prepro
essing Time

Table 1 gives the prepro
essing times. For mtid() and mtdg() we have 
onsidered hi-

erar
hi
al veri�
ation be
ause it gave 
onsistently better results, so the prepro
essing

timings in
lude all the hierar
hy 
onstru
tion. Using ordered `-grams in
reases the

prepro
essing 
ost, but improves the sear
h performan
e.

mtid(), m = 32 mdg(), m = 8 mdg(), m = 64 mtdg(), m = 32

0.0699 / 0.2680 0.0048 / 0.0052 0.0067 / 0.0092 0.0936 / 0.5177

Table 1: Prepro
essing times in se
onds for ` = 2. The se
ond timings are for ordered

`-grams.
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5.3 Transposition Invariant Indel Distan
e

We 
ompared our approa
h against the LCTS algorithm [16℄, whose running time

is O(mn log�= logw). Although the algorithm solves the dual problem, it 
ould be

adapted to sear
hing with indel distan
e as well. We also 
ompared against the bit-

parallel dynami
 programming algorithm IndelMYE [19℄, whose running time for a

single transposition is O(mn=w). We superimposed [3℄ all the transpositioned pat-

terns and used hierar
hi
al veri�
ation, in the same manner as in [17℄ with BPM

algorithm. This works very well in pra
ti
e, although the worst 
ase 
omplexity is

still O(�mn=w). Fig. 2 shows the results for m = 8 : : : 64 and k = 1 : : : 5. Our al-

gorithm is by far the fastest for small k=m. LCTS is 
ompetitive only for very large

k=m, while IndelMYE is the best 
hoi
e for moderate k=m. Our algorithm 
learly

improves with ordered `-grams, at the 
ost of higher prepro
essing e�ort and memory

requirements.
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Figure 2: Left: Sear
h time in se
onds for transposition invariant indel/LCS for

m = 8:::64. Right: The same with ordered `-grams.

Fig. 3 shows the results for m = 32, k = 1 : : : 6 and Æ = 0 : : : 2. The LCTS

algorithm 
annot be applied for this setting. Being bit-parallel algorithm, IndelMYE


an be easily adapted to this 
ase by using 
lasses of 
hara
ters to implement Æ. In

this 
ase we are again 
ompetitive against IndelMYE for small k=m, but only for very

small Æ. Ordered `-grams boost the sear
h 
onsiderably.

5.4 (Æ; 
)-Mat
hing

For (Æ; 
)-mat
hing we 
ompared against the bit-parallel Forward mat
hing algorithm

(Fwd) of [13℄. Fig. 4 shows the results form = 8 : : : 64, Æ = 1 : : : 3 and 
 = mÆ=2. Our

algorithm is mu
h more sensitive to in
reasing Æ than Fwd, but for small Æ values we

are an order of magnitude faster. Using ordered `-grams makes our algorithm more

tolerant for in
reasing 
 (but note that 
=m is 
onstant here).

In [13℄ they give also bit-parallel ba
kward mat
hing algorithm, that is able to

skip some text 
hara
ters. The implementation restri
ts the pattern lengths to be at

most �(w= log

2

(
)). This means that in this experiment this algorithm is appli
able

only for the 
ase m = 8, Æ = 1, and 
 = 8 � 1=2 = 4. The algorithm takes 0.0063s

average time, in this 
ase, and marginally beats our algorithm (0.0065s)
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Figure 3: Left: Sear
h times in se
onds for transposition invariant indel for Æ = 1:::3,

and m = 32. Right: The same with ordered `-grams.

Timings for m = 32, Æ = 1 : : : 3, and 
 = 4 : : : 40 are shown in Fig. 5. (Note

that for Æ = 1 there is no point for using 
 > m.) Again, Fwd be
omes eventually

faster for large Æ and 
, while our algorithm dominates for small parameter val-

ues. Fig. 6 repeats the experiment for transposition invariant (Æ; 
)-mat
hing. Note

that no 
ompetitors exist in this 
ase, although transposition superimposition and

hierar
hi
al veri�
ation 
ould be applied for some of the existing (Æ; 
) mat
hing al-

gorithms. However, observe that our transposition invariant algorithm is faster than

Fwd algorithm (without transpositions) for small Æ and 
.
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Figure 4: Left: Sear
h times in se
onds for (Æ; 
)-mat
hing for m = 8 : : : 64 and

Æ = 1 : : : 3. For ea
h data point 
 = mÆ=2. Right: The same with ordered `-grams.

5.5 Comparison

We have separated the prepro
essing and sear
hing times in presenting the experi-

mental results. This may seem unfair against the 
ompeting algorithms, and so it is

for short texts. To show that our algorithms are 
ompetitive, Table 2 gives estimates

for the minimum �le sizes required to beat the 
ompeting approa
hes for various

problem instan
es. These limits are quite modest, and for smaller parameter values

even shorter �les are suÆ
ient.
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Figure 5: Left: Sear
h times in se
onds for (Æ; 
)-mat
hing for m = 32, Æ = 1 : : : 3,

and 
 = 4 : : : 40. Right: The same with ordered `-grams.
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Figure 6: Left: Sear
h times in se
onds for (Æ; 
)-mat
hing with transpositions for

m = 32, Æ = 1 : : : 3, and 
 = 4 : : : 40. Right: The same with ordered `-grams.

6 Con
lusions

We have presented new �ltering algorithms for musi
 retrieval. Our algorithms are

very eÆ
ient in pra
ti
e, and are 
onje
tured to be optimal on average. The experi-

ments show that for small to moderate error thresholds our algorithms are substan-

tially faster than previous approa
hes for all but very short texts. These are the

parameter values that are most interesting in most musi
 retrieval appli
ations.

The algorithms are extremely 
exible. We 
an solve many di�erent problem vari-

ants essentially without any modi�
ations to the sear
h algorithms, only prepro
ess-

ing 
hanges a

ording to the sear
h model. In parti
ular, we are able to solve some

variants where no 
ompeting algorithms 
urrently exist. These are transposition in-

variant indel with Æ > 0, and transposition invariant (Æ; 
)-mat
hing. Moreover, our

algorithms 
an be used for multipattern sear
h as well.
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Indels (Æ; 
)-mat
hing

k = 4; Æ = 0 k = 1; Æ = 1 (1;1) (2;1) (3; 24)

> 0:61 Mb > 1:77 Mb > 0:46 Mb > 0:71 Mb > 1:52 Mb

Table 2: Examples of musi
 �le sizes where we begin to win for a few settings. The

�rst row shows the parameter values, and the se
ond row gives an estimate of the

minimum �le size where our algorithm wins its 
ompetitor. For smaller parameters

shorter �les would suÆ
e. The estimates are for m = 32.
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